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Cost-Sensitive Online Classification with Adaptive
Regularization and Its Applications

Peilin Zhad, Furen Zhuang Min Wu*, Xiao-Li Li* and Steven C.H. Hoi
*Data Analytics Department, Institute for Infocomm Resba®&*STAR, Singapore 138632
fSchool of Information Systems, Singapore Management Wsitye Singapore 178902

Email: {zhaop, zhuangf, wumin, xl§i@i2r.a-star.edu.sg, chhoi@smu.edu.sg

Abstract—Cost-Sensitive Online Classification is recently pro-
posed to directly online optimize two well-known cost-sengve
measures: (i) maximization of weighted sum of sensitivity ad
specificity, and (i) minimization of weighted misclassifiation
cost. However, the previous existing learning algorithms wly
utilized the first order information of the data stream. This is
insufficient, as recent studies have proved that incorporahg
second order information could yield significant improvemets
on the prediction model. Hence, we propose a novel cost-sénse
online classification algorithm with adaptive regularization. We
theoretically analyzed the proposed algorithm and empirially
validated its effectiveness with extensive experiments. &also
demonstrate the application of the proposed technique foraving
several online anomaly detection tasks, showing that the pposed
technique could be an effective tool to tackle cost-sensig online
classification tasks in various application domains.

Keywords—Cost-Sensitive  Classification;
Adaptive Regularization;

Online Learning;

I. INTRODUCTION

cost-sensitive measures, many batch classification &hgasi
are developed to optimize these performance during the pas!
decades [11], [19]. However, these batch algorithms often
suffer from poor efficiency and scalability for large-scale
tasks, which makes them unsuitable to online classification
applications. Although both cost-sensitive classificatemd
online learning have been studied extensively in data rginin
and machine learning communities, respectively, thereewer
very few comprehensive studies on cost-sensitive onliagst!
fication in both data mining and machine learning literatéie

an attempt to fill the gap between cost-sensitive classificat
and online learning in machine learning and data mining, a
new framework of Cost-Sensitive Online Classification [§] i
recently proposed and investigated, which aims to directly
optimize cost-sensitive measures for online classifioatsks.
Under this framework, a family of effective Cost-Sensitive
Online Classification algorithms are proposed based omenli
gradient descent, which are termed as Cost-Sensitive ©nlin
Gradient Descent (CSOGD). Compared with many traditional
online learning algorithms, encouraging results show that

Online learning has been extensively studied for years if©SOGD algorithms considerably outperform the traditional

machine learning and data mining literature [1], [2], [3].[

online learning algorithms for cost-sensitive online slfica-

[5], [6], [7], whose goal in general is to incrementally lear tion tasks [7].

prediction models to make correct predictions on a stream o

of examples that arrive sequentially. Online learning gajo  Although CSOGD can solve CSOC better than traditional
many advantages for real-world large-scale applicatiGus. online learning algorithms, it only utilizes the first ordefor-
example, in some real applications, data often arrives sehation of the examples, i.e., weighted mean of the gradient.
quentially while prediction must be made immediately, such!Dis is obviously insufficient, because recent studies, [[1]),

as, malicious URL detection [8] and portfolio selection.[9] [22]: [5] have shown that the usage of second order informa-
Moreover, online learning is very attractive for largelsca fion, i.e., the correlations between features, can sigmitly
learning task, e.g., training SVM from billions of data [10] improve the performance of online learning. Hence, we pro-
Although being studied extensively in the literature, mostP0ose Adaptively Regularized Cost-Sensitive Online Gratdie
of the existing online learning algorithms are unsuitalde t Descent (ARCSOGD) based on the state-of-the-art Confidence

solving cost-sensitive classification tasks. Cost-seesitlas- ~ Weighted [20], [21], [22], [5] strategy, which not only upda
sification is an important task for data mining, which differ the model using the first order information but also the sdcon
with traditional classification by taking the misclassifioa ~ Order information, to further improve the learning efficacy
costs into consideration [11], [12]. Most traditional ordi Furthermore, we theoretically analyzed its regret bourtdclv
learning algorithms often concern the performance in term&neasures the difference between its cumulative loss and the
of prediction mistake rate or accuracy, which is clearlytcos ©ne of the best model. To empirically evaluate the proposed
insensitive and thus inappropriate for quite a few realisvor @lgorithm, we conduct an extensive set of experiments oresom
applications in data mining, where datasets are often -clas®€nchmark datasets and several online anomaly detectks ta
imbalanced and the misclassification costs of instances fro from various real-world application domains. Promisingex

different classes can be significantly different [13], [1{4]5], imental results demonstrate the effectiveness and eféigieh
[16]. the proposed algorithm, compared with many stat-of-the-ar

o online learning algorihtms.
To address this issue, researchers have proposed more

meaningful metrics for cost-sensitive classificationsluding: The rest of this paper is organized as follows: We first
the weighted sum of sensitivity and specificity [17], [18]dan review related work in section 2, and then present the preghos
the weighted misclassification cost [11], [19]. Given thesealgorithm and its theoretical analysis in section 3; welfert



discuss the experiments in section 4. Section 5 shows amave shown that parameter confidence information can be
application to online anomaly detection tasks, and finallyexplored to guide and improve online learning performance

section 6 concludes the paper. [42]. For example, Second Order Perceptron (SOP) [42] is
the first second-order online learning algorithm, which can
II. RELATED WORK be viewed as an online variant of the whitened Perceptron

algorithm, where the whitened effect is achieved by using
online correlation matrices of the previously seen instanc
Later, some second order online learning algorithms witiyda
margin are proposed. For example, Confidence-weighted (CW)
learning [20], [43] maintains a Gaussian distribution over
some linear classifier hypotheses and applies it to cortieol t
direction and scale of parameter updates [20]. Although CW
Cost-sensitive classification has been extensively sllidie learning has formal guarantees in the mistake-bound mod-
data mining and machine learning [23], [24], [25]. Classific el [43], it can overfit in certain situations due to its aggies
tion problems such as fraud detection, medical diagnosss, a update rules based upon a separable data assumption. IRecent
naturally cost sensitive. In these problems the cost ofindss an improved online algorithm, i.e., Adaptive Regulariaatbdf
a target is much higher than that of a false-positive, andVeights (AROW) [22], relaxes such separable assumption by
classifiers that are optimal under symmetric costs tend deun employing an adaptive regularization for each trainingneple
perform. To address this problem, researchers have prd@ose based upon its current confidence. This regularization sdme
variety of cost-sensitive metrics. The well-known exarspte  the form of minimizing a combination of the Kullback-Leible
clude the weighted sum aknsitivityandspecificity[17], [18],  divergence between Gaussian distributed weight vectatsaan
and the weightednisclassification costhat takes cost into confidence penalty of vectors. Although AROW [22] is able
consideration when measuring classification performabtk [ to improve the original CW [43] learning by handling noisy
[19]. As a special case, when the weights are both equalnd non-separable cases, it is not the exact corresponaing s
to 0.5, the weighted sum of sensitivity and specificity isextending part of CW (Like PA with PA-l and PA-II). In partic-
reduced to the well-knowrbalanced accuracy18], which  ular, the directly added loss and confidence regularizatiake
is widely used in anomaly detection tasks. Over the pasAROW lose an important property of Confidence-weighted
decades, various batch learning algorithms have been pedpo learning, i.e., Adaptive Margin property [43]. Followinbe
for cost-sensitive classification in literature [26], [2712], similar idea of soft margin support vector machines, Soft
[11], [28], [29], [16]. However, few studies emphasis theea Confidence-Weighted algorithms [5] algorithms are propose
when data arrives sequentially, except Perceptron Algmist to assign adaptive margins for different instances via &gro
with Uneven Margin(PAUM) [30], the Cost-sensitive Passivebility formulation, which enables CW to gain extra efficignc
Aggressive(CPA) [3], and the CSOGD algorithm [7]. and effectiveness. In general, the second order algoritimas
more accurate, converge faster.

Our work is mainly related to two groups of research in
data mining and machine learning: (i) cost-sensitive diass
tion in data mining literature, (ii) online learning in mach
learning literature.

A. Cost-sensitive Classification

B. Online Learning Most online learning algorithms are cost-insensitive hwit

Online learning has been actively studied in machinenotable exceptions such as the perceptron algorithm with un
learning community [1], [31], [32], [3], [33], [34], [35].36], even margin (PAUM’) [30], the prediction-based PA alghbrit
[37], in which a variety of online learning algorithms haveelm  ('CPApg’) [3], and the CSOGD algorithm [7].
proposed, including a number of first-order algorithms [38]

[3]. One of the most well-known first-order online approach- m
es is the Perceptron algorithm [1], [39], which updates the '
learning function by adding the misclassified example with a
constant weight to the current set of support vectors. Rcen In this section, we first introduce the Cost-Sensitive Qmlin
a number of online learning algorithms have been develope@lassification (CSOC) problem settings, and then present ou
based on the criterion of maximum margin [31], [40], [41], proposed Adaptively Regularized Cost-Sensitive Onlina-Gr
[3], [2]. One example is the Relaxed Online Maximum Margin dient Descent Algorithm (ARCSOGD).

algorithm (ROMMA) [2], which repeatedly chooses the hyper-

planes that correctly classify the existing training ex&8p A problem Settings

with a large margin. Another representative example is the

Passive-Aggressive (PA) algorithm [3]. It updates the gifas Without loss of generality, let us consider an online bi-
cation function when a new example is misclassified or itsnary classification problem. Our goal is to learn a linear
classification score does not exceed the predefined margimodel w € R? based on a sequence of training examples
Empirical studies showed that the maximum margin based(x1,v1),...,(xr,yr)}, wherex, € R is a d-dimensional
online learning algorithms are generally more effectivanth instance and, € Y = {—1, +1} is the class label assigned to
the Perceptron algorithm. Despite the difference, thedie®n x:. We usesign(w ' x) to predict the class assignment/label
learning algorithms only update the algorithm based thé- firs for any instancex.

order information, such as the gradient of the loss. This
constraint could significantly limit the performance of ioel
learning.

A DAPTIVELY REGULARIZED COST-SENSITIVE
ONLINE CLASSIFICATION

Online binary classification algorithm learns the model in
rounds. Formally, at théth round, the algorithm will receive
the instancex;, and make a predictioj; = sign(w, x;),
Recent years have seen a surge of studies on the secomberew, is a model learnt using the previotis- 1 examples.
order online learning algorithms [42], [20], [22], [5], wtfi ~ Then the true labely;, € {-1,+1} will be revealed for



comparison. Ifg; # vy, the learner made a mistake; otherwise This is clearly insufficient, since recent studies have shtive

it made a correct prediction. For convenience, we denoténportance of incorporating the second order informatiy,[
M = {t |y # sign(wy - %), YVt € [T]}, M, = {t |t € [43], [22]. Motivated by this observation, we propose to use
Mand yo = +1} and M,, = {t |t € M and y. = —1}, adaptive regularization to improve the cost-sensitiveinen!
where [T] = {1,...,T}. In addition, we introduce notation classification.

M = |[M|, M, = |M,| and M,, = |[M,]| to denote the

number of mistakes, false negatives and false positiveso Al B. Algorithms

we useZ? = {i € [T)ly; = +1}, Tp = {i € [T]|y; = —1}
andT, = |Z%| andT,, = |Z%:| to denote the number of positive
examples and negative examples.

To solve this cost-sensitive online classification task, we
assume the online model satisfies a Gaussian distributan, i
w ~ N(u,>). Given a Gaussian distribution, we would like

We assume the positive class is the rare classi,ess 7,,.  to predict the label of an instaneeaccording tosign(w ' x).
Traditional online learning tries to maximize accuracy thus ~ However, it is more practical to simply use the mean of the
may be inappropriate for imbalanced data because a trivialistributionE[w]| = u to make predictions for real-world tasks.
learner which simply classifies all examples as negativédcou The mean valueg; represents the model’s knowledge of the
still achieve a high accuracy. Thus, a more appropriateicetr weight for featurei, while ¥;; encodes the confidence in
is to measure theumof weightedsensitivityand specificity ~ featurei. Generally, the smallex; ;, the more confidence the

ie., learner has in the mean weight valug The covariance terms
T, — M, T, — M, Y, ; keeps the correlations between weightnd j.
summ = ap x T, o T, @) At the t-th round, when receivingx;, y:), a natural rule
wherea, + an = 1 and0 < ay,an < 1 are two parameters to update the model is to minimize the following objective:
to trade off between sensitivity, and specificity. Notalen DN (s £) N (e, ) + e (11) + LXZEX“

ap = o = 0.5, the correspondingum is the well known

balanced accuracyln general, the higher theumvalue, the

better the classification performance. An alternative aagh

is to measure the total misclassification cost suffered ley th Dxr (N (i, X) [NV (pe, Zt))

algorithm, defined as: 1 detX; 1 ~1 1 2 d
1 (detz) o)+ -l - L

2y
where D, is Kullback-Leibler divergence, i.e.,

28
) o Generally, this objective would like to make the least atdjus
wherec, +c, =1 and0 < ¢, c, < 1 are the misclassification ment, such that the loss on the current example is minimized
cost parameters for positive and negative classes, reésgigct and the confidence of the model is optimized. However, this
The lower thecost value, the better the classification perfor- Optimization dose not have closed-form solution. To solve
mance. this issue, we replace the log&:) with its first-order Taylor
i T —

Our objective is to either maximize:m or minimizecost. ](cexli)an_smrf(/{t) +g (1 _th)’.Wheregt = Oli(pue), 10 get the
As shown in [7], both of these are equivalent to minimizing '?lOWINg optimization objective:
the following objective:

Z pﬂ(’yt"\’~Xt<0)+ Z ]I(ytw'xt<0)v (3)

yr=+1 Yr=—

cost = ¢, X My, + cp X My, (2

1
fi(1,2) = D (N (1, £) N (e, 0)) + mgd o+ %X;rzxta

which is much easier to be solved.

ap,Th

where p = -2z for the maximization of the weighted foll?wisr:g?\lisoasptz;)os@h fo solve this objective is to solve it in
sum, andp = == for the minimization of the weighted '

misclassification cost. As the indicator function is not\en e Update the mean parameter:
we replace the indicator function by its convex surrogate: _ . )

pr+1 = argmin fe(p, 2);
£(w; (x,y)) = max(0, (p * Ly=1) + Ly=—1)) — y(W - x)).

We could see that fof(w;(x,y)), the required margin for .

specific class changed compared to the traditional hinge los V1 = argmin fi (4, X);

causing more “frequent” updating. Now our goal is to find an ] . o

online learning solution to minimize the regret of the léagn ~ For the first step, setting the derivative of f;(u:+1,%) as

o If ¢;(ut) # 0, update the covariance matrix:

process: zero will give
T Et_l(NtJrl — ) + 18t = 0= prer1 = pre — 0248,
Regret := ZE(W“ (e, 1)) = Zé(w (Xt 91)), and for the second step, setting the derivativesof; (1, X¢y1)
=t =t as zero will give
where w* = argminy, Zthl (w; (x¢,9¢)). To solve this XX %% 5,
problem, CSOGD [7] was proposed, ise,;; = w; — —S 3 +5 ' +=—L=0= 1 =% — 7Tt2,
nVi,(w,) where n is the learning rate and/;(w) = v T+ Xy 22Xy

£(w; (x¢,y¢)). However, this algorithm only adopts the first where the Woodbury identity is used. Furthermore, since the
order information of the data stream to update the modelupdate of the mean relies on the confidence parameter, we



. . ; — , we will get
matrix, which should be more accurate than the old covaganc vlog(|S7441) 9

matrix, i.e.,

propose to update the mean based on the updated covariar§§tting77 _ \/maxtq e —pl2Te(S11,)

Regret < D, \/fyTr(E;_lH) log(|E;i_1 ).

Pl = fit — N2t418t-
where D,, = max || — p|.

This is different from AROW, where the updating rule for

relies on the oldZ,. To intuitively explain the above update, =~ Remark: Suppose||x;|| < 1, it is easy to observe

let us assumel,,; is a diagonal matrix. Then, this update Tr(S74,) < O(T'/7), so the regret is in the order 6f(v'T).

actually assigns different dimensions with different teag  This order is optimal, since the loss function is not strgngl

rates, so that more unconfident weights will be updated moreonvex [44].

aggressively. Thus, by our proposed method, we can guarantee the fol-
Finally, we can summarize the proposed Adaptive Regulowing bound on the sum af,, x sensitive+ay X speci ficity.

larized Cost-Sensitive Online Gradient Descent (ARCSOGD)rheorem 2. Under the same assumptions in the Theorem 1,

in Algorithm 1. by settingp = “:?’; , the proposed ARCSOGD satisfies for any

(o3
- . - — - R4,
Algorithm 1 Adaptive Regularized Cost-Sensitive Online Gra-" <
dient DescentARCSOGD) algorithm. Qn,

Input: learning rater; regularization parameter, bias ““" =17 T, [th(u) + Du\/’YTY(ETil)logﬂETil )]
parametep = g2z for “sum” andp = = for “cost’ t=1

Initialize : py =0, X1 = 1. Remark: It is easy to observ@l1 (1) is an convex
fort=1,...,7 do estimate ofp)M,, + M, for p, so 3= >, _, £:(11) is an estimate

Computep; = p * Iy, = Liy=—1);
Comgutegf( ,Ut)p _ [(pz":__l)y;r(ztt];.l) of ap% + ay, 1¥ . Moreover, please note,, cannot be set as
- t ’ p n
if ¢¢(ue) > 0 then zero, sincep = zp—?“ One limitation of the above algorithm is
. nTp
Y41 =5 — iﬁ;ﬁzt that we may not know the ratid in advance. To address this
X +X¢ . . . P
sl = g — 772#1&5, whereg; = 9¢;(111); issue, an alternative is to consider the cost of the algorftr
else performance evaluation, which does not negdin advance
M1 = fgy Spp1 = D since the biag is set as>.
end if n . .
end for Theorem 3. Under the same assumptions in the Theorem 1,
by settingp = f—P the proposed ARCSOGD satisfies for any
€ RY,
Remark. In Algorithm 1, one practical concern is about T
setting the value gf when the go_al is to optimize the _\Neighted cost < ¢, [Z b(u) + D, \/’YTI"(EEIA) 1Og(|g;i1 .
sum performance. In the algorithm,is formally defined as —
p = 2I» However, the values of,, and 7, might be

unknown in a real-world online learning task. In practice, . T ; ; »
one could try to approximate the rat%l according to the Remark: Zt:ngt(w IS .an conv§x estimate OSZMP +
distribution of online received training data instancesrov Mn fOr i, 80¢, >, £i(p) is an estimate of, My, + ¢, M.
the past sequence, and adaptively update this ratio duriffOreover, please note, cannot be set as zero, singe= ;.
the online learning process. Another concern is the time
complexity for the update of;,; and 1, which isO(d?).

To reduce this time complexity, we can make the algorithm This section evaluates the empirical performance
keep and maintain a diagonal versionXf so that the time of the proposed algorithm ARCSOGD and its variant
complexity decrease tO(d). ARCSOGDy;4. ARCSOGD;,, is a diagonalized version of
ARCSOGD, where only a diagonal; is kept and updated
online to save the memory cost and improve the scalability.

IV. EXPERIMENTS

C. Theoretical Analysis

In this subsection, we theoretically analyze the proposed: Experimental Testbed and Setup
algorithm in terms of two types of cost-sensitive measures. We compare ARCSOGD with 2 standard and 3 well-known
To this end, we first prove a key theorem, which gives thepnline learning algorithms: Perceptron; the Passive-Agsjve
regret bound of the proposed algorithm and will facilitaeet  algorithm (“PA-1") [3]; cost-sensitive algorithms: predion-
theoretical analysis. based PA algorithm ('CPAg’) [3]; perceptron algorithm with
Theorem 1. Let (x1,91),...,(xr,yr) be a sequence of UNeven margin (PAUM’) [30] an_d the 'CSOGD-I’ algorithm,
examples, wherex; € R)d, ye € {—1,+1}. Then for any from which ARCSOGD was derived.
u € R4, the proposed ARCSOGD satisfies The algorithms were tested on 6 benchmark datasets as
listed in Table I, obtained from LIBSVM. For all datasets, the

1 2 -1 ny -1
Regret < %(D”) TY(ZT+1) + o 1Og(|ZT+1 : Ihttp:/mww.csie.ntu.edu.twicjlin/libsvmtools/datasets/



instances are normalized, i.&y, + x;/||x:||, which is widely ~ shows the evaluation results of the weighted cost undeingry

adopted for online learning, since the instances are redeiv weights ofc,,. From the results, it is clear that the proposed

sequentially. algorithms consistently outperform all of the other altjuris
for both metrics under varying weight values. These pramgisi

TABLE L. LISTOF BINARY DATASETS IN OUR EXPERIMENTS results further validate the efficacy of the proposed atgors.
[ Dataset | #Examples| #Features] #Pos:#Neg|
covtype 581012 54 T1 V. APPLICATION TOONLINE ANOMALY DETECTION
spambase 4601 57 1:1.5
svmguide3| 1243 21 13 The proposed cost-sensitive online classification tealaiq
;‘é’ﬁnl e 3| e can potentially be applied to a wide range of real-world
w8a 64700 300 1:32.5 applications in data mining. In this section, we demoneteat

application of the proposed cost-sensitive online clasgifin

algorithms to tackle online anomaly detection tasks. Below
To make a valid comparison, all algorithms adopted thewe first introduce the related application domains, and then

same experimental setup. Feum we seta, = o, = 1/2 for ~ present our analysis.

all cases, while forcost we setc, = 0.9 and¢,, = 0.1; for

PAUM, the uneven margin was set gofor CPApp, p(—1,1) A, Application Domains and Testbeds.

was set to 1 anc(1,—1) was set top. The parameter ) )

for PA-1, learning rates\ of CSOGD-I and; of ARCSOGD We apply the proposed algorithms to solve problems in the

and ARCSOGD;,, were selected by cross validation from following domains:

[1075,107%,...,10%] for each dataset. The for ARCSOGD

and ARCSOGD),,, was set as 1. The value pfwas set toz_p Medical Imaging: We apply our algorithms to solve a

medical image anomaly detection problem using the

ap,Th . f L
for costand 27 for sum respectively. All algorithms were “KDDCUPO08” breast cancer datasetFor this dataset,
implemented in MATLAB and run on a 2.00GHz Windows the task is to develop a computational method for early
machine. detection of breast cancer from X-ray images of the

All experiments were conducted ove0 random permu-
tations for each dataset. Results are reported by averaging
over these 20 runs. Performance was evaluated by 4 metrics:
sensitivity specificity the weightedsum of sensitivity and
specificity, and the weightedostof misclassification.

2http://www.sigkdd.org/kddcup/

r*’*—*—
-
pé

cepton

- - pAl
PAUM

cPA,

CPA,
—o— csoco-1
—6— ARCS0GD

- - ARCSOGD,,

B. Evaluation of Cost-Sensitive Performance

The left and right parts of Table Il summarizes the experi-
mental results osumandcoston three datasets, respectively. &

o Online average of the sum

By examining thesumand cost performance, we can see P s S A LT S S S S S S
that our two proposed second order algorithms (i.e., ARC-

SOGD and ARCSOGR,,) significantly outperform all the (a) covtype (b) spambase
other online learning algorithms on all the datasets, which {ﬁﬂ I

validates the effectiveness of introducing second ordfr-in
mation.

n,

average of the su

Furthermore, the proposed algorithms usually result in the

best sensitivity, and produce good specificity performanee o o

der both cost-sensitive measures. This shows that the gedpo e

algorithms are effective in improving the prediction a@my s - Anceecn,

for the rare class. T Mmaeame S meorsmes o
Finally, while ARCSOGR);,, achieves marginally smaller (c) svmguide3 (d) a%a

sumand largercostthan ARCSOGD, its computational com-

plexity is similar to the first order algorithms’ complex, W
indicating that ARCSOGR,, is able to achieve a better trade- ¢ *
off between effectiveness and efficiency.

C. Performance Evaluation with Different Cost-Sensitive : / ‘ Ry
. Oos CPA, " —— 5080
Weights T T e,
In this subsection, we aim to evaluate the performance of

the proposed algorithms under varying cost-sensitive kitsig
for both metrics.

m

Online average of the sur

5 10 2 3 4 5 3
Number of samples x10° Number of samples. x10°

(e)ijcnnl (f) w8a

Figure 3 shows the evaluation results of the weightedrig. 1. Evaluation of online $uni performance of the proposed algorithms
sum performance under varying weightscaf, and Figure 4  on public datasets.



TABLE II.

E VALUATION OF THE COST-SENSITIVE CLASSIFICATION PERFORMANCE OARCSOGDAND OTHER EXISTING ALGORITHMS.

Algorithm “sum” on covtype “cost” on covtype

sum@) | Sensitivity(%) | Specificity (%) | Time (s) Cost(%) | Sensitivity(%) | Specificity (%) | Time (s)
Perceptron 52.626=+ 0.075 | 51.451+ 0.077 | 53.801+ 0.073 | 17.470 23.670= 0.028 | 51.457+ 0.058 | 53.807+ 0.055 | 17.375
PA-I 51.370+ 0.059 | 50.115+ 0.055 | 52.625+ 0.072 | 31.576 24.313+ 0.022 | 50.127+ 0.044 | 52.640+ 0.058 | 29.771
PAUM 53.418= 0.064 | 52.069+ 0.100 | 54.767+ 0.070 | 18.093 12.532+ 0.030 | 79.855+ 0.071 | 27.949+ 0.069 | 17.682
CPApp 51.373+ 0.059 | 50.299+ 0.054 | 52.4484 0.071 | 29.447 20.996+ 0.035 | 58.522+ 0.079 | 45.474+ 0.068 | 27.159
CSOGD-I 56.200+ 0.047 | 41.878+ 0.275 | 70.5224+ 0.210 | 15.112 9.883+ 0.048 | 86.648+ 0.126 | 21.489+ 0.155 | 18.074
ARCSOGD 67.950+ 0.053 | 70.3184 0.069 | 65.583+ 0.087 | 103.222 9.107+ 0.073 | 88.248+ 0.187 | 22.926+ 0.189 | 141.132
ARCSOGDy;,, | 66.981+ 0.382 | 68.710+ 0.550 | 65.2524 0.229 | 24.442 8.258+ 0.323 | 90.889+ 0.902 | 16.862+ 1.442 | 37.207
Algorithm “sum” on spambase “cost” on spambase

sum®) | Sensitivity(%) | Specificity (%) | Time (s) Cost(%) | Sensitivity(%) | Specificity (%) | Time (s)
Perceptron 59.766+ 0.837 | 51.269+ 1.006 | 68.264+ 0.668 | 0.128 19.2314 0.565 | 51.202+ 1.434 | 68.2284+ 0.942 | 0.115
PA-I 56.415+ 0.692 | 47.303+ 0.916 | 65.527+ 0.524 | 0.232 20.718+ 0.358 | 47.441+ 0.932 | 65.707+ 0.543 | 0.216
PAUM 58.819+ 0.775 | 50.292+ 0.780 | 67.346+ 1.088 | 0.143 13.6554 0.416 | 70.177+ 1.186 | 49.204+ 0.769 | 0.132
CPAp3 56.611+ 0.738 | 48.958+ 1.149 | 64.265+ 0.397 | 0.235 18.086+ 0.404 | 55.888+ 1.084 | 59.695+ 0.523 | 0.200
CSOGD-I 60.055+ 0.820 | 51.627+ 0.981 | 68.483+ 0.659 | 0.154 13.6554 0.416 | 70.177+ 1.186 | 49.204+ 0.769 | 0.135
ARCSOGD 81.8604 0.357 | 86.751+ 0.780 | 76.969+ 0.769 | 0.739 4.402+ 0.356 | 94.647+ 1.174 | 58.684+ 1.760 | 0.966
ARCSOGDy;4, | 80.766+ 0.598 | 84.435+ 1.015 | 77.098+ 1.094 | 0.211 4,248+ 0.192 | 95.7614 0.716 | 54.709+ 1.818 | 0.227
Algorithm “sum” on svmguide3 “cost” on svmguide3

sum@®) | Sensitivity(%) | Specificity (%) | Time (s) Cost(%) | Sensitivity(%) | Specificity (%) | Time (s)
Perceptron 54.835+ 1.354 | 31.149+ 2.038 | 78.5224+ 0.672 | 0.030 16.4014 0.431 | 31.115+ 1.811 | 78.506+ 0.571 | 0.034
PA-I 53.902+ 1.615 | 29.493+ 2.533 | 78.310+ 0.798 | 0.051 16.8424 0.464 | 29.172+ 1.977 | 78.178+ 0.685 | 0.065
PAUM 54.637+ 1.253 | 25.811+ 3.097 | 83.464+ 0.966 | 0.032 16.665+ 0.425 | 28.615+ 2.123 | 82.075+ 0.771 | 0.042
CPApp 54.802+ 1.671 | 35.676+ 2.442 | 73.9284+ 1.139 | 0.053 15.0604 0.442 | 40.220+ 1.803 | 70.491+ 1.098 | 0.063
CSOGD-I 54.986+ 1.061 | 31.419+ 1.593 | 78.553+ 0.537 | 0.037 15.778+ 0.364 | 34.848+ 1.634 | 76.188+ 0.828 | 0.042
ARCSOGD 61.582+ 1.167 | 40.1014 2.213 | 83.062+ 0.942 | 0.064 13.244+ 0.401 | 44.105+ 2.008 | 83.400+ 0.888 | 0.087
ARCSOGDy;4, | 60.231+ 1.358 | 39.122+ 2.487 | 81.3414 0.952 | 0.048 13.697+ 0.470 | 43.074+ 2.385 | 80.359+ 0.835 | 0.061

. “sum” on a9a “cost” on a9a

Algorithm . .

Sum(%) | Sensitivity (%) | Specificity (%) | Time (s) Cost(%) | Sensitivity(%) | Specificity (%) | Time (s)
Perceptron 71.255+ 0.177 | 56.269+ 0.268 | 86.241+ 0.085 | 1.389 10.462+ 0.068 | 56.277+ 0.285 | 86.2444 0.090 | 1.491
PA-I 71.048+ 0.149 | 55.949+ 0.224 | 86.1474 0.122 | 2.221 10.5214 0.064 | 56.031+ 0.274 | 86.170+ 0.108 | 2.504
PAUM 76.842+ 0.157 | 68.121+ 0.266 | 85.562+ 0.101 | 1.485 6.260=+ 0.033 | 77.486+ 0.150 | 81.441+ 0.093 | 1.705
CPApp 72.432+ 0.207 | 62.417+ 0.350 | 82.4464 0.191 | 2.252 8.773+ 0.082 | 66.485+ 0.362 | 79.549+ 0.119 | 2.409
CSOGD-I 78.161+ 0.153 | 69.098+ 0.391 | 87.223+ 0.134 | 1.604 5.995+ 0.061 | 78.832+ 0.298 | 81.120+ 0.109 | 1.756
ARCSOGD 79.831+ 0.096 | 73.385+ 0.264 | 86.277+ 0.096 | 17.937 5.476+ 0.055 | 81.163+ 0.288 | 81.347+ 0.152 | 19.509
ARCSOGDy;q, | 79.727+ 0.086 | 73.236+ 0.191 | 86.2174 0.114 | 2.122 5470+ 0.058 | 81.6174 0.351 | 80.141+ 0.299 | 2.466
Algorithm sum on ijcnnl _ ' “clo.s‘t“ on ijcnnl _ ‘

Sum(%) | Sensitivity (%) | Specificity (%) | Time (s) Cost(%) | Sensitivity (%) | Specificity (%) | Time (s)
Perceptron 70.298+ 0.123 | 46.285+ 0.222 | 94.3114 0.024 | 3.285 5.139+ 0.018 | 46.319+ 0.189 | 94.314+ 0.020 | 3.863
PA-I 69.241+ 0.143 | 43.872+ 0.271 | 94.610+ 0.038 | 4.916 5.324+ 0.027 | 43.865+ 0.299 | 94.607+ 0.033 | 6.104
PAUM 81.410+ 0.120 | 68.851+ 0.243 | 93.970+ 0.038 | 3.710 3.256+ 0.024 | 68.489+ 0.281 | 94.022+ 0.039 | 4.446
CPApB 73.003=+ 0.170 | 55.937+ 0.286 | 90.070+ 0.066 | 5.173 4704+ 0.026 | 55.718+ 0.263 | 90.176+ 0.056 | 5.870
CSOGD-I 81.410+ 0.120 | 68.851+ 0.243 | 93.970+ 0.038 | 4.357 3.176+ 0.030 | 68.837=+ 0.370 | 94.569+ 0.043 | 4.795
ARCSOGD 86.048+ 0.132 | 77.298+ 0.278 | 94.798+ 0.072 | 5.973 2410+ 0.015 | 77.7294 0.207 | 94.569+ 0.051 | 6.604
ARCSOGDy;4 | 85.307+ 0.300 | 76.304+ 0.646 | 94.3104 0.068 | 4.632 2414+ 0.014 | 77.668=+ 0.213 | 94.584+ 0.070 | 5.200

. “sum” on w8a “cost” on w8a

Algorithm - -

Sum(%) | Sensitivity(%) | Specificity (%) | Time (s) Cost(%) | Sensitivity(%) | Specificity (%) | Time (s)
Perceptron 76.549+ 0.314 | 54.501+ 0.609 | 98.597+ 0.019 | 1.886 1.3674 0.020 | 54.240+ 0.676 | 98.589+ 0.021 | 1.721
PA-I 76.622+ 0.368 | 54.361+ 0.737 | 98.8844 0.036 | 2.678 1.3454 0.024 | 54.027+ 0.850 | 98.8784+ 0.030 | 2.342
PAUM 80.371+ 0.416 | 62.297+ 0.865 | 98.445+ 0.047 | 2.141 1.137+ 0.015 | 61.868+ 0.567 | 98.849+ 0.029 | 1.802
CPApp 80.949+ 0.290 | 65.354+ 0.586 | 96.5444 0.060 | 2.683 1.2524 0.022 | 62.636+ 0.768 | 97.450+ 0.032 | 2.184
CSOGD-I 82.170+ 0.307 | 66.244+ 0.617 | 98.095+ 0.025 | 2.298 1.106+ 0.014 | 64.315+ 0.513 | 98.489+ 0.036 | 1.842
ARCSOGD 84.692+ 0.279 | 70.869+ 0.566 | 98.515+ 0.025 | 10.615 0.911+ 0.013 | 70.173+ 0.508 | 98.877+ 0.039 | 9.959
ARCSOGDy;,, | 85.456+ 0.303 | 72.742+ 0.627 | 98.1704 0.045 | 2.236 0.8984+ 0.014 | 70.846+ 0.533 | 98.826- 0.030 | 1.988
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Fig. 2. Evaluation of online averagedst of the proposed algorithms on  Fig. 3. Evaluation of the weightedstini under varying weights of sensitivity
public datasets. and specificity.
TABLE lIl. D ATA SETS FORONLINE ANOMALY DETECTION.
breast. For this task, the class “benign” is assigned Dataset Namd #Examples| #Features| #Outlier-#Normal]
as the normal class, and the class “malignant” is th&e kKpbcupPos 102294 117 1:163.19
anomaly class. Australian 690 14 1:1.25
. . . Cod-RNA 271617 8 1:2.00
e Finance: We apply our algorithms to a credit card| magico4 19020 10 1:1.8

approval problem in finance domain. In particular,
we work on a data set with 690 instances from an
Australian credit company, in which the task is t0 g Empirical Evaluation Results.

distinguish credit-worthy customers from non credit-
worthy ones. We apply our algorithms to solve anomaly detection tasks

on the real-world datasets as shown in Table Il and evaluate
e Bioinformatics: We apply our algorithms to solve the anomaly detection performance ushmjanced accuragy
a bioinformatics problem using the “Code-RNA” which is able to avoid inflated performance estimates on
dataset [45]. The goal of this task is to developimbalanced datasets. The experimental results are suzedari
a computational method to detect novel non-codindgn Table IV.
RNAs from some large sequenced genomes. Non-

coding RNAs are defined as anomalies and others are From the results, we can draw several observations as
considered as normal instances. follows. First of all, among all the existing algorithms,eth

two cost-sensitive algorithms (PAUM and CPA) generally
e Nuclear: The “magic04” dataset [46] are MC gener- perform better than their regular versions (PerceptronRiad
ated to simulate registration of high energy gammarespectively), which implies the necessity of introducaugt-
particles in a ground-based atmospheric Cherenkogensitiveness for online learning. In addition, all thet ffoaur
gamma telescope using the imaging technique. Thalgorithms are outperformed by the CSOGD algorithm on most
gamma signal instances are treated as normal data amd the datasets, which demonstrates that is effective &ctlyr
the hadrons are seen as outliers. optimize cost-sensitive measures. Furthermore, the gegpo
ARCSOGD significantly outperforms the other algorithms for
Table Il summarizes the details of the data sets for onlinall the datasets. Because ARCSOGD is a variant of CSOGD
anomaly detection. with adaptive regularization using second order infororati
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) In this paper, to overcome the limitation of first order cost-
¥ i = sensitive online learning algorithms, we studied cossiie
o S = = Hem = e e = e - - Y - e - = . age . . - . . -
i T online classification with adaptive regularization. Sfieally,

N we proposed a second order cost-sensitive online clasgifica
S “ — —— algorithm, i.e., ARCSOGD, and theoretically analyzed its
e e e i o B R R TR A regret bound. We further empirically evaluate the proposed
algorithm on several public real-world datasets. The psami
ing experimental results demonstrate the effectiveneshef

" — proposed algorithm.
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This section presents the proofs for all the theorems.

N

A. Proof of Theorem 1
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. . Proof: It is easy to verify thatu,1 = argmin, he(p)
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: 1 y whereh,(p) = 3llpe — pll5,-1 +ng, p. Becauséy is convex,
o we have -
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R > < Ohy(pte41) (1 — pes1)

|| gesio, N = [(per1 — pe) TS 4 mgl 1w — pega) > 0,Vp

05| = H = ARCSOGD

(e) ij(;nnl (f) V(,ga Re-arranging the above inequality will result in

T Ty—1
Fig. 4. Evaluation of weightedcbst measure under varying weights for (nge) (o1 — 1) < (perr — pe) By (1 — patr)

False Positives and False Negatives. 1 9 9
= 5[”/% - li||gt—+11 = g1 — MH2;11
TABLE IV. EVALUATION OF BALANCED ACCURACY 5

PERFORMANCE FOR ONLINE ANOMALY DETECTION — |l — Ht+1|\2;+11]-

[ Algorithm [ [ KDDCUP0O8 [ Australian |
Perceptron 58.583+ 0.586 | 57.543+ 1.944 i i
PA-| 56.810+ 0.546 | 57.367+ 2.182 Sincel;(u) is convex, we have
PAUM 56.464+ 0.686 | 60.657+ 2.012
CPAPp 65.382+ 0.698 | 57.643+ 2.311 T T
CSOGD-I 61.980+ 0.624 | 65.892+ 0.570 g (1 — 1) =8 (e — po+ peg1 — ft)
ARCOSGD 67.169+ 0.581 | 68.163+ 0.843 >/ ¢ T
ARCOSGDy;0g 66.639 + 0.542 | 68.070+ 0.956 = t(ut) — L () + 2 (Mt+1 - Mt)-

[ Algorithm [ ] Cod-RNA [ Magic04 |
Perceptron 75.742+F 0.355 | 59.146+ 0.260 Combining the above two inequalities, will give the followi
PA-l 73.654+ 0.147 | 57.336+ 0.200 important in li
PAUM 80.943+ 0.104 | 61.242+ 0.254 portant inequality
CPAPp 74.473+ 0.115 | 57.906+ 0.289
CSOGD-I 81.095+ 0.149 | 65.869+ 0.193 1 9 9
ARCOSGD 86.539+ 0.075 | 72.310+ 0.187 Ce(pe) — Le(p) < 2—[||ﬂt - ﬂ||271 — llpeg1 — ﬂ||271
ARCOSGDi0g 86.1184 0.042 | 71.448+ 0.589 n (s (s

— |l — ,Ut-f-lH;*l | =& (a1 — ).
t41

this implies the effectiveness of introducing second oiider

formation for improving cost-sensitive online learninfjecy. Summing the above inequality over=1,2,..., T, gives

It can also be observed that the diagonal version of T
ARCSOGD performs comparably with ARCSOGD. Since the Z[ft(ut) — ()]
computational complexity of ARCSOGHR),, is the same as 1
those of the first order algorithms, it can be a good choice for 1
high dimension problems, when it is too expensive to maintai < —
and update a full matrix. In all, the promising results vatil 2n
the advantages of the proposed algorithms for solving real-
world online anomaly detection tasks which are often highly 1
class-imbalanced. 2n £

~+

] =

2 2
e = gl = lless = il |

~
Il

1

B

T
1 [l 126 — Mt+1|@;;+11 - ;g:(utﬂ — ). (4)



Now, we would like to bound the right hand side of the where L, = 1, if ¢;(u;) > 0, and L, = 0, otherwise, we can

above inequality. Firstly, we bound the first term as boundthzl g/ Y 1g: as follows,
- 2 2 d T d T a 1=
Z {Hﬂt - MHEZ# = llpe1 — “Hz;jj th Y18t = ZLtXt Yip1xe = ’72(1 - |2E1 |)
t=1 t=1 t=1 t=1 t+1
T
2 2 2
<M= s+ (e = sllEos = e = s3] —vzlog |z | < ylog(|714 ), (8)
t=2 t+1
d where we used
= llr =1l + D [le = w2 )] T -
= T S =%+ SRR o T Sax =1 -
2 -1 2 — -1 v Rt
< = pl[" Amaa (B2 )+Z ([ 1o = | )‘max(zwrl )
=2 Plugging (8) into the inequality (7) concludes the proof.
<l — pf*Te(2 +Z|\ut plPTe(S0 - 507 -
B. Proof of Theorem 2
2 —1 2 —1 —1
< max e — | Tr(3 HZIPS%Z{HW—N” Tr(E5, -2 Proof: For ARCSOGD, ift € M,, €;(1i1) > p andt €
=2 M, £i(pg) > 1, we have
= max [l — plPTr(E74,), (5) -
where\,,...(X) is the largest eigenvalue af. pMp + My < Zet(“t)' (©)
t=1
Nex_t, we will bound_the_ remaining terms. To _th|s end, From the definition ofsum, we know that
we notice that the following inequality holds according e t T
Hpdate rule of: sum =1 = 717“_n [%Tn Z Ly poxe <0y + Z H(yt#-Xt<0)i|
— n 77n
(pes1 — ) Sy +ngl =0, jf yi=t1 i1
nn
=1- M, + M,
so that T, (nnT M),
2 Ty—1 —1
— 1= - DD INEDY -
e = pealls = (e = )" Bp B B (e = o) Settingp = Z" and combining the above inequality with the
=n’g) i, regret bound in theorem 1 concludes the proof. ]
and C. Proof of Theorem 3
T _ T
8¢ (Her1 — pe) = —ngy Ler18e- Proof: From the definition of:ost, we know that
Combining the above two inequalities results in cost = cp [C Z Tyeuxe<o) D Tigop x,<0)}
1 T T " yr=—1
“ Z bt — Mt+1||22;+11 - Zg:(ﬂt—fl = 1it) = C”(C_M” + M,)

Settingp = f—: and combining it with inequality(9), we have
= ant Y18t — Z 58 D418 '

T
t=1
T Cn(pMp + Mn) <cp th(/it)
= gz AT (6) =1
t=1 Combining the above inequality with theorem 1 will provesthi
theorem. ]

Plugging the above two upper bounds (5) and (6) into the
inequality (4), we can get

T
1
> () = ()] < 2 ax || e — pl*Tr(S14 )
t=1
77 T
5 Z_: g Yiiig (7)
As we know

gt = Liysx;
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