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Abstract
In this work, we present a new framework for
large scale online kernel classification, making ker-
nel methods efficient and scalable for large-scale
online learning tasks. Unlike the regular budget
kernel online learning scheme that usually uses
different strategies to bound the number of sup-
port vectors, our framework explores a functional
approximation approach to approximating a ker-
nel function/matrix in order to make the subse-
quent online learning task efficient and scalable.
Specifically, we present two different online ker-
nel machine learning algorithms: (i) the Fourier
Online Gradient Descent (FOGD) algorithm that
applies the random Fourier features for approxi-
mating kernel functions; and (ii) the Nyström On-
line Gradient Descent (NOGD) algorithm that ap-
plies the Nyström method to approximate large ker-
nel matrices. We offer theoretical analysis of the
proposed algorithms, and conduct experiments for
large-scale online classification tasks with some
data set of over 1 million instances. Our encourag-
ing results validate the effectiveness and efficiency
of the proposed algorithms, making them poten-
tially more practical than the family of existing
budget kernel online learning approaches.

1 Introduction
In the fields of machine learning and artificial intelligence,
online learning refers to a sequential machine learning task
where a predictive model is learned incrementally from a se-
quence of data instances [Rosenblatt, 1958]. Unlike regular
batch machine learning methods [Hoi et al., 2006] which usu-
ally suffer from a high re-training cost whenever new training
data arrive, online learning algorithms are often very efficient
and highly scalable, making them more suitable for large-
scale online applications where data usually arrive sequen-
tially and evolute dynamically and rapidly. Online learning
techniques can be applied to many real-world applications,
such as online spam detection, online advertising, multime-
dia retrieval [Xia et al., 2013], and computational finance [Li
et al., 2012]. In this paper, we restrict our discussion of online
learning methodology to tackle online classification tasks.

In literature, a variety of online learning techniques have
been proposed to tackle online classification tasks in recent
years. One popular family of online learning algorithms is
to learn a linear predictive model on the input feature space,
which we refer to as “linear online learning” [Rosenblatt,
1958; Crammer et al., 2006; Dredze et al., 2008]. The key
limitation of these algorithms lies in that the linear model
could be restricted to make effective classification if train-
ing data are linearly non-separable in the input feature space,
which can be common for some real-world classification
tasks with noisy training data of relatively low dimensional-
ity. This motivates the studies of “kernel based online learn-
ing” or referred to as “online kernel classification” [Kivinen
et al., 2001; Freund and Schapire, 1999], which aims to learn
kernel-based models for improving the classification of non-
separable instances in the input feature space.

One of the key challenges of conventional online kernel
classification is that an online learner usually has to main-
tain in memory a set of support vectors for representing
the kernel-based predictive model. During the online learn-
ing process, whenever a new incoming training instance is
wrongly classified, it typically will be added to the support
vector set, making the support vector size unbounded and
potentially causing memory overflow for a large-scale on-
line learning task. To attack this challenge, an emerging re-
search direction is to explore “budget online kernel classi-
fication” [Crammer et al., 2003], which attempts to bound
the number of support vectors with a fixed budget size using
different budget maintenance strategies whenever the budget
overflows. However, the key limitations of the existing bud-
get online kernel methods lie in that some algorithms are
too simple to achieve satisfactory approximation accuracy,
while some other algorithms are too computationally inten-
sive, making them harm the crucial merit of high efficiency
of online learning techniques for large-scale applications.

Unlike the existing budget online kernel methods, in this
paper, we present a novel framework of large-scale online
kernel classification by exploring a completely different strat-
egy. In particular, the key idea of our framework is to explore
functional approximation techniques to approximate a kernel
by transforming data from the input space to a new feature
space, and then apply existing linear online learning algo-
rithms on the new feature space. Specifically, we propose two
different new algorithms: (i) Fourier Online Gradient Descent
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(FOGD) algorithm which adopts the random Fourier features
for approximating shift-invariant kernels and learns the sub-
sequent model by online gradient descent; and (ii) Nyström
Online Gradient Descent (NOGD) algorithm which employs
the Nyström method for large kernel matrix approximation
followed by online gradient descent learning. We give theo-
retical analysis of our proposed algorithms, and conduct an
extensive set of empirical studies to examine their efficacy.

2 Related Work

Our work is related to two major categories of machine learn-
ing research: online learning and kernel methods.

Our work is closely related to online learning meth-
ods for classification tasks [Rosenblatt, 1958; Freund and
Schapire, 1999; Crammer et al., 2006; Zhao and Hoi, 2010;
Zhao et al., 2011; Wang et al., 2012; Hoi et al., 2013], par-
ticularly for budget online kernel machine learning where
several algorithms have been proposed in literature [Cram-
mer et al., 2003; Wang and Vucetic, 2010; Zhao et al.,
2012]. Some well-known examples include Forgetron [Dekel
et al., 2005] which basically discards old support vectors
when the budget overflows for adding a new support vector,
and Randomized Budget Perceptron(RBP) [Cavallanti et al.,
2007] which randomly discards existing support vectors, and
Projectron[Orabona et al., 2008; 2009] which uses a sophisti-
cated projection strategy to bound the support vector size with
better approximation but falls short in its high computational
cost.

Moreover, our work is also related to kernel methods for
large-scale classification tasks, especially for some studies
on large-scale kernel methods [Williams and Seeger, 2000;
Rahimi and Recht, 2007]. In particular, we employ the
pioneering technique of random Fourier features, which
have been successfully used in speed up batch kernelized
SVMs [Rahimi and Recht, 2007], and kernel-based cluster-
ing [Chitta et al., 2012], etc. Another technique adopted in
our approach is the well-known Nyström method [Williams
and Seeger, 2000], which has been widely applied in machine
learning tasks, including Gaussian Processes [Williams and
Seeger, 2000], Kernelized SVMs [Zhang et al., 2012], Kernel
PCA, Spectral Clustering [Zhang and Kwok, 2009], and man-
ifold learning [Talwalkar et al., 2008]. Although these tech-
niques have been applied for batch machine learning tasks, to
the best of our knowledge, they have never been applied to
online classification tasks as our approach in this paper.

3 Large Scale Online Kernel Classification

3.1 Problem Formulation

Consider an online binary classification task over a sequence
of data instances (xt, yt),t = 1, . . . , T , where xt ∈ Rd is the
observed features of the t-th data instance and yt ∈ {+1,−1}
is the true class label which is only revealed from the envi-
ronment at the end of each online learning round. The goal
of a conventional online kernel classification task is to learn
a kernel-based predictive model f(x) for classifying a new

instance x ∈ Rd as follows:

f(x) =
B∑
i=1

αiκ(xi,x) (1)

where B is the number of support vectors, αi denotes the co-
efficient of the i-th support vector, and κ(·, ·) denotes the ker-
nel function. The existing budget online kernel classification
approach aims to bound the number of support vectors by a
constant B using different budget maintenance strategies.

Unlike the existing budget online kernel classification
methods using the budget maintenance strategy, we propose
to explore the functional approximation strategy to tackle the
challenge. In particular, our goal is to construct a new rep-
resentation z(x) ∈ RD such that the inner product is able to
approximate the kernel function:

κ(xi,xj) ≈ z(xi)
>z(xj) (2)

By the above approximation, the model can be rewritten:

f(x) =

B∑
i=1

αiκ(xi,x) ≈
B∑
i=1

αiz(xi)
>z(x) = w>z(x) (3)

where w> =
∑B
i=1 αiz(xi) denotes the weight vector to be

learned in the new feature space. As a consequence, solv-
ing the regular online kernel classification task can be turned
into a problem of an linear online classification task on the
new feature space derived from the kernel approximation. In
the following, we will present two online kernel classifica-
tion algorithms by applying two different kernel approxima-
tion methods: (i) Fourier Online Gradient Descent and (ii)
Nyström Online gradient descent methods.

3.2 Fourier Online Gradient Descent
Random fourier features can be used in shift-invariant ker-
nels [Rahimi and Recht, 2007]. A shift-invariant kernel is
the kernel that can be written as κ(x1,x2) = k(x1 − x2),
where k is some function. Examples of shift-invariant ker-
nels include some widely used kernels, such as Gaussian and
Laplace kernels. By performing an inverse Fourier transform
of the shift-invariant kernel function, one can obtain:

κ(x1,x2) = k(x1 − x2) =

∫
p(u)eiu

>(x1−x2)du (4)

where p(u) is a proper probability density function. Given a
kernel function is continuous and positive-definite, according
to the Bochner’s theorem [Rudin, 1990], the kernel function
can be expressed as an expectation of function with a random
variable u:∫
p(u)eiu

>(x1−x2)du = Eu[eiu
>x1 · e−iu

>x2 ] (5)

= Eu[cos(u>x1) cos(u>x2) + sin(u>x1) sin(u>x2)]

= Eu[[cos(u>x1), sin(u>x1)] · [cos(u>x2), sin(u>x2)]]

The equality (4) can be obtained by only keeping the real
part of the complex function. From (5), we can see any
shift-invariant kernel function can be expressed by the ex-
pectation of the inner product of the new representation of
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original data, where the new data representation is z(x) =
[cos(u>x), sin(u>x)]. As a consequence, we can sample
many random Fourier components u1, ...uD independently
for constructing the new representation as follows:

zt(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx)).

The online kernel learning task in the original input space can
thus be approximated by solving a linear online learning task
in the new feature space. More specifically, for a Gaussian

kernel κ(x1,x2) = e−
‖x1−x2‖2

2σ2 , we have the corresponding
random Fourier component u with the distribution p(u) =
N (0, σ−2I). For data arriving sequentially, we can construct
the new representation of a data instance on-the-fly, and then
perform online learning in the new feature space using the
online gradient descent algorithm. We refer to the proposed
algorithm as the Fourier Online Gradient Descent (FOGD),
as summarized in Algorithm 1.

Algorithm 1 FOGD — Fourier Online Gradient Descent
Input: the number of Fourier components D, stepsize η;
Initialize w1 = 0.
Generate random Fourier components: u1, ...,uD sampled
from distribution p(u) = N (0, σ−2I).
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
zt(xt) = (sin(u>1 xt), cos(u

>
1 xt), ..., sin(u

>
Dxt), cos(u

>
Dxt))

Predict ŷt = sgn(w>t (zt(xt)));
Receive yt and suffer loss `

(
w>t (zt(xt)); yt

)
;

if `
(
w>t (zt(xt)); yt

)
> 0 then

wt+1 = wt − η∇`
(
w>t (zt(xt)); yt

)
.

end if
end for

3.3 Nyström Online Gradient Descent
The above random Fourier feature based approach attempts to
approximate the kernel function explicitly, which is in general
data independent for the given dataset and thus may not fully
exploit the potential of data distribution for kernel approxi-
mation. To address this, we propose to explore the Nyström
method [Williams and Seeger, 2000] to approximate a large
kernel matrix by a data-dependent approach.

First we introduce some notations. We denote a kernel ma-
trix by K ∈ RT×T with rank r. We denote the Singular
Value Decomposition (SVD) of K as K = VDV>, where
the columns of V are orthogonal and D = diag(σ1, . . . , σr, )

is diagonal. For k < r, Kk =
∑k
i=1 σiViV

>
i = VkDkV

>
k

is the best rank-k approximation of K, where Vi is the i-th
column of matrix V.

Given a large kernel matrix K ∈ RT×T , the Nyström
method randomly samples B � T columns to form a matrix
C ∈ RT×B , and then derive a much smaller kernel matrix
W ∈ RB×B based on the sampled B instances. We can in
turn approximate the original large kernel matrix by

K̂ = CW+
k C
> ≈ K, (6)

Algorithm 2 NOGD — Nyström Online Gradient Descent
Input: the budget B, stepsize η, rank approximation k.
Initialize support vector set S1 = ∅, and model f1 = 0.
if |St| < B then

for t = 1, 2, . . . , T0 do
Receive xt;
Predict ŷt = sgn(ft(xt));
Update ft by regular Online Gradient Descent (OGD)
Update St+1 = St ∪ {t} whenever loss is nonzero

end for
end if
Construct the kernel matrix K̂t from St.
[Vt,Dt] = eigs(K̂t, k), where Vt and Dt are Eigenvec-
tors and Eigenvalues of K̂t, respectively.
Initialize wt = (α1, ..., αB)(D−0.5

t V>t )−1.
for t = T0 + 1, . . . , T do

Receive xt;
Construct the new representation of xt:
zt(xt) = D−0.5

t V>t (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict ŷt = sgn((w>t (zt(xt)));
Update wt+1 = wt − η∇`

(
w>t (zt(xt)); yt

)
.

end for

where Wk is the best rank-k approximation of W, W+ de-
notes the pseudo inverse of matrix W.

We now apply the above Nyström kernel approximation to
large-scale online kernel classification task. Similar to the
previous approach, the key idea is how to construct the new
representation for every newly arrived data instance based on
the kernel approximation principle. In particular, we propose
the following scheme: (i) at the very early stage of the online
classification task, we simply run any existing online kernel
classification methods (e.g., kernel-based online gradient de-
scent in our approach) whenever the number of support vec-
tors is smaller than a predefined budget sizeB. Once the bud-
get is reached, we then use the stored B instances (support
vectors) to approximate the kernel value of any new instances
(which is equivalent to using the first B columns to approxi-
mate the whole kernel matrix). From the approximated kernel
matrix in (6), we could see the kernel value between i-th point
xi and j-th point xj is approximated by

κ̂(xi,xj) = (CiVkD
− 1

2
k )(CjVkD

− 1
2

k )> =

([κ(x1,xi), ..., κ(xB ,xi)]VkD
− 1

2
k )(κ(x1,xj), ..., κ(xB ,xj)VkD

− 1
2

k )>

For a new instance, we construct the new representation as:

zt(x) = [κ(x1,x), ..., κ(xB ,x)]VkD
− 1

2

k )

Similarly, we can then apply the existing online gradient de-
scent algorithm to learn the linear predictive model on the
new feature space induced from the kernel. We denote the
proposed algorithm the Nyström Online Gradient Descent
(NGOD), as summarized in Algorithm 2.

4 Theoretical Analysis
This section aims to analyze the theoretical properties of the
two proposed algorithms.
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Theorem 1. Assume we learn with an RBF Kernel of band-
width σ, i.e., κ(x1,x2) = exp(−‖x1 − x2‖22/2σ2), and the
original data is contained by a ball Rd of diameter R. Let
`(f(x); y) : R → R be a convex loss function that is Lips-
chitz continuous with Lipschitz constant L. Let wt, t ∈ [T ]
be the sequence of classifiers generated by FOGD in Algo-
rithm 1. Then, for any f∗ =

∑T
t=1 αtκ(x,xt), we have the

following with probability at least 1− 28( dRσ2ε )
2 exp( −Dε

2

4(d+1) )

T∑
t=1

`(wt(xt)) ≤
‖f∗‖21

2η
+
η

2
L2T +

T∑
t=1

`(f∗(xt)) + εLT‖f∗‖1

where ‖f∗‖1 =
∑T
t=1 |αt|.

Proof. Given f∗(x) =
∑T
t=1 αtκ(x,xt), according to the

Representer Theorem [Schölkopf et al., 2001], we have a cor-
responding linear model: w∗ =

∑T
t=1 αtz(xt), where

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx)).

The first step to prove our theorems is to bound the regret of
our sequence of linear model wt learned by our online learner
with respect to the linear model w∗ in the new feature space.
First of all, we have

‖wt+1 −w∗‖2

= ‖wt − η∇`t(wt)−w∗‖2

= ‖wt −w‖2 + η2‖∇`t(wt)‖2 − 2η∇`t(wt)(wt −w)

Combining the above and the convexity of the loss function:

`t(wt)− `t(w) ≤ ∇`t(wt)(wt −w),

we have the following

`twt − `t(w) ≤ ‖wt −w‖2 − ‖wt+1 −w‖2

2η
+
η

2
‖∇`t(wt)‖2

Summing the above over t = 1, ..., T leads to:

T∑
t=1

(`t(wt)− `t(w∗))

≤ ‖w1 −w‖2 − ‖wT+1 −w‖2

2η
+
η

2

T∑
t=1

‖∇`t(wt)‖2

≤ ‖w‖
2

2η
+
η

2
L2T ≤ ‖f

∗‖21
2η

+
η

2
L2T (7)

Next we further examine the relationship between∑T
t=1 `t(w

∗) and
∑T
t=1 `t(f

∗). According to the uni-
form convergence of Fourier features (Claim 1 in [Rahimi
and Recht, 2007]), we have the high probability bound
for the difference between the approximated kernel value
and the true kernel value, i.e., with probability at least
1− 28( dRσ2ε )

2 exp( −Dε
2

4(d+1) ), we have ∀i, j

|z(xi)
>z(xj)− κ(xi,xj)| < ε (8)

When |z(xi)
>z(xj)− κ(xi,xj)| < ε, we have

|
T∑
t=1

`t(w
∗)−

T∑
t=1

`t(f
∗)| ≤

T∑
t=1

|`t(w∗)− `t(f∗)|

≤
T∑
t=1

L
T∑
i=1

αi|z(xi)
>z(xt)− κ(xi,xt)|

≤
T∑
t=1

Lε
T∑
i=1

αi = εLT‖f∗‖1 (9)

Combining (7) and (9) leads to complete the proof.

Remark. In general, the larger the dimensionality D, the
higher the probability of the bound to be achieved. This
means that by sampling more random Fourier components,
one can approximate the kernel function more accurately and
effectively. From the above theorem, it is not difficult to show
that, by setting η = 1√

T
and ε = 1√

T
, we have

T∑
t=1

`(wt(xt))−
T∑
t=1

`(f∗(xt)) ≤ (
‖f∗‖1 + L2

2
+ L)

√
T

which leads to sub-linear regret O(
√
T ). However, setting

ε = 1√
T

requires to sample D = O(T ) random components
in order to achieve a high probability, which seems unsatis-
factory since we will have to solve a very high-dimensional
linear online learning problem. However, even in this case,
for our FOGD algorithm, the learning time cost for each in-
stance is O(c1T ), while the time cost for classifying an in-
stance by regular online kernel classification is O(c2T ), here
c1 is the time for a scalar product by FOGD, while c2 is the
time for computing the kernel function. Since c2 � c1, our
method is still much faster than the regular online kernel clas-
sification methods.

Theorem 2. Assume we learn with kernel κ(x1,x2) ≤ 1.
Let `(f(x); y) : R → R be a convex loss function that
is Lipschitz continuous with Lipschitz constant L. Let the
sequence of T instances x1, ...,xT form a kernel matrix
K ∈ RT×T , and Kk is the best rank-k approximation of K,
Kmax = maxiKii, dKmax = maxij

√
Kii + Kjj − 2Kij .

Let wt, t ∈ [T ] be the sequence of classifiers generated by
NOGD in Algorithm 2 with budget size B. Then, for f∗ that
minimize 1

2‖f‖H + λ
T `t(xt), with probability at least 1− ε∑T

t=1 `(wt(xt); yt) ≤ ‖f
∗‖21

2η + η
2L

2T +
∑T
t=1 `(f

∗(xt))

+
√

2λL(σk+1 + ∆B)
1
4 (1 + σk+1+∆B

4 )
1
4

where ∆B = 2T√
B
Kmax(1 +

√
T−B
T−0.5

1
β(B,T ) log 1

ε
dKmax

K
1
2
max

),

β(B, T ) = 1 − 1
2 max{B,T−B} , ‖K‖2 is the spectral norm

of matrix K.

Proof. We adopt similar procedure that proves the above the-
orem. We first bound the regret with respect the correspond-
ing w∗ in new feature space, as (7) shows. Then we bound∑T
t=1 `t(w

∗) with respect to
∑T
t=1 `t(f

∗). As studied in
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[Cortes et al., 2010](Corollary 1), we can bound the gap be-
tween suffered losses by approximation with respect to spec-
tral norm of kernel approximation gap:

|
T∑
t=1

`t(w
∗
)−

T∑
t=1

`t(f
∗
)| ≤

√
2λL‖K̂−K‖

1
4
2 (1 + (

‖K̂−K‖2
4

)
1
4 ) (10)

The next is to bound the spectral norm of approximated ker-
nel gap ‖K̂ − K‖2. As [Kumar et al., 2012](Theorem 2)
shows, this can be bounded by the spectral norm of the best
rank-k approximated kernel gap ‖K−Kk‖2 = σk+1:

‖K̂−K‖2 ≤ σk+1 + ∆B (11)

where ∆B is as follows:

∆B =
2T√
B
Kmax(1 +

√
T −B
T − 0.5

1

β(B, T )
log

1

ε

dKmax

K
1
2
max

),

β(B, T ) = 1− 1
2 max{B,T−B} and ‖K‖2 is the spectral norm

of K. Combining (9), (10), (11) finishes the proof.

Remark. Clearly, the larger the value of B, the smaller the
value of ∆B , leading to the tighter bound. Basically ∆B =

O(T ) and thus
√

2λL(σk+1 + ∆B)
1
4 (1 + σk+1+∆B

4 )
1
4 =

O(
√
T ). By setting η = 1√

T
, we have the following:

T∑
t=1

`(wt(xt))−
T∑

t=1

`(f∗(xt)) ≤ (
‖f∗‖1 + L2

2
)
√
T +O(

√
T )

The above sub-linear regretO(
√
T ) seems better than FOGD

since NOGD does not require a very large value ofB in order
to achieve the O(

√
T ) bound.

5 Experimental Results
5.1 Overview and Experimental Testbed
In this section, we evaluate the empirical performance of the
proposed algorithms: FOGD and NOGD, by comparing them
with the state-of-the-art budget online kernel classification al-
gorithms for large-scale online kernel classification tasks.

Table 1: Details of binary-class datasets in our experiments.
Dataset # instances # features
german 1000 24
spambase 4601 57
magic04 19020 10
w8a 24692 300
a9a 48842 123
KDDCUP08 102294 117
ijcnn1 141691 22
codrna 271617 8
KDDCUP99 1131571 127

Table 1 shows the details of 9 publicly available datasets
of diverse sizes in our experiments. All of them can be
downloaded from LIBSVM website 1, UCI machine learning
repository 2 and KDDCUP competition site 3.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
2http://www.ics.uci.edu/∼mlearn/
3http://www.sigkdd.org/kddcup/

5.2 Compared Algorithms and Setup
As a yardstick for evaluation, we include the following two
popular algorithms for regular online kernel classification:
• “Perceptron”: the kernelized Perceptron algorithm [Fre-

und and Schapire, 1999] without budget;
• “OGD”: the kernelized online gradient descent algo-

rithm [Kivinen et al., 2001] without budget.
Further, we compare our algorithms with the following state-
of-the-art budget online kernel learning algorithms:
• “RBP”: the random budget perceptron algorithm by ran-

dom removal strategy [Cavallanti et al., 2007];
• “Forgetron”: the Forgetron algorithm by discarding old-

est support vectors [Dekel et al., 2005];
• “Projectron”: the Projectron algorithm using the projec-

tion strategy[Orabona et al., 2009];
• “Projectron++”: the aggressive version of Projectron

algorithm[Orabona et al., 2008; 2009];
• ”BPA-S”: the Budget Passive-Aggressive algorithm, we

adopt ”BPA-S” in [Wang and Vucetic, 2010];
• ”BOGD”: the Budget Online Gradient Descent algo-

rithm by uniform sampling in [Zhao et al., 2012];
• ”BOGD++”: the Budget Online Gradient Descent algo-

rithm by nonuniform sampling in [Zhao et al., 2012].
To make fair comparisons, all the algorithms follow the

same setups. We adopt the hinge loss as the loss function `,
and a Gaussian kernel with bandwidth 8. The stepsize η in
the all online gradient descent based algorithms is set to 0.2.
We adopt the same parameter B for NOGD and other budget
algorithms. The parameter k in NOGD is set to 0.2B, and the
parameterD in FOGD is set to 10B. For each data set, all the
experiments were repeated 20 times using different random
permutation of instances in the dataset. All the results were
obtained by averaging over these 20 runs. For performance
metrics, we evaluate the online classification performance by
standard mistake rates and running time (seconds). Finally,
all the algorithms were implemented in Matlab, and all the
experiments were run in a Linux machine with 2.5GHz CPU.

5.3 Empirical Evaluations
Table 2 summarizes the empirical evaluation results on the 9
diverse data sets. We can draw several observations below.

First of all, in terms of time efficiency, we found that the
budget online classification algorithms in general run much
faster than the regular online kernel classification algorithms
(Perceptron and OGD) especially on the large datasets, val-
idating the importance of studying scalable online kernel
methods. By further examining their results of mistake rates,
we found that the budget online classification algorithms are
generally worse than the two non-budget algorithms, vali-
dating the motivation of exploring effective techniques for
budget online kernel classification. Among the budget on-
line classification algorithms, no one single algorithm con-
sistently beats all the algorithms. In general, Projectron++,
BPA-S and BOGD tend to perform more accurately than RBP
and Forgetron, but also take more time cost for most cases.
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Table 2: Evaluation of Large-scale online kernel machine via functional approximation.

Algorithm german, B=100 magic04, B=100 spambase, B=100
Mistake Rate Time Cost(s) Mistake Rate Time Cost(s) Mistake Rate Time Cost(s)

Perceptron 34.9 %± 1.1 0.268 27.1 %± 0.2 23.820 24.5 %± 0.1 5.599
OGD 30.2 %± 0.5 0.323 20.0 %± 0.1 110.601 22.0 %± 0.1 18.587
RBP 39.1 %± 1.5 0.242 35.1 %± 0.1 4.428 33.3 %± 0.4 1.407
Forgetron 39.7 %± 1.8 0.306 35.1 %± 0.3 5.681 34.6 %± 0.5 1.843
Projectron 35.8 %± 0.5 0.260 30.8 %± 0.3 4.574 30.8 %± 1.2 1.490
Projectron++ 35.1 %± 1.5 2.606 30.8 %± 0.3 22.094 30.4 %± 1.0 5.448
BPA-S 35.6 %± 0.8 0.249 32.3 %± 1.8 4.619 30.8 %± 0.8 1.434
BOGD 33.8 %± 1.1 0.274 30.5 %± 0.1 5.471 32.2 %± 0.6 1.593
BOGD++ 32.9 %± 1.4 0.302 30.5 %± 0.2 6.936 33.2 %± 0.4 1.753
FOGD 34.9 %± 1.5 0.517 41.8 %± 0.2 6.741 27.6 %± 0.4 1.807
NOGD 30.8 %± 0.4 0.378 32.3 %± 3.9 7.111 29.1 %± 0.4 2.185

Algorithm w8a, B=200 a9a, B=200 ijcnn1, B=200
Mistake Rate Time Cost(s) Mistake Rate Time Cost(s) Mistake Rate Time Cost(s)

Perceptron 3.4 %± 0.1 1035.545 21.1 %± 0.1 1311.305 12.3 %± 0.1 1454.791
OGD 2.4 %± 0.1 1460.097 16.9 %± 0.2 1882.112 9.0 %± 0.1 1957.517
RBP 4.6 %± 0.1 263.895 25.9 %± 0.2 59.552 15.9 %± 0.1 34.767
Forgetron 4.8 %± 0.1 276.400 26.5 %± 0.1 74.866 17.0 %± 0.2 40.006
Projectron 4.1 %± 0.2 269.659 21.1 %± 0.1 59.643 12.5 %± 0.2 36.643
Projectron++ 4.0 %± 1.7 322.500 19.6 %± 2.3 98.083 9.5 %± 0.1 92.653
BPA-S 2.7 %± 0.1 370.653 20.6 %± 0.2 67.891 11.1 %± 0.1 50.088
BOGD 3.8 %± 0.2 367.638 27.2 %± 0.1 70.244 13.3 %± 0.4 51.086
BOGD++ 4.3 %± 0.4 363.596 26.7 %± 0.4 71.198 17.4 %± 0.1 54.839
FOGD 3.4 %± 0.1 204.797 21.0 %± 0.1 39.978 12.3 %± 0.1 53.570
NOGD 2.6 %± 0.1 354.846 17.0 %± 0.1 95.895 9.1 %± 0.1 87.420

Algorithm codrna, B=200 KDDCUP08, B=100 KDDCUP99, B=100
Mistake Rate Time Cost(s) Mistake Rate Time Cost(s) Mistake Rate Time Cost(s)

Perceptron 14.0 %± 0.1 2379.002 0.90 %± 0.0 350.223 0.02 %± 0.00 2648.899
OGD 9.9 %± 0.1 3241.550 0.52 %± 0.0 773.091 0.01 %± 0.00 10732.788
RBP 18.7 %± 0.1 57.352 1.06 %± 0.0 48.907 0.02 %± 0.00 925.876
Forgetron 18.3 %± 0.1 66.244 1.07 %± 0.0 50.587 0.03 %± 0.00 969.976
Projectron 14.6 %± 0.1 62.325 0.94 %± 0.0 49.243 0.02 %± 0.00 934.476
Projectron++ 12.5 %± 0.2 374.943 0.84 %± 0.0 143.331 0.01 %± 0.00 1475.105
BPA-S 13.3 %± 0.3 266.386 0.62 %± 0.0 57.400 0.01 %± 0.00 1326.747
BOGD 14.6 %± 0.1 80.676 0.61 %± 0.0 66.022 0.81 %± 0.06 787.354
BOGD++ 16.8 %± 0.1 86.730 0.71 %± 0.0 66.390 0.04 %± 0.01 787.708
FOGD 14.0 %± 0.1 135.094 1.06 %± 0.0 48.935 0.02 %± 0.00 472.141
NOGD 12.2 %± 0.1 289.065 0.59 %± 0.0 81.811 0.01 %± 0.00 511.731

Second, by comparing the proposed algorithms (FOGD
and NOGD) with the budget online classification algorithms,
we found that they generally achieve the best or close to the
best classification performance for most cases using fairly
comparable or even lower time cost. Specifically, by com-
paring with RBP and Forgetron, our algorithms obtain much
more accurate results with comparable or slightly more time
cost. In comparison to Projectron++, BPA-S and BOGD++,
our algorithms achieve better or at least highly comparable
accuracy but with smaller or comparable time cost.

Finally, NOGD tends to perform better than FOGD (except
for “spambase”). We conjecture that it may because FOGD
is data-independent, while NOGD is data-dependent which
approximates the kernel by sampling the given data instances.
We note that our observation for the empirical advantages of
Nyström methods over random Fourier features is consistent
to the recent comparison between Fourier random features
and Nyström methods [Yang et al., 2012].

6 Conclusion
This paper presented a novel framework of large-scale on-
line kernel classification via functional approximation, going
beyond conventional online kernel methods that often adopt
the budget maintenance strategy to bound the support vector
size. The basic idea of our framework is to approximate a ker-
nel function or kernel matrix by exploring functional approx-
imation techniques. We presented two new algorithms for
large-scale online kernel classification: Fourier Online Gradi-
ent Descent (FOGD) and Nyström Online Gradient Descent
(NOGD). Our promising results on large-scale online kernel
classification tasks show the state-of-the-art performance of
our algorithms in both classification efficacy and efficiency.
As the first attempt of exploring functional approximation for
online kernel learning, our framework is generic and can be
extended to other settings (e.g., regression) in future work.
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