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ABSTRACT
The transmission of 3D models in the form of Geometry Im-
ages (GI) is an emerging and appealing concept due to the
reduction in complexity from R

3 to image space and the wide
availability of mature image processing tools and standards.
However, geometry images often suffer from the artifacts and
error during compression and transmission. Thus, there is
a need to address the artifact reduction, error resilience and
protection of such data information during the transmission
across an error prone network. In this paper, we introduce a
new concept, called Spectral Geometry Images (SGI), which
naturally combines the powerful spectral analysis with ge-
ometry images. We show that SGI is more effective than
GI to generate visually pleasing shapes at high compression
rates. Furthermore, by coupling SGI to the proposed error
protection scheme, we are able to ensure the smooth deliv-
ery of 3D model across error networks for different packet
loss rate simulated using the two-state Markov model.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations; I.4
[Image Processing and Computer Vision]: Compres-
sion (coding)

Keywords
Streaming 3D meshes, spectral analysis, geometry image,
image compression, conformal parameterization, error re-
silience, transmission.

1. INTRODUCTION
The evolution of the Internet from a basic communication

tool to a content driven community pushes the development
of 3D virtual world interaction and exploration to a new
height in recent years. Such a trend is significantly seen
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from the rapid growth in virtual world community and ap-
plications like 3D online gaming and content sharing. With
the increasing demand for realism in the contents, avatar
and environment of the virtual world, it has become an ur-
gent need to ensure the effective representation and smooth
delivery of such information across networks given the er-
ratic nature of the Internet. Conventionally, most of this
information is represented using 3D data. Although much
research has been done to find effective forms to describe
a 3D model, polygonal mesh is still the most commonly
adopted data type for the representation and delivery of a
3D model/object in many real-world applications.

Despite great successes in computer graphics and virtual
reality, the delivery of 3D contents using polygonal meshes
have several limitations which are not yet to be thoroughly
researched for the effective implementation in a practical
system. These include the dependency of the connectivity
information to ensure the correct decoding of a 3D model.
Since the increase in complexity of model is proportional to
the sizes of the geometrical and connectivity information of
a mesh, it is difficult to ensure the lossless transmission of
the connectivity information while meeting the critical time
constraint of a real-time streaming application given a real-
world scene that often comprises of multiple highly complex
models.

(a) geometry image (b) mesh (c) close-up view

Figure 1: Geometry image of the David head. Ge-
ometry image encodes the geometry x, y, and z into
a regular grid of the colors r, g and b, which in gen-
eral is continuous over the entire image domain.

Geometry image, introduced by Gu et al. [11], provides
an alternative way for shape representation and transmis-
sion. In sharp contrast to the irregular polygonal meshes,
geometry image is a completely regular representation that
all connectivity information is implicitly encoded in the im-
age space. Furthermore, other geometry and appearance
properties, such as normals, textures, materials, can also
be stored using the same parameterization. Geometry im-
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age naturally bridges two research fields, image processing
and geometry processing, and provides a way to borrow the
well-studied image processing techniques to geometry pro-
cessing. However, geometry image is fundamentally different
from natural images, since geometry image in general is con-
tinuous and smooth over the entire image domain as shown
in Fig. 1. To integrate geometry image with the existing
image processing framework, there is a need for analyzing
the geometric properties in geometry image space. To this
end, this paper serves this purpose and introduces a new con-
cept, called Spectral Geometry Image (SGI), which naturally
combines spectral analysis to geometry image. SGI treats
the geometry as a signal and then transforms the signal
into the frequency domain using manifold harmonics trans-
form [30]. Then we separate the signal into low-frequency
and high-frequency layers, where the low-frequency signals
can be represented in a highly compact format and the high-
frequency layers are represented as displacement within the
user-specified range. Since all layers share the same param-
eterization in the image space, the original geometry can be
easily reconstructed by adding all layers together. Spectral
geometry image is more robust than the conventional geom-
etry image in that the spectral analysis is performed on the
3D models and thus independent of the parameterization
and re-sampling. As a summary, the contributions of this
paper include

• We present a new concept of Spectral Geometry Image
(SGI) and develop a framework of constructing spec-
tral geometry images of real-world 3D models.

• We show that spectral geometry image is more pow-
erful and flexible than the conventional geometry im-
age for 3D shape representation and compression, and
thus, facilitate the transmission in a lossy network.

The remaining of the paper is organized as follows: Sec-
tion 2 briefly surveys the previous work in streaming polyg-
onal meshes and spectral geometry processing. Then Sec-
tion 3 details the algorithm to construct spectral geometry
image. Next, Section 4 demonstrates the spectral geome-
try image in shape compression using image compression
techniques. We state the problem of streaming spectral ge-
ometry image in Section 5 and packetization techniques in
Section 6. The discussions and limitations are presented in
Section 7. Finally, we conclude the paper and point out
some future research directions in Section 8.

2. RELATED WORK

2.1 Streaming polygonal meshes
Several papers have explored 3D meshes as the basic form

of transmission across lossy channel. In this series of work [2,
3, 4], Al-Regib considered the use of Compressed Progressive
Mesh (CPM) [25] as the basic representation for progressive
transmission. He considered both source and channel al-
location for a given bandwidth and proposed the unequal
allocation of error correction bits to each layer. The us-
age of the right transport protocol was also discussed in
[1] to reduce the latency and improve the robustness of the
3D data. Bici et al. [7] have also considered the use of
Joint Source and Channel Coding (JSCC) scheme for un-
equal Forward Error Correction (FEC) across packets using

the Progressive Geometry Scheme (PGC)[17]. Multiple de-
scription coding (MDC)[5] [6] forms the other class of er-
ror transmission scheme used for error resilient transmission
aside Unequal Error Protection (UEP). In the MDC scheme,
descriptions are generated from the sub-meshes of a single
model, each containing the full connectivity information to
increase the decodability of the model. Aside from the con-
ventional schemes, Mondet et al. proposed the progressive
representations for streaming plant type models using re-
transmission scheme for lost packets [24] . In [8, 9], Cheng
et al. proposed a progressive transmission scheme based
on an analytical model to investigate the progressive recon-
struction of meshes across lossy channel. Li et al. proposed
a novel concept of generic middleware for handling different
type of triangle based progressively compressed 3D mod-
els [19] suited for efficient network delivery of 3D progressive
mesh models. They make use of a minimum cost set selec-
tor to determine the transmission protocol selection for the
individual sub-layer based on their importance and perform
streaming based on real-time network traffic characteristic.
In another area of mesh based transmission, Yang et al. pro-
posed an optimized scheme to jointly consider the texture
effects and mesh representation based on rate-distortion sur-
face to facilitate progressive transmission of 3D model with
its respective texture information [32].

Geometry images are an effective representation for com-
pressing shapes that are parameterized to the regular do-
main, like the rectangle or sphere [11, 15]. Peyré and Mallat
presented geometric bandlets to compress geometrically reg-
ular objects (like geometry images and normal maps) [26].
They showed that bandeletization algorithm removes the ge-
ometric redundancy of orthogonal wavelet coefficients and
thus is more effective than the wavelet based compression.
Lin et al. considered the use of JPEG2K for compression
and delivery of a geometry image [20] . They made use of
the ROI (region of interest) characteristic in JPEG2K to
achieve view dependent streaming. However, the impact of
channel loss towards the decodable bit-stream of the 3D ge-
ometry model was not discussed in [20].

2.2 Spectral geometry processing
Spectral geometry processing relies on the eigenvalues and

eigenvectors from mesh operators to carry out desired tasks.
Motivated by the similarity of the eigenvectors of the graph
Laplacian and the discrete Fourier transform, Taubin re-
duced the surface smoothing problem to low-pass filtering
of the discrete surface signals [29]. Since then, there are a
large amount of work in spectral geometry processing. We
refer the readers to the State of The Art Report (STAR) by
Zhang et al. [33] for the most recent survey.

Lévy pointed out the eigenfunctions of the Laplace-Beltrami
differential operator capture the global properties of the sur-
face, in some sense, “understand” the geometry [18]. Vallet
and Lévy derived a symmetric discrete Laplacians using dis-
crete exterior calculus which guarantees the eigenfunctions
form an orthonormal basis, called manifold harmonics basis,
with positive eigenvalues [30]. They also developed an effi-
cient and numerically stable approach to compute the eigen-
functions of the Laplacian for meshes with up to a million
vertices.

Manifold harmonics provide a natural way to analyze the
signals defined on surfaces of arbitrary topology in a Fourier-
transform like fashion, which thus has a wide range of ap-
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plications in geometry processing. Rustamov presented the
Global Point Signature (GPS), a deformation invariant shape
signature using the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator [28]. Rong et al. [27] proposed
spectral mesh deformation that compactly encodes the de-
formation functions in the frequency domain. Liu et al.
presented a robust, blind, and imperceptible spectral wa-
termarking approach for polygonal meshes using manifold
harmonics transform [22]. They demonstrated that the spec-
tral approach is very promising to be robust against noise-
addition and simplification attacks.

Another related work is the spectral coding algorithm pre-
sented by Karni and Gotsman [16]. First, it partitions the
3D model into several submeshes, then computes the spec-
tral of the adjacency matrix for each submesh, and finally,
quantizes the spectral coefficients to finite precision. Our
spectral geometry image approach is different from [16] in
that we partition the frequency domain into hierarchical lay-
ers, i.e., the base layer contains the smoothest geometry and
the top layer contains the high frequency geometric details,
and compress each layer with different compression rates.
Furthermore, by taking advantage of the regular structure
of geometry image, we can apply more advanced compres-
sion techniques (like JPEG2K) than the simple quantization
used in [16]. Thus, our approach is more flexible and can
achieve better compression ratio with less artifacts.

3. SPECTRAL GEOMETRY IMAGE
This section presents the algorithmic details of construct-

ing spectral geometry image, which includes the following
three steps:

1. Apply manifold harmonics transformation to the given
surface (Sec. 3.1)

2. Conformally parameterize the surface to a rectangular
domain (Sec. 3.2)

3. Separate the low and high frequency layers and map
them to the rectangular domain to form spectral ge-
ometry image (Sec. 3.3)

3.1 Spectral analysis
This subsection briefly reviews the algorithm to compute

the spectrum of Laplacian, i.e., manifold harmonics basis.
More details can be found in [30].

Given a surface M represented by a triangular mesh M =
(V,E, F ) where V , E, and F are the vertex, edge and face
sets, the symmetric Laplace-Beltrami operators is defined
as [30]:











△ij = 0 if{vi, vj} /∈ E
△ij = cot α+cot β√

AiAj

if{vi, vj} ∈ E

△ii = −∑

j
△ij

where Ai and Aj are the areas of the two triangles that
share the edge {vi, vj} and α and β are the two angles op-
posite to that edge. The eigenfunctions and eigenvalues of
the Laplace-Beltrami operator are all the pairs (Hk, λk) that
satisfy:

△Hk = λkH
k.

Since the Laplacian △ is a symmetric matrix, its eigenval-
ues are real and eigenfunctions are orthogonal. We sort the

eigenvalues in the increasing order, 0 = λ0 ≤ λ1 ≤ λ2 · · · ≤
λn. These eigenfunctions are the basis functions and any
scalar function defined on M can be projected onto them.

(a) H1 (b) H50 (c) H1000

(d) inverse manifold harmonics transform

Figure 2: Spectral analysis on 3D surface. The
eigenfunctions of Laplace-Beltrami operator are or-
thogonal and serve the manifold harmonics basis.
Row 1: the color indicates the function value. Row
2: the texture mapping shows the isocurves of the
basis functions. Row 3: reconstructing the 3D mesh
from the frequency domain. The number above each
model is the number of eigenfunctions used in sur-
face reconstruction.

For each vertex vi, define a hat function Φi : M → R

such that Φi(vi) = 1 and Φi(vj) = 0 for all j 6= i. Then,
the geometry of M is represented by functions x =

∑

i xiΦi

(resp. y, z), where xi denotes the x-coordinate of vi. The
eigenfunctions Hk can be represented as Hk =

∑

i
Hk

i Φi.
Projecting the function x to manifold harmonics basis, we
have

x̃k =< x,Hk >=
∑

i

xiH
k
i .

x̃k is the coefficient of k-th frequency of function x. Sim-
ilarly, we can compute ỹk and z̃k for functions y and z,
respectively.

To reconstruct the shape from the frequency domain, the
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coordinates of the vertex vi are given by

xi =
m

∑

k=1

x̃kH
k
i , yi =

m
∑

k=1

ỹkH
k
i , zi =

m
∑

k=1

z̃kH
k
i ,

wherem is the user-specified number of eigenfunctions. With
the increasing number of eigenfunctions, the shape can be
faithfully reconstructed from the frequency domain. Fig-
ure 2 illustrates the manifold harmonics transformation on
the Bimba model.

3.2 Conformal parameterization
A key step in constructing (spectral) geometry image is

to parameterize the 3D model M to a rectangular domain
D ∈ R

2. Although there are many surface parameterization
techniques, we prefer the conformal parameterization due to
its shape preserving property and numerical stability [13]. In
this paper, we focus on the genus-0 closed surface.

(a) (b) (c)

(d) (e) (f)

Figure 3: Conformal parameterization of the genus-
0 Bimba model. (a) We first modify its topology
by two cuts, one at the top and the other at the
bottom of the model. The cut surface M ′ is a topo-
logical cylinder. (b) Then we compute the uniform
flat metric by discrete Ricci flow and embed M ′ to
a topological annulus. (c) Next, we map the topo-
logical annulus to a canonical annulus by a Möbius
transformation. (d) We cut the canonical annulus
by a line passing through the origin and conformally
map it to a rectangle. (e)-(f) The checkerboard tex-
ture mapping illustrates the conformality of the pa-
rameterization.

Topological modification We first modify its topology by
two cuts, i.e., one at the top and the other at the bottom of
M . Let M ′ denote the resultant open surface. Note that M ′

has the same geometry of M , but is a topological cylinder.
Computing the uniform flat metric Let g denote the
Riemannian metric of M ′. We want to compute a metric
that is conformal to g and flat everywhere inside M ′ and
the geodesic curvature is constant on the boundary ∂M ′.
Such a metric is called uniform flat metric. It is proven that
if the total geodesic curvature on each boundary is given,
such a uniform flat metric exists and is unique.

In our implementation, we use discrete Ricci flow [12] to
compute the uniform flat metric. We set the target Gaussian

curvature of each interior point to zero, i.e., it is completely
flat, K̄ = 0, v /∈ ∂M ′. M ′ has two boundaries, ∂M ′ =
C0 ∪ C1, where C0 is the boundary with the longer length.
Then we set the total geodesic curvature of the boundary
C0 and C1 to be 2π and −2π respectively, i.e.,

∫

C0

k̄ = 2π

and
∫

C1

k̄ = −2π. It can be easily verified that the total

geodesic and Gaussian curvatures satisfy the Gauss-Bonnet
theorem,

∫

M′

K +

∫

∂M′

k =

∫

M′

K̄ +

∫

∂M′

k̄ = 2πχ,

where χ = 0 is the Euler number of M ′.
It is proven that discrete Ricci flow converges exponen-

tially fast [10] and the steady state is the desired uniform
flat metric. With the uniform flat metric, the Gaussian cur-
vature of interior vertices are zero, thus, the faces can be
flattened one by one on the plane.
Conformal map to a canonical annulus Note that the
embedded surface φ(M ′) may not be the canonical annulus.
Let φ(C1) : |z − c1| = r1 and φ(C2) : |z − c2| = r2 be the
outer and inner circles of the topological annulus. We want
to find a Möbius transformation w : C → C to map φ(C1)
and φ(C2) to concentric circles with center at the origin.
A Möbius transformation is uniquely determined by three
pairs of distinct vertices zi ∈ C and wi ∈ C, i = 1, 2, 3, such
that w(zi) = wi. Set w1 = 0 and w2 = ∞, i.e., w1 and w2

are symmetric w.r.t. the canonical annulus. Therefore, the
pre-images z1 and z2 are symmetric w.r.t. φ(C1) and φ(C2),
i.e., |z1 − c1||z2 − c1| = r21 and |z1 − c2||z2 − c2| = r22. We
also set z3 = c1 + (r1, 0) and |w3| = 1, i.e., the radius of
the outer circle in the canonical annulus is one. Then, the
Möbius transformation is given by

w(z) = ρeiθ z − z1
z − z2

,

where ρ = |z3−z2|
|z3−z1|

and θ is an arbitrary angle.

Conformal map to a rectangular domain We cut the
canonical annulus by a line passing through (0, 0) and (1, 0).
Finally, we conformally map the cut annulus to a rectangular
domain by

ψ(z) = |z| + i arg z, z ∈ C

Putting them all together, the conformal parameterization
f : M ′ → D ∈ R

2 is given by the composite map,

f = ψ ◦ w ◦ φ,

which is guaranteed to be conformal (angle-preserving) and
diffeomorphism. The checkerboard texture mapping illus-
trates the conformality of the parameterization.

3.3 Construction of spectral geometry image
Spectral geometry image is more flexible than the con-

ventional geometry image due to its capability to separate
geometry image into low- and high-frequency layers. Note
that the low-frequency layers represent the rough shape and
the high-frequency layers represent the detailed geometry.
In our framework, the user specifies the number of desired
layers l and the reconstruction tolerance for each layer ǫi,
i = 1, · · · , l−1. We denote Mi the reconstructed mesh with
mi eigenfunctions where mi is determined by finding the
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(a) GI (b) normal (c) SGI1 (d) normal (e) SGI2 (f) SGI3
map of (a) ǫ1 = 0.04 map of (c) ǫ2 = 0.01

Figure 4: Spectral geometry image. (a)-(b) show the geometry image of the Bimba model. (c)-(f) show the
3-layer spectral geometry image. The normal maps in (b) and (d) highlight the difference between SGI1 and
GI. To better view the high frequency layers SGI2 and SGI3, the pixel values are normalized to [0, 255].

smallest integer such that

‖Mi −M‖∞

= max
j

√

√

√

√

∞
∑

k=mi+1

(x̃kHk
j )2 + (ỹkHk

j )2 + (z̃kHk
j )2 ≤ ǫi.

The spectral geometry images are defined as follows:

SGI1 : M1 → D

SGI2 : M2 −M1 → D

· · ·
SGIi : Mi −Mi−1 → D

· · ·
SGIl : M −Ml−1 → D

Intuitively speaking, M1 represents the coarsest recon-
struction of the 3D model. The remaining layers Mi en-
code the displacement between the following two consecu-
tive layers Mi and Mi−1 and present the model with in-
creasing quality until the original model is decoded in the
top layer Ml. Thus, to reconstruct the geometry with the
user-specified tolerance ǫi, we simply add the layers up to i.
Figure 4 shows the 3-layer spectral geometry image of the
Bimba model with the tolerances ǫ1 = 0.04 and ǫ2 = 0.01.
The model is normalized to a unit cube.

4. SPECTRAL GEOMETRY IMAGE COM-
PRESSION

In the previous section, we have defined the different lay-
ers of spectral geometry image from the 3D model. Now,
with low and high frequency geometry represented in images,
we can make use of existing image processing techniques to
achieve compression and delivery of the model.

The JPEG2K and JPEG-XR are widely adopted stan-
dards due to their robustness and efficacy in compressing
natural images and they both have good encoders that sup-
port 48-bit images. In Fig. 5, we compare JPEG2K and
the conventional JPEG-XR on a set of 10 natural images
and 10 geometry images. It can seen that JPEG2K is more
effective than JPEG-XR to compress both kinds of images
for moderate quality results, while JPEG-XR is more pre-
ferred for lossy compression of high quality results. Since
JPEG2K adopted the discrete wavelet transform for energy
packing, it results in better PSNR for a given bit size com-
pared to JPEG-XR. In this paper, JPEG2K is adopted as

Figure 5: JPEG2K vs JPEG-XR. One can clearly
see that JPEG2K is more effective than JPEG-XR
at low bpp, while JPEG-XR is more preferred for
lossy compression of high quality results. Due to the
smooth nature, geometry images have better PSNR
than the natural images.

the compression algorithm for both spectral geometry image
and geometry image.

To measure the quality of the compressed surface M ′, we
use the following root-mean-square error dr and mean cur-
vature error dH ,

dr(M,M ′) =

√

√

√

√

1

|V |

|V |
∑

i=1

‖vi − v′i‖2,

dH(M,M ′) =

√

√

√

√

1

|V |

|V |
∑

i=1

‖ △ vi −△v′i‖2,

where |V | is the number of vertices in M and M ′. Note that
△v = Hn where n is the normal and H the mean curva-
ture, thus, dH encodes the surface details and measures the
smoothness of the compressed mesh and reflects the visual
quality better than dr.

Figure 6 shows the test models and their parameteriza-
tions. Figure 7 compares the performance of GI and SGI of
the Gargoyle model. We use dH to measure the smoothness
of the compressed models. Note that both GI and SGI dis-
card high frequency details at high compression rate. The
low-frequency layer of SGI is more smooth than that of GI
and thus lead to less artifacts.
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(a) Bunny (b) Ramesses (c) Gargoyle

Figure 6: Conformal parameterization of the test
models.

1.0 bpp 0.30 bpp 0.16 bpp
1.45e-4 2.21e-4 2.43e-4

1.0 bpp 0.30 bpp 0.16 bpp
1.70e-4 2.01e-4 2.14e-4

Figure 7: Mean curvature error dH measures the
visual quality. Row 1: the GI of resolution 366 ×
600; Row 2: the 2-layer SGI of resolution 183 × 300
and 366 × 600 with ǫ1 = 0.008. The numbers below
each figure are the bits per pixel (bpp) and the mean
curvature error dH . SGI has smaller dH at low bpp
because the high frequency layer is discarded and
the low-frequency layer has less distortion than GI.

Figure 8 compares the performance of GI and SGI of
the Bimba model. When reconstructing the geometry from
multi-layer SGI of different resolutions, we up-sample the
bottom layers to the resolution of the top-most layers. This
upsampling usually smoothes the low-frequency geometry,
but it does not change the top-most layer that contains the
high-frequency details within the user-specified range. Since
the mean curvature vector encodes the differential coordi-
nates [21] representing the local details, it is insensitive to-
wards the small-scale deformation of the bottom layers. As

a result, the SGI-256/512 outperforms the SGI-512/512 in
terms of mean curvature error and the visual quality. How-
ever, the root-mean-square error dr, in contrast to dH , is
highly sensitive to the bottom layers, and the PSNR of SGI-
512/512 is better than SGI-256/512.

5. STREAMING SPECTRAL GEOMETRY
IMAGES

In the design of our coding scheme for the SGI , we con-
sider the dynamic nature of the channel bandwidth and pro-
pose the use of multi-resolution reconstruction suited for
meeting the demand of different clients/server terminal. For
the purpose of progressive streaming, the input spectral ge-
ometry image is decomposed into l image layers to support
the reconstruction of partial bit-stream from coarse to high
quality 3D model at the decoder end. However, due to the
dependency between the layers of such multi-resolution mod-
els, the effects of channel errors on the decoded 3D model
could be extremely significant when the compressed data is
transmitted across erroneous channel. Therefore, there is a
need to exert some form of error control to ensure a mea-
sure of reliability is maintained in the presence of network
error. The forward error code aims to protect data against
such channel errors through the introduction of parity codes.
It is well known in its ability for error detection and error
correction for data communication system. Here, the pop-
ular Reed Solomon code is used in this paper to generate
the necessary (FEC) code for efficient protection during the
progressive transmission.

Next, we need to address the dependency between each
image layer of the SGI since the higher layers are coded
based upon the lower layers. Therefore, in order to minimize
the impact of transmission error, an appropriate amount of
FEC allocation is necessary to ensure the uneven protection
to the different image layers of the model. The next section
solves the problem for the channel bits allocation to each
image layer that will enable us to retrieve the best 3D model
quality at the decoder end, given a constraint in the total
bit budget.

6. PACKETIZATION
The bit-stream generated from the earlier section consists

of image layers having different amount of importance. We
will look into the aspect of error resilience partitioning and
error correction coding (FEC allocation) for effective deliv-
ery of the model across error prone network. In streaming
application, a simple yet efficient error resilient method is
considered for SGI1, SGI2, · · · , SGIl. Each layer of image
differences is first partitioned into slices containing group
of macroblocks (GOM) and packetize independently. Since
there exists correlation between the macroblocks of each
group, a damaged macroblock due to channel error can be
concealed using the surrounding undamaged blocks. Next,
out of consideration for the packetization of different layers,
we denote the width and height of a bitstream as wb and hb

respectively, where b = 1, 2, · · · , l represents the layer num-
ber. The total packet number and packet size is denoted
by N and M respectively. Since the bitstream consists of
layers having unequal importance, thus an uneven amount
of channel allocation should be assigned to the more im-
portant lower layers than its subsequent higher ones. We
want to find the best channel allocation to the individual
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(a) root-mean square error dr

(b) mean curvature error dH

13, 475 B 8, 574 B 4, 010 B 2, 595 B
68.8 dB 64.3 dB 57.5 dB 53.3 dB
9.27e-5 1.08e-4 1.17e-4 1.20e-4

(c) GI of resolution 512 × 512

13, 378 B 8, 572 B 3, 928 B 2, 618 B
61.3 dB 60.5 dB 58.3 dB 56.9 dB
7.70e-5 8.21e-5 8.28e-5 8.61e-5

(d) 2-layer SGI of resolution 256 × 256 and 512× 512

13, 625 B 8, 566 B 4, 022 B 2, 622 B
68.9 dB 65.4 dB 60.1 dB 58.0 dB
8.65e-5 9.47e-5 9.65e-5 9.98e-5

(e) 2-layer SGI of resolution 512 × 512 and 512× 512

Figure 8: Shape compression using geometry image (GI) and spectral geometry image (SGI). GI is of resolu-
tion 512 × 512. We constructed two SGIs with 2 layers and ǫ1 = 0.0075. The first SGI is of resolution 256 × 256
and 512× 512. The second SGI is of resolution 512× 512 and 512× 512. As shown in (a) and (b), SGI’s perfor-
mance is better than GI at low compression rates. (c)-(e) show the compressed GI and SGI. The numbers
below each figure are the file size (Bytes), the PSNR (20 log10 1/dr dB) and the mean curvature error dH. When
reconstructing the geometry from multi-layer SGI of different resolutions, we up-sample the bottom layers
to the resolution of the top-most layer. This up-sampling usually smoothes the bottom layers. The mean
curvature vector dH encodes the differential coordinates and is insensitive towards the small deformation of
the bottom layers. As a result, SGI-256/512 outperforms the SGI-512/512 in terms of mean curvature error
and the visual quality. However, the root-mean-square error dr, in contrast to dH, is highly sensitive to the
bottom layers. Thus, SGI-512/512 has smaller dr than SGI-256/512 at high compression rates.

layers to maximize the quality of the decoded model, which
is measured by the mean curvature error dH .

6.1 Channel Allocation
We now address the allocation problem for the different

layers and denote by Q and C respectively at the total bit
budget from the network bandwidth, and the total channel
bits available for FEC allocation. We thus have the following
inequality:

C ≤ Q−
l−1
∑

i=1

SGIi

The channel allocation for a bitstream is represented as
Ci where C1, C2, · · · , Cl−1 denote the channel bits allocated
for the individual layers of the model and SGIi as the source
bits in the i layers. Fig. 9 shows the packetization scheme
used on each sub-bitstream. The proposed scheme takes
into consideration the importance of the individual layers
and allocates more channel information in the form of Reed

Solomon(RS) code to higher priority lower layers as com-
pared to the higher one. For this reason, we made the as-
sumption that the channel rates for individual layers of a
sub-bitstream to be always non-decreasing in nature where
r1 ≥ r2 ≥ · · · ≥ rl−1. Here, ri denote the channel rate of
the layer i determine from N − wi. This was proven to be
a necessary condition for type-II packet with convex R-D
function. We define the distortion reduction of the layer i
calculated from the error measurement dH asRi = Di+1−Di

where i = 1, 2, ..., l−1. Now, we want to determine the best
channel rate allocation to the different layers and achieve a
minimum dH . The overall contribution to the improvement
in model quality is represent as

D =

l−1
∑

i=1

Ri × P (i)

In this paper, we adopted the two-state Markov model as
the channel estimator to approximate the wireless channel’s
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Figure 9: Channel allocation scheme for the individ-
ual layers and sub-bitstream

packet loss behavior. P (i) represents the probability that
the layer i of bitstream is decodable. For each bitstream,

P (i) =

N−wi
∑

m=0

p(m,n)

We illustrate the used of RS codes for layers protection to
ensure the decodability of a single layer when N − wi is re-
ceived. p(m,n) denotes the probability of losing m packets
while transmitting n packets. The objective so far is to find
the channel rate for each layer and determine the bitstream
to obtain the best reconstructed quality. To reduce the com-
plexity of the optimization, we define the non-decreasing
channel rate allocation earlier as

constraint 1 : r1 ≥ r2 ≥ · · · ≥ rl−1

This ensures that the lower and more important layers to
always receive a greater amount of channel allocation than
the higher layers for efficient channel allocation. Next, to
ensure the constraint in channel bandwidth is kept, we define

constraint 2 :

l−1
∑

i=1

SGIi + C ≤ Q.

This constraint ensures the total source bits and available
channel protection information to never exceed the total
bandwidth during transmission. Now, with all the con-
straints and distortion metrics defined, the final optimiza-
tion problem is formulated as:

minD, subject to constraint 1 and 2

Table 1 shows our simulation results for the transmission
of the Bimba model. In the experiment, we perform the
channel simulation for the SGI and GI datasets using vary-
ing packet lost rate of 2%, 5%, 12% and 20%. The total
number of pixels used in SGI and GI is 65,536. Due to the
efficient compression of the lower frequency geometries of
the SGI, the 3D model can be encoded using a minimum bit
budget of 0.4-0.55 bits per pixel (bpp) for the Spectral Ge-
ometry Image and conventional GI. The bpp define the total

Table 1: Comparison of the Equal Error Pro-
tection(EEP) and Unequal Error Protection(UEP)
schemes for the Bimba model. The GI is of reso-
lution 256 × 256 and the 3-layer SGI is of resolution
128 × 128, 128 × 128 and 256 × 256. The packet loss
rate are 2%, 5%, 12% and 20%, and the bpp is in the
range of 0.40-0.55 bits. The error measurement is
presented in 10log10 1/dH

EEP bpp 2% 5% 12% 20%
0.4 (SGI) 35.84577 35.81972 35.74718 35.72328
0.4 (GI) 34.92499 34.89077 34.78266 34.74139
0.45 (SGI) 35.85196 35.85086 35.82787 35.76416
0.45 (GI) 34.93229 34.93089 34.89907 34.80539
0.5 (SGI) 35.94645 35.92651 35.85149 35.81652
0.5 (GI) 35.2009 35.10979 34.80532 34.68106
0.55 (SGI) 35.95014 35.94829 35.95013 35.84936
0.55 (GI) 35.21916 35.21019 35.07541 34.79984

UEP bpp 2% 5% 12% 20%
0.4 (SGI) 35.85197 35.85196 35.85194 35.75175
0.4 (GI) 34.93232 34.9323 34.93227 34.93151
0.45 (SGI) 35.85197 35.85196 35.85195 35.85189
0.45 (GI) 34.93232 34.9323 34.93228 34.93218
0.5 (SGI) 35.95016 35.95014 35.95013 35.95006
0.5 (GI) 35.21924 35.21918 35.21911 35.21759
0.55 (SGI) 35.95016 35.95014 35.95013 35.95007
0.55 (GI) 35.21924 35.21918 35.21912 35.21884

bit budget Q used for both source and channel encoding.
Since in the case of SGI where the amount of data reduction
is significant from the lower layer, this enable more data bits
to be available for channel allocation of the other layers, thus
improving the overall quality of the decoded 3D model. The
proposed UEP scheme has also taken into consideration the
importance of each layer and allocate channel bits accord-
ingly. From the experimental result, it shows the superior
performance of Spectral Geometry Image technique over the
conventional GI. By coupling the SGI with the proposed
UEP scheme, we are able to ensure the smooth degradation
of the model over varying packet loss rate comparable to
the GI encoding method, while maintaining a better error
measurement during the transmission.

7. DISCUSSIONS
In this section, we discuss several issues of spectral geom-

etry image and show its limitations.
The major difference between the proposed spectral geom-

etry image and geometry image is that the SGI performs the
manifold harmonics transform (MHT) on the 3D model and
then partitions the frequency domain with the user-specified
tolerance. Finally, the partitioned layers are re-sampled to
the 2D domain by the parameterization. Thus, the spectral
analysis of SGI is independent of the parameterization. The
GI re-samples the 3D geometry to the rectangle domain, and
then performs the discrete wavelet transform (DWT) on the
2D rectangular grid. Thus, compared to SGI, GI’s spec-
tral analysis highly depends on the parameterization and
re-sampling. As shown in Fig 10, a parameterization of poor
quality may result in the jaggedness artifacts due to the high
anisotropy. However, SGI with the same parameterization
shows more robust results.

Bandlets extend the wavelets to capture the anisotropic
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(a) DWT applied to 2D regular grid
with parameterization of good quality

(b) DWT applied to 2D regular grid
with parameterization of poor quality

(c) MHT applied to 3D mesh

(d) re-sampling of MHT results
by the parameterization of poor quality

Figure 10: Discrete wavelet transform is highly de-
pendent of the parameterization and re-sampling.
(a) and (b) show DWT applied to 2D regular
grid with different parameterizations. The middle
and right figures show the reconstructed meshes
with LL subband and LL+HL+LH subbands respec-
tively. Clearly, the parameterization with poor qual-
ity results in the jaggedness artifacts due to high
anisotropy. (c) Manifold harmonics transform is
performed on the 3D meshes directly, thus, inde-
pendent of the parameterization. From left to right,
the reconstructed meshes with the number of eigen-
functions, 160, 500 and 1000 respectively. (d) shows
the re-sampling of MHT results by the parameter-
ization of poor quality. It has much less artifacts
than that of (b).

regularity of edge structures, thus, they are very promis-
ing in processing images with rich geometric structures [23].
Peyré and Mallat applied bandlet to compress geometrically
regular objects, like geometry images and normal maps, and

showed that bandlets improve the wavelets on complex 3D
models [26]. Our approach makes use of JPEG2K (which
in turn is based on wavelet) to compress spectral geometry
images. Bandlets are more effective than wavelets to ap-
proximate smooth edges and sharp features. However, there
is no gain to apply bandlets to the highly smooth geome-
try. Within spectral geometry image framework, only the
high-frequency layer encodes the edges and sharp features.
Thus, it would be promising to combine spectral geometry
images with bandlets such that the low- and high-frequency
layers are compressed by wavelets (JPEG2K) and bandlets
separately.

Progressive mesh (PM) is an effective solution to deliver
3D models across error prone network since its hierarchi-
cal structure facilitates reducing latency time for preview-
ing large-scale, complex models. However, the quality of PM
based model is highly dependent on the correct decoding of
the connectivity information, and previous LOD layers of
a 3D mesh is often necessary for progressive reconstruction
of the model. In the context of SGI, the delivery order of
the SGI layers is additive in nature thus making it suitable
for transmission across unreliable channel. In addition, the
connectivity information of the 3D model is also implicitly
encoded in the image, thus additional protection for such
information is not required for SGI.

There are several limitations in our framework. First, the
user specifies the number of layers of SGI and the reconstruc-
tion tolerance for each layer, then our algorithm computes
the desired number of eigenfunctions used to reconstruct
the surface. The tolerance must be chosen with care. If
the tolerance is too big, the low-frequency layer only cap-
tures very rough geometry and does not encode enough in-
formation. On the other hand, if the tolerance is too small,
the low-frequency layer encodes too many details and may
not be helpful to reduce the file size. Furthermore, a small
tolerance usually results in large number of eigenfunctions.
Unfortunately, solving the eigen problems on surfaces is ex-
pensive and time consuming even with the state-of-the-art
method [30].

Another limitation lies in the surface parameterization.
In this paper, we parameterize the genus-0 model to a rect-
angular domain using conformal parameterization [13]. The
conformal parameterization minimizes the angle distortion,
however, usually results in large area distortions. For ex-
ample, the Bunny ears and Gargoyle wings and head have
large area distortion as shown in Fig. 6. For such models,
a polycube [31, 14] is an ideal parametric domain for the
geometry image, but it is out of the scope of this paper.

8. CONCLUSIONS AND FUTURE WORK
This paper presents spectral geometry image, a novel 3D

model representation suitable for streaming application across
lossy channel. We show that spectral geometry image is
a more powerful and flexible encoding scheme compared
to the conventional geometry image techniques in terms of
shape representation and data compression. In addition,
the SGI couples well with the proposed channel allocation
scheme and outperforms the conventional geometry image
techniques in term of error resilience towards channel loss.

There are several interesting topics that are worthy of
further investigation. First, SGI being a newly developed
technique, we will like to further investigate its performance
with other existing state of art 3D model representation in
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term of encoding sizes and quality. Another exciting area in-
volves the transmission of SGI across wireless channels that
poses a challenging problem due to the lossy nature of wire-
less channels. Thus there is a need for developing better
error resilient, correction and concealment tools to ensure
the smooth delivery of 3D model across the error prone net-
work. Last, conformal parameterization to a rectangular
domain may introduce very large area distortion if the 3D
model has complicated topology and geometry. In the fu-
ture, we are going to generalize the spectral geometry image
to the polycube domain [31, 14] and apply it to real-world
models of complicated geometry and topology.

9. ACKNOWLEDGEMENT
This work was supported by the Singapore National Re-

search Foundation Interactive Digital Media R&D Program,
under research Grant NRF2008IDM-IDM004-006. We would
like to thank the reviewers for their careful reviews and con-
structive comments. The 3D models are courtesy of Stanford
University and Aim@Shape Shape Repository.

10. REFERENCES
[1] G. Al-Regib and Y. Altunbasak. 3TP: an

application-layer protocol for streaming 3-D models.
Multimedia, IEEE Transactions on, 7(6):1149–1156,
2005.

[2] G. Al-Regib, Y. Altunbasak, and R. Mersereau. Bit
allocation for joint source and channel coding of
progressively compressed 3-D models. TCSVT,
15(2):256–268, 2005.

[3] G. Al-Regib, Y. Altunbasak, and J. Rossignac.
Error-resilient transmission of 3D models. ACM
Trans. Graph., 24(2):182–208, 2005.

[4] G. Al-Regib, Y. Altunbasak, and J. Rossignac. An
unequal error protection method for progressively
transmitted 3D models. Multimedia, IEEE
Transactions on, 7(4):766–776, 2005.

[5] M. O. Bici and G. B. Akar. Multiple description scalar
quantization based 3d mesh coding. In ICIP, pages
553–556, 2006.

[6] M. O. Bici, A. Norkin, G. Akar, A. Gotchev, and
J. Astola. Multiple description coding of 3d geometry
with forward error correction codes. In 3DTV07, pages
1–4, 2007.

[7] M. O. Bici, A. Norkin, and G. B. Akar. Packet loss
resilient transmission of 3d models. In ICIP (5), pages
121–124, 2007.

[8] W. Cheng. Streaming of 3D progressive meshes. In
MULTIMEDIA ’08, pages 1047–1050, 2008.

[9] W. Cheng, W. T. Ooi, S. Mondet, R. Grigoras, and
G. Morin. An analytical model for progressive mesh
streaming. In MULTIMEDIA ’07, pages 737–746,
2007.

[10] B. Chow and F. Luo. Combinatorial ricci flows on
surfaces. J. Differential Geom., 63(1):97–129, 2003.

[11] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images.
In SIGGRAPH, pages 355–361, 2002.

[12] X. Gu, S. Wang, J. Kim, Y. Zeng, Y. Wang, H. Qin,
and D. Samaras. Ricci flow for 3D shape analysis. In
ICCV, pages 1–8, 2007.

[13] X. Gu and S.-T. Yau. Global conformal
parameterization. In SGP, pages 127–137, 2003.

[14] Y. He, H. Wang, C.-W. Fu, and H. Qin. A
divide-and-conquer approach for automatic polycube
map construction. Computers and Graphics,
33(3):369–380, 2009.

[15] H. Hoppe and E. Praun. Shape compression using
spherical geometry images. In Advances in
Multiresolution for Geometric Modelling, pages 27–46,
2003.

[16] Z. Karni and C. Gotsman. Spectral compression of
mesh geometry. In SIGGRAPH, pages 279–286, 2000.

[17] A. Khodakovsky, P. Schröder, and W. Sweldens.
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