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Replica Placement for Availability in the Worst Case

Peng Li
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Michael K. Reiter
University of North Carolina

Chapel Hill, NC, USA

Abstract—We explore the problem of placing object replicas
on nodes in a distributed system to maximize the number of
objects that remain available when node failures occur. In our
model, failing (the nodes hosting) a given threshold of replicas is
sufficient to disable each object, and the adversary selects which
nodes to fail to minimize the number of objects that remain
available. We specifically explore placement strategies based on
combinatorial structures called t-packings; provide a lower bound
for the object availability they offer; show that these placements
offer availability that is c-competitive with optimal; propose an
efficient algorithm for computing combinations of t-packings that
maximize their availability lower bound; and provide parameter
selection strategies to concretely instantiate our schemes for
different system sizes. We compare the availability offered by
our approach to that of random replica placement, owing to the
popularity of the latter approach in previous work. After quanti-
fying the availability offered by random replica placement in our
model, we show that our combinatorial strategy yields placements
with better availability than random replica placement for many
realistic parameter values.

I. INTRODUCTION

Consider the problem of deploying replicas of objects
onto a system of physical nodes so as to ensure the survival
of as many objects as possible when node failures occur.
This general problem occurs in practice in many computing
contexts: the “objects” might be virtual machines, files, or
servers, and the “replicas” could be whole object copies or
merely components used in the implementation of the object.
The survival of an object is achieved provided that fewer than
a given threshold number of its replicas were placed on the
nodes that fail. This threshold might range from all of the
object replicas to only a few. The question we address in this
paper is: How should the object replicas be placed on the nodes
(aside from the obvious requirement that the replicas of an
object all be placed on different nodes)?

Upon encountering this problem for the first time, it might
not be immediately obvious that the placement matters. But
consider the possibility that all of the failed nodes host replicas
of mostly the same objects. This scenario might fail objects
that require many replica failures to do so, but it fails fewer
objects than it otherwise could if each object fails when only a
few of its replicas do. Alternatively, suppose the failed nodes
host replicas of mostly different objects. Then, many objects
might fail if only few object replica failures suffice to fail each
object, but fewer objects might fail if many replica failures per
object are required. As this contrast suggests, the placement
certainly matters and depends not only on the number of nodes,
the number of objects, the number of node faults, and the
replicas per object, but also the number of an object’s replicas’
failures that prove fatal to the object.

We are not the first to study the problem of object replica
placement for availability (see Sec. II for a discussion of
related work), but to our knowledge, our treatment is novel
in at least two ways. First, we consider a worst-case adversary
that fails a specified number of nodes with knowledge of how
object replicas were placed on nodes, so as to maximize the
number of objects failed. This is in contrast to failures that
occur probabilistically, for example. Second, by decoupling
the number of replicas per object from the number of replica
failures that disable each object, our framework allows for
treatment of a wide variety of object configurations, such as
objects that are accessed using majority quorums (e.g., [19],
[17]) so that a majority of available replicas is required for
the object to survive, or objects for which even just a single
surviving replica suffices to keep the object available (e.g., in
the primary-backup(s) approach [7]).

Our study is also general by virtue of what it leaves
unspecified. While we label nodes, replicas and objects as
“failed” or not, we remain agnostic to the fault model [36]
(crash, Byzantine, etc.). Similarly, the protocols run among
object replicas or for objects to interact with others are not
our concern here. Rather, we simply assume that a node failure
fails all of the object replicas it hosts, and that an object fails
once a specified number of its object replicas do. We also
do not constrain the means by which the adversary fails the
nodes it chooses to, whether that be disabling them by denial-
of-service attacks, leveraging vulnerabilities in object replicas
they host, physically attacking the nodes, etc.

In this context, we make the following contributions:

• We study the viability of block designs for replica place-
ments. Specifically, we first leverage t-packings (e.g.,
see [26]), a relaxation of Steiner systems, as a replica
placement strategy. We provide a lower bound for the
availability of these replica placements and show that they
already offer availability that is c-competitive with optimal
placements (for a factor c that we specify). This suggests
that t-packings are a useful starting point for constructing
placement strategies.

• We develop a placement strategy that improves on the
use of t-packings in isolation by combining them. We
present an efficient algorithm to compute combinations
of individual t-packings that maximize our lower bound
on availability (among any such combination) for a given
number of node failures. We further show that for a
range of practical parameter values, the placement strategy
derived for a given target number of failures provides good
availability even for different numbers of failures.

• We develop as our primary comparison point a placement
strategy of randomly placing replicas on nodes subject to a
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load-balancing requirement, owing to the popularity of this
strategy in previous work. We characterize availability for
this placement strategy in our adversarial model, and then
we develop an expression for the limit of this measure as
the number of objects grows. We further show that this limit
already closely reflects reality for practical parameter values
and relatively small numbers of objects, allowing it to be
used as a basis to compare to the availabilities offered by
our strategies based on t-packings. In this way, we show
that our constructions based on t-packings provide better
availability for ranges of practical parameter values than
does random replica placement.

As discussed above, the replica placement strategies that
we explore build from t-packings, and some of our analysis
depends on use of maximum t-packings (also called t-designs).
Based on current knowledge of t-designs (which we briefly
survey in Sec. III-C), we limit our attention to replication
scenarios involving up to five replicas per object. Fortunately,
this decision is not limiting for practical replication scenarios
in data centers: VM replication for fault tolerance typically
uses two (e.g., [38]) and many file systems default to three
or four replicas per file or related structure (as in GFS [18],
Hadoop [37], and FARSITE [2]).

II. RELATED WORK

Replica placement for availability (or durability) has been
extensively studied in various fields (e.g., [5], [15], [4], [41],
[31], [39], [3], [34]), sometimes in conjunction with other con-
cerns. All related work we have located focuses on leveraging
node failure distributions, especially their independence and/or
heterogeneity as would be common in peer-to-peer storage and
computing, for example. Here we make no assumptions about
node failure distributions, allowing them to be controlled by an
arbitrary adversary constrained only by the number of nodes
he can fail. This renders our analysis both simpler in many
cases and, at the same time, very general.

We nevertheless draw from this work where possible. No-
tably, Yu and Gibbons [39] explored the following question: If
each node fails independently with fixed probability and if all
replicas of an object must fail for the object to fail, then what
placement strategy offers the highest probability of success for
operations involving multiple objects, a given number of which
must be available for the operation to succeed? Their finding
that we most directly leverage here is their identification
of random replica placements as offering close to the best
probability of operation success when an operation can tolerate
some object failures. Together with the widespread use and
empirical study of random placements (e.g., [35], [2], [4],
[18], [40], [24]), this finding motivates our choice of random
replica placement as a comparison point for our proposed
placement strategies. That said, for drawing this comparison
we need to develop our own analysis of the availability of
random placements, since we focus on a worst-case adversary
that can choose which nodes to fail; this analysis might be of
interest in its own right. Our work also differs from Yu and
Gibbons’ in that we do not consider multi-object operations,
asking instead only how many objects remain available, but
we do so while permitting an object to remain available only
if a specified number of its replicas survive (versus just one of
them). Note that equating our “objects” to their “operations”

and our “replicas” to their “objects” (each with only one
replica) does not yield the same problem—even setting aside
our different adversarial models—since replicas of the same
object in our case must be placed on different nodes, while
their objects do not.

As discussed in Sec. I, the cornerstone of the replica place-
ment strategy we develop is a t-packing. To our knowledge,
we are the first to explore the use of t-packings for replica
placement in distributed systems. That said, such block designs
have found application in several diverse domains, as surveyed
elsewhere (e.g., [11], [9], [33]). The most conceptually related
use of block designs to ours is their use in constructing
quorum systems (e.g., [29]). Quorum systems, however, must
intersect, whereas we have no such requirement here for object
placements, a fact that we leverage.

III. OVERLAP-BASED PLACEMENT STRATEGIES

The strength of random replica placement in diminishing
the likelihood that random node failures will fail many objects
(see Sec. II) derives from it inducing low inter-object cor-
relation [39], a measure that reflects the overlaps of objects’
replica placements. However, random placement induces small
overlaps only probabilistically, allowing the possibility that
targeted node failures could still impact many objects. In this
section we explore “overlap-based” placement strategies that
manage these overlaps explicitly. We will return to analyzing
the impact of targeted node failures on random placements in
Sec. IV and compare to our overlap-based strategies there.

b The number of objects
r The number of replicas per object
s The number of an object’s replicas whose

failure fails the object; 1 ≤ s ≤ r
n The number of nodes
k The number of failed nodes; s ≤ k < n
π A placement
O The set of all objects; |O| = b
N The set of all nodes; |N | = n

Fig. 1: Notation

Before continuing, we first define some notation used in the
rest of this document (see Fig. 1). We presume a system of n
nodes denoted by the set N (|N | = n). These nodes will host
a set O of b objects (|O| = b), each replicated r times. This
hosting is represented by a placement π : O → 2N , where
2N is the power set of N . Specifically, for each obj ∈ O,
π(obj) is a subset of N of size |π(obj)| = r that indicates
the nodes on which replicas of obj are located. We use k to
denote the number of nodes that fail. If K ⊆ N is the set of
k failed nodes, then an object obj is said to fail if and only
if |π(obj) ∩ K| ≥ s. This gives rise to the following natural
definition of the availability of a placement π.

Definition 1: For any fixed placement π, let Avail(π)
denote the number of available objects, minimized over all
sets K of (potentially failed) nodes where |K| = k. In other
words,

Avail(π) = min
K⊆N :
|K|=k

|{obj ∈ O : |π(obj) ∩ K| < s}|
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A. The Simple(x, λ) Placement Strategy

Our intuition for developing a replica placement strategy
so as to maximize availability is simply to limit the number of
objects whose replicas overlap on the same nodes “too much.”
This intuition is captured in the Simple(x, λ) strategy, which
limits overlaps of more than x nodes to at most λ objects. We
limit our attention to x < s, since once x ≥ s, arbitrarily many
objects can overlap on s nodes in a Simple(x, λ) placement,
meaning that failures of those nodes could fail arbitrarily many
objects.

Definition 2: The Simple(x, λ) placement strategy locates
object replicas on nodes using a placement π so that for all
N ′ ⊆ N where |N ′| = x+1 and all O′ ⊆ O, if N ′ ⊆ π(obj)
for every obj ∈ O′, then |O′| ≤ λ.

In words, Definition 2 says that no (x+1)-subset N ′ of nodes
can host (replicas of) more than λ objects in common. So, for
example, if λ = 1, then the replicas of any two objects can
overlap on at most x nodes.

It is important to note that a Simple(x, λ) placement
exists only for limited values of b, once n and r are fixed.
Specifically, borrowing results from design theory—where
a Simple(x, λ) is otherwise known as a (x + 1)-(n, r, λ)-
packing (e.g., [26])—we have:

Lemma 1 (e.g., [26]): A Simple(x, λ) placement exists

only if b ≤
⌊
λ
(

n
x+1

)
/
(

r
x+1

)⌋
.

While b ≤
⌊
λ
(

n
x+1

)
/
(

r
x+1

)⌋
is necessary for a Simple(x, λ)

placement, it is not sufficient. To achieve a sufficient condition,
we select an nx ≤ n and a μx that divides λ (i.e., μx | λ). The
values nx and μx are chosen so that μx

(
nx

x+1

)
/
(

r
x+1

)
is integral

and, moreover, a Simple(x, μx) placement exists for any b ≤
μx

(
nx

x+1

)
/
(

r
x+1

)
objects. Then, a Simple(x, λ) placement on

nx nodes can be obtained by “copying” the Simple(x, μx)
placement λ/μx times.

Observation 1: If there exist an nx ≤ n and a μx |
λ so that a Simple(x, μx) placement exists for all b ≤
μx

(
nx

x+1

)
/
(

r
x+1

)
, then a Simple(x, λ) placement exists for all

b ≤ λ
(

nx

x+1

)
/
(

r
x+1

)
.

Observation 2: Placing replicas on only nx ≤ n nodes can
lead to a load-imbalanced system, but only slightly if we can
find a suitable nx ≈ n. If we cannot, then we can instead
identify values nx1, . . ., nxm such that

∑m
i=1 nxi ≤ n but∑m

i=1 nxi ≈ n, and then extend the results below to account
for building a Simple(x, λ) placement on

∑m
i=1 nxi nodes for

any b ≤
∑m

i=1 λ
(
nxi

x+1

)
/
(

r
x+1

)
objects from a Simple(x, λ)

placement on each chunk of nxi nodes.

The extension in Observation 2 is straightforward but tedious,
and so we defer its discussion to Sec. III-C. For now, we
simply assume that a suitable nx and μx exist and can be
found to support Observation 1. We also adopt the convention
that, given nx, μx, r, s, and b, λ is chosen minimally, so that

(λ − μx)

(
nx

x+1

)
(

r
x+1

) < b ≤ λ

(
nx

x+1

)
(

r
x+1

) (1)

We now briefly characterize the availability of Simple(x,
λ) placements, to justify their use as a building block for

a more useful placement strategy in Sec. III-B. The key
observation in characterizing the availability of Simple(x, λ)
placements is that the availability can be lower-bounded by
applying Lemma 1 to packing s-sized sets of replicas into
the k failed nodes, as shown in the following lemma. Due to
space limitations, the proofs of all results have been deferred
to Appendix B.

Lemma 2: For any Simple(x, λ) placement π, Avail(π) ≥
lbAvail si(x, λ) where

lbAvail si(x, λ) = b−

⌊
λ

(
k

x+1

)
(

s
x+1

)
⌋

(2)

 0

 5
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 20

 25

600 1200 2400 4800 9600
b

s = 2 k = 2
k = 3
k = 4
k = 5

s = 3 k = 3
k = 4
k = 5

Fig. 2: Avail(π)− lbAvail si(x, λ)
for n = 71, x = 1, and r = 3

lbAvail si(x, λ) is a
tight lower bound for
only some parameter
values, as indicated in
Fig. 2. In this fig-
ure, Avail(π) was cal-
culated explicitly after
placing objects accord-
ing to a Simple(x, λ)
placement π and then
simulating the worst k
failures.

This lower bound for Avail(π), together with Eqn. 1,
permits us to relate Avail(π) to the availability of any place-
ment π′—and so, in particular, the placement offering the best
availability.

Theorem 1: Let c =

[
1−

( r

x+1)(
k

x+1)
( nx
x+1)(

s

x+1)

]−1

and α =

cμx
( k

x+1)
( s

x+1)
. If

(
r

x+1

)(
k

x+1

)
<
(

nx

x+1

)(
s

x+1

)
and so c > 1, then

for any number b of objects, any Simple(x, λ) placement π,
and any other placement π′,

Avail(π′) < c · Avail(π) + α

In this respect, Simple(x, λ) placements are “c-competitive”
(c.f., [6]) with placements yielding the best availability, for
any number b of objects (while other parameters, except λ,
are held constant).

To see an illustration of Theorem 1, suppose that s = r so that(
r

x+1

)
and

(
s

x+1

)
cancel. Then,

1−

(
r

x+1

)(
k

x+1

)
(

nx

x+1

)(
s

x+1

) = 1−
k(k − 1) · · · (k − x)

nx(nx − 1) · · · (nx − x)
≥ 1−

(
k

nx

)x+1

So, for example, if
(

k
nx

)x+1

≈ 0.2, then under these condi-

tions, the availability of a Simple(x, λ) placement converges
to ≈ 80% of what any placement could achieve as b −→ ∞.
On the other hand, under other conditions (such as when s is
small relative to r), this constant factor can be less favorable.

B. The Combo(〈λx〉x∈[s]) Placement Strategy

The previous section illustrated the potential utility of
Simple(x, λ) placements, but we stopped short of suggesting
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exactly how to select x. To see why this may not be straightfor-
ward, consider a fixed n, r, s, and k, but consider increasingly
large values of b. On the one hand, if x is held constant,
then the value λ must grow linearly with b, due to Eqn. 1.
This, however, implies that the (lower bound on) availability
in Lemma 2 also diminishes linearly. On the other hand, if
x is increased so that λ need not be, then this increases the
values of b that can be accommodated exponentially (assuming
each nx ≈ n and r � n); to accommodate some values of
b, though, this huge increase is unnecessary and results in a
larger penalty to availability than increasing λ would have.

Let [s] = {0, 1, . . . , s − 1} and so 〈λx〉x∈[s] =
〈λ0, . . . , λs−1〉. In this section we develop a new place-
ment strategy, called Combo(〈λx〉x∈[s]), that provides us the
flexibility to tune parameters 〈λx〉x∈[s] corresponding to the
possible values of x ∈ [s], to best match a given b. That
is, Combo(〈λx〉x∈[s]) takes a value λx corresponding to each
x ∈ [s], subject to the constraint

b ≤
s−1∑
x=0

λx

(
nx

x+1

)
(

r
x+1

) (3)

and then divides the objects over placements
Simple(0, λ0), . . . , Simple(s− 1, λs−1). Eqn. 3 ensures
that Combo(〈λx〉x∈[s]) can place all b objects, since each
Simple(x, λx) placement can accommodate λx

(
nx

x+1

)
/
(

r
x+1

)
of them (see Observation 1).

Definition 3: A Combo(〈λx〉x∈[s]) placement strategy lo-
cates object replicas on nodes by placing up to λx

(
nx

x+1

)
/
(

r
x+1

)
objects according to a Simple(x, λx) placement for each
x ∈ [s].

Lemma 3: For any Combo(〈λx〉x∈[s]) placement π,
Avail(π) ≥ lbAvail co(〈λx〉x∈[s]) where

lbAvail co(〈λx〉x∈[s]) = b−
s−1∑
x=0

⌊
λx

(
k

x+1

)
(

s
x+1

)
⌋

(4)

1) Computing a Combo(〈λx〉x∈[s]) Placement to Maximize
lbAvail co(〈λx〉x∈[s]): To construct a Combo(〈λx〉x∈[s]) place-
ment that achieves high availability for a given value of k, we
take it as our goal to select 〈λx〉x∈[s] so as to maximize the
lower bound lbAvail co(〈λx〉x∈[s]) subject to Eqn. 3. This prob-
lem lends itself to the following recurrence for lbav (x′, b′),
which denotes this maximum value of lbAvail co(〈λx〉x∈[x′+1])
for b′ objects placed using placements Simple(0, λ0), . . .,
Simple(x′, λx′) under any selection of λ0, . . . , λx′ .

∀x′, ∀b′ ≤ 0 : lbav (x′, b′) = 0 (5)

∀b′ > 0 : lbav (0, b′) = max

{
0, b′ −

⌊(⌈
b′

μ0

r

n0

⌉
μ0

)
k

s

⌋}
(6)

∀x′ > 0, ∀b′ > 0 : lbav (x′, b′) =

max

0≤d≤

⌈
b′

μ
x′

( r
x′+1)
( n

x′

x′+1
)

⌉

⎧⎪⎪⎨
⎪⎪⎩

lbav

(
x′ − 1, b′ − dμx′

(
n
x′

x′+1
)

( r

x′+1)

)
+

min

{
b′, dμx′

(
n
x′

x′+1
)

( r
x′+1)

}
−

⌊
dμx′

( k
x′+1)
( s
x′+1)

⌋
⎫⎪⎪⎬
⎪⎪⎭

(7)

In words, Eqn. 5 encodes that zero availability can be offered
if there are no objects (b′ ≤ 0). Eqn. 6 encodes that when
x′ = 0 the availability that can be achieved for b′ > 0 objects
is that resulting from setting λ0 =

⌈
(b′/μ0)

(
r
1

)
/
(
n0

1

)⌉
μ0 =

�(b′/μ0)(r/n0)�μ0 and using Lemma 2 (or simply 0 if
this value turns out to be negative). Finally, Eqn. 7 en-
codes that when x′ > 0, availability can be maximized
by considering every option for λx′ = dμx′ and, for each
option, adding the availability contributed by this setting of
λx′ (i.e., min

{
b′, λx′

(
nx′

x′+1

)
/
(

r
x′+1

)}
−
⌊
λx′

(
k

x′+1

)
/
(

s
x′+1

)⌋
)

to the availability that can be achieved for the remaining
b′ − λx′

(
nx′

x′+1

)
/
(

r
x′+1

)
objects by optimally setting 〈λx〉x∈[x′]

(i.e., lbav
(
x′ − 1, b′ − λx′

(
nx′

x′+1

)
/
(

r
x′+1

))
).

As such, lbav (s− 1, b) for a given number k of
failed nodes is the maximum lbAvail co(〈λx〉x∈[s]) that a
Combo(〈λx〉x∈[s]) placement π can achieve. This recurrence
gives rise to the natural dynamic programming algorithm
(see [12, Ch. 6]) for choosing 〈λx〉x∈[s] that runs in O(sb)
time, treating all other parameters as constants.
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Fig. 3:
lbAvail co

(〈λx〉x∈[s])

lbAvail co
(〈λ′

x〉x∈[s])
ex-

pressed as a percentage

2) Sensitivity to
Choice of k: A potential
disadvantage of the
Combo(〈λx〉x∈[s])
placement strategy, or
more precisely of the
algorithm described in
Sec. III-B1 to configure
〈λx〉x∈[s] to maximize
lbAvail co(〈λx〉x∈[s]), is
that it does so only for
the specified value k.
A natural concern is that a Combo(〈λx〉x∈[s]) placement
π configured for k node failures might fare poorly when
subjected to k′ �= k failures, at least in comparison to its
availability were it configured for k′ failures. This could
occur if the 〈λx〉x∈[s] resulting from the configuration with
k and those values resulting from configuration with k′ were
different.

We have explored parameter spaces of interest to identify
settings for which 〈λx〉x∈[s] would be different when config-
ured for k or k′ failed nodes, and then compared the resulting
availability lower bounds. Fig. 3 shows a representative exam-

ple. This figure plots the ratio
lbAvail co

(〈λx〉x∈[s])

lbAvail co
(〈λ′

x〉x∈[s])
expressed as

a percentage for a Combo(〈λx〉x∈[s]) placement configured for
k node failures and a Combo(〈λ′

x〉x∈[s]) placement configured
for k′ node failures. As such, when k′ = k this ratio will be
100%, for example. As this plot indicates, for some parameter
values, this ratio dips below 100%, though for cases we have
explored, this ratio remains high.

C. Parameter Selection

In this section we explore alternatives for instantiating
our constructions for given values of n, r, x, and λ. Per
Observation 1, creating a Simple(x, λ) placement for n nodes
can be achieved by identifying an nx ≤ n and a μx that
divides λ, for which μx

(
nx

x+1

)
/
(

r
x+1

)
is integral and, moreover,

a Simple(x, μx) placement exists for any b ≤ μx

(
nx

x+1

)
/
(

r
x+1

)
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r

n 2 3 4 5

31 n1 = 31 n1 = 31 [23] n1 = 28 [13] n1 = 25 [13]
n2 = 31 n2 = 28 [21] n2 = 26 [20]

n3 = 31 n3 = 23 [32]
n4 = 31

71 n1 = 71 n1 = 69 [23] n1 = 70 [13] n1 = 65 [13]
n2 = 71 n2 = 70 [21] n2 = 65 [10]

n3 = 71 n3 = 71 [32]
n4 = 71

257 n1 = 257 n1 = 255 [23] n1 = 256 [13] n1 = 245 [13]
n2 = 257 n2 = 256 [21] n2 = 257 [30]

n3 = 257 n3 = 243 [32]
n4 = 257

Fig. 4: Values of nx used in this paper

objects. For such an nx and μx, a Simple(x, μx) placement
corresponds to a (x+ 1)-(nx, r, μx)-design [26]. The study
of the existence of such constructs is a fundamental question
in design theory (e.g., [23]).

The need for μx to divide λ can be discharged if μx = 1, in
which case a (x+ 1)-(nx, r, μx)-design is a Steiner system.
Letting q be any prime power and for any d ≥ 2, known
infinite designs include [10]: x+ 1 = 2, r = q, and nx = qd;
x+1 = 3, r = q+1, and nx = qd+1; x+1 = 2, r = q+1, and
nx = qd+ · · ·+ q+1; x+1 = 2, r = q+1, and nx = q3+1;
and x + 1 = 2, r = 2d, and nx = 2d+d′

+ 2d − 2d
′

for any
d′ > d. In addition, there are numerous known finite designs
for x < 5, as surveyed by Colbourn and Mathon [10]. Known
designs of Steiner systems suffice to implement Simple(x, λ)
for a wide array of practical parameter values, including all of
the parameter settings investigated in this paper. Fig. 4 shows
the Steiner systems used in our evaluations. Note that when
x+ 1 = r, the constraints for a Steiner system are vacuously
satisfied by sets of size r.

As discussed in Observation 2, if a suitable nx ≈ n
cannot be found, then an alternative is to deconstruct the n
nodes into “chunks” of size nx1, . . ., nxm, each admitting
a Simple(x, μxi) placement, and to build a Simple(x, μx)
placement for μx = lcm{μx1, . . . , μxm} on

∑m
i=1 nxi nodes

by building a Simple(x, μx) placement on each chunk of nxi

nodes individually. This observation introduces a wide range
of placement options for arbitrary n. This is demonstrated
in Fig. 5 for μx = 1, which explores possible placements
when even only m = 3. Each CDF shows the fraction
of n values in the range [50, 800] for which the “capacity
gap” is at most the value on the horizontal axis, where the
“capacity gap” is the difference between the ideal capacity (i.e.,⌊
μx

(
n

x+1

)
/
(

r
x+1

)⌋
) and the capacity achievable (using concrete

Steiner systems) by decomposing n into up to m = 3 chunks
(i.e.,

∑m
i=1 μxi

(
nxi

x+1

)
/
(

r
x+1

)
with each μxi = 1), expressed as

a fraction of the ideal capacity. As shown there, in the cases
r ∈ {2, 3, 4}, a very low (i.e., good) capacity gap can be
achieved for nearly all system sizes n and all values of x.
This is not the case for r = 5, however, where only about
10% of the system sizes n admit constructions (of which we
are aware) for x = 2 or x = 3 with up to m = 3 chunks that
yield a reasonably small capacity gap.

One way to address difficult cases like these (i.e., r = 5
along with x = 2 or x = 3) is to simply select one’s system
size n from the fraction of possible system sizes for which

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
capacity gap

x = 0
x = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
capacity gap

x = 0
x = 1
x = 2

r = 2 r = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
capacity gap

x = 0
x = 1
x = 2
x = 3  0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
capacity gap

x = 0
x = 1
x = 2
x = 3
x = 4

r = 4 r = 5

Fig. 5: CDFs showing the fraction of system sizes n ∈
[50, 800] for which the capacity gap (indicated on the hori-
zontal axis, where lower is better) can be achieved using up
to m = 3 Steiner systems (μxi = 1)
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Fig. 6: Re-plot of Fig. 5 for r = 5 and x ∈ {2, 3}, but allowing
μx = lcm{μx1, . . . , μxm} ≥ 1

a small capacity gap can be achieved. Another alternative is
to increase m. A third alternative is to expand consideration
to μx > 1, in which case numerous additional constructions
are possible. Trivially, for any x + 1 ≤ r, the collection
of all r-subsets of nx nodes suffices as a Simple(x, μx)
placement for μx =

(
nx−x−1
r−x−1

)
. There are many other classes

of (x+ 1)-(nx, r, μx)-designs with μx > 1, as have been
surveyed elsewhere [25], [1], [22]. In particular, Khosrovshahi
and Laue [22, Table 4.3.7] survey a number of infinite designs
for 3 ≤ x+ 1 ≤ 5.

To see the power of permitting μx > 1 for realistic
parameter settings, in Fig. 6 we re-plot the x = 2 and x = 3
cases for r = 5 but allowing μx to be μx ≤ 5 (left) or μx ≤ 10
(right). As can be seen in Fig. 6, allowing μx ≤ 5 yields
significant improvements in the x = 3 case, and permitting
μx ≤ 10 additionally improves the x = 2 case dramatically.
As such, permitting even modest growth of μx can greatly
shrink the capacity gap in difficult cases.

IV. COMPARISON TO RANDOM REPLICA PLACEMENT

As discussed in Sec. II, Yu and Gibbons [39] highlighted
random replica placements as being very effective in ensuring
the completion of multi-object operations when some objects’
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loss could be tolerated, in a system model where nodes fail
independently with fixed probability. Given this result and
the more general prominence of random replica placement
in the research literature, we compare the availability offered
by our Combo(〈λx〉x∈[s]) placement strategy to that offered
by random replica placement. Specifically, we compare to a
random placement strategy that (as in Yu and Gibbon’s work)
is load-balanced, where the average number of replicas per
node is � = rb

n .

Definition 4: The Random placement strategy locates ob-
ject replicas using a placement chosen uniformly at random
from all placements that locate at most ��� replicas on each
node.

A. The Worst-Case Availability of Random

Evaluating the worst-case availability of Random place-
ment is more subtle than for our previous placements, since any
(load-balanced) placement can result from this placement strat-
egy. So, in the truly worst case, Random would produce the
worst possible placement for availability. That said, Random
would do so with very low probability, and so this does not
provide a representative view of how Random fares.

A more representative evaluation would take into account
the expected behavior of the placement strategy. In some sense,
the work of Yu and Gibbons [39] did so, but they did not
take into account the worst-case behavior of the adversary.
That is, their adversary failed nodes independently with a
fixed probability, but ours adaptively chooses which nodes to
fail based on the placement. So, to quantify the availability
offered by Random in this worst case, we start by defining the
vulnerability of Random:1

Definition 5: For any f , the vulnerability of Random,
denoted Vulnrnd(f), is the expected number of pairs (K,F)
where K ⊆ N , |K| = k, F ⊆ O, |F| ≥ f , and at least s
replicas of each object in F are placed on the nodes in K.
The expectation is taken with respect to the random choices
made by the Random placement strategy.

If Vulnrnd(f) ≥ 1, then in expectation, there will be a set
of k nodes that, if failed, will fail a set of at least f objects. It is
then natural to define the number of objects that are probably
available as follows:2

Definition 6: In a Random placement, the number of ob-
jects that are probably available is

prAvail rnd = b−max{f : Vulnrnd(f) ≥ 1}

We now quantify the probable availability of Random.

Theorem 2: As � −→ ∞, Vulnrnd(f) −→

(
n

k

)(
n

r

)−b
⎡
⎣ b∑
f ′=f

(
b

f ′

)
α(n, k, r, s)f

′

((
n

r

)
−α(n, k, r, s)

)b−f ′

⎤
⎦

1Definitions 5–6 trivially generalize to any randomized placement strategy.
2Unlike the alternative of simply using the expected value of the maximum,

over all K, |K| = k, of the number of objects with s replicas on the nodes in
K, the definition of prAvail rnd in Definition 6 yields an integral value. This
simplifies our analysis in the rest of the paper.

where α(n, k, r, s) =
∑min{r,k}

s′=s

(
k
s′

)(
n−k
r−s′

)
.

To confirm that this limit approaches reality quickly, in
Fig. 7 we show prAvail rnd − avgAvail rnd as a percentage
of avgAvail rnd, where avgAvail rnd is the empirical average
of the number of objects available in 20 simulations of
Random placements under a worst-case choice of k nodes
to fail. In other words, these graphs show the percentage
error in prAvail rnd. These graphs show that this percentage
error is generally at 10% or below when b reaches 600,
and this holds true for the other parameter values we have
evaluated. So, in drawing our comparisons between Random
and Combo(〈λx〉x∈[s]) placements, we will generally restrict
our attention to b ≥ 600, so as to be fair to Random.
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Fig. 7: prAvail rnd−avgAvail rnd as a percentage of avgAvail rnd

Fig. 8 plots 1
bprAvail rnd, i.e., prAvail rnd as a fraction of

b, for various values of s, r, and n when b = 38400. Plotted
as a fraction of b, the curves look very similar for the various
values of b that we have explored. One takeaway from these
graphs is that the case s = 1 performs quite poorly relative
to larger s (notice the vertical axes are not the same scale),
and we prove in Appendix A that this is true for Random
placements in general. Indeed, these graphs illustrate that as s
grows to approach r, prAvail rnd improves dramatically.

B. Quantitative Comparison Results

In this section we compare Combo and Random place-
ments using lbAvail co(〈λx〉x∈[s]) − prAvail rnd as a measure,
i.e., using a Combo(〈λx〉x∈[s]) placement computed to maxi-
mize lbAvail co(〈λx〉x∈[s]) (Sec. III-B1). We use the limit of
Vulnrnd(f) in Theorem 2 to calculate prAvail rnd as defined in
Definition 6. The measure lbAvail co(〈λx〉x∈[s])−prAvail rnd is
conservative in the sense that lbAvail co(〈λx〉x∈[s]) is a lower
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bound, whereas prAvail rnd is only a probabilistic estimate of
the number of objects that remain available under Random and
so it is not guaranteed.

Here and elsewhere in this paper, we use n ∈
{31, 71, 257}, both because these values span a reasonably
wide range and because suitable nx ≈ n and μx can be found
for them without resorting to Observation 2. (These are by
no means the only values that meet these criteria, though.) In
particular, this means that the Combo(〈λx〉x∈[s]) placements
represented in this section have concrete implementations. The
selection of each nx (with μx = 1) is detailed in Sec. III-C.

A summary of results is given in Fig. 9, where the top
(Fig. 9a) shows the results with n = 71 and the bottom
(Fig. 9b) shows the results with n = 257. Each portion
shows a table for 2 ≤ r ≤ 5 and 2 ≤ s ≤ r. (The case
s = 1 is further discussed in Appendix A.) The number k
of failed nodes is ranged over s ≤ k ≤ 7 in the n = 71
case, and over s ≤ k ≤ 8 in the n = 257 case; both
ranges encompass a substantial rate of node failures. In each
table, the number b of objects begins at b = 600 and is
repeatedly doubled until it reaches b = 38400. Each table entry
indicates lbAvail co(〈λx〉x∈[s])−prAvail rnd as a percentage of
the maximum possible improvement b− prAvail rnd that could
be achieved over prAvail rnd. To ease readability, cells where
lbAvail co(〈λx〉x∈[s]) > prAvail rnd (and so Combo “wins”) are
colored white; cells where lbAvail co(〈λx〉x∈[s]) = prAvail rnd

(neither Combo nor Random “wins”) are colored light gray;
and cells where lbAvail co(〈λx〉x∈[s]) < prAvail rnd (Random
“wins”) are colored dark gray.

It is evident that Combo “wins” most of the time, and the
percentage by which it does so is often very substantial. For
example, the table in the very upper-left corner of Fig. 9a
indicates that in the case n = 71, r = 2, s = 2, b = 2400 and
k = 2, Combo guarantees to preserve the availability of 85%
of the objects that will probably fail under Random.

C. Breakdown of Combo Placements

Recall that each Combo(〈λx〉x∈[s]) placement combines
individual Simple(x, λx) placements. In this section we detail
how individual Simple(x, λx) placements contribute to the
Combo(〈λx〉x∈[s]) placements computed via the algorithm de-
scribed in Sec. III-B1, or more specifically how they contribute
to the results showing the improvement of Combo placements
over Random placements in Sec. IV-B.

We demonstrate these contributions through Fig. 10, which
isolates three cases: n = 31 (Fig. 10a), n = 71 (Fig. 10b), and
n = 257 (Fig. 10c). In this figure, each table corresponds to
r = s = 3. The rightmost sub-table of each table represents
the Combo(〈λx〉x∈[s]) placement and, in the case n = 71
or n = 257, is an exact copy of the table in Fig. 9a or
Fig. 9b, respectively, for r = s = 3. The other tables in
its row represent Simple(x, λx) placements. These figures
do not show Simple(0, λ0) placements to save space, since
they contribute so minimally. As before, a white table cell
indicates that our placement achieves better availability than a
Random placement; a light gray cell indicates that both provide
equal availability (setting aside the conservative nature of the
comparison, see Sec. IV-B); and a dark gray cell indicates that
Random provides (potentially) better availability.

r = 2: s = 2
k

b 2 3 4 5 6 7
600 75 57 45 33 25 16

1200 80 70 60 52 46 40
2400 85 76 71 67 64 61
4800 77 68 62 57 53 50
9600 69 58 52 47 43 40

19200 60 48 42 37 34 31
38400 48 38 32 28 25 23

r = 3: s = 2 s = 3
k k

b 2 3 4 5 6 7 3 4 5 6 7
600 83 72 66 61 55 51 66 50 50 28 22

1200 75 62 53 48 42 37 66 20 14 -11 -27
2400 63 50 41 34 28 23 66 20 -25 -81 -100
4800 56 44 36 30 25 20 75 42 0 -42 -84
9600 50 37 30 24 20 17 80 50 23 -5 -29

19200 40 29 23 19 15 12 83 63 44 25 10
38400 30 21 15 11 8 5 85 71 60 50 40

r = 4: s = 2 s = 3 s = 4
k k k

b 2 3 4 5 6 7 3 4 5 6 7 4 5 6 7
600 75 62 53 47 40 34 66 20 25 9 0 50 33 -25 -40

1200 72 62 55 49 44 40 75 42 0 -7 -10 50 33 -25 -33
2400 62 52 44 38 33 29 80 50 23 -5 -34 66 50 0 -33
4800 53 41 34 28 24 19 83 63 41 23 7 66 50 16 0
9600 42 32 25 20 15 11 85 71 60 48 38 66 60 28 11

19200 33 23 17 12 8 5 77 60 45 34 23 75 0 -25 -54
38400 25 16 11 7 4 1 76 60 48 39 31 75 16 -50 -85

r = 5: s = 2 s = 3 s = 4 s = 5
k k k k

b 2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7
600 70 57 48 41 34 28 75 42 9 0 -5 66 50 0 -14 50 33 0

1200 60 45 35 27 21 14 80 55 28 0 -25 66 50 16 0 50 33 25
2400 47 32 23 15 8 1 83 66 47 31 16 66 60 28 11 50 33 25
4800 35 20 11 4 -2 -8 75 50 28 20 12 75 16 -25 -41 50 0 -75
9600 24 11 3 -3 -9 -14 70 47 28 13 0 75 28 -50 -73 66 25 -40

19200 14 3 -3 -9 -15 -20 64 42 25 12 0 80 37 -15 -75 75 25 -16
38400 7 -2 -9 -14 -19 -22 57 34 18 7 -1 83 54 16 -25 83 40 0

(a) n = 71

r = 2: s = 2
k

b 2 3 4 5 6 7 8
600 66 25 0 -25 -50 -75 -100

1200 66 40 14 0 -25 -40 -64
2400 75 50 33 16 0 -10 -27
4800 75 62 45 33 25 12 3
9600 80 70 60 50 42 36 30

19200 85 75 70 64 59 55 51
38400 77 64 57 50 44 40 36

r = 3: s = 2 s = 3
k k

b 2 3 4 5 6 7 8 3 4 5 6 7 8
600 66 50 25 9 -7 -23 -40 50 33 25 0 -16 -28

1200 75 57 40 28 11 0 -7 50 33 25 0 -16 -28
2400 80 66 53 44 34 27 20 66 50 40 16 0 -12
4800 83 72 64 58 53 47 42 66 50 40 16 12 0
9600 87 80 75 70 67 64 61 66 50 50 28 22 18

19200 80 71 65 60 56 53 50 66 20 14 0 -16 -38
38400 71 61 54 49 45 42 39 75 20 9 -66 -115 -131

r = 4: s = 2 s = 3 s = 4
k k k

b 2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8
600 75 57 40 28 11 0 -12 66 50 40 16 0 -12 50 66 33 25 0

1200 80 66 53 44 34 25 17 66 50 40 16 12 0 50 66 33 25 0
2400 83 72 64 58 51 47 41 66 50 50 28 22 18 50 66 33 25 20
4800 87 80 75 70 66 63 61 66 60 57 37 36 30 50 66 50 25 20
9600 80 71 64 60 56 52 50 75 20 25 0 -7 -12 50 33 -25 -40 -50

19200 71 61 54 49 44 41 38 75 33 -11 -66 -75 -85 66 33 -25 -60 -133
38400 61 50 42 37 33 30 27 80 42 9 -33 -75 -115 66 50 0 -33 -100

r = 5: s = 2 s = 3 s = 4 s = 5
k k k k

b 2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8
600 80 62 50 37 28 19 9 66 50 40 28 12 10 50 66 33 25 20 50 50 33 33

1200 83 70 62 54 48 41 36 66 50 50 37 22 18 50 66 50 40 20 50 50 33 33
2400 85 78 72 67 63 59 56 66 60 57 44 36 35 50 66 50 40 33 50 50 33 33
4800 77 68 61 55 50 46 42 75 33 25 9 0 -5 66 33 -25 -40 -50 50 33 0 -25
9600 69 57 48 42 36 32 28 75 42 0 -53 -64 -76 66 50 0 -33 -100 50 33 0 -25

19200 63 51 43 37 32 28 25 80 50 16 -25 -59 -100 66 50 16 -14 -75 66 50 25 0
38400 55 43 36 31 27 23 20 83 60 33 4 -20 -47 75 60 28 0 -55 75 60 40 16

(b) n = 257

Fig. 9: lbAvail co(〈λx〉x∈[s]) − prAvail rnd for a
Combo(〈λx〉x∈[s]) placement (computed as in Sec. III-B)
as a percentage of the maximum possible improvement
b− prAvail rnd

We draw the following observations from Fig. 10.

• When b grows and n and x are held constant, Simple(x,
λ) availability improves relative to Random until λ has to
grow to satisfy Eqn. 1. This can be seen, for example, in the
x = 1 sub-table of Fig. 10c. As shown there, while λ can
remain at 1 (see rightmost column of leftmost sub-table),
Simple(x, λ) (and so Combo, as shown in the rightmost
sub-table) “wins” more, but its performance diminishes as
λ grows.

• One way to offset the need to grow λ is to adjust x, since
when k ≈ s, doing so impacts availability only a small
amount (Eqn. 2) but can allow a Simple(x, λ) placement
to accommodate many more objects (assuming n � r).
This is shown clearly in, e.g., Fig. 10a and Fig. 10b, where
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k k k

b 3 4 5 6 λ 3 4 5 6 λ 3 4 5 6
600 0 -33 -30 -42 4 75 33 0 -42 1 75 33 0 -42

1200 -100 -100 -100 -100 8 75 50 23 0 1 75 50 23 0
2400 -166 -190 -178 -166 16 83 63 47 33 1 83 63 47 33
4800 -342 -287 -255 -229 31 71 50 31 14 2 71 50 44 36
9600 -520 -439 -357 -297 62 70 47 33 23 3 70 47 33 23

19200 -785 -570 -450 -366 124 64 45 33 24 5 64 45 33 24
38400 -1027 -713 -535 -425 248 59 40 30 23 9 59 40 30 23

x = 1 x = 2 Combo

(a) n = 31

k k k

b 3 4 5 6 7 λ 3 4 5 6 7 λ 3 4 5 6 7
600 66 50 50 28 22 1 66 0 -66 -185 -288 1 66 50 50 28 22

1200 33 20 14 -11 -27 2 66 20 -42 -122 -218 1 66 20 14 -11 -27
2400 -33 -60 -62 -81 -100 4 66 20 -25 -81 -150 1 66 20 -25 -81 -100
4800 -75 -100 -130 -150 -157 7 75 42 0 -42 -84 1 75 42 0 -42 -84
9600 -160 -225 -230 -242 -237 13 80 50 23 -5 -29 1 80 50 23 -5 -29

19200 -316 -354 -361 -362 -348 25 83 63 44 25 10 1 83 63 44 25 10
38400 -614 -614 -564 -525 -493 50 85 71 60 50 40 1 85 71 60 50 40

x = 1 x = 2 Combo

(b) n = 71

k k k

b 3 4 5 6 7 8 λ 3 4 5 6 7 8 λ 3 4 5 6 7 8
600 50 33 25 0 -16 -28 1 50 -33 -150 -300 -483 -700 1 50 33 25 0 -16 -28

1200 50 33 25 0 -16 -28 1 50 -33 -150 -300 -483 -700 1 50 33 25 0 -16 -28
2400 66 50 40 16 0 -12 1 66 0 -100 -233 -400 -600 1 66 50 40 16 0 -12
4800 66 50 40 16 12 0 1 66 0 -100 -233 -337 -522 1 66 50 40 16 12 0
9600 66 50 50 28 22 18 1 66 0 -66 -185 -288 -409 1 66 50 50 28 22 18

19200 33 20 14 0 -16 -38 2 66 20 -42 -100 -191 -330 1 66 20 14 0 -16 -38
38400 0 -60 -18 -66 -115 -131 4 75 20 9 -66 -169 -250 1 75 20 9 -66 -115 -131

x = 1 x = 2 Combo

(c) n = 257

Fig. 10: lbAvail si(x, λ) − prAvail rnd for Simple(x, λ)
placements and lbAvail co(〈λx〉x∈[s]) − prAvail rnd for best
Combo(〈λx〉x∈[s]) placement (rightmost sub-table in each row)
when r = s = 3, as a percentage of the maximum possible
improvement b− prAvail rnd

moving from x = 1 to x = 2 relieves the pressure on λ to
increase, allowing the advantages of Combo to be preserved
as b grows.

• Another way to slow the growth of λ is to increase n.
For a fixed number b of objects and as n grows, Combo
placements will increasingly place objects using Simple(x,
λx) placements for smaller x. To see this, compare the
contributions of x = 1 and x = 2 to the resulting Combo
placement in Fig. 10a and Fig. 10c. This can be explained
by observing that as n and so each nx grows, the smallest
x that suffices to achieve Eqn. 1 can shrink while keeping
λ the same. This, in turn, yields better availability (Eqn. 2).

• Even at specific parameter values, Combo can outperform
Simple(x, λ) for any single x. This is illustrated in Fig. 10a,
for example, in which at b = 4800 and k ∈ {5, 6}, the
Combo table includes entries (44 and 36) that exceed the
corresponding entries of any of the Simple(x, λx) tables in
its row. This occurs at a value of b at which Simple(2, λ2)
must increase λ2 from λ2 = 1 to λ2 = 2 to satisfy Eqn. 1.
In this case, it turns out to be better to build Combo using a
Simple(2, 1) placement in conjunction with a Simple(1, 2)
placement to satisfy Eqn. 3, rather than using a Simple(2,
2) placement alone.

D. Limitations of Combo Relative to Random

While Combo often outperforms Random for realistic pa-
rameter values as shown in Sec. IV-B, it can also be somewhat
more difficult to use since, as we have formulated it here, it
requires estimates of the number b of objects that will be placed
and of the number k of failed nodes to plan for. Random

requires neither of these as inputs. Projecting a value for k
is commonplace in distributed computing practice, and our
algorithm for computing a Combo placement is not especially
sensitive to that estimate anyway, as discussed in Sec. III-B; so,
we do not expect this requirement to be onerous. Moreover,
in some cases b can be reasonably projected, either due to
particulars of the application or due to capacity limits per node
that restrict the number of replicas that can be placed on it
and, thus, the number of objects that can be deployed on the
n nodes. For other cases, an algorithm to adapt our placements
as new objects come and go would be an interesting advance;
we leave investigation of such an algorithm to future work.

V. CONCLUSION

In this paper we explored replica placement based on t-
packings, here called Simple(x, λ) placements, for maximizing
the availability of objects in the face of the worst k node
failures out of n nodes. We showed that a Simple(x, λ) place-
ment provides availability that is c-competitive with optimal,
for a specified constant c (for constant n, k, replicas r, and
fatality threshold s). We then devised a placement strategy
called Combo(〈λx〉x∈[s]) that combines multiple Simple(x, λ)
placements, and a dynamic programming algorithm that selects
〈λx〉x∈[s] so as to maximize our lower bound on the availability
of the resulting Combo placement for a chosen k. We showed
that a resulting Combo placement is not very sensitive to
the value of k with which it is configured, however, for the
parameter values we explored. Finally, we demonstrated and
dissected the improvements offered by Combo over Random
replica placement, based on our analysis of the expected
availability supported by Random in our worst-case model.

Our algorithms leverage t-packings for parameters for
which maximum t-packings (also called t-designs, see
Sec. III-C) exist, meaning that based on current knowledge,
realistically our results are limited to r ≤ 5. Fortunately, this
suffices for a wide array of data center applications in practice.
Our work does, however, provide further impetus to advance
t-packing construction.
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APPENDIX A
THE s = 1 CASE

In our comparisons between Combo(〈λx〉x∈[s]) and
Random placements in Sec. IV-B, we deferred the case s = 1.
In this case, a Combo(〈λx〉x∈[s]) placement is just a Simple(0,
λ0) placement. Our analysis in this paper applies to the s = 1
case, and a comparison using lbAvail co(λ0) − prAvail rnd

as in Sec. IV-B indicates that Random slightly outperforms
Simple(0, λ0) in this measure, for the parameter values we
tested. Nevertheless, we relegated this case to the appendix
simply because both Random and Simple(0, λ0) perform
poorly in this case. The following lemma, proved in Ap-
pendix B, formalizes this claim for Random placements.

Lemma 4: Suppose s = 1, k < n/2, and � = rb
n . Then,

prAvail rnd ≤ b

(
1−

1

b

)k��	
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Fig. 11:
(
1− 1

b

)k��	
for vari-

ous n and r, as a function of k
(b = 38400)

To see one implication
of this lemma, recall that
(1− 1

b )
b converges to e−1

as b −→ ∞. So, for
large enough b, prAvail rnd

is at most approximately
b(e−r/n)k. In terms of pa-
rameter values tested else-
where in this paper, Fig. 11
shows how 1

bprAvail rnd =
(1 − 1/b)k��	 behaves for
small numbers of node
failures (c.f., the s = 1
case of Fig. 8). Fig. 11 is
plotted for b = 38400, but plots for b = 2400 and b = 9600
are virtually indistinguishable. This graph shows that the
availability of Random placements, as a fraction of b, decays
essentially linearly in the number k of failed nodes, with a
slope that grows smaller as n increases or r decreases (since
each node then hosts fewer object replicas).

APPENDIX B
PROOFS

Proof of Lemma 2: An upper bound on the number of objects
that become unavailable due to the failure of nodes in K is
simply the number of objects for which s replicas can be
packed onto the nodes K under the constraints of a Simple(x,
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λ) placement, i.e., in a Simple(x, λ) placement using only
s replicas per object (versus r) and only k nodes (versus
n). Adapting Lemma 1 accordingly, we get that at most⌊
λ
(

k
x+1

)
/
(

s
x+1

)⌋
objects become unavailable.

Proof of Theorem 1: First note that Eqn. 1 implies

λ

b
<

(
r

x+1

)
(

nx

x+1

) +
μx

b
(8)

By Lemma 2,

Avail(π)
Avail(π′)

≥

b−

⌊
λ
( k
x+1)
( s
x+1)

⌋
b

≥
b−λ

( k
x+1)
( s
x+1)

b

= 1−
λ

b

(
k

x+1

)
(

s
x+1

)
> 1−

((
r

x+1

)
(

nx

x+1

)+μx

b

)(
k

x+1

)
(

s
x+1

)
where the last step is substituting Eqn. 8. Rearranging, we get

Avail(π′)− c · Avail(π) <
(

Avail(π′)

b

)
α ≤ α

where c and α are as given in the theorem statement.

Proof of Lemma 3: Under a Combo(〈λx〉x∈[s]) placement,
each Simple(x, λx) placement accounts for placing at most

λx
( nx
x+1)
( r
x+1)

objects, of which up to

⌊
λx

( k
x+1)
( s
x+1)

⌋
might be rendered

unavailable by k node failures, as in Lemma 2. So, at most∑s−1
x=0

⌊
λx

( k

x+1)
( s

x+1)

⌋
objects can be rendered unavailable in total

by k node failures. Since only b objects can be placed, the
result follows.

Proof of Theorem 2: Consider a variant Random′ of the
Random placement in which the r replicas of each object
are placed on r distinct nodes selected uniformly at random,
but without limiting the number of replicas placed at each
node. Let Xnd,obj be an indicator random variable defined as
Xnd,obj = 1 if a replica of obj is placed at nd and Xnd,obj = 0
otherwise. Let Lnd =

∑
obj∈O Xnd,obj ; i.e., Lnd is a random

variable denoting the number of replicas placed at node nd.

While Random enforces that the number of replicas placed
on each node is at most ���, Random′ allows more. Specifi-
cally, for a fixed nd, {Xnd,obj}obj∈O are independent, identi-
cally distributed Bernoulli random variables; i.e., Xnd,obj ∼
B( r

n ) for each obj ∈ O. Therefore, E (Lnd) = br
n = �

and, applying well-known Chernoff bounds (see, e.g., [27,
Corollary 4.6]),

P (|Lnd − �| ≥ δ�) ≤ 2e−�δ2/3

for any 0 < δ < 1. Consequently, the distribution of object
replicas to nodes under Random′ (quickly) approaches the
distribution induced by Random as � −→ ∞, and so we can
reason about the asymptotic distribution induced by Random

using the one induced by Random′.

Let failedNodes(K) denote the event that set K ⊆ N is
the complete set of failed nodes, and failedObjs(F) denote
the event that the set F ⊆ O is the complete set of objects
that failed due to the failure of the nodes in K. Now, under
Random′,

P
(
failedObjs(F)

∣∣ failedNodes(K)
)

=

⎡
⎣ ∏
obj∈F

P

(
obj replicas placed
on s′ ≥ s nodes in
K and r−s′ others

)⎤⎦
⎡
⎣ ∏
obj∈O\F

P

(
obj replicas placed
on s′ < s nodes in
K and r−s′ others

)⎤⎦

=

⎡
⎣ ∏
obj∈F

min{r,k}∑
s′=s

(
k
s′

)(
n−k
r−s′

)
(
n
r

)
⎤
⎦
⎡
⎣ ∏
obj∈O\F

s−1∑
s′=0

(
k
s′

)(
n−k
r−s′

)
(
n
r

)
⎤
⎦

=

(
n

r

)−b
⎛
⎝min{r,k}∑

s′=s

(
k

s′

)(
n − k

r − s′

)⎞⎠
f(

s−1∑
s′=0

(
k

s′

)(
n − k

r − s′

))b−f

=

(
n

r

)−b

α(n, k, r, s)f
((

n

r

)
− α(n, k, r, s)

)b−f

(9)

To complete the proof, for any K ⊆ N , |K| = k, and any
F ⊆ O, define an indicator random variable XK,F as follows:
XK,F = 1 if F is the set of objects failed when the nodes K
fail, and XK,F = 0 otherwise. The expected value of XK,F

is then E (XK,F) = P
(
failedObjs(F)

∣∣ failedNodes(K)
)
.

By linearity of expectation, Vulnrnd(f) is then:

Vulnrnd(f) = E

⎛
⎜⎜⎝ ∑

K⊆N :
|K|=k

∑
F⊆O:
|F|≥f

XK,F

⎞
⎟⎟⎠ =

∑
K⊆N :
|K|=k

∑
F⊆O:
|F|≥f

E (XK,F)

Plugging in Eqn. 9 yields the result.

Proof of Lemma 4: In choosing k nodes to fail, our adversary is
guaranteed to be able to fail k ��� replicas (because k < n/2)
and, since s = 1, every object with one or more replicas
in these k ��� replicas. Let F denote the number of failed
objects after the adversary induces k node failures. Contrast
this scenario to sampling k ��� objects with replacement from
the objects obj1, . . . , objb, and let Y be a random variable
capturing the number of distinct objects sampled. We claim
that P (F ≥ f) ≥ P (Y ≥ f) due to two key differences
between our adversary’s scenario and simply sampling objects
at random with replacement: First, since a placement places
only one replica per object on any node, once the adversary
selects a node to fail, it is guaranteed no repetitions of the same
object on that node. Second, our adversary can encounter at
most r replicas of any object (versus up to k ��� when sampling
objects uniformly at random with replacement). As such,

E (F ) =

∞∑
f=1

P (F ≥ f) ≥
∞∑
f=1

P (Y ≥ f) = E (Y )

Since E (Y ) = b
[
1−

(
1− 1

b

)k��	]
(e.g., [16, p. 31]), when

f = b
[
1−

(
1− 1

b

)k��	]
we have Vulnrnd(f) ≥ 1, and thus

prAvail rnd ≤ b
(
1− 1

b

)k��	
.
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