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Semantics-Preserving Bag-of-Words Models and
Applications

Lei Wu, Steven C.H. Hoi, and Nenghai Yu

Abstract—The Bag-of-Words (BoW) model is a promising
image representation technique for image categorization and
annotation tasks. One critical limitation of existing BoW models
is that much semantic information is lost during the codebook
generation process, an important step of BoW. This is because
the codebook generated by BoW is often obtained via building
the codebook simply by clustering visual features in Euclidian
space. However, visual features related to the same semantics
may not distribute in clusters in the Euclidian space, which is
primarily due to the semantic gap between low-level features and
high-level semantics. In this paper, we propose a novel scheme to
learn optimized BoW models, which aims to map semantically
related features to the same visual words. In particular, we
consider the distance between semantically identical features as
a measurement of the semantic gap, and attempt to learn an
optimized codebook by minimizing this gap, aiming to achieve
the minimal loss of the semantics. We refer to such kind of
novel codebook as Semantics-Preserving Codebook (SPC) and the
corresponding model as the Semantics-Preserving Bag-of-Words
(SPBoW) model. Extensive experiments on image annotation and
object detection tasks with public testbeds from MIT’s Labelme
and PASCAL VOC challenge databases show that the proposed
SPC learning scheme is effective for optimizing the codebook
generation process, and the SPBoW model is able to greatly
enhance the performance of the existing BoW model.

Index Terms—bag-of-words models, object representation, se-
mantic gap, distance metric learning, image annotation

I. INTRODUCTION

With the advance of cameras and Web 2.0 technology, there
has been a proliferation of digital photos on the Web. Massive
photos unlabeled or with few tags have posed a great challenge
for image retrieval tasks. Automatic image annotation is one
promising solution to address this challenge. Generally, auto-
matic image annotation is the process of employing computer
programs to automatically assign an unlabeled image a set of
keywords or tags, each of which represents certain semantic
object/concept. By automatic image annotation, an image
retrieval problem is turned into a text retrieval task, which
can be effectively resolved by taking advantages of mature
text indexing and retrieval techniques.

In the past decade, numerous studies have been focused on
automatic image annotation [5], [8], [11], [20], [22]. Some
earlier studies often extract global visual features, such as
color and texture, from whole images to represent them as
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data points in vector space. As a result, image annotation
is formulated as a supervised classification problem where
data are given in some vector space [5]. Such an approach
enjoys merits of efficient computation and compact storage,
but often works effectively only for annotating scene images
or single-object images. They usually performed poorly on
generic images that contain multiple objects.

Later, besides extensive studies on global features, more
promising studies have been focused on regional features.
One typical approach is to partition an image into multiple
regions/blobs based on image segmentation and clustering
techniques. As a result, image annotation is turned into a
machine translation task of classifying regions/blobs into key-
words [8]. Along this direction, a variety of statistical learning
techniques, such as relevance models [20], [22], have been
applied to model the relationships of words and regions/blobs.
The performance of these approaches is often sensitive to the
quality of image segmentation, which is still an open research
challenge in image processing.

Recently, thanks to the advances of powerful local feature
descriptors, such as SIFT [27], researchers in computer vision
have attempted to resolve object recognition/image annotation
problems by a new approach, known as the “Bag-of-Words”
(BoW) model, which was derived from natural language
processing. Specifically, given an image, BoW first employs
some interest point detector, e.g. the DoG (Difference of
Gaussians) detector, to detect salient patches/regions in the
image. Further, certain feature descriptor, e.g. SIFT, is applied
to represent the local patches/regions as numerical feature
vectors. The last step of BoW is to generate a codebook by
converting the patches to “codewords”, e.g. applying k-means
algorithm to cluster all the feature vectors into k clusters,
and then defining codewords based on the centers of the k
resulting clusters. By mapping each visual feature in the image
to the codewords, the image is represented by the histogram of
the codewords. Based on the BoW representation, some well-
known topic models, e.g. probabilistic latent semantic analysis
(pLSA) [17], can be applied to analyze the topics of the images
[6]. While sacrificing spatial information, BoW has generally
shown promising performance for object categorization [34]
and image annotation tasks [11].

However, BoW still has several important drawbacks. Other
than the ignorance of spatial information that has been widely
discussed in many recent papers [4], [26], [37], [24], [42],
another critical disadvantage is that semantics of objects is
considerably lost during the processes of sub-region detec-
tion and visual word generation. Firstly, the detection and
segmentation of sub-regions damage the semantic integration.
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Several methods have been proposed to locate the sub-regions
in an image, e.g. regular grid [42], interest point detector [36],
[27], random sampling [28], sliding windows [23], other
segmentation methods [32], [16] etc. However, due to the
lack of human knowledge, these methods cannot locate the
semantically intact regions very accurately, which partially
causes the semantic gap problem. Secondly, it is problematic
for generating the visual words using k-means clustering in
Euclidian space, which implicitly assumes that SIFT features
of similar semantics are distributed in the same cluster in
Euclidian space. This however does not always hold, especially
for high dimensional SIFT features. Unlike the completely
unsupervised clustering by k-means in visual word generation,
we believe that a semi-supervised clustering approach with the
aid of side information could lead to more effective codebook
for object representation.

To this end, this paper proposes a novel Semantics-
Preserving Bag-of-Words (SPBoW) model, which considers
the distance between the semantically identical features as
a measurement of the semantic gap, and tries to learn a
codebook by minimizing this semantic gap. We formulate
the codebook generation task as a distance metric learning
problem, which can be formalized as semi-definite program-
ming (SDP). We then propose an efficient eigen projection
algorithm to solve the optimization problem efficiently. With
the integrated knowledge and side information, the semantic
gap can be minimized and the codebook is able to consistently
represent the semantics of the objects. To the best of our
knowledge, this is the first distance metric learning approach
to overcome the limitation of semantics lost in BoW models.

As a summary, the main contributions of this paper include:
(1) we are the first to propose a measurement of the semantic
gap; (2) we propose to bridge the semantic gap via distance
metric learning method; (4) we propose and implement an
efficient algorithm to solve the codebook learning task; (4) we
suggest a novel object based codebook scheme; (5) we propose
a measurement for visual complexity; (6) the proposed method
can automatically decide the size of the codebook for each
category; (7) we evaluate and compare a number of different
methods for the codebook generation process in building
various bag-of-word models towards object annotation tasks.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents the framework of the
SPBoW model. Section III-B gives the details of the object
representations for this novel model. Section IV elaborates
on the codebook learning task and formulates the task as
an optimization problem. Section V applies the proposed
semantics-preserving codebook (SPC) technique on object
annotation tasks. Section VI compares the SPBoW model
and the metric learning algorithm with several state-of-the-art
methods for object annotation experiments on MIT’s Labelme
testbed [30] and object categorization on PASCAL VOC
challenge testbed [9]. Section VII concludes the paper.

II. RELATED WORK

Our work is related to several research topics, includ-
ing image annotation/object recognition, and distance metric

learning. Below we briefly review the related work of both
categories respectively.

A. Image Annotation and Object Recognition

In literature, numerous studies have been devoted to im-
age annotation and object recognition. They can be roughly
grouped into three major categories. The first category is
based on global features [13]. As a result, regular supervised
classification techniques, such as SVM, can be applied to solve
the categorization and annotation tasks.

The second category is to extract regional features such
that an image can be represented by a set of visual re-
gions/blobs [2], [8], [22]. The image annotation task is thus
converted to a problem of learning keywords/tags from visual
regions/blobs. For instance, Barnard et al. [2] treated image
annotation as a machine translation problem. Jeon et al. [8]
proposed the cross-media relevance models (CMRM) model,
which combines both surrounding texts and image contents for
annotation. Jin et al. [22] studied coherent language models
that takes into account the word-to-word correlation.

The last category is focused on applying bag-of-features
or bag-of-words representations for image annotation/object
recognition [6], [21], [35]. Csurka et al. [6] proposed a bag-
of-keypoints approach similar to BoW in text categorization
for visual object categorization. Jiang et al. [21] studied some
practical techniques to improve the performance of bag-of-
features for object recognition and retrieval. Recently, Wu et
al. [42] proposed a language modeling approach to address
one limitation of the BoW models, i.e., the loss of spatial
information. These methods generate the codebook by clus-
tering visual features in the original feature space. Due to the
semantic gap, each visual word may contain multiple semantic
meanings and the same semantic meaning may be represented
by multiple visual words. In these models, each visual word
actually does not have correspondence to a precise semantic
meaning.

Besides, there are also some emerging paradigms for image
annotation, such as search-based annotation [38] that explores
WWW images in helping the annotation tasks, and the ALIPR
paradigm [25], which used advanced statistical learning tech-
niques to provide fully automatic and real-time annotation for
digital pictures. These techniques are not highly relevant to
our focus, and are thus out of the discussions in this paper.

B. Distance Metric Learning

From a machine learning point of view, our work is related
to supervised distance metric learning (DML). Specifically,
consider a set of n data examples X = {xi ∈ Rd}ni=1 in d-
dimensional vector space, the objective of DML is to find an
optimal Mahalanobis metric M from training data with side
information that can be either class labels or general pairwise
constraints [43].

In literature, DML has been actively studied recently. Exist-
ing DML studies can be roughly grouped into two major cate-
gories. One category is to learn metrics with class labels, such
as Neighbourhood Components Analysis (NCA) [14], which
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are often studied for classification [12], [39], [44]. Neighbor-
hood Component Analysis (NCA) [14] learns a distance metric
by extending the nearest neighbor classifier. The maximum-
margin nearest neighbor (LMNN) classifier [39] extends NCA
through a maximum margin framework. Information-Theoretic
Metric Learning (ITML) [7] presented the metric learning
problem from the information theory, and achieved the optimal
metric by minimizing the differential relative entropy between
two multivariate Gaussians under constraints on the distance
function. The other category is to learn metrics from pairwise
constraints that are mainly used for clustering and retrieval.
Examples include Relevant Components Analysis (RCA) [1]
and Discriminative Component Analysis (DCA) [19], amongst
others [43], [33], [18], [40]. RCA learns a global linear
transformation from the equivalence constraints. The learned
linear transformation can be used directly to compute distance
between any two examples. DCA and Kernel DCA [19]
improve RCA by exploring negative constraints and aiming to
capture nonlinear relationships using contextual information.
Essentially, RCA and DCA can be viewed as extensions of
Linear Discriminant Analysis (LDA) by exploiting the must-
link constraints and cannot-link constraints.

III. FRAMEWORK OF SEMANTICS-PRESERVING
BAG-OF-WORDS MODELS

A. Overview

The BoW model treats an image as a bag of “code-
words”, which essentially consists of a set of independent
local appearance features. These features are either located
by salient region detectors like SIFT, random samplings like
random windows, segmentation, or regular grid. These high-
dimensional features may contain much noise and redundancy,
and are often difficult to store and use directly. Hence, visual
words are further generated by performing clustering on these
features. Through feature clustering, each visual word usually
corresponds to a cluster in the feature vector space. Based
on the visual words, each of the features detected from the
image can be mapped to one of the most similar visual words
by measuring the distance between the feature and all visual
words. Consequently, a histogram of visual words can be
calculated to represent an image.

BoW can be applied for object annotation by either a naı̈ve
Bayes classifier [41] or more complex latent topic analysis
methods, such as pLSA [34] and LDA [3]. For example, by
a naı̈ve Bayes classification approach, object annotation is
equivalent to matching the visual word histogram of an image
with respect to the visual word histograms of semantic objects.
The name of an object is annotated to the image if the visual
word histogram of the object is matched from the visual word
histogram of the image.

In this paper, we aim to investigate a new BoW frame-
work for object representation to overcome the limitations
of existing BoW with applications to image annotation and
object detection tasks. In particular, we propose a novel
Semantics-Preserving Bag-of-Words (SPBoW) framework.
Fig. 1 illustrates the flowchart of our framework. First of all,
in the training process, objects in the images are segmented

Fig. 1. The process of building the semantics-preserving bag-of-words model.

and tagged by users. SIFT features are extracted from the
images to represent these objects. The SIFT features that are
located at the same semantic parts of objects are considered as
relevant to each other, and will be used as the similar pairwise
constraints in our learning task; on the other hand, any two
SIFT features that are located at different semantic parts of
objects are considered as irrelevant, and will be treated as the
dissimilar pairwise constraints in our learning task. We refer
to the collections of similar and dissimilar pairwise constraints
as “side information”.

In this paper, we propose a novel learning scheme to
optimize the distance metric from the side information. By
minimizing the semantic loss, the optimized distance metric
aims to achieve the Semantics-Preserving Codebook (SPC)
representation, which can be beneficial for image annotation
and object categorization tasks.

B. SPBoW for Object Representation

In traditional BoW, an image is represented by the histogram
of visual words from a codebook. This simple representation
has some drawbacks. First of all, both the visual words
extracted from the object regions and the visual words ex-
tracted from the background regions are all incorporated for
generating the BoW model. Such a simple approach however
brings the background noise into the resulting model which is
supposed to describe only the object. Moreover, this represen-
tation may be influenced if an image contains multiple objects.
However, many real-world images usually contain multiple
objects. As a result, all other irrelevant objects in the images
will become noises when building the regular BoW model
for certain objects. Although this problem may be partially
resolved by the latent topic analysis, it also faces a number of
challenges, e.g. how to determine the number of latent topics.

For the above reasons, our new SPBoW approach aims to
preserve the semantics by modeling each individual object
rather than simply modeling a whole image. In particular,
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we adopt some images from MIT’s Labelme testbed [30] as
training data, in which objects are well segmented and labeled
by users. By the proposed SPBoW framework, we first apply
SIFT to extract features from each image. The SIFT features
that are located at the regions of the same semantics (label)
in all the images are collected to represent the semantics. In
order to preserve the semantics in the BoW model, all the
collected features related to the same semantics are clustered
into one or several discriminative visual words for representing
the object based on an optimized distance metric that aims to
minimize the overall semantic loss. The visual words used for
representing an object may describe different semantic parts
or different views of the object. Finally, we note that the set
of visual words used for one object is often different from the
set used for another. This is very different from the regular
BoW model where all objects share the same set of visual
words. Next we present a novel learning technique that aims
to find an optimal distance metric to overcome the limitation
of semantic loss during the codebook generation process.

IV. LEARNING TO OPTIMIZE CODEBOOKS

Codebook generation is a critical step of building the BoW
model. Instead of generating the codebook by applying simple
k-means clustering in Euclidean space which often leads to
much semantic loss, in this paper, we suggest a novel metric
learning scheme that exploits side information for minimizing
the semantic loss in the codebook generation process.

A. Problem Formulation

We first formalize the representation of side information,
which is illustrated in Fig 2. Assume we are given a set
of pairwise feature instances {(xi1, xi2)}Ni=1 and a set of
corresponding instance constraints, {(zi1, zi2, yi)}Ni=1, where
xi1 ∈ Rd and xi2 ∈ Rd are two d-dimensional feature
instances, e.g. SIFT feature vectors; xi1 indicates the first
feature vector in the pair, and xi2 is the second feature vector
in the pair; zi1 and zi2 are binary indicators to indicate
whether a feature instance is located at the object region or
the background region in the image. As shown in Fig 2(a), if
feature instance xi1 is on the object region, then zi1 = 1;
otherwise zi1 = 0. The variable yi indicates whether the
feature instances in pair (xi1, xi2) are of the same semantics.
If both xi1 and xi2 are on the same semantic parts of objects,
e.g. tyre of cars as shown in Fig 2(d), then yi = 1. If two
features are of different semantics, i.e., they appear on different
semantic parts of two different objects (Fig 2(c)) or they are
located at the same object but on different semantic parts, e.g.
tyre and window of cars as shown in Fig 2(b), then yi = −1.

In general, side information can be generated automatically
from the locations of feature points in the well-segmented
images. For example, in the Labelme testbed, objects and
background regions are manually separated for each image,
and different parts of the objects are also manually segmented
by users. Hence, if two feature vectors are located at the
same region or at the regions of the same semantic label,
they will be considered as the same semantic meaning, i.e.,
y1 = 1. Similarly, in PASCAL VOC2006 datasets, objects in

each image are separated from the background by a bounding
box. Thus, if two features are in the same bounding box or
in the bounding boxes with the same label are treated of the
same semantic meanings.

Fig. 2. Illustration of side information between objects and feature instances.

Given the above side information, the goal of our task is
to learn a distance metric A to effectively measure distance
between any two visual features xi1 and xi2 that is often
represented in the following framework:

d(xi1, xi2) =
√
(xi1 − xi2)⊤A(xi1 − xi2) (1)

where matrix A ∈ Rd×d is the target distance metric that
must be positive and semi-definite w.r.t. the properties of a
valid metric, i.e., A ≽ 0. To find an optimal metric A, the
basic principle of our metric learning task is that distances
between visual feature vectors of the same semantics should be
minimized, and meanwhile distances between feature vectors
of different semantics should be maximized. Based on this
principle, we can search for the optimal metric that facilitates
clustering the feature vectors of the same semantics into the
same visual words, in which each visual word has certain spe-
cific semantic meaning. To this end, we formulate our distance
metric learning problem into the following optimization:

min
A≽0,b

∑
i

zi1zi2ξi +
λ

2
tr(AA⊤) (2)

s.t. yi(∥xi1 − xi2∥A − b) ≤ ξi, ξi ≥ 0, i = 1, . . . , n (3)

∥A∥ = 1/
√
λ (4)

where ∥ · ∥A is the Mahanalobis distance between two fea-
tures under metric A. The first term of the objective func-
tion is the slack variable which accounts for the semantic
loss w.r.t. the side information of n pairwise constraints
{(xi1, xi2, zi1, zi2, yi)}ni=1. With the first inequality constraint,
minimizing this term will make the distance between two



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 1, NO. 1, 2010 5

semantically identical features closer and thus more likely to
be assigned to the same visual word. The second term of the
objective function is the regularization term, which prevents
the overfitting by minimizing the complexity of the model.
The second equality constraint is introduced to prevent the
trivial solution by shrinking metric A into a zero matrix,
and λ is a constant parameter. By solving the optimization
problem, we can obtain the optimized distance metric A
and the threshold variable b that could be used to determine
whether two features are similar or dissimilar. In general, the
above optimization problem belongs to a general semi-definite
programming (SDP), which is often difficult to solve with
global optima for large applications.

B. Optimization

In this section, we present a stochastic gradient search
algorithm by combining with an active constraint selection
scheme to efficiently solve the above optimization problem.
To simplify the formulation, we denote the feature matrix
as X ∈ RNtr×d where Ntr is the number of SIFT features
in the training set, and d is the feature dimension. We
also represent all the feature pairs (xi1,xi2) in the training
data by two feature matrices X1 = [x11, x21, · · · , xn1]

⊤

and X2 = [x12, x22, · · · , xn2]
⊤, and similarly their con-

straints by three matrices Z1 = diag(z11, z21, · · · , zn1),
Z2 = diag(z12, z22, · · · , zn2) and Y = diag[y1, · · · , yn]. The
proposed iterative optimization scheme is described in the
following steps.

First of all, we actively choose a subset of informative side
information from the training data as the training instances.
In particular, the training instances must satisfy either one of
the two criterions: (1) the features are of the same semantics
but with large distance in the current metric space; or (2) the
features are of different semantics but with small distance in
the current metric space.

Based on the selected training dataset St in the t-th iteration,
we then apply the gradient descent technique to search for the
optimal metric A and threshold b.

Finally, to enforce the valid metric constraint, we project
the current solution of metric A back to a positive semidef-
inite (PSD) cone by an eigen decomposition approach. The
details of the proposed Semantics-Preserving Metric Learning
(SPML) algorithm are described in Algorithm 1, in which
γ is a learning rate variable that is determined empirically.
DX = X1 − X2 is the difference between the two feature
matrices X1 and X2. Empirically, this iterative algorithm
converges quickly with no more than 5 iterations.

C. Convergence Analysis

We now analyze the convergence of the algorithm. Let us
denote the objective function in the t-th iteration as follows:

L(At,St) =
∑

(xi1,xi2,yi)∈St

yi(∥xi1 −xi2∥− bt)+
λ

2
tr(AtA

⊤
t )

(5)
To prove the convergence of the algorithm, we first calculate
the bound of the objective function after T iterations. Here we

Algorithm 1 The Semantics-Preserving Metric Learning
(SPML) algorithm
INPUT:

• SIFT feature matrix: X ∈ RN×d

• pairwise constraint (xi1, xi2, zi1, zi2, yi), where xi1 is the ith1
SIFT feature, zi1 indicate whether the location of feature xi1

is on the semantic object, and constraints yi = {+1, 0,−1}
represents feature xi1 and xi2 are on the same semantic part of
the object, not known, or on different semantic parts.

• regularization parameter λ
• learning rate parameter γ

PROCEDURE:
1: initialize metric and threshold: A = I , b = b0
2: set iteration step t = 1;
3: repeat
4: (1) update the learning rate:

γ = γ/t, t = t + 1
5: (2) update the subset of training instances:

S+
t = {(xi1, xi2, yi)|(1 + yi)∥xi1 − xi2∥2A > 1}
S−
t = {(xi1, xi2, yi)|(1− yi)∥xi1 − xi2∥2A < 1}
St = S+

t

∪
S−
t

6: (3) compute the gradients w.r.t. A
∇AL ← Z1Z2(λA+D⊤

XY ⊤DX),
DX = X1 −X2,

7: (4) compute the gradients w.r.t. b
∇bL ← tr(Z1Z2Y )

8: (5) update metric and threshold:
At+1 ← At − γ

t
∇AL, bt+1 ← bt − γ

t
∇bL

9: (6) project A back to the PSD cone:
At+1 =

∑d
i=1 λiϕiϕ

⊤
i

At+1 ←
∑

i max(0, λi)ϕiϕ
⊤
i

10: (7) normalize At+1 to satisfy ∥At+1∥ = 1√
λ

:

At+1 ← 1/
√

λ
∥At+1∥

At+1

11: until convergence
OUTPUT:

• feature metric A, threshold variable b

adopt the following theorem proposed in [15], which provides
a bound for a general sub-gradient method. The detailed proofs
and explanations can be found in [31].

Theorem 1: Let L1, · · · ,LT be a sequence of λ-strongly
convex functions w.r.t the objective function 1

2 tr(·), where
Lt = L(A,St). Let A be a closed convex set and define∏

A(A) = argminA′∈A ∥A − A′∥. Let A1, · · · , AT+1 be a
sequence of vectors such that A1 ∈ A and for t ≥ 1,At+1 =∏

A(At− γ
t∇t),where ∇t is a subgradient of Lt at At. Assume

that for all t, ∥∇t∥ ≤ G. Then, for all u ∈ A we have

1

T

T∑
t=1

Lt(At) ≤
1

T

T∑
t=1

Lt(u) +
G2(1 + ln(T ))

2λT
(6)

�
By applying Theorem 1, we can prove the following corollary.

Corollary 2: Let L1, · · · ,LT be a sequence of λ-strongly
convex functions. Let A be a closed convex set and define∏

A(A) = argminA′∈A ∥A − A′∥. Let A1, · · · , AT+1 be
a sequence of matrics such that A1 ∈ A and for t ≥ 1,
At+1 =

∏
A(At − γ

t∇t), where ∇t is a subgradient of Lt at
At. Then, the bound for the proposed objective function is

1

T

T∑
t=1

Lt(At) ≤
1

T

T∑
t=1

Lt(A
∗)+

(
√
λ+

∑
i ξi)

2(1 + ln(T ))

2λT
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where A∗ is the optimal solution. �
Using Corollary 2 and the convexity property of the objec-
tive function L, i.e., 1

T

∑T
t−1 Lt(At) ≤ L( 1

T

∑T
t=1 At) we

can further show the following corollary of the optimization
bound.

Corollary 3: Let L(At,St) = Lt(At), and L(At) =
EStL(At, St). Assume the conditions stated in Corollary 2 and
denote by Ā = 1

T

∑T
t=1 At, and G = (

√
λ +

∑
i ξi), then we

have the following result:

L(Ā) ≤ L(A∗) +
G2(1 + ln(T ))

λT
�
The proofs to the above two corollaries can be found in http://
www.cais.ntu.edu.sg/∼chhoi/SPBOW/proofs.pdf. By denoting
η(T ) = G2(1+ln(T ))

2λT , we can see that when the iteration
number T → ∞, η(T ) → 0. This corollary thus proves the
convergence of the algorithm. Finally, by applying Corollary
3 and using the first order Taylor expansion of function ln(T ),
we obtain that for achieving a solution with accuracy ϵ, the
algorithm requires O(G

2

ϵλ ) iterations.

D. Codebook Generation
A codebook can be generated by clustering the features

under the learned distance metric into some visual words or
codes. Different visual words could represent different views
or different parts of an object. In this paper, we propose
to generate the codebook for each object category such that
the linkage between the codewords in the codebook and the
high-level semantics of object category can be established
effectively, which is essential to bridge the gap between low-
level features and high-level semantics.

Specifically, for each object category, we first collect all the
related features from the same object regions, and then perform
the k-means clustering based on the optimized distance metric
A that is obtained from the proposed SPML scheme. By the
k-means clustering, we can obtain a set of k clusters (i.e.,
visual words or codewords) for this object category. Finally,
we form a global codebook by gathering all codewords from
all object categories. We thus refer to the resulting codebook
as “Semantics-Preserving Codebook” (SPC).

In general, there are two important issues for SPC, including
(1) codebook size assignment, and (2) visual word generation.

1) Codebook Size Assignment: This is to determine how
many codes should be assigned for each object category. One
straightforward approach is to uniformly assign the same
number of codes for every object. This however does not
explore the difference of complexity in semantic understanding
for different objects. A more desirable approach is to assign
varied codebook sizes for different objects. To address this
challenge, we introduce two principles for the assignment task:

(1) The number of codes increases linearly w.r.t. the visual
complexity of an object category

(2) Visual complexity of an object category can be measured
by the diversity of its associated features.

In this paper, we suggest to measure the visual complexity
of an object category by applying the information theory. In

particular, consider each object category as a bag of features,
each feature in the object category has a probability of being
generated from the bag. Such a probability can be estimated by
either the distance to the mean of all features or the frequency
of the features. For example, let us denote by Ci an object
category and xj some feature, we can estimate the generative
probability p(xj |Ci) as follows:

p(xj |Ci) =
1√
2πσ

exp−
∥xj−x̂∥2A

2σ2 (7)

where x̂ = 1
nCi

∑
xj∈Ci

xj , and nCi is the total number of
features related to the objects from Ci. Based on the above
estimated probability, we calculate the information entropy of
the bag as a measurement of the object’s visual complexity:

H(Ci) = −
∑

xj∈Ci

p(xj |Ci) log p(xj |Ci) (8)

Finally, we assign object Ci the number of codes LCi that is
proportional to its visual complexity, i.e.,

LCi = ⌊Lmax × H(Ci)

log nCi

⌋ (9)

where Lmax is the maximum size of the SPC for each
category. The total number of visual words for all categories
is Lmax ×M , where M is the number of categories.

Algorithm 2 Codebook Generation Algorithm
INPUT:

• features and their object labels {(x, y), x ∈ X , y ∈ C}
• optimized distance metric A
• codebook size assigned for each object LCi , i = 1, · · · ,M
• the number of clusters for clustering K > maxi LCi

PROCEDURE:
1: initialize the number of visual words L = 0
2: for i = 1 : M do
3: clustering features of the i-th object Xi = {(x,C)|C = Ci}

into K clusters
[cij , rij ] = kmeans(Xi,K)

4: calculate the size of each cluster:
Sij =

∑
x δ(∥x− cij∥A, rij)

5: sort clusters by their sizes
cij ← sort(cij , Sij) rij ← sort(rij , Sij)

6: adopt top LCi largest clusters as visual words for the category
wL+j = cij , rL+j = rij , j = 1, · · · , LCi

7: update the number of visual words L = L+ LCi

8: end for
OUTPUT:

• the centers of visual words wk and their range radius rk, k =
1, · · · , Lmax

2) Visual Word Generation: This task aims to build the
codebook for each object category Ci by applying the k-means
clustering on the associated features to generate a set of LCi

visual words.
Let us denote by Xi a collection of features belonging to

object category Ci, i.e., Xi = {(x, y)|x ∈ X , y = Ci, Ci ∈
C}, where y denotes the object category label of feature x, X
is the feature space, and C is the label space. The proposed
algorithm first applies the k-means clustering on Xi with the
optimized metric A to generate a set of K clusters, denoted
by {cij , rij |j = 1 · · · ,K}, where K is set to be larger than
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maxi LCi , cij denotes the center of the j-th cluster and rij
denotes the range radius of the cluster, which is defined as the
largest distance from the features to the cluster center.

To reduce noisy clusters, we further sort the K clusters
according to their sizes Sij that are calculated below:

Sij =
∑
x

δ(∥x−cij∥A, rij),where δ(a, b) =

{
1, a ≤ b;
0, otherwise.

The algorithm then chooses top LCi largest clusters as the
set of visual words for the codebook of category Ci. Finally,
the algorithm gathers all the visual words from every object
category and outputs the set of visual words along with their
ranges, i.e., {wk, rk}Lmax

k=1 , as the final SPC. The algorithm of
visual word generation is summarized in Algorithm 2.

E. Visual Word Histogram

To apply SPC in the test phase, the key task is to generate
the visual word histogram for a novel test image. In particular,
we first extract SIFT features from the novel image, and then
map each of the SIFT features x ∈ Rd to the visual word
id k in the cookbook. Different from traditional BoW, in our
approach, one visual feature can be assigned to multiple visual
words in different object categories. This is because the ranges
of visual words may overlap each other and the same semantics
may appear in different objects. For example, “window” can
appear in both “building” and “car” objects. Hence, instead of
assigning a feature to the closest visual word, we suggest to
assign the feature to a visual word when the distance between
the feature and the visual word is smaller than the range radius.

Specifically, we define a mapping function π(x, k) between
feature x and visual word wk as follows:

π(x, k) =

{
1, ∥x− wk∥A < rk;
0, otherwise. (10)

By the mapping function, we calculate the frequency of a vi-
sual word wk appearing in image I as: fI(k) =

∑
x∈I π(x, k).

Finally, we can obtain the visual word histogram by normal-
izing the visual word frequencies as follows:

hI(wk) =
fI(k)∑Lmax

v=1 fI(v)
(11)

V. GENERATIVE AND DISCRIMINATIVE MODELS WITH
SPBOW

Similar to existing BoW models, the proposed SPBoW can
also be easily adopted for existing classification methods,
including both generative and discriminative models. Fig. 3
illustrates the idea of applying SPBoW for annotating a
novel image in an object annotation task. Below we discuss
two representative methods for applying SPBoW in image
annotation and object categorization applications.

A. Generative Model

Based on the SPBoW technique, we now discuss how to
apply the resulting semantics-preserving codebook for building
generative models in an object annotation task. Assume that

Fig. 3. Illustration of object annotation using the SPBoW representation.

we are given a set of labeled image regions {(Ij , C(Ij))}Ntr
j=1.

Our goal is to automatically annotate a novel image I .
First of all, we extract SIFT features from these training

regions {x ∈ Ij , j = 1, . . . , Ntr}. For each feature, we
then find its mappings to the visual words in the codebook,
which is based on the mapping function defined in (10). We
also translate the region’s object labels from the feature x
to the mapping visual word wk when the mapping result is
nonzero, i.e., π(x, k) = 1. Finally, by gathering all visual
words associated with a certain semantic object, we estimate
the visual word’s conditional distribution:

p(wk|Ci) =

∑
{x|C(x)=Ci} π(x, k) + 1∑

k

∑
{x|C(x)=Ci} π(x, k) + V

where V is the vocabulary size. In the above probability
formula, we adopt the Laplace smoothing to avoid the zero
probability issue. With the assumption of uniform distribution
of images, the likelihood of object category Ci appearing in
image I can be calculated by a Naı̈ve Bayes model as follows:

p(Ci|I) ∝ p(I|Ci)p(Ci) ∝ p(Ci)
∏
k

p(wk|Ci)
fI(k) (12)

where fI(k) is the frequency of visual word wk appearing in
the test image I , and prior p(Ci) can be calculated based on the
normalized frequencies of the object category that appears in
the training data. Finally, we rank the object categories by their
likelihood p(Ci|I), Ci = 1 · · · ,K, and top N (N = 1, · · · , 10)
ranked categories are used to annotate the image.

B. Discriminative Models

The learned SPC can also be used in a discriminative
learning setting. To illustrate this property, we apply the code-
book to train SVM models for classifying the visual objects.
Similarly, we are given a set of training images (or image
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regions) and their semantic categories {(Ij , C(Ij))}Ntr
j=1. Based

on the SPBoW representation, we can represent each image
Ij by an Lmax-dimensional vector, which is also called visual
word histogram hI = [hI(w1), hI(w2), · · · , hI(wLmax)] by
Algorithm 3. Since it is a multi-class classification task, we
then train multiple binary SVM models by one-against-all.
Specifically, for the i-th category, we build a binary SVM
classifier as follows:

min
ω,b

1

2
∥ω∥2 + C

∑
j

ξj (13)

s.t. yj(i)(ω · hIj − b) ≥ 1− ξj , ξ ≥ 0, 1 ≤ j ≤ Ntr (14)

where ω is the weight vector in SVM, C is the penalty
constant, ξj are slack variables, yj(i) is a binary label function
for the i-th category such that yj(i) = 1 if C(Ij) = i; and
yj(i) = −1 otherwise. In the object detection phase, by the
similar representation, each novel test image will be classified
by all of the binary SVM classifiers, in which a positive output
indicates a specific object is detected on the image.

VI. EXPERIMENTS

In this section, we conduct extensive experiments to em-
pirically evaluate the performance of the proposed SPBoW
model and the existing BoW model for image annotation and
object categorization tasks. In addition to the proposed metric
learning algorithm, we also show that our SPBoW framework
can be integrated with other existing DML techniques. In
our experiments, we extensively evaluate different implemen-
tations of SPBoW models by adapting other existing DML
algorithms in our framework.

A. Experimental testbed

We adopt a dataset from MIT’s Labelme project [30], which
consists of 495 objects and 185 images that are mostly related
to downtown streets. The objects include cars, trees, buildings,
persons, lights, ladders, sidewalks, air conditions, mail box,
signs, bicycle, umbrella, etc. In total, there are more than
400,000 local appearance features extracted from these images.

We choose this dataset due to several reasons. First of all,
this dataset has high-quality user-generated object segmenta-
tion and labeling information. The segmentation and labeling
information can be as detailed as parts of the objects, such
as the front light of the car, the door of a building, etc. Such
detailed labeling information can help to generate high quality
side information for learning the distance metric. Secondly,
it contains around 495 common objects, which frequently
appear in daily life. For each image, there are on average 12
objects positioned and occluded as they used to be in the real
world. It is a great challenging for any model to detect and
annotate these objects in such a complex situation. Finally,
all the images are of high resolution and generated from real
world, which can help us to examine the performance and
applicability of our technique to real applications.

B. Image Representation

In our experiments, we adopt SIFT to represent the local
visual features. For each image, 1,000 SIFT features are ex-
tracted in 128-dimensional vector space. We use SIFT for three
reasons. Firstly, it is invariant to object scaling, rotation and
affine invariance changes, which is relatively more robust than
other feature descriptors, especially for object representation.
Secondly, SIFT usually performs very well on street scenarios,
which accounts for a large portion of images in our dataset.
Finally, as the regular BoW model often uses SIFT, we also
adopt the same technique to ensure a fair comparison.

C. Experimental Settings

In the experiments, for the regular BoW model, the code-
book is generated by performing k-means over all the SIFT
features extracted from the training dataset. The centers of the
resulting clusters are collected to form a set of k visual words
as the codebook, in which each cluster represents one visual
word. For the BoW representation, each feature in an image
is then mapped to the nearest visual word in the codebook,
and finally a visual word histogram can be generated by
summarizing the mapping results of all features of the images.

To examine how SPBoW can also benefit from existing
DML methods, we implement several different SPBoW meth-
ods by adapting four state-of-the-arts metric learning algo-
rithms, including Relevant Component Analysis (RCA) [1],
Information Theoretic Metric Learning algorithm (ITML) [7],
Large Margin Nearest Neighbor (LMNN) [39], and Neigh-
borhood Components Analysis (NCA) [14]. All of them were
implemented in the same experimental settings.

D. Experiment I: Annotation Performance

In this experiment, we evaluate the image annotation per-
formance of the proposed techniques. The ground truth was
generated by web users from Labelme project [30]. We adopt
standard performance metrics, i.e., Average Precision (AP@N)
and Average Recall (AR@N), to evaluate the annotation per-
formance at the top N annotated semantic labels/tags.

In our experiment, we perform 5-fold cross validation, in
which 4 folds are used for building the codebook and 1 fold
is used for testing the annotation performance. In our methods,
there are 2 key parameters: the number of sampled pairwise
constraints and the codebook size. In this experiment, we
simply fix the constraint size to 10,000 and the codebook
size to 2,500. We will examine their effects in subsequent
experiments. Fig. 4 shows the comparison results of different
approaches, including a regular BoW method and five imple-
mentations of SPBoW with different DML techniques.

From Fig. 4, we found that most SPBoW algorithms signifi-
cantly improve the annotation performance of the regular BoW
in both precision and recall. Comparing with other existing
DML algorithms, SPBoW with the newly proposed metric
learning algorithm also has the significant advantage. These
results show that the codebook generated by our SPBoW
technique is more discriminative than the regular BoW, and
SPBoW is effective in reducing the semantic loss during the
codebook generation process.
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(a) Average Precision

(b) Average Recall

Fig. 4. Performance comparison of different approaches for image annotation

E. Experiment II: Evaluation of Varied Constraint Sizes

In this experiment, we study the influence of the number
of constraints on the final annotation performance. We sample
a certain number of constraints from all the user-generated
labels, and gradually increase the number from 1,000 to 10,000
with interval of 1,000 constraints. Under each number of
constraints, we evaluate the performance of object annotation
by the resulting SPBoW. The average precision and average
recall at top N (N = 10, · · · , 100) are summarized in Fig. 5.

From the results, we can see that increasing the number
of constraints in general results in the improvements of the
annotation performance in terms of both precision and recall.
This is reasonable as when more side information is included
for the metric learning task, we expect to learn a better metric,
which is essential to generate the SPC for the annotation task.
In practice, the selection of the number of constraints is a
tradeoff between efficacy and efficiency.

F. Experiment III: Evaluation of Different Codebook Sizes

In this section, we evaluate the influence of codebook sizes
on the final annotation performance. We gradually increase the
codebook size from 2,500 to 4,500, and evaluate the average
precision and recall results under each setting of codebook
size. Fig. 6 shows the experimental results.

The results show that the codebook size does affect the
annotation performance. In particular, we observe that the
performance is first improved when increasing the codebook
size from 2, 500 to 3, 000, but is degraded when the size
is larger than 3, 000. From the empirical results, the best
codebook size is around 3,000 on this dataset.

(a) AP@N of SPBoW method under different constraints

(b) AR@N of SPBoW method under different constraints

Fig. 5. Evaluation of constraint sizes on the image annotation performance

Fig. 6. Evaluation of varied codebook sizes (C) on image annotation.

G. Experiment IV: Object Codebook vs. General Codebook

Our SPC solution is in general an object based codebook,
which is denoted as “object codebook”. Unlike the regu-
lar BoW that uses a general codebook without considering
specific objects, our object codebook enjoys a number of
advantages, such as high efficiency and scalability. In addition,
similar to the regular BoW, we can also generate a “general
codebook” by applying the similar metric learning in SPBoW.
This experiment aims to compare the performance between
object codebook and general codebook.

We implement two kinds of SPC. One is an object codebook
similar to the previous experiments, and the other is a global
SPC similar to the regular BoW except for the usage of the
optimized distance metric. Finally, we also include the regular
BoW codebook into the comparison. Fig. 7 summarizes the
comparison results. We first observe that both SPC approaches
perform considerably better than the regular BoW codebook.
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(a) Average Precision

(b) Average Recall

Fig. 7. Comparison between general codebook and object codebook.

Further, by comparing the difference between object and
global codebooks, we found that both of the two object
codebooks consistently surpasses their corresponding global
codebooks in all of top annotation results. These results again
validate the effectiveness of the SPBoW technique.

Remark. We briefly explain why the object codebook out-
performs the global codebook. Firstly, the visual words of the
object codebook are obtained by clustering features related
to the same semantic concept, and thus they correspond to
the same semantic meaning; however, in global codebook,
visual words are obtained by clustering features from various
semantic concepts, and thus each visual word may relate to
multiple semantic meanings. Hence, the object codebook is
thus less likely to cause semantic loss. Further, another ad-
vantage of the object codebook is that it could be more robust
than the global codebook since in the object codebook only
the semantics-related features will be engaged for clustering,
while for global codebook, all kinds of features including the
background features will be engaged for clustering, which thus
more likely suffers from noisy background features.

H. Experiment V: Fixed vs. Varied Codebook Sizes

One key step of generating our SPC is the codebook size
assignment, which decides how many visual words (codes)
should be assigned to each object. In our approach, we have
proposed the varied codebook size assignment approach based
on the information theory approach. Hence, this experiment
aims to examine if the proposed varied code size approach is
better than a simple fixed codebook size approach that assigns
the uniform number of visual words for every object. In this

experiment, we fix the total codebook size to 2,500. Fig. 8
shows the experimental results of average precision and recall.

Fig. 8. Comparison between fixed codebook and varied codebook schemes.

The results show that the varied codebook approach outper-
forms the fixed codebook approach by around 22% on average
in terms of both average precision and recall performance.

I. Experiment VI: Application to Object Recognition

In this experiment, we apply the proposed SPBoW on the
PASCAL VOC2006 challenge for object recognition to further
compare its performance with other algorithms. Note that there
are some difference between the VOC2006 dataset and the
Labelme dataset. Different from the manually well segmented
objects in the Labelme dataset, objects in the VOC2006 data
are marked in the images only with a rough bounding box.
Also the number of object categories is only 10 for VOC2006
data, which is much smaller than the Labelme dataset. Finally,
since these two datasets have different data distributions and
different number of categories, we believe using both of them
can examine the robustness of our techniques.

We employ the discriminative model for object detection.
Specifically, we use all the VOC2006 training data to learn the
codebook as well as to train a set of binary SVM classifiers.
Each SVM classifier is then used to detect one object category.
We then test the performance on the VOC2006 test dataset, and
compare with the existing BoW model as well as some state-
of-the-art object recognition methods, such as AP06-Lee (Lee
et al.) [10], QMUL-LSPCH (Zhang et al.) [10], and XRCE
(Perronnin et al.) [29]. We set the codebook size to 500 in the
codebook learning process, since there are only 10 different
categories. And we use the default SVM settings (C = 1)
with the RBF kernel of γ = 0.07. The detection performance
is measured by the area under the ROC curve (AUC).

Table I summarizes the AUC results. First, we found that
most of the proposed DML based approaches significantly
outperform the regular BoW. Second, among different DML
approaches, the proposed SPBoW yields the best average
performance. Finally, compared to other state-of-the-art ap-
proaches, SPBoW also performs the best in most cases.

J. Experiment VII: Evaluation of Computational Cost

This experiment is to evaluate the time cost performance.
As we adopt 5-fold cross validation approach, in which 4 folds
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Categories BOW AP06-Lee QMUL-LSPCH XRCE RCA ITML LMNN NCA SPBoW
bicycle 56.91 79.10 94.80 94.30 93.45 96.98 94.12 95.34 99.89

bus 56.61 63.70 98.10 97.80 97.57 98.17 97.79 95.98 97.15
car 60.31 83.30 97.50 96.70 94.42 93.17 93.13 93.13 94.54
cat 61.08 73.30 93.70 93.30 92.19 94.15 92.97 93.32 93.33
cow 68.53 75.60 93.80 94.00 93.91 92.18 92.77 92.75 94.18
dog 73.22 64.40 87.60 86.60 87.77 92.11 90.06 89.97 94.42

horse 28.83 60.70 92.60 92.50 93.22 95.58 96.18 93.85 95.18
motorbike 36.01 67.20 96.90 95.70 92.19 94.37 94.75 94.19 96.97

person 60.78 55.00 85.50 86.30 92.18 93.33 94.18 91.31 92.68
sheep 60.74 79.20 95.60 95.10 97.19 97.15 92.39 95.67 97.44

Average 56.30 70.15 93.61 93.23 93.41 94.72 93.83 93.55 95.58

TABLE I
AUC RESULTS ON THE VOC2006 DATASET.

of the data are used to generate the codebook and 1 fold is
used for object annotation, we thus focus on measuring the
computational time on codebook generation by the methods.
We omit the results of the annotation time cost since they are
almost similar for all the compared methods.

Method BoW RCA ITML LMNN NCA SPBoW
Time Cost (s) 121 3 96 1759 457 8

TABLE II
TIME EVALUATION OF CODEBOOK GENERATION BY DIFFERENT METHODS.

Table II shows average computational time for generating
the codebook. It consists of time costs of both metric learning
and the k-means clustering. 50,000 random features are used
to generate 2,500 visual words by k-means algorithm. There
are two kinds of codebook generation schemes: the global
codebook and the object codebook. The global codebook
scheme uses k-means to cluster the 50,000 features into 2,500
clusters. The object codebook scheme generates clusters within
each category and then combines them to a codebook of size
2,500. So for each category, we only need to generate around
2, 500/|C| clusters from around 50, 000/|C| features, where
|C| = 495 is the size of the categories. The global codebook
scheme requires to compute the distances 2, 500× 50, 000 ∼
O(108) times per iteration, but the proposed object codebook
scheme only needs 2, 500/|C| × 50, 000/|C| × |C| ∼ O(105)
times per iteration. BoW adopts the global codebook, while
the other methods employ the object codebook.

From the results, we found that BoW takes even more time
than some of the SPBoW models due to the limitation of the
global codebook, even it does not have any cost for metric
learning. This again shows that the object codebook is not
only more effective, but also more efficient than the regular
BoW method. Finally, by comparing the time cost between
different DML techniques, we can see that our algorithm is
comparable to the simple RCA method, and is significantly
more efficient than the other state-of-the-art metric learning
techniques that are usually computationally intensive.

VII. CONCLUSION

This paper proposed a novel framework of Semantics-
Preserving Bag-of-Words (SPBoW) for object representation.
Unlike conventional Bag-of-Words (BoW) models that usually

suffer from the semantic loss in the codebook generation pro-
cess, our new technique overcomes this drawback by learning
an effective distance metric that aims to bridge the semantic
gap between low-level features and high-level semantics. We
propose a novel measurement of semantic gap and then try
to minimize the gap via distance metric learning. In addition
to the new efficient algorithm for solving the challenging
distance metric learning task, we also propose the object
based codebook generation scheme, which not only improves
the efficacy, but also significantly reduces the computational
cost. Extensive experiments have been done on both image
annotation and object categorization applications, in which
encouraging results show that the new SPBoW technique is
effective and promising for object representation in a large
range of multimedia applications. Future work will study more
advanced approaches of improving the estimation of distribu-
tion for the measurement of visual complexity, and investigate
other distance metric learning techniques for improving the
performance.
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