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Satrap: Data and Network Heterogeneity Aware

P2P Data-Mining�

Hock Hee Ang, Vivekanand Gopalkrishnan, Anwitaman Datta,
Wee Keong Ng, and Steven C.H. Hoi

Nanyang Technological University, Singapore

Abstract. Distributed classification aims to build an accurate classifier
by learning from distributed data while reducing computation and com-
munication cost. A P2P network where numerous users come together
to share resources like data content, bandwidth, storage space and CPU
resources is an excellent platform for distributed classification. However,
two important aspects of the learning environment have often been over-
looked by other works, viz., 1) location of the peers which results in vari-
able communication cost and 2) heterogeneity of the peers’ data which
can help reduce redundant communication. In this paper, we examine
the properties of network and data heterogeneity and propose a simple
yet efficient P2P classification approach that minimizes expensive inter-
region communication while achieving good generalization performance.
Experimental results demonstrate the feasibility and effectiveness of the
proposed solution.

keywords: Distributed classification, P2P network, cascade SVM.

1 Introduction

P2P networks contain large amounts of data naturally distributed among arbi-
trarily connected peers. In order to build an accurate global model, peers col-
laboratively learn [1,2,3,4] by sharing their local data or models with each other.
Though recent efforts aim to reduce this communication cost compromise, none
of them take into account heterogeneity in either the network or the data.

In order to build a global model representative of the entire data in the P2P
network, only dissimilar data (from different data subspaces) need to be shared.
While sharing similar data (from the same data subspace) adds no value to the
global model, it only adds to the communication cost which can be prohibitive
if the data were from geographically distant peers.

In this paper, we address the problem of learning in a P2P network where data
are naturally distributed among the massive number of peers in the network. In
addition, the location of these peers span across a large geographical area where
distant peers incur higher communication cost when they try to communicate.
Moreover, there is a possibility that the data of different peers overlap in the
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problem space. An approach that simply exchanges data of all peers will incur a
high communication cost in order to achieve high accuracy. On the other hand,
an approach that does not exchange data will achieve low prediction accuracy
in order to save communication costs. Hence, the objective would be to achieve
the best global accuracy-to-communication cost ratio.

In this paper, we describe a data and network heterogeneity aware adaptive
mechanism for peer-to-peer data-mining and study the relationship between the
trainingproblemspace andclassificationaccuracy.Ourproposedapproach, Satrap,

– achieves the best accuracy-to-communication cost ratio given that data ex-
change is performed to improve global accuracy.

– allows users to control the trade-off between accuracy and communication
cost with the user-specified parameters.

– is insensitive to the degree of overlapping data among peers.
– minimizes communication cost, as the overlapping data among different re-

gions increase.
– is simple, thus making it practical for easy implementation and deployment.

2 Background and Related Work

A P2P network consists of a large number of interconnected heterogeneous peers,
where each peer holds a set of training data instances. The purpose of classi-
fication in P2P networks is to effectively learn a classification model from the
training data of all peers, in order to accurately predict the class label of unla-
beled data instances.

Existing P2P classification approaches typically either perform local [5] or
distributed [1,2,4] learning. Local learning performs training within each peer
without incurring any communication between peers during the training phase.
Luo et al. [5] proposed building local classifiers using Ivotes [6] and performed
prediction using a communication-optimal distributed voting protocol. Unlike
training, the prediction process requires the propagation of unseen data to most,
if not all peers. This incurs a huge communication cost if predictions are frequent.
On the contrary, instead of propagating test instances, the approach proposed by
Siersdorfer and Sizov [4] propagates the linear SVM models built from local data
to neighboring peers. Predictions are performed only on the collected models,
which incur no communication cost.

Distributed learning approaches not only build models from the local training
data, but also collaboratively learn from other peers. As a trade-off to the com-
munication cost incurred during training, the cost of prediction can be signifi-
cantly reduced. In a recent work, Bhaduri et al. [2] proposed an efficient approach
to construct a decision tree in the P2P network. Over time, the induced deci-
sions of all peers converge, and as the approach is based on distributed majority
voting protocol, it incurs a lower communication cost compared to broadcast
based approaches.
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Fig. 1. Sequence diagram of Satrap (among two clusters of peers)

To reduce communication cost and improve classification accuracy, Ang et al.
[1] proposed to cascade the local RSVM models of all peers (AllCascade). RSVM
was chosen as it significantly reduces the size of the local model. However, All-
Cascade requires massive propagation of the local models and the cascading
computation is repeated in all peers, wasting resources due to duplications.

3 Approach

Figure 1 depicts the process for constructing a global classification model in
Satrap between two clusters of peers (i.e., communications are performed in
a pairwise manner between different regions). Rather than flooding the entire
network with models (as in AllCascade), here each peer builds an RSVM on
its local data, and propagates it only within its own geographic region. This is
feasible as intra-region communication is inexpensive.

Then one distinguished peer is elected from each region as the super-peer,
which combines (and compresses) the models received into a regional model,
and transfers them to other regions through their respective super-peers. These
super-peers serve as a single point of communication between regions1, thus
reducing expensive inter-regional communication. However, note that the use of
super-peers doesn’t lead to a single point of failure, since if one fails, another
peer from the same region can be dynamically assigned with location aware P2P
overlay networks [7]. The super-peer may also delegate actual communication
tasks to other peers for better load-balancing.

Here, we have another innovation to further reduce this cost. Instead of receiv-
ing all models from other regions, each regional super-peer requests for certain
models only. This is accomplished as follows. Every super-peer clusters its data,
and sends its cluster information (called Knowledge Spheres, c.f. Section 3.1) to
other super-peers. With this knowledge, each super-peer determines the overlap
in underlying data space (called Exclusion Spheres, c.f. Section 3.2) between itself
1 Hence the name Satrap - title for the governor of regional provinces in ancient Persia.
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and others, and requests only for models from non-overlapping spaces from an
owner super-peer. Upon receiving a request, the owner super-peer gathers sup-
port vectors (c.f. Section 3.3) from its model that are relevant to the requester’s
Exclusion Spheres, and transfers them.

Finally, each super-peer combines all the models received (as before) and then
propagates the resultant model to all the peers within its region (c.f. Section 3.4),
again with low intra-region cost.

Though this process requires communication of the compact data space repre-
sentation between regional super-peers, it significantly reduces the propagation
of models. In this paper, we omit detailed discussion on failure tolerance and
load distribution, and limit our scope to only the data-mining related issues.

3.1 Knowledge Sphere Creation

Unlike test instance propagation where information cannot be compressed or fil-
tered, model propagation in general, allows some form of compression or filtering
while enabling representative global models to be constructed.

Since the models of super-peers from different geographical regions may be
built on similar data (or data from the same data space), while creating a global
model, it is unnecessary for a super-peer to receive all information from others.
As we do not know a priori what data are overlapping between them, we need
a representation of every super-peer’s underlying data in the problem space.
For this purpose, we propose the use of high dimensional sphere, created from
clustering of the data.

After a super-peer cascades the models from its regional peers, we separate
the support vectors (SVs) into their separate classes and cluster them. The
separation allows more compact clusters to be generated, as SVs from different
classes may lie in slightly different input space. The knowledge of these clusters,
called the Knowledge Spheres, comprising the centroid (mean of all SVs), radius
(maximum distance of any SV in cluster to the centroid), and their density
(number of SVs within the cluster definition) is then propagated to all other
super-peers.

The reason for using clustering is that it creates groups of neighboring data
points which reside close to each other in the problem space, as represented by the
high dimensional spheres. Although spheres may not represent the data as well
as some other high dimensional shapes such as convex hulls or polygons, they are
computationally cheapest to generate and have the best compression ratio (single
centroid and radius). We have used agglomerative hierarchical clustering based
on single linkage for this task, because it preserves the neighborhood information
of the clusters. Another desirable property of this approach is that it produces
deterministic results. We also use Euclidean distance as the distance measure for
clustering, as it is shown to preserve the neighborhood property between input
and feature space [8].

The clusters generated can affect the detection of (non) duplicated data, how-
ever we don’t know a priori how many clusters would result in the most accurate
detection of duplicates. Hence, instead of specifying the number of clusters, peers
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choose the desired cluster-to-SV ratio R, depending on how many support vec-
tors they have. Note that as the number of clusters reduces, the input space
covered by at least one cluster also increases in order to cover the points of the
removed clusters. The increase in space covered also includes empty spaces. As
the neighborhood area of the input space is correlated to the feature space [8],
the feature space covered by the cluster also increases. If we were to filter from
such a larger neighborhood (either input or feature space), more points poten-
tially closer to the decision boundary would be filtered, leading to a possibly
larger error. It is obvious that as heterogeneity of the regional data increases,
the number of clusters required for a compact representation of the data also
increases. Moreover, an increase in number of clusters always maintains or im-
proves the cluster compactness (i.e., reduces the intra-cluster distance) but at
the cost of addition communication overheard.

3.2 Exclusion Sphere Creation

When a super-peer (say, rrequester) receives another super-peer’s (say, rowner’s)
knowledge spheres, it checks if it has as much knowledge about the data space as
rowner. It then informs rowner of the knowledge it lacks, so that corresponding
knowledge may be transferred. If the number of rrequester ’s SVs falling within the
space of an rowner sphere is less than the density of the sphere (times a threshold
T ), rrequester creates a exclusion sphere from those points. The information of the
exclusion sphere (centroid, radius, density) along with the corresponding sphere
that it overlapped with, is then sent to rowner as part of the data request.

Note that this process is order-dependent. Once rrequester has requested infor-
mation from rowner on a certain data space, it will not request information from
another super-peer on an overlapping space, unless of course the latter has sig-
nificantly larger density. We do not address the order dependency of overlapping
checks due to several reasons. Firstly, in order to check the order, a super-peer
has to wait for several super-peers to send their knowledge spheres, which is
impractical in a dynamic P2P network. Secondly, order dependency only affects
performance if there is a quality difference in the data of the different regions,
but currently there is no way to verify this difference in quality (unless data
points are sent for checking, which is what we want to avoid). Without addi-
tional knowledge on the data or communication cost, it would be infeasible to
optimize the ordering.

3.3 Gather Relevant SVs

When rowner receives the request, it chooses all SVs that are within the overlap-
ping spheres but outside the exclusion spheres for transfer. It also chooses SVs
that lie within the exclusion spheres with a probability of 1 - (number of SVs in
exclusion sphere for rrequester / number of SVs in exclusion sphere for rowner).
We use probabilistic sampling so that SVs within the exclusion sphere are cho-
sen only when the confidence (number of SVs, evidence) of the rrequester in the
exclusion data space is lower than that of rowner . All the chosen data points are
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then consolidated and sent to rrequester . This process marks the end of the cross
region data probing and exchange. At this stage, rrequester has received models
from the entire network if it has requested from all other super-peers. Since the
gathering of data is based on the clusters created from the local region cascaded
model, it is not order-dependent.

3.4 Global Model Construction and Prediction

Once rrequester receives the SVs from rowner, they are merged with the SVs of
the local regional cascaded model and the new global cascaded model is built.
The new global model can be propagated down-stream to other local regional
peers with cheap intra-regional communication. Since every peer now has the
global model, all predictions can be made locally without incurring any extra
communication cost. In addition, there is no need to wait for predictions from
other peers which also saves time. With feedback proposed in [9], the incremental
building of the global model at the super-peer is order invariant on the arrival
of the exchanged models.

4 Experimental Results

Here, we demonstrate how Satrap exploits data heterogeneity to reduce com-
munication overheads in presence of network heterogeneity, and achieves a good
balance between accuracy and communication cost.

We used the multi-class Covertype (581,012 instances, 54 features, 7 classes
and 500 peers) and multi-class Waveform (200,000 instances, 21 features, 3
classes and 100 peers) datasets [10]. The datasets were split into ten clusters,
each assigned to peers in a separate region to simulate the non-overlapping re-
gional data. To vary data heterogeneity, we overlapped the data in each region
with o percent of other regions’ data. Experiments were then conducted on these
different data distributions. We compared our approach with AllCascade [1], and
Individual Regional Cascaded model without cross region data exchange (IRC).
All these approaches were implemented in C++ and we used SVM and RSVM
implementations from [11,12]. The RBF kernel and penalty cost parameters were
selected using the procedure mentioned in [11] and their values are γ = 2, C = 32
for the Covertype, and γ = 2−7, C = 32 for the Waveform dataset. For Satrap,
the threshold value T is set to 0.75, and the cluster ratio R is set to 0.1. Results
were obtained using 10-fold cross validation.

4.1 Performance Evaluation

Figures 2 and 3 present the classification accuracy (in percentage) and commu-
nication cost (as a ratio of the total dataset size in the entire network ×104)
respectively. The plots in Figure 3 are normalized to the cost of IRC which
doesn’t incur any inter-region costs, and are shown using a conservative 1:1 ra-
tio between intra- and inter-region costs. This ratio can be upto 1:50 in real
environments [13], so Satrap’s benefits over AllCascade should be amplified.
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Fig. 2. Effect of data overlap on classification accuracy
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Fig. 3. Effect of data overlap on communication cost (normalized to that of IRC)

We varied the percentage o of overlapping data (from other regions) to simu-
late a varying degree of homogeneity between different regions. From Figure 2,
we can see that the varying distribution does not affect the accuracy of AllCas-
cade. However, IRC suffers as the overlap decreases. This is because IRC does
not perform any data exchange between different regions, and therefore achieves
reasonable accuracy only when data among different regions is homogeneous.
Moreover, we observe that the Satrap achieves accuracies close to AllCascade
and significantly better than IRC, with only a slight drop as the amount of over-
lapping data increases. However, this is accompanied by significant savings in
communication cost – showing acceptable trade-off between cost and accuracy.
We attribute this drop in Satrap’s accuracy to the probabilistic sampling for
overlapping data space (hence missing out some important data points) which
is critical for saving communication cost.

By comparing Figures 2 and 3, we observe that the competing approaches are
on the two extremes. IRC has the best accuracy-to-communication cost ratio,
but it does not fulfil the criteria to maximize the global accuracy as it does
not learn beyond the local region. Observe that the actual accuracy of IRC on
average is more than 15% worse than Satrap.

On the other hand, while AllCascade has the highest accuracy, it comes
with the lowest accuracy-to-communication cost ratio across all datasets. Satrap
closely approximates AllCascade’s accuracy while retaining a much superior
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accuracy-to-communication cost ratio. This ratio significantly improves as the
percentage of overlapping data increases. To summarize, we observe that Satrap
is able to achieve good accuracy-to-communication cost ratio in most situations.

5 Conclusion

This paper is the first effort that systematically studies the effect of network and
data heterogeneity on prediction accuracy and communication cost for learning
in P2P networks. Satrap, our network and data heterogeneity aware P2P classi-
fication approach, is based on a simple system of information sharing, and lends
itself to easy improvement as every module can be fine-tuned depending on
knowledge of the domain. Satrap achieves a better accuracy-to-communication
cost ratio than existing approaches, and is justified by extensive experiments.
The approach also allows users to trade off accuracy for communication cost and
vice-versa. In future work, we’re looking at how to mitigate the problem of low
data overlap, improve the detection of data overlaps and sampling.
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