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Abstract

Most modern trackers typically employ a bounding box
given in the first frame to track visual objects, where their
tracking results are often sensitive to the initialization. In
this paper, we propose a new tracking method, Reliable
Patch Trackers (RPT), which attempts to identify and exploit
the reliable patches that can be tracked effectively through
the whole tracking process. Specifically, we present a track-
ing reliability metric to measure how reliably a patch can
be tracked, where a probability model is proposed to esti-
mate the distribution of reliable patches under a sequential
Monte Carlo framework. As the reliable patches distributed
over the image, we exploit the motion trajectories to dis-
tinguish them from the background. Therefore, the visual
object can be defined as the clustering of homo-trajectory
patches, where a Hough voting-like scheme is employed to
estimate the target state. Encouraging experimental results
on a large set of sequences showed that the proposed ap-
proach is very effective and in comparison to the state-of-
the-art trackers. The full source code of our implementation
will be publicly available.

1. Introduction

Visual object tracking is a fundamental research topic
in computer vision, which enjoys a wide range of applica-
tions, including video surveillance, robotics, driverless car,
etc. Despite having achieved promising progress over the
past decade, it remains very challenging for designing an
all-situation-handled tracker that can handle various criti-
cal situations, such as illumination changes, geometric de-
formations, fast motions, partial occlusion, and background
clutters, etc.

Structural representation has recently been studied ac-
tively in tracking community, which has been shown as
an effective approach to enhancing the robustness. Typi-
cally, a grid-like structure [41, 17, 12], typically a bounding
box, is employed to represent the target object for tracking.
Since most of the tracked target is not strictly a rectangu-
lar shape, the bounding box representation often inevitably

Figure 1. The tracking confidence map of the next frame when the
tracker was initialized at different positions with a fixed bounding
box. The trackability varies largely in the image.

incorporates background information into the model, and
thus could degrade the overall performance of the tracker.
Therefore, the grid-like structure is not the optimal way to
represent real objects that are of non-rectangular shape.

To account for the object shape in tracking tasks,
segmentation-based approaches [22, 27] have been explored
to build accurate representations for model-free targets. Al-
though video segmentation [10] has found some promising
progress for object tracking, it is often very computation-
ally intensive to generate object proposals and link them
across frames. Moreover, it is also quite challenging for
the segmentation-based method to deal with cluttered back-
ground and occlusions, which often lead to unstable results.

Another family of tracking approaches that are naturally
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robust to occlusions and deformations is keypoint-based
trackers [32, 4] which represent the visual object by a set of
salient points like SIFT or SURF features [24]. However,
they may suffer from difficulty in capturing global infor-
mation of the tracked target by only using the local points,
especially for the object with large homogenous region.

To address the above limitations, we propose a novel Re-
liable Patch Trackers (RPT), which aims to identify and ex-
ploit the most reliable patches across video for tracking.
Instead of resorting to hand-crafted structures, a trackable
confidence function is proposed to compute and select the
reliable patches, which is capable of capturing the underly-
ing object geometry, as shown in Figure 1. To locate those
patches, both trackable confidence and motion information
are incorporated into the particle filter framework, which
are further employed to vote for the target location and es-
timate the object scale. Unlike the conventional particle
filter-based approaches [31, 35, 25] that often estimate the
target state with affine space, our RPT approach infers the
distribution of reliable patches by trackability and motion
similarity, which are further employed for tracking through
a base tracker. During the tracking process, we resample
the patch particles only when it is necessary rather than re-
moving all particles and resample their state space at each
frame in traditional methods.

In summary, the main contributions of this paper include:
(i) a novel sequential Monte Carlo framework to effectively
locate visual objects by directly inferring a set of reliable
patches through particle filters; (ii) a reliability confidence
function for capturing the underlying object geometry with-
out resorting to a hand-crafted structural representation; (3)
a reliable patch tracker with an effective updating scheme
that takes advantage of a Hough voting scheme to locate the
object and estimate its scale; and (4) encouraging results
from extensive experiments on online visual object tracking
benchmark by comparing against state-of-the-art trackers.

2. Related Work

Video object tracking has been extensively studied in
computer vision over the past decade [38, 39, 16, 7, 23, 43,
42]. Comparing with the trackers using holistic feature rep-
resentations [31, 35, 15], the structured trackers [34, 17, 40,
26, 30, 27] are generally more promising, particularly in the
scenarios of deformations and occlusions.

The first major category of related work is the family
of part-based trackers, which often employs a predefined
structure. Adam et al. [1] proposed to represent the object
by the grid of fragments, where the target position is voted
from these fragments. Jia et al. [17] proposed to divide
the object into small patches by a regular grid; moreover,
l1 sparsity is adopted as the similarity metric to search the
closest candidates in next frame. In [34], a flock of track-
ers was proposed to track a set of patches with regular grid

structure that allows certain drifts. Besides the grid repre-
sentation, the star model and tree structure have also been
studied in [40] with promising results. Kwon and Lee [22]
also proposed a star-like appearance model, where a parti-
cle filter is employed to find the best state of the tracked
target. Moreover, it builds the foreground and background
models for segmentation in order to further refine the track-
ing results. Cai et al. [5] proposed to decompose target
into superpixels, and then employ graph-matching to link
the neighbor frames. Instead of using the predefined struc-
ture, our proposed method attempts to find the underlying
structure of the target objects during the tracking process.

Another category is the family of keypoint-based track-
ers [4, 36], which are widely used in SfM and SLAM [18,
19]. In model-free tracking, Grabner et al. [28] proposed a
boosting classifier to match the keypoint between different
frames. Godec et al. [27] proposed to train online Hough
forests to map image patch onto a probabilistic vote, where
back projection along with segmentation is used to estimate
the object region. Maresca and Petrosino [26] presented a
tracker by Generalized Hough Transform and multiple key-
point detection in a fallback framework. Recently, Nebe-
hay and Pflugfelder [30] attempted to enhance the tracking
performance by combining keypoint matching and optical
flow, where a consensus method was proposed to detect out-
liers. Unlike the keypoint-based methods, our approach at-
tempts to find the reliable patches dynamically in the track-
ing process which potentially could be more robust than the
keypoint-based approaches.

Besides, our approach is also related to the methods us-
ing multiple trackers [20, 21]. For example, Kwon and
Lee [20] introduced a decomposition scheme to incorporate
different templates for specific appearance of the target. To
make it more robust, the base trackers are sampled from
the predefined tracker space into the Markov Chain Monte
Carlo (MCMC) framework [21].

Unlike the previous approaches, in this paper, we pro-
pose to employ the Correlation Filter-based methods [14,
13, 8, 7] as the base trackers, which take advantages of the
convolution theorem to effectively learn the object template
model and perform tracking in the Fourier domain under the
tracking-by-detection framework.

3. Reliable Patch Trackers

In this section, we present the proposed Reliable Patch
Trackers (RPT) for robust visual object tracking. First, we
introduce a novel sequential Monte Carlo Framework which
takes advantage of reliable patches. Second, we investigate
how to compute the likelihood of tracking reliability for a
patch using visual information and estimate the patch-on-
object likelihood from motion information. Finally, we de-
scribe the implementation details of the proposed reliable
patch trackers.



3.1. Sequential Monte Carlo Framework

The key idea of the proposed method is to identify and
track the reliable patches on visual objects. Since it is hard
to find the exact reliable patches, we explore the Sequen-
tial Monte Carlo Framework [2] to estimate their probabil-
ity distribution. In the following, we formally formulate the
proposed idea.

In general, an image patch is sampled from a bounding
box x = [𝑥, 𝑦, 𝑤, ℎ] ∈ ℛ4. Given the observations in previ-
ous frames 𝑧1:𝑡−1 = {𝑧1, 𝑧2, ..., 𝑧𝑡−1}, the probability den-
sity function that determines whether patch x𝑡 in the current
frame is reliable can be formulated as:

𝑝(x𝑡∣𝑧1:𝑡−1) =

∫
𝑝(x𝑡∣x𝑡−1)𝑝(x𝑡−1∣𝑧1:𝑡−1)𝑑x𝑡−1 (1)

where 𝑝(x𝑡−1∣𝑧1:𝑡−1) is the state density function. Accord-
ing to the Bayes rule, it can be recursively calculated as:

𝑝(x𝑡∣𝑧1:𝑡) = 𝑝(𝑧𝑡∣x𝑡)𝑝(x𝑡∣𝑧1:𝑡−1)

𝑝(𝑧𝑡∣𝑧1:𝑡−1)
(2)

where 𝑝(𝑧𝑡∣x𝑡) is the observation likelihood, and 𝑝(x𝑡∣x)
is the transition density function. Let 𝒩 denote Gaussian
distribution, 𝑝(x𝑡∣x𝑡−1) is defined as:

𝑝(x𝑡∣x𝑡−1) = 𝒩 (x𝑡;x𝑡−1,Ψ(x𝑡−1)). (3)

where Ψ1(x) = [0 E]x is a function for selecting the im-
age coordinates. 𝐸 represents a 2× 2 identity matrix. Note
that this assumption will allow the reliable parts to move
around the object in order to account for the deformations.
This will make the tracker more sensitive to the local struc-
tures.

Formally, we define a reliable patch that has two prop-
erties: (1) being trackable; and (2) sticking on the target
object. By assuming these two properties are i.i.d., the ob-
servation likelihood 𝑝(𝑧𝑡∣x𝑡) can be formulated as:

𝑝(𝑧𝑡∣x𝑡) = 𝑝𝑡(𝑧𝑡∣x𝑡)𝑝𝑜(𝑧𝑡∣x𝑡) (4)

where 𝑝𝑡(𝑧𝑡∣x𝑡) denotes the confidence of a patch to be
tracked effectively, and 𝑝𝑜(𝑧𝑡∣x𝑡) indicates the likelihood
that the patch is on the tracked object.

As the state space for variable x ∈ ℝ
4 is too large to be

directly inferred, we adopt the particle filter [2] to estimate
the posterior 𝑝(x𝑡∣𝑧1:𝑡−1). As in the Bootstrap filter [2], the
particle weight 𝑤(𝑖)

𝑡 for the 𝑖-th patch can be computed by

𝑤
(𝑖)
𝑡 = 𝑤

(𝑖)
𝑡−1𝑝(𝑧𝑡∣x(𝑖)

𝑡 ). (5)

In this paper, we represent the visual object by a set of
reliable patch particles. For simplicity, a patch particle is
defined as X

(𝑖)
𝑡 = {x(𝑖)

𝑡 ,V
(𝑖)
𝑡 , 𝑦

(𝑖)
𝑡 }, where V

(𝑖)
𝑡 denotes

the trajectory of patch x
(𝑖)
𝑡 within a temporal window, and

Figure 2. The workflow diagram of the reliable patch particles pro-
ceed in three frames. The patch particles estimate the distribution
of the reliable patches and track them at the same time.

𝑦
(𝑖)
𝑡 indicates the label of patch x

(𝑖)
𝑡 is positive or negative.

Thus, the visual object can be represented as

M𝑡 = {X(1)
𝑡 , ...,X

(𝑁)
𝑡 ,x𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 }, (6)

where x𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 denotes the final tracked object state. As il-

lustrated in Figure 2, we integrate the process of tracking
and estimating reliable patches into a single pipeline. The
objective of the proposed tracker is to make M𝑡 as long as
possible while we re-compute the particle weights at each
frame. By tracking the reliable patches across frames, the
overall performance can be greatly improved.

Remark. Unlike the conventional approaches [31, 35,
25] that estimate the target state with affine space, we di-
rectly employ the particle filter to infer whether the reliable
patches are on the tracked object. In contrast to traditional
particle filters, we do not remove all particles and resample
the state space at each frame. Instead, we track the reliable
patches through a base tracker. Once the posterior of each
reliable patch is computed by the particle weights, it can be
further employed to estimate the scale and location of the
tracked target through a Hough Voting-like scheme. There-
fore, the whole process ensures that we are tracking with the
reliable patches related to the visual object, which is thus
more robust than the conventional bounding box methods.

3.2. Patch-trackable Observation Likelihood

To estimate how likely a patch can be tracked effectively,
we adopt the Peak-to-Sidelobe Ratio (PSR) as a confidence
metric, which is widely used in signal processing to mea-
sure the signal peak strength in response map. Inspired
by [8], we generalize the PSR to the template-based tracker



as a patch trackable confidence function:

𝑠(X) =
max (R(X))− 𝜇Φ(R(X))

𝜎Φ(R(X))
(7)

where R(X) is usually a response map. Φ is the sidelobe
area around the peak which is 15% of the response map
area in this paper. 𝜇Φ and 𝜎Φ are the mean value and stan-
dard deviation of R except area Φ, respectively. It can be
easily observed that the function 𝑠(X) becomes large when
the response peak value is strong. Therefore, 𝑠(X) can be
treated as the confidence for a patch to measure whether it
is tracked properly. Since Φ is proportional to the patch
size, 𝑠(X) can naturally handle scale variations. Figure 1
shows the distribution of the score function in an example
image. It can be seen that there are some peak values in the
score map which reveals the underlying visual structure of
the image. In general, R(X) can be defined as:

R𝑖,𝑗(X) ∝ 1

𝑑(T, 𝑓(x+ 𝑢(𝑖, 𝑗)))
(8)

where 𝑑(T, 𝑓(x)) denotes the distance between the tem-
plate T and the observation. 𝑓(x) represents the feature
extraction function, and 𝑢(𝑖, 𝑗) is the deviation of coordi-
nate. Therefore our method is suitable for all template based
trackers which have a template T.

As the response value R(X) is inversely proportional to
the distance between the template and sampled patch, the
trackable score function 𝑠(X) is compatible for most of
base trackers, such as Lucas-Kanade method [3], normal-
ized cross correlation and the Correlation Filter-based track-
ers (CFT) [14, 8, 33]. Due to the high efficiency and impres-
sive performance achieved in the recent competition [29],
we choose KCF [14] as our base tracker. Specifically, we
directly employ the response map of correlation filters to
facilitate the trackable score function. Therefore, trackable
observation likelihood can be formulated as follows:

𝑝𝑡(𝑧𝑡∣x𝑡) ∝ 𝑠(X𝑡)
𝜆 (9)

where 𝜆 is a coefficient to trade off the contribution of the
likelihood. We empirically set 𝜆 = 2 in this paper.

Figure 3 gives an example that plots the selected reliable
patches. It can be seen that the proposed method prefers
to choose patches around the headlight rather than those
around the door as the headlight region has more visual
sense compared against the flat door region. Therefore, our
method tends to find the underlying structure of the visual
target. Similar observations can be found in flock of tracker
method [34], which employs a hand-crafted structural rep-
resentation.

3.3. Patch-on-Object Observation Likelihood

To compute the probability of a patch lying on the
tracked object, we exploit the motion information to achieve

Figure 3. We label all patch particles in magenta box as positive
otherwise as negative for motion analysis and delete all particles
out of the cyan box.

this goal. Specifically, we track both foreground and back-
ground patch particles, and record the relative trajectory
for each patch: V𝑡 = [v𝑇

𝑡−𝑘+1, ...,v
𝑇
𝑡 ]

𝑇 ∈ ℛ2𝑘, where
v𝑡 = Ψ2(x𝑡 − x𝑡−1) is the relative movement vector and
Ψ2 = [E2×2,0] ∈ ℛ2×4 is selective matrix to choose the
position vector in the original state.

Since the displacement of patch particles may corre-
spond to different objects, we record 𝑘 relative movement
vectors to make the trajectory information to be more ro-
bust. We employ the 𝑙2 norm to measure the distance be-
tween trajectories.

Instead of using computationally intensive unsupervised
clustering methods such as agglomerative clustering [6] to
group the trajectories, we simply divide the image into two
regions by a rectangle box centering at the target. Then, we
label the patches inside the bounding box as positive and
those outside as negative. As shown in Figure 3, the yellow
box denotes the bounding box. Therefore, we measure the
similarity from a patch to its labelled group by formulating
a similarity score function as:

𝑙(X) = 𝑦𝑡

⎛
⎝ 1

𝑁−
∑
𝑗∈Ω−

∣∣V −V(𝑗)∣∣2 − 1

𝑁+

∑
𝑖∈Ω+

∣∣V −V(𝑖)∣∣2
⎞
⎠

(10)
where 𝑦𝑖 ∈ {+1,−1} is the label to indicate whether x𝑖 is
in the yellow rectangle. Ω+

𝑡 is a set contains the indexes of
the positive patch particles and Ω−

𝑡 for negative ones. 𝑁+

and 𝑁− are size numbers responding to the sets, respec-
tively.

The function 𝑙(X) has the high score when the group
samplers share the homo-motion and the other group has
large motion difference while the negative score for those
wrongly labelled samplers. When the motion trajectories
between each group have no obvious distance, the function
has a value close to zero. Thus, we can softly label each
sampler again in the sampler set, and focus the patches’ em-
phasis on the ”objects”. Thus, we formulate 𝑙(X) to com-
pute the probability of being on a visual object as:

𝑝𝑜(𝑧𝑡∣x𝑡) ∝ e𝜇𝑙(X𝑡). (11)

where 𝜇 is a coefficient to balance the contribution of object



probability. In this paper, we simply set 𝜇 = 1. In case of
no obvious motion between foreground and background, 𝑝𝑜
is close to 1, which affects the observation model slightly.

Algorithm 1 RPT: the Reliable Patch Tracker algorithm
Require:

The model M𝑡−1 and new arrived image I𝑡
Ensure:

The updated Model M𝑡 for tracked target;
The new target state, x𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 ;
1: for every X

(𝑖)
𝑡−1 in M𝑡−1 do

2: Track X
(𝑖)
𝑡−1 with the base tracker 𝒯 (𝑖)

𝑡−1 in I𝑡.

3: Update x
(𝑖)
𝑡 and V

(𝑖)
𝑡 in X

(𝑖)
𝑡 .

4: end for
5: Calculate the particle weights W = [𝑤

(1)
𝑡 , ..., 𝑤

(𝑁)
𝑡 ]

according to Equation 4.
6: Vote target’s rough position p̂𝑡 according to Equation

13 with patch particle weights W.
7: Resample the patch particles according to C1,C2,C3

with the rough position p̂
8: Get target state x𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 according to Equation 14.
9: return updated M𝑡 and x𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 ;

3.4. The Reliable Patch Tracker Algorithm

Based on the proposed reliable patch particle represen-
tation, we can estimate the target state through the statis-
tical method [30, 26]. As in [30], we try to estimate the
scale of the tracked object by storing the vector d

(𝑖)
𝑡 =

Ψ2(x
𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 − x

(𝑖)
𝑡 ) ∈ ℛ2 for each patch particle. Then,

we calculate the set of each patch changes in scale:

𝐷𝑡 =

{ ∣∣r𝑖,𝑗 ∣∣
∣∣d𝑖,𝑗 ∣∣ , 𝑖 ∕= 𝑗

}
(12)

where r𝑖,𝑗 = Ψ2(x
(𝑖)
𝑡 − x

(𝑗)
𝑡 ) and d𝑖,𝑗 = d

(𝑖)
𝑡 − d

(𝑗)
𝑡 . The

scale is estimated by the median of this set 𝑐𝑡 = med(𝐷𝑡).
To make it more robust, a Gaussian filter is employed to
smooth the output of target scale.

The object position can be estimated by the Hough-
voting scheme [27]. Assuming that reliable patches are
structurally consistent with the tracked object, we can treat
the normalized particle weight 𝑤(𝑖)

𝑡 as the confidence mea-
sure of tracking results. Thus, we employ all the positive
patch particles to vote the center of the target as follows:

p𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 =

∑
𝑖∈Ω+

𝑤
(𝑖)
𝑡 (Ψ2x

(𝑖)
𝑡 + 𝑐𝑡d

(𝑖)
𝑡 ) (13)

and the final state of the tracked object can be estimated by

x𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 = [p𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 , 𝑐𝑡Ψ(x𝑡𝑎𝑟𝑔𝑒𝑡
𝑡−1 )]. (14)

As the false positive patches have quite small weights
in the large motion gap, this makes the voting results very
robust. When the motion change is not obvious, the position
of a false positive patch is not far from the true position. As
the number of patch particles increase, the estimation of the
target state tends to be more accurate.

In contrast to the conventional methods [2] requiring to
resample all the particles at each frame, we keep the patch
particles from the previous frames and only recompute their
weights. Moreover, we resample the particle only when it
is necessary. In this paper, we define the following criteria
to perform resample:

(C1) Far away from target. As shown in Figure 3, we
define two regions with magenta color and cyan color re-
spectively. The particles may become less important when
they move too far away from the tracked object. There-
fore, we simply remove the patch particles outside the cyan
region. Meanwhile, we resample the positive particles out-
side the magenta region which may probably lead to some
drift.

(C2) Imbalance between foreground and background
particles. As the computational budget is fixed, we intend
to keep the balance between the foreground and background
patch particles to maintain the stability. Specifically, we re-
sample the positive particles with low weights when the por-
tion of positive particles is larger than a threshold 𝛾. Sim-
ilarly, we resample the negative particles when its portion
becomes large.

(C3) Low trackable confidence. We resample the patch
particles with the low trackable confidence, which usually
occurs in the homogeneous region lacking of textures. This
could potentially reduce the computational cost while im-
prove the robustness.

During the re-sampling process, the base tracker of
the patch particle will be re-initialized from time to time.
Therefore, the new appearance will be learnt from the new
patch particle. It is also important to note that we update
each base tracker individually. From above all, we sum-
marize the whole procedure of our proposed Reliable Patch
Tracker (RPT) in Algorithm 1.

4. Experimental Results

In this section, we give details of our experimental im-
plementation and discuss the results of tacking performance
evaluation. We examine the effectiveness of the proposed
approach on two datasets, including an online object track-
ing benchmark testbed [37] with 51 sequences and another
extra dataset with 10 challenging videos. More experimen-
tal results are included in supplemental materials.

4.1. Experimental Setup

We implemented the proposed Reliable Patch Tracker
(RPT) in Matlab using a single thread without further op-



timization. All the experiments were conducted on a regu-
lar PC with Intel-i7-3770 CPU (3.4 GHz) and 16 GB RAM.
For the proposed RPT method, the yellow and cyan regions
defined in Section 3.3 are set to 1.5 and 9 times the target
bounding box, respectively. Moreover, we record the the
trajectories of 5 consecutive frames for the motion analy-
sis. During the tracking, we try to maintain the fixed 4:1
ratio between the number of positive particle patches and
negative ones through the resample criteria C2. We use the
default setting for the base KCF tracker [14] in RPT except
having changed the padding parameter from 1.5 to 3 for bet-
ter coverage.

To facilitate fair performance evaluations, two typical
evaluation criteria are used in our experiments. The first
criterion is mean Center Location Error (CEL), which is the
pixel distance between the tracked results’ center and the
ground truth. The other is the Pascal VOC Overlap Ratio
(VOR) [9], which is defined as 𝑉 𝑂𝑅 = 𝐴𝑟𝑒𝑎(B𝑇∩B𝐺)

𝐴𝑟𝑒𝑎(B𝑇∪B𝐺) ,
where B denotes a bounding box and 𝐺,𝑇 indicate the
ground truth and the tracking results, respectively.

4.2. Visual Benchmark

Besides 29 trackers in the tracking benchmark
dataset [37], we have conducted experiments by com-
paring with another four recently proposed state-of-the-art
trackers including KCF [14], CN [7], STC [39] and
TGPR [16] to demonstrate the effectiveness of our pro-
posed RPT approach. Note that we employ the original
implementations of these trackers from the authors’
websites with the default parameters.

For the visual tracking benchmark [37], the experimen-
tal results are illustrated by both precision plot and success
plot. The precision plot shows the percentage of success-
fully tracked frames vs. the CEL in pixels, which ranks
the trackers as precision score at 20 pixels. On the other
hand, the success plot draws the percentage of successfully
tracked frames vs. the VOR threshold, where Area Under
the Curve (AUC) is used as metric for ranking. The bench-
mark covers 51 challenging sequences that is a variety of
scenarios used in the previous literature.

To make it clear, we only plot the top 10 ranked trackers
and the entire plots are included in supplemental materi-
als. As shown in Figure 5, our proposed method ranks the
first and achieves the best performance with a very large
margin in all the ranking plots. Specifically, the proposed
method achieves 0.576 ranking score in success plot and
0.812 ranking score as illustrated in Figure 5(a). Compar-
ing with the base tracker KCF with 0.514 success ranking
score and 0.740 precision ranking score, our method has
obtained over 12% and 9.7% improvements, respectively.
From Figure 5(b)- 5(h), the performance of different at-
tributed groups indicates that our method is clearly more
accurate and robust. Also, our method clearly outperforms

those part-based trackers [17] [1] in the benchmark. This
demonstrates that the idea of finding reliable patches for
tracking is effective and promising in practice.

For better illustration, we further analyze the top 5 per-
formed trackers in the following. As VOR is usually con-
sidered to be valid with the score larger than 0.5. Similarly,
CEL is treated to be valid with the score smaller than 20.
Therefore, we list the total number of sequences that fulfill
these criteria in Table 1. It can be seen that the proposed
tracker has successfully tracked 38 sequences based on the
VOR threshold and passed 41 sequences based the CEL cri-
teria, which account for around 80% of the total number
of sequences in the whole benchmark. This demonstrates
that tracking with reliable patches enables a base tracker to
be capable of handling more challenging situations. De-
spite having achieved the encouraging performance for the
proposed approach, our current implementation runs only
around 4 Fps using the non-optimized single-thread MAT-
LAB code. Note that the presented patch particle filter
framework can easily extended to a parallel implementa-
tion and considerably optimized with more efficient imple-
mentation in C/C++. Figure 6 shows the snapshot of the
sequences RPT passed with the patch particles visible.

Method mVOR> 0.5 mCEL< 20 mFps.

Struck [11] 28 29 10.008
SCM [41] 28 28 0.374
KCF [14] 31 35 339
TGPR [16] 35 36 0.727
RPT 38 41 4.154

Table 1. List the numbers of sequences that the mean VOR is larger
than 0.5 or the mean CEL is smaller than 20 for each tracker. The
mean FPSs are also presented.

4.3. More Sequences

To further evaluate the performance of our proposed ap-
proach, we conduct the experiments with the top five track-
ers on the additional 10 challenging video sequences from
previous studies [41, 17, 29]. Table 4.2 list the mean VOR
and the mean CEL of each sequences. Figure 4 illustrates
the tracking results of the 5 trackers.

Specifically, in board, the proposed tracker is able to
track the board in background clutter even when the board
turns back. This is mainly due to the motion information
in the reliable patch. panda is cropped from cartoon video,
which contains in plane rotation and a large blank region
in background. Since our algorithm is capable of find-
ing the trackable patch, the sequence is tracked perfectly
while KCF drifts at the beginning and other trackers fail
when the panda cross the tree. As these trackers are top
ranked, they all succeed in stone, polarbear and surfing.
SCM drifts in sunshade as the illumination changed dra-
matically. As caviar3 has sever occlusion, all the trackers
fails. Our method fails since the negative samples are not on
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RPT Struck KCF TGPR SCM

Figure 4. The extensive 10 sequences with top 5 trackers’ tracking results
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Success plots of OPE − motion blur (12)
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Figure 5. The success and precision plots of the benchmark.



Figure 6. 20 sequences that the mean CEL of RPT is smaller than 20. The patch particles are also presented with the red boxes and green
boxes which represent positive and negative particles respectively. (Better view in color.)

Table 2. The mean VOR and CEL of the 10 sequences for top 5 trackers
mean VOR mean CEL

RPT TGPR [16] KCF [14] SCM [41] Struck [11] RPT TGPR [16] KCF [14] SCM [41] Struck [11]

board 0.786 0.092 0.803 0.317 0.769 18.7 242.3 17.3 86.3 28.4
caviar3 0.141 0.257 0.136 0.145 0.127 71.3 23.4 69.3 62.5 67.2

panda 0.624 0.677 0.020 0.253 0.358 3.8 2.4 150.1 94.1 90.7
stone 0.526 0.506 0.498 0.596 0.496 2.2 1.6 3.0 3.3 3.1

polarbear 0.718 0.631 0.647 0.715 0.611 9.9 9.5 9.5 9.3 12.2
sunshade 0.723 0.727 0.753 0.409 0.787 5.1 4.8 4.5 45.7 3.7

surfing 0.725 0.862 0.703 0.790 0.870 3.1 1.7 3.3 1.8 1.4
torus 0.803 0.756 0.787 0.472 0.158 3.4 7.1 4.0 30.1 56.0

bicycle 0.463 0.486 0.242 0.432 0.408 5.4 4.8 59.4 55.5 6.9
tunnel 0.512 0.324 0.324 0.618 0.324 4.4 8.6 6.3 7.7 10.5

averg. 0.602 0.532 0.491 0.475 0.491 12.7 30.6 32.7 39.6 28.0

the occluded person at the beginning. Struck and SCM drift
in torus due to the out of plane rotation while our method
can track the target very well. In bicycle, the scale of raider
changes dramatically. KCF drifts when pass the wire pole.
In tunnel, all tracker tracks the target successfully while the
scale is not accurately estimated.

5. Conclusion

In this paper, we proposed a novel framework of Reli-
able Patch Trackers (RPT) which attempts to identify and
exploit reliable patches for robust visual tracking. To ef-
ficiently find the reliable patches, we employed a particle
filter-based method with two orthogonal properties, includ-
ing the trackability and the motion similarity to estimate the
distribution of those reliable patches. After finding the re-
liable patches, we tracked those patches with some effec-

tive base tracker and then employed the reliable patch par-
ticles to represent the visual target. In addition, an efficient
updating scheme was carefully designed to enable the al-
gorithm for running online. By tracking with those more
meaningful and reliable patches, the proposed tracker can
thus handle more diverse and challenging situations of vi-
sual tracking. Finally, we obtained encouraging empirical
performance from our extensive experiments by comparing
the proposed tracker with several state-of-the-art trackers.
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