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ABSTRACT
Relative similarity learning, as an important learning scheme for
information retrieval, aims to learn a bi-linear similarity function
from a collection of labeled instance-pairs, and the learned func-
tion would assign a high similarity value for a similar instance-
pair and a low value for a dissimilar pair. Existing algorithms
usually assume the labels of all the pairs in data streams are al-
ways made available for learning. However, this is not always re-
alistic in practice since the number of possible pairs is quadratic
to the number of instances in the database, and manually label-
ing the pairs could be very costly and time consuming. To over-
come the limitation, we propose a novel framework of active on-
line similarity learning. Specifically, we propose two new algo-
rithms: (i) PAAS: Passive-Aggressive Active Similarity learning;
(ii) CWAS: Confidence-Weighted Active Similarity learning, and
we will prove their mistake bounds in theory. We have conducted
extensive experiments on a variety of real-world data sets, and we
find encouraging results that validate the empirical effectiveness of
the proposed algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Information Retrieval]: Online Learning—Active Learning

Keywords
Image Retrieval, Active Learning, Online Learning

1. INTRODUCTION
Similarity learning, also known as distance learning, has been

widely studied in machine learning and data mining communi-
ties. It plays a critical role in a wide range of real-world appli-
cations, such as ranking[4], recommendation system[1], image re-
trieval [21, 26, 2, 30, 17] and text information retrieval [9], etc. In
previous research, a variety of machine learning approaches have
been proposed for learning distance or similarity functions from
training data [31, 29, 14]. One of the most notable schemes is the
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Distance Metric Learning (DML) approach, which aims to learn
a Mahalanobis distance [31] and requires the distance metric sat-
isfying the Positive Semi-Definiteness (PSD) property. However,
imposing the PSD requirement often makes the DML task compu-
tationally challenging, particularly when handling large-scale train-
ing data in high dimensional spaces, although various approxi-
mate techniques have been proposed to improve computational ef-
ficiency. Another strong assumption of DML approaches is that the
exact distances of all pairs of instances should be obtained, which
are usually costly and time consuming.

Instead of learning the Mahalanobis distance, another technique
is to explore the relative similarity learning [4], which aims to learn
a bilinear similarity model for measuring the similarity of any in-
stance pair (two instances) by eliminating the PSD requirement,
which is thus much more computationally efficient and scalable.
More importantly, only relative similarities among any two pairs
of instances are needed, which greatly alleviates the requirement
of exact distances among all instances. In literature, several online
learning algorithms have been proposed for learning relative sim-
ilarity from data streams. Most existing studies generally assume
that the data streams of instance pairs are fully labeled. However,
we argue this may not be a realistic setting since the number of in-
stance pairs is quadratic with respect to the number of instances,
and labeling such a massive pool of instance pairs could be ex-
tremely costly and time consuming for large-scale applications, es-
pecially when the labeling task has to explicitly involve human in
the loop in an early stage of deploying a new system.

Unlike the existing relative similarity learning approaches, in this
paper, we investigate a novel scheme of active online learning of
relative similarity from unlabeled data streams without requiring
labeling every instance pair. Specifically, we propose two efficient
and scalable online learning algorithms to tackle the new problem:
(i) PAAS: Passive-Aggressive Active Similarity learning and (ii)
CWAS: Confidence-Weighted Active Similarity learning. We then
analyze the theoretical bounds of the proposed online learning al-
gorithms, and further validate their empirical performances via an
extensive set of experiments on various real datasets. The encour-
aging results show that the proposed online active relative similar-
ity learning algorithms can achieve highly competitive performance
while significantly reducing the amount of labeling costs.

The rest of this paper is organized as follows. We first review
related work, and then present the formulation of the proposed two
algorithms as well as their theoretical analysis. Further, we empiri-
cally validate the proposed algorithms in terms of effectiveness and
efficiency, and finally conclude this paper and discuss the future
work.
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2. RELATED WORK
This paper is mainly related to two major categories of studies

in literature: similarity learning, and active learning. We briefly
review each of them below.

Similarity learning has been extensively studied in machine
learning and data mining communities. Most existing works have
been focused on DML [31] for learning a Mahalanobis distance
through a PSD matrix [16, 22, 24]. Weinberger et al. [28] proposed
a large margin nearest-neighbor classifier to address the DML prob-
lem in the context of ranking. Globerson and Roweis [11] proposed
to address the positive constraints in a supervised setting. Based
on LogDet-regularization with different loss functions, Davis et
al. [8] proposed online metric learning algorithms. All these al-
gorithms aim to learn a PSD matrix M, based on which the dis-
similarity of two images x1 and x2 is measured by computing
(x1 − x2)

>M(x1 − x2). However, it is computationally costly to
impose the PSD constraint on M, which makes these algorithms in-
appropriate for large-scale problems. To overcome this limitation,
the bilinear form similarity function x>1 Mx2 is proposed, where
M is not required to be PSD. Along this direction, Chechik et al. [4]
proposed the first-order relative similarity learning algorithm “OA-
SIS" based on the first-order based online learning algorithm [6, 35,
15]. Recently, Crammer and Chechik [5] proposed a second-order
relative similarity learning algorithm “AROMA" based on second-
order based online learning algorithm [7, 33]. However, all these
algorithms require a large set of labeled data to train the similarity
models, which is not always realistic in many real-world applica-
tions due to the expensive labeling cost.

Active learning is a learning technique for reducing labeling cost
by querying the most informative examples for labeling, which has
been extensively studied in machine learning literature [3]. Ex-
isting active learning algorithms could be generally classified into
four categories: uncertainty-based [18, 27, 34], searching through
the hypothesis space [10], minimizing the expected error and vari-
ance on the pool of unlabeled instances [20, 13], and exploiting
the structure information [25] among the instances. More can be
found in the comprehensive survey [23]. Our strategy is more re-
lated to the work in the first two categories. Specifically, we adopt
the typical active learning strategy in the work [3, 32, 19], where
the algorithm maintains a Bernoulli random variable Zt ∈ {0, 1}
with probability δ/(δ+ |pt|), and pt is the margin of the similarity
function on the t-th triplet. The algorithm will query the label and
update the model only when Zt = 1.

Despite being extensively studied [23], most of the active strate-
gies are proposed for the classification or regression tasks. To our
knowledge, there is no previous work exploring the active strategy
on the relative similarity learning problem. To alleviate the cost
in labeling, we explore the idea of active learning algorithms for
overcoming the limitation of conventional relative similarity learn-
ing approaches.

3. ACTIVE ONLINE LEARNING OF REL-
ATIVE SIMILARITY FROM DATA
STREAMS

In this section, we first introduce the problem setting for active
online learning of relative similarity from data streams, and then
present the details of the proposed Active Online Similarity Learn-
ing algorithms.

3.1 Problem Formulation
Following [4], we would study the problem of online learning a

relative similarity function S(x,x′), ∀x,x′ ∈ Rd, which measures

the similarity between x and x′. Formally, let

{(xt,x1
t ,x

2
t ; yt) ∈ Rd × Rd × Rd × {−1,+1}|t ∈ [T ]}

be a sequence of triplets (where [T ] = {1, . . . , T}) . For the t-th
triplet, yt = 1 indicates xt instance is more similar with x1

t than
x2
t , while yt = −1 implies xt is less similar with x1

t than x2
t . Our

goal is to learn a similarity function S(x,x′) that assigns a higher
similarity score to the similar pair and a lower similarity score to
the non-similar pair. Formally, given a triplet(xt,x1

t ,x
2
t ; yt), the

learned similar function should satisfy:

yt[S(xt,x
1
t )− S(xt,x2

t )] ≥ 0, ∀t ∈ [T ].

For the similarity function, we specifically adopt a linear simi-
larity function that has a bi-linear form,

S(x,x′) = x>Mx′, (1)

where M ∈ Rd×d. To note, it is possible to learn a M ∈ Rd×d
′
,

where d 6= d′, as similarity function between two different spaces,
however we will assume d = d′ for simplicity.

To learn the parameter M, we could introduce some loss func-
tions to measure its performance on the t-th triplet, for example,
the hinge loss is defined as

`(M ; (xt,x
1
t ,x

2
t ; yt)) =

[
1− yt[S(xt,x1

t )− S(xt,x2
t )]
]
+
, (2)

where the hinge loss [·]+ = max(0, ·) encourages yt[S(xt,x1
t )−

S(xt,x
2
t )] ≥ 1. It is also possible to define other loss functions,

e.g. logistic loss. In this article, we adopt the hinge loss for sim-
plicity.

To solve this online relative similarity learning task, we can
adopt those existing methods including Perceptron, Online Gradi-
ent Descent, Online Passive Aggressive, etc. Although these online
learning algorithms can achieve a cumulative loss comparable with
the one attained by any fixed hypothesis, one major limitation is
that they require all the labels of the instances while labeling in-
stances might be very expensive or time consuming. To solve this
problem, we would study active online similarity learning, which
will try to only query the labels of a few informative instances so
that the number of queried labels is reduced while the performance
dose not degrade too much.

3.2 PAAS: Passive-Aggressive Active Similar-
ity learning

To solve Active Online Similarity Learning, we propose to adopt
the selective sampling technique used in [3]. Specifically we will
use a stochastic sampling scheme to decide whether it is necessary
to query the label of the current instance. This scheme maintains
a Bernoulli random variable Zt ∈ {0, 1}, where Zt = 1 indicates
the label should be queried at the t-th step. More specifically, this
scheme employs the following sampling probability

Pr(Zt = 1) =
δ

δ + |pt|
, (3)

where δ > 0 is a parameter to tune the number of queried labels
and

pt = x>t Mt(x
1
t − x2

t ) (4)

is the margin of similarities between x>t Mx1
t and x>t Mx2

t . In-
tuitively, the smaller the value of |pt|, the lower the confidence of
the model on the current prediction; as a consequence, we should
query the label with a higher probability of Pr(Zt = 1). Once



Algorithm 1 PAAS: The proposed algorithm of Passive-
Aggressive Active Similarity learning

Input: smooth parameters δ > 0, C > 0
Initialize: M1 = 0
for t = 1, 2, . . . , T do

Receive (xt,x
1
t ,x

2
t ) and compute Xt = xt(x

1
t − x2

t )
>;

Compute pt = Tr(MtX
>
t ) and ŷt = sign(pt);

Sample Zt ∈ {0, 1} with Pr(Zt = 1) = δ
δ+|pt| ;

if Zt = 1 then
Query yt and compute `t(Mt) = max(0, 1− ytpt);
Update: Mt+1 = Mt + τtytXt;
where τt = min

{
C, `t(Mt)

‖Xt‖2F

}
.

else
Mt+1 = Mt;

end if
end for
Output: MT+1

the label is queried, the algorithm will update the model using the
online Passive Aggressive strategy, i.e.,

Mt+1 = argmin
M

{1
2
‖M−Mt‖2F + C`t(M)

}
,

where `t(M) = `(M ; (xt,x
1
t ,x

2
t ; yt)) and C > 0 is a trade-off

between minimizing the adjustment of the model and minimizing
the loss of the new model on the current example. This will produce
a first-order update method [4, 6], i.e.,

Mt+1 = Mt + τtytXt,

where τt = min
{
C, `t(Mt)

‖Xt‖2F

}
, and Xt = xt(x

1
t − x2

t )
>. Fi-

nally, the proposed Passive-Aggressive Active Similarity learning
(PAAS) algorithm is summarized in Algorithm 1.

3.3 CWAS: Confidence-Weighted Active Sim-
ilarity learning

To improve the learning performance, a second order similarity
learning algorithm AROMA is proposed [5], which does not only
use the first order information but also the second-order informa-
tion, i.e., the covariance matrix for all the features, to update the
model. Compared to the first-order algorithm OASIS, the effec-
tiveness of AROMA has been theoretically and empirically veri-
fied. However, directly combining AROMA with query strategy in
Equation (3) makes the theoretical analysis challenging.

Following the similar idea of AROMA, we assume the model
maintains a Gaussian distribution, N (M,Σ), where M ∈ Rd×d

and Σ ∈ Rd
2×d2 encode the model’s knowledge of and confidence

of the model. At the t-th round, when receiving (xt,x
1
t ,x

2
t ), we

firstly decide whether it is necessary to query the true label based
on Equation (3). If Zt = 1, we query the label and update the
distribution by minimizing the following objective function

ft(M,Σ) = DKL
(
N (vec(M),Σ)‖N (vec(Mt),Σt)

)
+ηTr(G>t M) +

1

2γ
vec(Xt)

>Σvec(Xt),

where

DKL(N (µ,Σ)‖N (µt,Σt))

=
1

2

[
ln(
|Σt|
|Σ|

) + Tr(Σ−1
t Σ) + (µt − µ)>Σ−1

t (µt − µ)− d
]
,

is the Kullback-Leibler divergence of two distributions, Gt =
∂`t(Mt) = −ytXt, where Xt = xt(x

1
t − x2

t )
> and vec(X) =

Algorithm 2 CWAS: The proposed algorithm of Confidence-
Weighted Active Similarity learning

Input: learning rate η; regularization parameter γ
Initialize: Σ1 = Id

2×d2 , M1 = 0d×d

for t = 1, 2, . . . , T do
Receive (xt,x

1
t ,x

2
t ) and compute Xt = xt(x

1
t − x2

t )
>;

pt = Tr(M>
t Xt), and ŷt = sign(pt);

Sample Zt ∈ {0, 1} with Pr(Zt = 1) = δ
δ+|pt| ;

if Zt = 1 then
Query yt, and compute `t(Mt) = [1− ytpt]+;
if `t(Mt) > 0 then

Σt+1 = Σt − Σtvec(Xt)vec(Xt)
>Σt

γ+vec(Xt)>Σtvec(Xt)
;

Gt = ∂`t(Mt) = −ytXt;

Mt+1 = mat
[
vec(Mt)− ηΣt+1vec(Gt)

]
;

else
Σt+1 = Σt, Mt+1 = Mt;

end if
else

Σt+1 = Σt, Mt+1 = Mt;
end if

end for
Output: MT+1

[X11, . . . ,X1d, . . . ,Xd1, . . . ,Xdd]
>. The first term is to keep the

new distribution not far away from the old one. The second term is
a first order approximation of the current loss function at the cur-
rent model, which is used to minimize the loss of the new model on
the current example. The final term is to update the confidence of
the model, since a new triplet is observed. η and γ are two positive
parameters to trade off these objectives.

To solve this optimization problem, we can set the derivatives
∂Mft(Mt+1,Σ) and ∂Σft(µ,Σt+1) as zeros, respectively to get
the following updating rules:

Mt+1 = mat
[
vec(Mt)− ηΣtvec(Gt)

]
, (5)

Σt+1 = Σt −
Σtvec(Xt)vec(Xt)

>Σt

γ + vec(Xt)>Σtvec(Xt)
, (6)

where mat(·) is the inverse function of vec(·).
Finally, we summarize the proposed CWAS in Algorithm 2.
Remark One key drawback of this algorithm is that the dimen-

sion of Σt is d2 × d2, which will result in very high memory and
computational complexities. In practice, we can use diagonal Σt to
reduce these complexities. Or equivalently, we can store a matrix
Σt ∈ Rd×d, and change the Equations (5) and (6) into

Mt+1 = Mt − ηΣt �Gt, (7)

Σt+1 = Σt −
Σt �Xt �Xt �Σt

γ +
∑
ij(Xt �Σt �Xt)ij

, (8)

where � is element-wise product.

3.4 Theoretical Analysis
Denote mt = I(yt 6= ŷt), we would analyze the performance of

the proposed two algorithms in terms of expected mistake bounds
E[
∑T
t=1mt]. We will provide all the detailed proofs in the ap-

pendix. Firstly, we have the following theorem for the first-order
algorithm PAAS.

THEOREM 1. If the PAAS algorithm is run with a sequence of
triplets (xt,x

1
t ,x

2
t ; yt), t ∈ [T ], with DX = max ‖Xt‖F , then



for any T > 0, and M ∈ Rd×d, we have

E[
T∑
t=1

mt] ≤
β

δ

{
(
δ + 1

2
)2‖M‖2F + (δ + 1)CLT (M)

}
,

where β = max(1/C,D2
X), and LT (M) =

∑T
t=1 `t(M).

In addition, the expected number of labels queried equals to∑T
t=1 E[

δ
δ+|pt| ].

Remark: The above bound depends on the choice of param-
eter δ. Generally, δ could be viewed as a parameter to rule the
extent to which the learning model fits the present data [3]. Min-
imizing the right hand side over δ, we can observe that setting
δ =

√
1 + 4CLT (M)/‖M‖2F in the above theorem gives the fol-

lowing upper bound for E[
∑T
t=1mt]

β{
1

2
‖M‖2F + CLT (M) +

1

2
‖M‖F

√
‖M‖2F + 4CLT (M)}.

Under the same assumptions as in the above theorem, we have
the following theoretical guarantee for the second-order algorithm
CWAS.

THEOREM 2. If the algorithm CWAS is run with a sequence
of examples (xt,x

1
t ,x

2
t ; yt), t ∈ [T ], then for any T > 0, and

M ∈ Rd×d, we have

E
T∑
t=1

[mt] ≤
T∑
t=1

Zt`t(M)

+
1

ηδ
(DM + |1− δ|‖M‖)2Tr(Σ−1

T+1) +
ηγ

2δ
ln(|Σ−1

T+1|).

Setting η = (DM + |1− δ|‖M‖)
√

2
γ

Tr(Σ−1
T+1)/ ln(|Σ

−1
T+1|), the

following bound holds for CWAS

E[
T∑
t=1

mt]

≤ LT (M) +
|1− δ|‖M‖2F +DM

δ

√
2γTr(Σ−1

T+1) ln |Σ
−1
T+1|,

where DM = maxt ‖Mt −M‖2F .

Remark By optimizing over δ, and setting δ = 1, we will have

E[
T∑
t=1

mt] ≤ LT (M) +DM

√
2γTr(Σ−1

T+1) ln |Σ
−1
T+1|.

4. EXPERIMENTS
In this section, we conduct experiments to evaluate the efficacy

of the proposed algorithms for online similarity learning from data
streams on several benchmark datasets.

4.1 Datasets
To examine the performance, we conduct extensive experiments

on a variety of benchmark datasets from web machine learning
repositories. Table 1 shows the details of five datasets used in our
experiments. Caltech256 [12] is a standard dataset for the image
classification and ranking problem 1. We use the same classes with
[4] to generate the caltech50 and caltech249. The other datasets are
standard machine learning datasets publicly available at LIBSVM 2

and UCI Machine Learning Repository 3.
1http://www.vision.caltech.edu/Image_Datasets/Caltech256/
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3https://archive.ics.uci.edu/ml/datasets.html

Table 1: Datasets used in the following experiments

Dataset # Classes # Instances # Features # Triplets
caltech249 249 16185 1000 1200000
caltech50 50 3250 1000 250000
covtype 7 455 54 10000

letter 26 1690 16 10140
pendigits 10 650 16 16848
satimage 6 390 36 18000
segment 7 455 19 25000
shuttle 7 458 9 4000

We evaluated the performance of all algorithms using precision-
at-top-k, a standard ranking precision measure based on nearest
neighbors. For each query instance in the test set, all other test
instances were ranked according to their similarity to the query in-
stance based on Equation (1), and the number of same-class in-
stances among the top k instances (the k nearest neighbors) is com-
puted, and then averaged across test instances. This measure is
short named as AP. We also calculated the mean Average Precision
(mAP), a measure that is widely used in the information retrieval
community. For both of the AP and mAP measures, we set k = 10.

On all datasets, we used standard 5-fold cross validation and re-
port both the AP and the mAP on test set. In Table 1, # Triplets
represents the number of triplets (xt,x1

t ,x
2
t ) constructed based on

the training set in each fold.

4.2 Comparison Schemes
To examine the efficacy, we compare the proposed algorithms

with the state-of-the-art relative similarity learning algorithms,
where they have to query every triplet’s label during training stage.

• OASIS: the state-of-the-art first-order online similarity
learning algorithm [4]. It should be noted that this algorithm
is also the passive version of our proposed PAAS algorithm;

• AROMA: the state-of-the-art second-order online similarity
learning algorithm [5], and AROMA-d represents its diago-
nal version.

To our knowledge, there is no work on exploring active learning
on the relative similarity learning, so we compare our proposed
algorithms with their random versions, where they randomly decide
whether to query the label of t-th triplet.

• PAAS: the proposed first-order Passive-Aggressive Active
online Similarity Learning as shown in Algorithm 1;

• PARS: a variant of the proposed algorithm PAAS, where we
use a uniform distribution to randomly query labels and keep
the query ratio same as PAAS;

• CWS: the passive version of the algorithm CWAS, where we
query each triplet in the training phrase.

• CWAS: the proposed Confidence-Weighted Active online
Similarity Learning as shown in Algorithm 2. CWAS-d is
the diagonal version with Equation (7) and (8) as updating
rules.

• CWRS: a variant of the algorithm CWAS, where we use a
uniform distribution to randomly query labels and keep the
query ratio same as CWAS. CWRS-d is the diagonal version
with Equation (7) and (8) as updating rules;



Table 2: Performance of algorithms on different datasets with the query ratio fixed to about 20%
cotype letter

Alg. Query(%) AP@10 mAP@10 Time(s) Query(%) AP@10 mAP@10 Time(s)
PARS 20.620 ± 0.955 0.446 ± 0.036 0.334 ± 0.035 0.006 ± 0.008 20.6 ± 0.827 0.198 ± 0.024 0.127 ± 0.025 0.007 ± 0.000
PAAS 20.710 ± 0.336 0.512 ± 0.035 0.409 ± 0.027 0.006 ± 0.008 20.6 ± 0.667 0.233 ± 0.020 0.158 ± 0.023 0.007 ± 0.000
CWRS 20.960 ± 0.670 0.585 ± 0.027 0.476 ± 0.040 11.860 ± 1.741 19.4 ± 1.078 0.362 ± 0.019 0.276 ± 0.021 0.104 ± 0.005
CWAS 20.890 ± 0.677 0.624 ± 0.038 0.515 ± 0.043 22.390 ± 1.448 19.4 ± 0.507 0.385 ± 0.012 0.298±0.012 0.134 ± 0.005

pendigits satimage
Alg. Query(%) AP@10 mAP@10 Time(s) Query(%) AP@10 mAP@10 Time(s)

PARS 22.2 ± 0.378 0.527 ± 0.056 0.418 ± 0.063 0.010 ± 0.001 20.4 ± 0.387 0.493 ± 0.044 0.408 ± 0.040 0.046 ± 0.001
PAAS 22.2 ± 0.526 0.554 ± 0.027 0.452 ± 0.024 0.010 ± 0.001 20.5 ± 0.274 0.509 ± 0.031 0.423 ± 0.022 0.050 ± 0.001
CWRS 19.3 ± 1.068 0.673 ± 0.020 0.588 ± 0.032 0.181 ± 0.016 19.6 ± 0.860 0.643 ± 0.010 0.560 ± 0.013 4.476 ± 0.257
CWAS 19.3 ± 0.925 0.700 ± 0.010 0.619 ± 0.018 0.287 ± 0.021 19.5 ± 0.517 0.657 ± 0.008 0.574 ± 0.011 9.390 ± 0.446

segment shuttle
Alg. Query(%) AP@10 mAP@10 Time(s) Query(%) AP@10 mAP@10 Time(s)

PARS 21.2 ± 0.366 0.361 ± 0.034 0.253 ± 0.041 0.020 ± 0.001 21.07 ± 0.898 0.435 ± 0.058 0.313 ± 0.054 0.001 ± 0.000
PAAS 21.2 ± 0.607 0.436 ± 0.029 0.316 ± 0.031 0.021 ± 0.000 20.64 ± 0.807 0.513 ± 0.027 0.403 ± 0.042 0.001 ± 0.000
CWRS 19.2 ± 0.817 0.690 ± 0.074 0.575 ± 0.103 0.297 ± 0.024 20.25 ± 1.117 0.502 ± 0.037 0.417 ± 0.059 0.006 ± 0.001
CWAS 19.2 ± 0.781 0.787 ± 0.019 0.729±0.039 0.573± 0.036 20.84 ± 0.873 0.561 ± 0.024 0.493±0.017 0.009± 0.001

For all algorithms, the parameters are searched within the space
10[−5:1:5] using cross validation. For both PAAS and CWAS al-
gorithms, we evaluate their performances on 10 different query
ratios which are achieved by setting the sampling threshold δ =
2[−10:2:10]. The query ratio represents the ratio of queried labels
over the total number of triplets in the data stream. PARS and
CWRS are also evaluated on 10 query ratios by setting the ran-
dom sampling parameters according to the query ratios in PAAS
and CWAS, respectively.

4.3 Evaluation of Fixed Query Ratio
In this experiment, we evaluate the performance of the proposed

algorithms with some fixed query ratios. Table 2 shows the experi-
mental results on different datasets.

First of all, with the same query ratio, the proposed active sim-
ilarity learning algorithms (CWAS and PAAS) consistently out-
perform their random versions (CWRS and PARS), respectively.
Besides, CWAS greatly outperforms PAAS over all the datasets.
Moreover, both CWAS and PAAS also achieve smaller variances as
compared to their random algorithms (PARS and CWRS), respec-
tively. These observations further confirm the effectiveness and ro-
bustness of the proposed algorithms.

Secondly, on all the datasets, the proposed second-order active
online similarity learning algorithm CWAS always achieves the
best performance and the smallest variance. This is consistent with
the previous results as shown in Figure 1 and 3, which further con-
firms the effectiveness of exploiting the second-order information.

Thirdly, by examining the running time cost, PAAS and CWAS
spent slightly more time cost as compared to their random variants,
respectively, mainly due to the cost of computing the query strate-
gies.

In addition, CWAS in general spends more time than PAAS due
to the computation of the second order information. However, the
extra time cost could almost be ignored considering the high effi-
ciency of the online learning scheme. In practice, for the higher
dimensional datasets, we could adopt the diagonal version algo-
rithm “CWAS-d" to further reduce the running time cost, as shown
in subsequent experiments.

4.4 Evaluation of Varied Query Ratios
In this section, we evaluate the performance of the proposed al-

gorithms with varied query ratios as shown in Figure 1. Several
observations could be drawn from the results.

Firstly, we can observe that the proposed active online learning
algorithms can consistently outperform their random versions, re-
spectively. This observation is consistent with the one in Table 2
and confirms the effectiveness of the proposed algorithms on se-
lecting informative instances. More importantly, with around 30%
query ratio, the proposed algorithm CWAS could achieve the simi-
lar performance as CWS which queries all. This means that the pro-
posed second-order active algorithm CWAS could save us around
70% effort compared to the traditional passive algorithms. For the
proposed first-order active algorithm, PAAS could save us around
50% effort compared to the passive algorithm OASIS.

Secondly, the proposed second-order algorithm CWAS can out-
perform the first-order algorithm PAAS. From Figure1, we can ob-
serve CWAS could outperform PAAS on most of the datasets from
the very small query ratio. The same result also could be observed
on the CWRS compared to the PARS. These findings confirmed the
effectiveness of introducing the second-order information. From
the figure, we also could observe that the baseline second-order al-
gorithm AROMA could achieve a little higher performance than
our proposed algorithm CWS, on some datasets. One possible rea-
son may be that the learning rate η is fixed in our algorithm in the
Equation (5), while it is adaptive in the algorithm AROMA [7].
However, CWS in general is comparable with AROMA, while its
active version is much easier to be theoretically analyzed.

4.5 Evaluation of Parameter Sensitivity
In this section, we evaluate the sensitivity of the parameters both

in Algorithm 1 and 2, respectively. However, it is difficult to eval-
uate the algorithms with active query strategies. Thus, we evalu-
ate their passive versions OASIS and CWS, respectively. Figure 2
shows the varied performances corresponding to different parame-
ters on four of the datasets. For each dataset, the left figure shows
the performance (Y-axis) corresponding to the parameter C (X-
axis) in OASIS, and the right figure shows the performance (dif-
ferent color) corresponding to parameter γ (X-axis) and η (Y-axis)
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Figure 1: Performance with varied query ratios on the test datasets, where AP@10 denotes Average Precision at 10, and mAP@10
denotes mean Average Precision at 10.

in CWS, where bright color corresponds to higher performance in
terms of Average Precision at 10 than the dark color.

For the parameter C, we can see it greatly affects the results of
OASIS, on all of the datasets, which could be explained using our
mistake bound in Theorem 1. Specifically, the mistake bound could
be divided into two terms, and the parameter C divides the first
term and multiplies the second term. When C is too small, the first
term will dominate the mistake bound, and the second term will
dominate the mistake bound when C is too large. This is consistent
with the results shown in Figure 2. For most of the datasets, C = 1
would present a promising result.

For algorithm CWS, the relationship between the performance
and the parameters is relatively complex. From Figure 2, we can
observe that the learning rate parameter η should be not too small

in general. And the regularization parameter γ should be search
around 1.

4.6 Evaluation of Efficiency and Scalability
Although the second-order algorithm CWAS greatly outper-

forms the first-order algorithm PAAS, it is costly to maintain the
covariance matrix when the number of features is large. To reduce
the complexity, we can use their diagonal versions by Equations (7)
and (8). To test the diagonal algorithm CWAS-d, we carried out ex-
periments on large-scale datasets caltech50 and caltech249 shown
in Figure 3, where we can observe similar results as the one in Fig-
ure 1. In addition, the increase of performance of CWAS-d over
PAAS is not as large as CWAS in Figure 1 as expected, since only
part of the second-order information is used.
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Figure 2: Sensitivity of the parameters
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Figure 3: Performance on the large-scale datasets
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Figure 4: Time cost corresponding to varied querying ratio on
large-scale datasets

In Figure 4, we evaluate the relationship between the querying
ratio and the time-cost of our proposed algorithms. From the fig-
ure, we can see that the time cost of the proposed algorithms is
lineally increasing with respect to the increasing querying ratio.
Besides, CWAS-d cost a little extra time than its random version
CWRS-d due to the computation of the query strategy, and PAAS
costs almost the same as its random version PARS. What’s more,
the second-order algorithm CWAS-d cost more than the first-order
algorithm PAAS due to the computation of the second-order infor-
mation, this is consistent with the finding in Table 2. More im-
portantly, in Figure 3, we can observe that with around 30% query
ratio, the proposed algorithm PAAS and CWAS-d could obtain sim-
ilar performances as their passive versions OASIS and CWS-d, re-
spectively. Meanwhile, when the query ratio is around 30%, in
Figure 4, PAAS and CWAS-d only spends around 30% of the time
spent by OASIS and CWS-d , respectively. These observations il-



lustrate that our proposed algorithms can save a lot effort in labeling
and training the model without sacrificing performance compared
to the passive algorithms which query the labels of all the triplets.

5. CONCLUSIONS
To overcome the critical limitation of traditional passive online

similarity learning from data streams, in this paper, we proposed
a novel framework of active online learning for relative similar-
ity learning. Specifically, we proposed two active online similarity
learning algorithms for reducing the number of queried labels in the
learning process. We theoretically analyzed the bounds of the pro-
posed algorithms and conducted extensive experiments to examine
the effectiveness of their empirical performance. The encourag-
ing empirical results validate the effectiveness and efficiency of the
proposed algorithms.

There are several aspects we are interested to explore in future.
Firstly, it would be more interesting to design an automatic method
to assign the parameter δ to control the query ratio, currently, it is
manually assigned.

Secondly, for the proposed second-order based algorithm
CWAS, it would be more effective to consider the second-order
information when designing the query strategy, such as the covari-
ance information contained in Σ.

Thirdly, we are interested to design a real online active relative
similarity learning where the labels of instance come from several
noisy online workers, such as from the crowdsourcing platforms.
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Appendix
In this appendix, we provide the proofs of the theorems in the sec-
tion 3.4.

Theoretical Analysis on PAAS
To prove the Theorem 1, we need the following lemma.

LEMMA 1. Let (xt,x1
t ,x

2
t ; yt), t ∈ [T ] be a sequence of input

triplets, where xt,x
1
t ,x

2
t ∈ Rd and yt ∈ {−1,+1} for all t. Let

τt be the step size parameter for PAAS as given in the algorithm.
Then the following bound holds for any M ∈ Rd×d:

T∑
t=1

2τtZt [lt(α− |pt|) +mt(α+ |pt|)]

≤ α2‖M‖2F +

T∑
t=1

τ2t ‖Xt‖2F +

T∑
t=1

2ατt`t(M),

where lt = I(`t(Mt) > 0 and sign(pt) = yt), mt =
I(sign(pt) 6= yt), I is the indicator function, α > 0 and Xt =
xt(x

1
t − x2

t )
>.

Lemma 1 can be proved using similar techniques in [3].Given
Lemma 1, Theorem 1 can be proven as follows:

PROOF. According to Lemma 1, we have

α2‖M‖2F +
T∑
t=1

2ατt`t(Mt)

≥
T∑
t=1

2τtZt[lt(α− |pt|) +mt(α+ |pt|)]−
T∑
t=1

τ2t ‖Xt‖2F

=
T∑
t=1

2τtZt[lt(α− |pt| −
τt

2
‖Xt‖2F ) +mt(α+ |pt| −

τt

2
‖Xt‖2F )]

≥
T∑
t=1

2τtZt[lt(α− |pt| −
`t(Mt)

2
) +mt(α+ |pt| −

`t(Mt)

2
)]

=
T∑
t=1

ltZt2τt(α−
1 + |pt|

2
) +

T∑
t=1

mtZt2τt(α−
1− |pt|

2
).

Plugging α = δ+1
2

, δ ≥ 1 into the above inequality will result in

(
δ + 1

2
)2‖M‖2F +

T∑
t=1

(δ + 1)τt`t(M)

≥
T∑
t=1

mtZtτt(δ + |pt|).

Since τt ≥ min(C, 1/D2
X), the above inequality implies:

(
δ + 1

2
)2‖M‖2F +

T∑
t=1

(δ + 1)τt`t(M)

≥ min(C, 1/D2
X)

T∑
t=1

mtZt(δ + |pt|).

Taking expectation with the above inequality, plugging the equal-
ity EZt = δ/(δ + |pt) and re-arranging the result conclude this
theorem.

Theoretical Analysis on CWAS
In this subsection we will abuse Mt, Gt, Xt to denote vec(Mt),
vec(Gt), and vec(Xt), respectively. To prove Theorem 2, we need
the following lemma.

LEMMA 2. Let (xt,x1
t ,x

2
t ; yt), t ∈ [T ] be a sequence of input

triplets, where xt,x
1
t ,x

2
t ∈ Rd and yt ∈ {−1,+1} for all t. If the

CWAS is run on this sequence of triplets, then the following bound
holds for any M ∈ Rd×d,

Zt[mt(δ + |pt|) + lt(δ − |pt|)]

≤ Zt
2η

[
‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

+‖Mt −Mt+1‖2Σ−1
t+1

]
+ δZt`t(Mt),

where lt = I(`t(Mt) > 0 and sign(pt) = yt), mt =
I(sign(pt) 6= yt), I is the indicator function, δ > 0 and ‖Mt −
δM‖2

Σ−1
t+1

actually denotes ‖vec(Mt)− vec(δM)‖2
Σ−1

t+1

.

PROOF. When Zt = 0, it is easy to verify the inequality in the
theorem.

When Zt = 1, it is easy to observe that

Mt+1 = argmin
M

ft(M),

where

ft(M) =
1

2
‖Mt −M‖2

Σ−1
t+1

+ ηG>t M.



Because ft is convex, we have the following inequality ∀M,

0 ≤ ∂ft(Mt+1)
>(M−Mt+1)

= [Σ−1
t+1(Mt+1 −Mt) + ηGt]

>(M−Mt+1).

Re-arranging the above inequality will result in

ηG>t (Mt+1 −M)

≤ (Mt+1 −Mt)
>Σ−1

t+1(M−Mt+1)

=
1

2
[‖Mt −M‖2

Σ−1
t+1
− ‖Mt+1 −M‖2

Σ−1
t+1

−‖Mt −Mt+1‖2Σ−1
t+1

].

Now, we would provide a lower bound for G>t (Mt+1 −M),

G>t (Mt+1 −M)−G>t (Mt −M) + G>t (Mt+1 −Mt)

= (lt +mt)(−ytX>t Mt) + (lt +mt)ytX
>
t M

−1

η
‖Mt −Mt+1‖2Σ−1

t+1
,

where the second inequality used the facts Gt = (lt +
mt)(−ytXt) and ∂ft(Mt+1) = 0, i.e.,

Σ−1
t+1(µt+1 − µt) + ηGt = 0.

Combining the above equality with the facts

mt(−ytX>t Mt) =Mt|pt|, lt(−ytX>t Mt) = −lt|pt|

and

ytX
>
t Mt + δ`t(M/δ) ≥ ytpt + δ(1− ytpt/δ) = δ,

we get the following bound for G>t (Mt+1 −M),

G>t (Mt+1 −M)

≥ (mt|pt| − lt|pt|) + (lt +mt)[δ − δ`t(M/δ)]

−1

η
‖Mt −Mt+1‖2Σ−1

t+1

= [mt(δ + |pt|) + lt(δ − |pt|)]− (lt +mt)δ`t(M/δ)

−1

η
‖Mt −Mt+1‖2Σ−1

t+1
.

Combining the previous inequalities, will give the following im-
portant inequality

[mt(δ + |pt|) + lt(δ − |pt|)]

≤ 1

2η
[‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

−‖Mt −Mt+1‖2Σ−1
t+1

] +
1

η
‖Mt −Mt+1‖2Σ−1

t+1
+ δ`t(M/δ)

=
1

2η
[‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

+‖Mt −Mt+1‖2Σ−1
t+1

] + δ`t(M/δ).

Replacing M with δM concludes the proof.

Given Lemma 2, the theorem 2 can be proven as follows:

PROOF. Firstly, according to the update rule

Mt+1 = mat[vec(Mt)− ηΣtvec(Gt)],

we can derive the following equality

‖Mt −Mt+1‖2Σ−1
t+1

= η2G>t Σt+1Gt

= η2(mt + lt)X
>
t Σt+1Xt = η2γ(1− |Σ

−1
t |

|Σ−1
t+1|

),

where, we used the factA = B+xx> implies x>A−1x = 1− |B||A| .
Plugging the above equality into the inequality in the Lemma 2, and
re-arranging it will gives

Zt[mt(δ + |pt|) + lt(δ − |pt|)]

≤ Zt
2η

[
‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

]
+
Ztηγ

2
(1− |Σ

−1
t |

|Σ−1
t+1|

) + δZt`t(Mt).

Summing the above inequality over t = 1, 2, . . . , T can give

T∑
t=1

Zt[mt(δ + |pt|) + lt(δ − |pt|)] ≤
T∑
t=1

δZt`t(Mt)

+

T∑
t=1

Zt
2η

[
‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

]
+

T∑
t=1

Ztηγ

2
(1− |Σ

−1
t |

|Σ−1
t+1|

).

Now, we would like to bound the right hand side of the above in-
equality. Firstly, we bound the first term as

T∑
t=1

Zt
[
‖Mt − δM‖2Σ−1

t+1
− ‖Mt+1 − δM‖2Σ−1

t+1

]
≤ ‖M1 − δM‖2Σ−1

2
+

T∑
t=2

[‖Mt − δM‖2Σ−1
t+1
− ‖Mt − δM‖2Σ−1

t
]

≤ ‖M1 − δM‖2Tr(Σ−1
2 ) +

T∑
t=2

‖Mt − δM‖2Tr(Σ−1
t+1 −Σ−1

t )

= max
t≤T
‖Mt − δM‖2Tr(Σ−1

T+1)

≤ 2(DM + |1− δ|‖M‖)2Tr(Σ−1
T+1),

where DM = maxt≤T ‖Mt −M‖2. Combining the above two
inequalities, result in

T∑
t=1

Zt[mt(δ + |pt|)] ≤ δ
T∑
t=1

Zt`t(M)

+
1

η
(DM + (1− δ)2‖M‖2)Tr(Σ−1

T+1) +

T∑
t=1

Ztηγ

2
(1− |Σ

−1
t |

|Σ−1
t+1|

)

≤ δ
T∑
t=1

Zt`t(M) +
1

η
(DM + |1− δ|‖M‖)2Tr(Σ−1

T+1)

+
ηγ

2
ln(|Σ−1

T+1|),

where we used the fact (1 − |A||B| ) ≤ ln |B||A| , since 1 − x ≤ − lnx

for all x > 0.
Taking expectation with the above inequality and using the fact

E[Zt] = δ
δ+|pt| gives

δE
T∑
t=1

[mt] ≤ δ
T∑
t=1

Zt`t(M)

+
1

η
(DM + |1− δ|‖M‖)2Tr(Σ−1

T+1) +
ηγ

2
ln(|Σ−1

T+1|).

Dividing the above inequality with δ concludes the proof.
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