
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2013

Confidence Weighted Mean Reversion Strategy for
Online Portfolio Selection
Bin LI
Nanyang Technological University

Steven C. H. HOI
Singapore Management University, CHHOI@smu.edu.sg

Peilin ZHAO
Nanyang Technological University

Vivekanand Gopalkrishnan
Deloitte Analytics Institute (Asia)

DOI: https://doi.org/10.1145/2435209.2435213

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, Finance and Financial Management

Commons, and the Theory and Algorithms Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LI, Bin; HOI, Steven C. H.; ZHAO, Peilin; and Gopalkrishnan, Vivekanand. Confidence Weighted Mean Reversion Strategy for
Online Portfolio Selection. (2013). ACM Transactions on Knowledge Discovery from Data. 7, (1), 4-1-38. Research Collection School
Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2268

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35456006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2435209.2435213
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


4

Confidence Weighted Mean Reversion Strategy for Online
Portfolio Selection

BIN LI, STEVEN C. H. HOI, and PEILIN ZHAO, Nanyang Technological University
VIVEKANAND GOPALKRISHNAN, Deloitte Analytics Institute (Asia)

Online portfolio selection has been attracting increasing attention from the data mining and machine learn-
ing communities. All existing online portfolio selection strategies focus on the first order information of a
portfolio vector, though the second order information may also be beneficial to a strategy. Moreover, em-
pirical evidence shows that relative stock prices may follow the mean reversion property, which has not
been fully exploited by existing strategies. This article proposes a novel online portfolio selection strategy
named Confidence Weighted Mean Reversion (CWMR). Inspired by the mean reversion principle in finance
and confidence weighted online learning technique in machine learning, CWMR models the portfolio vector
as a Gaussian distribution, and sequentially updates the distribution by following the mean reversion trad-
ing principle. CWMR’s closed-form updates clearly reflect the mean reversion trading idea. We also present
several variants of CWMR algorithms, including a CWMR mixture algorithm that is theoretical universal.
Empirically, CWMR strategy is able to effectively exploit the power of mean reversion for online portfolio
selection. Extensive experiments on various real markets show that the proposed strategy is superior to
the state-of-the-art techniques. The experimental testbed including source codes and data sets is available
online.1

Categories and Subject Descriptors: J.1 [Computer Applications]: Administrative Data Processing—
Financial; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics; I.2.6 [Artificial
Intelligence]: Learning

General Terms: Design, Algorithms, Economics, Experimentation

Additional Key Words and Phrases: Portfolio selection, mean reversion, confidence weighted learning, online
learning
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1. INTRODUCTION

Online portfolio selection (PS), also termed sequential portfolio selection, aims to de-
termine a practical strategy for investing wealth among a set of assets to achieve some
financial objectives in the long run. The finance community has mainly addressed

1http://www.cais.ntu.edu.sg/∼chhoi/CWMR/
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this problem by maximizing risk-adjusted returns [Elton et al. 1995; Markowitz
1952; Sharpe 1963, 1964]. On the other hand, this problem has also been actively
investigated by exploring data mining and machine learning techniques that aim to
maximize the logarithmic compound return or growth rate. These techniques include
work in the information theory community [Breiman 1961; Cover 1991; Kelly 1956;
Ordentlich and Cover 1996; Thorp 1971], the data mining, and machine learning
communities [Agarwal et al. 2006; Borodin et al. 2004; Das and Banerjee 2011; Györfi
et al. 2006, 2008; Helmbold et al. 1998; Li and Hoi 2012; Li et al. 2011a].

One popular trading assumption [Agarwal et al. 2006; Helmbold et al. 1998] is that
current well-performing stocks would also perform well in the following trading period,
which is often known as the trend following principle. However, empirical evidence
[Jegadeesh 1990] indicates that such trends could often be violated, especially in the
short term. This observation leads to a counter strategy of buying poor-performing
stocks and selling well-performing stocks. Such a trading principle is known as mean
reversion, which has been adopted by some existing methods [Borodin et al. 2004;
Cover 1991].

One classical strategy that exploits the mean reversion trading idea is Constant
Rebalanced Portfolios (CRP) [Cover 1991], which redistributes the wealth among all
stocks based on a given portfolio at the end of each trading period. Although nicely
grounded in theory, CRP’s passive scheme is somewhat limited in achieving good per-
formance. One recent study shows that the best CRP strategy in hindsight empirically
performs significantly worse than an anticorrelation algorithm (Anticor) [Borodin et al.
2004], which redistributes the wealth by heuristically exploiting mean reversion via
statistical correlations. This calls for a powerful learning method to actively exploit
the mean reversion property. Besides, we notice that all existing strategies (refer to
Section 3 for a review) only exploit the first order information of a portfolio vector,
while the change in the portfolio distribution could be better reflected in both first
order and second order information, that is, mean and variance.

To address these drawbacks, we present a new online portfolio selection strategy
named Confidence Weighted Mean Reversion (CWMR). In short, CWMR models the
portfolio vector as a Gaussian distribution and sequentially updates the distribution
by applying online learning techniques to exploit the mean reversion trading princi-
ple. Unlike existing work, CWMR learns both first and second order information of
a portfolio vector by exploiting the mean reversion property in the financial markets
using the powerful Confidence Weighted (CW) online learning algorithm [Crammer
et al. 2008; Dredze et al. 2008]. In order to provide a theoretical guarantee (refer to
Section 3.3 for a review) for the proposed algorithm, we also create a mixture algo-
rithm that mixes CWMR with other regret-bounded algorithms, such that the mixture
algorithm is universal.

The key salient features of the proposed CWMR strategy are threefold.

— It is the first online portfolio selection approach that exploits the second order infor-
mation of a portfolio (not the second order information of price).

— It can effectively exploit the mean reversion property of financial markets by apply-
ing confidence weighted learning technique.

— The proposed CWMR mixture algorithm has a safety guarantee (regret bound) and
is a universal strategy.

Through an extensive set of numerical experiments on a variety of up-to-date real
testbeds, we show that the proposed CWMR algorithms significantly surpass a num-
ber of state-of-the-art strategies in terms of both cumulative return and risk-adjusted
return. The experiments on high frequency data, which is new to the online portfo-
lio selection community, supports the assertation that the mean reversion principle is

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.
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stronger in the short term markets. The experiments also show that CWMR is robust
with respect to different parameter settings, and can withstand moderate transaction
costs.

The rest of this article is organized as follows. Section 2 formally formulates the on-
line portfolio selection problem. Section 3 reviews and analyzes related work. Section 4
presents the proposed CWMR algorithm and its mixture extension. Section 5 evaluates
the empirical performance of the proposed algorithms on real historical stock markets.
Finally, Section 6 concludes this work with future directions.

2. PROBLEM SETTING

This article tackles a focused problem in finance, to make it more accessible, we first
introduce an abstract data mining problem and then formulate an online portfolio se-
lection problem. Supposing a decision maker makes decisions in a sequential manner.
At time t, given t−1 m-dimensional vectors x1, . . . , xt−1, he/she wants to calculate an
m-dimensional vector bt, denoting weights on the next vector xt according to some cri-
teria. As a result, from time 1 to time n, the decision process will produce n decision
variables b1, . . . , bn, which correspond to variables x1, . . . , xn, respectively. The deci-
sion maker is finally scored based on certain problem-dependent criteria, depending
on all decision variables.

Now let us consider the online portfolio selection problem. We want to invest over
a financial market with m assets for n trading periods. On the tth period, the assets’
price changes are represented by a positive price relative vector, that is, xt ∈ R

m+ . The
element xti denotes the ratio of closing price to last closing price of the ith asset at the
end of the tth trading period; thus an investment in asset i on the tth period increases
by a factor of xti. Let us use xn = {x1, . . . , xn} to denote the sequence of vectors for n
periods.

An investment in the market at the beginning of the tth period is specified by a
portfolio vector bt = (

bt1, . . . , btm
)
, where bti represents the proportion of wealth in-

vested in the ith asset. Typically, we assume the portfolio is self-financed and no mar-
gin/short is allowed2, therefore each entry of the portfolio is non-negative and adds
up to one, that is, bt ∈ �m, where �m = {

bt : bt ∈ R
m+ ,
∑m

i=1 bti = 1
}
. The invest-

ment procedure is represented by a portfolio strategy, that is, a sequence of mappings
bt : R

m(t−1)
+ → �m, t = 1, 2, . . ., where bt = bt

(
x1, . . . , xt−1

)
is the portfolio used on

the tth period, given past market price relative sequence xt−1 = {
x1, . . . , xt−1

}
. Let us

denote by bn = {b1, . . . , bn
}
, the portfolio strategy for a sequence of n trading periods.

On the tth period, an investment with portfolio vector bt produces a portfolio period
return st, that is, the wealth increases by a factor of st = b�

t xt = ∑m
i=1 btixti. Since we

reinvest and adopt price relative, the portfolio wealth would increase multiplicatively.
Thus, after n trading periods, the investment according to a portfolio strategy bn pro-
duces a portfolio cumulative wealth Sn, which increases the initial wealth by a factor
of
∏n

t=1 b�
t xt, that is,

Sn
(
bn, xn) = S0

n∏
t=1

b�
t xt,

where S0 denotes the initial wealth, and is set to $1 for convenience in this article.

2In other words, we assume long only portfolios, while one can extend the model into non-long only portfolios,
as done by Cover and Ordentlich [1998] and Vovk and Watkins [1998].

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.
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Algorithm 1: Online Portfolio Selection framework.
Input: xn

1: Historical market sequence
Output: Sn: Final cumulative wealth

1 Initialize S0 = 1, b1 =
(

1
m , . . . , 1

m

)
2 for t = 1, 2, . . . , n do
3 Portfolio manager learns the portfolio bt ;
4 Market reveals the market price relative xt ;
5 Portfolio incurs period return b�

t xt and updates cumulative return
St = St−1 × (b�

t xt
)

;
6 Portfolio manager updates his/her online portfolio selection rules ;
7 end

Finally, we formulate the online portfolio selection problem following the previously
mentioned abstract problem. In a portfolio selection task the decision maker is the
portfolio manager, whose goal is to produce a portfolio strategy bn to satisfy certain
targets. In this study, the target is to maximize the portfolio cumulative wealth Sn.
The portfolio manager computes the portfolios in a sequential fashion. On each period
t, the manager has access to all previous sequences of price relative vectors xt−1.
Then the portfolio manager computes a new portfolio vector bt for the coming price
relative vector xt, where the decision criterion varies among different managers. The
vector bt is scored using the portfolio period return st. This procedure is repeated
until the ending period n, and the portfolio strategy is finally scored according to the
portfolio cumulative wealth Sn. Algorithm 1 shows the framework of online portfolio
selection.

In general, some assumptions are made in the preceding widely adopted model.

(1) Transaction cost. We assume no transaction cost/tax exists in the model.
(2) Market liquidity. We assume that one can buy and sell the desired quantities at

last closing prices.
(3) Impact cost. We assume the market behavior is not affected by the portfolio selec-

tion strategy.

The preceding assumptions are not trivial. The implications and effects of these as-
sumptions will be further analyzed and discussed in Section 5.4.4 and Section 5.5.

3. RELATED WORK

3.1. Benchmark Approaches

The most common baseline is Buy-And-Hold (BAH) strategy, that is, one invests
wealth among a pool of assets with a fixed initial portfolio b1 and holds the portfolio.
The BAH strategy with a uniform initial portfolio b1 =

(
1
m , . . . , 1

m

)
is referred to as

uniform BAH strategy, which is adopted as market strategy to produce the market
index in this study. Contrary to the static BAH strategy, active trading strategies
usually change portfolios regularly during entire trading periods. A classical strategy
is Constant Rebalanced Portfolios (CRP) [Cover and Gluss 1986], which keeps a fixed
fraction of an investor’s wealth in each of the assets every trading period. Assuming a
CRP strategy with b, that is, bn = {b, . . . , b

}
, then the wealth achieved by the strategy

is Sn
(
bn, xn) = S0

∏n
t=1 b�xt. The best possible CRP strategy is often called Best CRP

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.
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(BCRP), which is only a hindsight strategy. The CRP strategy can take advantage of
market fluctuations for active trading, and its underlying idea is the mean reversion
principle, intuitively known as “Buy Low, Sell High.” To handle transaction cost, Blum
and Kalai [1999] proposed semi-CRP, which partially balances between potential
return and potential transaction cost and rebalances to initial portfolio at the end of
any subset of the trading periods rather than every trading period.

3.2. Online Learning

Online learning has been extensively studied in data mining and machine learning
[Cesa-Bianchi et al. 2004; Crammer et al. 2006; Crammer and Singer 2003; Rosenblatt
1958; Wang et al. 2012; Zhao et al. 2011]. In this article, we apply online learning
techniques to perform the online portfolio selection task since it perfectly matches
the online nature of the task. In literature, a classical online learning algorithm
is Perceptron [Freund and Schapire 1999; Rosenblatt 1958], which performs simple
additive updates when an incoming example is misclassified. Recently a number of
online learning algorithms have been proposed based on the criterion of maximum
margin [Crammer and Singer 2003; Crammer et al. 2006; Gentile 2001; Kivinen et al.
2004; Li and Long 1999]. For example, Relaxed Online Maximum Margin algorithm [Li
and Long 1999] repeatedly chooses the hyperplanes that correctly classify the existing
training example with the maximum margin; Passive Aggressive (PA) [Crammer et al.
2006] algorithm updates the classifier using the maximum margin principle when the
prediction loss of a new example is nonzero. Unlike the existing online learners that
update only the weight vector of classifiers, the Confidence Weighted (CW) [Crammer
et al. 2008, 2009; Dredze et al. 2008] algorithm updates both the classifier weight
vector and the estimate of their parameters confidence. In particular, it models the
uncertainty of a classification function with a Gaussian distribution over the weight
vector and updates the mean and covariance of the distribution using every incoming
example. Confidence weighted learning has demonstrated superior classification per-
formance in comparison to the state-of-the-art online learning algorithms [Crammer
et al. 2008, 2009; Dredze et al. 2008]. This motivates us to apply the idea of confidence
weighted learning to tackle the online learning task for portfolio selection.

3.3. Online Portfolio Selection Strategy

The online portfolio selection problem has been extensively studied in several commu-
nities. In general, a strategy usually learns to compete with a target class of strate-
gies. Following Cesa-Bianchi and Lugosi [2006], given the target class of strategies
Q = {

Q1, Q2, . . .
}
, each element denotes one online strategy, we define the worst-case

logarithmic wealth ratio achieved by strategy P as,

Wn (P,Q) = sup
xn

sup
Q∈Q

ln
Sn
(
Q, xn)

Sn (P, xn)
.

One can arbitrarily choose any class of strategy to target, for example, the widely
adopted CRP strategy class (see Section 3.1 for the description of CRP strategy), or
mixture of different classes of strategies.

Since the best CRP strategy is the optimal strategy in an independ identically dis-
tributed market (see Cover and Thomas [1991], Theorem 15.3.1), the online portfolio
selection community always chooses CRP strategy B as a target class, which means
that it compares a strategy with any possible CRP strategy in the simplex domain. In

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.



4:6 B. Li et al.

this case, the worst-case logarithmic wealth ratio becomes the regret [Cover 1991] of a
strategy P, that is,

regret (P) = Wn (P,B) = sup
xn

sup
B∈�m

ln
Sn (B, xn)

Sn (P, xn)
,

where Sn (B, xn) denotes the cumulative wealth achieved by a CRP strategy B and thus
supB∈�m Sn (B, xn) is obviously the wealth achieved by Best CRP strategy (BCRP). An
online portfolio selection strategy P is universal if

lim
n→∞

1
n

Wn (P,B) ≤ 0.

In other words, for arbitrary price relative sequences xn, a universal portfolio selection
algorithm can asymptotically achieve no regret with respect to Best CRP strategy.

Cover [1991] proposed Universal Portfolio (UP) strategy, where the portfolio is the
historical performance-weighted average of all CRP experts. The regret achieved by
Cover’s UP strategy is O(m log n), and its running time complexity is O(nm), which
limits the practical applications. Kalai and Vempala [2002] presented a polynomial
time-efficient implementation, which takes O(m7n8). The UP strategy was further en-
hanced by Cover and Ordentlich [1996], who took into account various side informa-
tion (fundamental data, experts’ opinions, etc.). Cross and Barron [2003] proposed a
new universal strategy, tracking the best-in-hindsight wealth achievable within tar-
get classes of linearly parameterized portfolio sequences, which are more general than
the class of CRP strategy. Belentepe [2005] presented a statistical view of Cover’s UP,
showing that it is approximately equivalent to a constrained sequential portfolio op-
timization, thereby connecting Cover’s UP strategy with traditional mean-variance
portfolio theory [Markowitz 1952].

Helmbold et al. [1998] proposed Exponential Gradient (EG) strategy, which updates
the portfolio using multiplicative updates. In essence, EG strategy attempts to maxi-
mize the expected logarithmic portfolio period return estimated by last price relative,
and minimize the deviation from last portfolio. The regret achieved by EG strategy is
O(

√
n log m) with O(mn) running time. While its regret is not as tight as that of UP’s,

its linear time makes it more attractive in real large-scale applications.
Recently, online convex optimization has been applied on the portfolio selection

problem [Agarwal and Hazan 2005; Agarwal et al. 2006]. Online Newton Step (ONS)
strategy [Agarwal et al. 2006] aims to maximize the expected logarithmic cumulative
wealth estimated by all historical price relatives [Gaivoronski and Stella 2000, 2003]
and minimize the variation of next portfolio. ONS exploits the second order informa-
tion of log function and applies it to an online learning scenario. It achieves a regret
of O(m log n), which is the same as Cover’s UP, and has running time complexity of
O(m3n). Following ONS, Hazan and Seshadhri [2009] recently proposed an adaptive
regret approach. Moreover, Hazan and Kale [2009] linked ONS-type strategies (or “fol-
low the leader” in online learning literature) for investing with probabilistic models
of stock price returns, namely, Geometric Brownian Motion (GBM), and improved the
regret to O(m log Q), where Q is the quadratic variability of a price relative sequence
and typically smaller than n.

Borodin et al. [2004] proposed a nonuniversal strategy named Anticorrelation (Anti-
cor). Unlike previous approaches, Anticor takes advantage of the statistical properties
of the financial markets. The underlying motivation is to bet on the consistency of pos-
itive lagged cross-correlation and negative autocorrelation. It exploits the statistical
information from historical price relatives and adopts the mean reversion trading idea
to transfer wealth among assets. Although without any theoretical guarantee, Anticor

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.
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can outperform other existing strategies in most cases. Unlike the greedy algorithm by
the Anticor strategy, Li et al. [2012] very recently proposed Passive Aggressive Mean
Reversion (PAMR) strategy to actively exploit the mean reversion property and the
first order information of a portfolio, which produces better performance than Anti-
cor. To solve the drawbacks caused by the underlying single-period mean reversion
of PAMR, Li and Hoi [2012] proposed Moving Average Reversion (MAR), which is a
multiperiod mean reversion, and Online Moving Average Reversion (OLMAR) to ex-
ploit MAR. Empirically, OLMAR performs better than PAMR, especially on certain
datasets that failed PAMR.

Györfi et al. [2006] introduced a framework of nonparametric learning strategies
based on nonparametric prediction techniques [Györfi and Schäfer 2003]. On each
trading period, the class of strategies searches over historical price relatives and iden-
tifies a set of price relatives, whose previous price relatives (in a window) are simi-
lar to recent price relatives and then obtains an optimal CRP portfolio based on these
similar price relatives. With this framework, Nonparametric kernel-based moving win-
dow (BK) [Györfi et al. 2006] strategy measures similarity using Euclidean distance.
To improve the computational efficiency, Györfi et al. [2007] proposed another vari-
ant called Nonparametric Kernel-Based Semi-Log-Optimal strategy, which is an ap-
proximation of the BK strategy. Replacing the utility function from log utility by a
Markowitz-type utility function, Ottucsák and Vajda [2007] proposed Nonparametric
Kernel-based Markowitz-type strategy, which connects return and risk (mean and vari-
ance) with nonparametric learning strategy. Following the same framework, Nonpara-
metric Nearest Neighbor learning (BNN) [Györfi et al. 2008] aims to search for � nearest
neighbors in historical sequence, which has been empirically shown to be robust. Re-
cently, Li et al. [2011a] proposed Correlation-driven Nonparametric learning (CORN)
strategy to search for similar price relatives via correlation coefficient, and consider-
ably boosted the empirical performance of the nonparametric learning approach. In
addition, Györfi and Vajda [2008] and Györfi et al. [2012, Chapter 3] studied the non-
parametric learning strategies in cases of transaction costs.

In addition, aggregating algorithms [Vovk 1990] have also been investigated for on-
line portfolio selection. Singer [1997] proposed Switching Portfolio (SP), which switches
among a set of underlying strategies according to a prior distribution. Levina and
Shafer [2008] introduced Gaussian Random Walk (GRW), which applies the aggregat-
ing algorithm and switches according to a Gaussian distribution. Sequential prediction
techniques, example Add-beta [Borodin et al. 2000] prediction method (T0 & M0 algo-
rithm), can also be applied to tackle this task.

Last, we note that our work is very different from another large body of existing work
in the literature [Borodin et al. 2000; Cao and Tay 2003; Kimoto et al. 1993; Lu et al.
2009; Tay and Cao 2001], which attempted to make financial time series forecasting
and stock price predictions by applying machine learning techniques, such as neural
networks [Kimoto et al. 1993], decision trees [Tsang et al. 2004], and support vector
machines (SVM) [Cao and Tay 2003; Lu et al. 2009; Tay and Cao 2001], and so on. The
key difference between these existing works and ours is that their learning goal is to
make explicit predictions of future prices/trends while our learning goal is to directly
optimize portfolio selection without explicitly predicting prices.

3.4. Analysis of Existing Work

Some existing strategies (EG and ONS) adopt the “trend-following” trading idea, which
assumes that price relative follows the same trend as last price relative, that is, win-
ning stocks tend to win again in the following trading period. Despite being popular
and easy to understand, trend following is generally hard to implement effectively. In

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.
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Table I. Summary of Pros and Cons of Existing Algorithms and the Proposed Algorithms

Trading Ideas Algorithms Pros Cons

Trend Following EG & ONS
· Easy to understand (Intuitive) · Only first order information
· Universal · Poor empirical performance

Mean Reversion

UP
· Fits the markets (Counterintuitive) · Passive exploitation of MR
· Universal · Only first order information

· Poor empirical performance

Anticor
· Fits the markets (Counterintuitive) · Heuristical exploitation of

MR
· Good empirical performance · Only first order information

· Nonuniversal

Pattern Matching BK, BNN & CORN
· Universal1 · Mixes TF and MR
· Good empirical performance · Only first order information

Mean Reversion CWMR

· Fits the markets (Counterintuitive) · Nonuniversal2

· Active exploitation of MR
· Both first and second order information
· Good empirical performance

1Li et al. [2011a] does not prove CORN’s universality.
2We further propose CWMR mixture extension, which is universal, in Section 4.5.

addition, in many short-term trading situations, stock price relatives may not follow
previous trends, as empirically evidenced by Jegadeesh [1990] and Lo and MacKinlay
[1990].

Contrary to the trend-following trading idea, the “mean reversion” trading princi-
ple assumes that if a stock performs worse than others, it tends to perform better
in the next trading period. Thus, a mean reversion strategy tends to purchase poor-
performing assets and sell good-performing assets. Some strategies (CRP, UP, and An-
ticor) adopt this idea. Empirically, CRP and UP strategy, which passively revert to
the mean, often perform worse than Anticor, which actively reverts to the mean and
thus can better exploit the fluctuation of asset prices [Borodin et al. 2004]. On the other
hand, since Anticor heuristically transfers proportions within a portfolio, based on sta-
tistical correlations, it often produces suboptimal results. A new strategy to actively
exploit the mean reversion property with a powerful learning method is necessary.

Besides trend following and mean reversion, pattern matching based algorithms, in-
cluding nonparametric learning algorithms (BK, BNN, and CORN), achieve excellent
performance in the back tests. Algorithms in this category can flexibly identify many
market conditions, including both mean reversion and trend following. However, in
certain cases, the pattern matching-based algorithms may locate both mean reverting
and trend following price relatives, whose patterns are essentially contradictory, thus
weakening the following maximization of the conditional expected logarithmic cumu-
lative wealth.

Finally, all existing algorithms only consider the first order information of a portfolio
vector, while the second order information (volatility of a portfolio vector) could provide
useful volatility information, which can facilitate the portfolio selection task.

Table I summarizes the pros and cons of the existing algorithms and the proposed
Confidence Weighted Mean Reversion (CWMR) strategy.

4. CONFIDENCE WEIGHTED MEAN REVERSION STRATEGY

4.1. Motivation

The proposed method is based on the mean reversion trading idea, which in the context
of portfolio, or multiple stocks, implies that well-performing stocks tend to perform
worse than others in the subsequent trading periods, and poor-performing stocks are
inclined to perform better. Thus if we want to maximize next portfolio return, we could
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Table II. Summary of Mean Reversion Statistics in Real Markets

Dataset P (B) G (B) P
(
C
)

G
(
C
)

P (D) G
(
A
)

G
(
Market

)
Gday

(
A
)

DJA 46.36% 1.001315 32.24% 0.998749 21.46% 1.000220 0.999982 1.187180
NDX 49.18% 1.001323 33.88% 0.998784 16.94% 1.000255 0.999979 1.220029
TSE 42.89% 1.022370 41.63% 0.978395 15.48% 1.000598 1.000405 1.000598
MSCI 54.19% 1.015737 45.05% 0.984046 0.76% 1.001107 1.000053 1.001107
NYSE (O) 43.43% 1.021599 39.86% 0.981949 16.71% 1.002523 1.000620 1.002523
NYSE (N) 47.87% 1.019624 43.19% 0.982050 8.93% 1.001644 1.000610 1.001644
W-NYSE (O) 53.31% 1.034946 46.14% 0.973532 0.55% 1.007108 1.003054 1.001418
W-NYSE (N) 54.71% 1.036923 45.01% 0.968286 0.28% 1.007158 1.002933 1.001428

Notes 1: DJA and NDX are high frequency data; NYSE (O), NYSE (N), TSE, and MSCI are daily frequency
data; W-NYSE (O) and W-NYSE (N) are weekly frequency data. Detail can be found in Table V in Section 5.1.
Notes 2: We empirically choose δ depending on the price relatives’ average drift such that all sets (A, B, C,
and D) are nonempty. In particular, we set δ = 0.998 in high frequency datasets, δ = 0.985 in daily datasets,
and δ = 0.985 in weekly datasets. Our test have indicated that the statistics with other thresholds also
reach the same conclusions.

minimize the expected return with respect to today’s price relative, since next price
relative tends to revert. This seems somewhat counterintuitive, but according to Lo
and MacKinlay [1990], the effectiveness of mean reversion is due to the positive cross-
autocovariances across assets.

Now let us empirically analyze real market data to show that mean reversion does
exist in real markets3. In general, to test mean reversion, the actual trading frequency
is one key parameter4. Although researchers in finance often test on weekly data
[Bondt and Thaler 1985, 1987; Chaudhuri and Wu 2003; Jegadeesh 1991; Poterba and
Summers 1988], we expand our test into three types of trading period, that is, high
frequency, daily, and weekly. Since our portfolio is long-only5, we focus on whether it is
possible to obtain a higher return than the market by investing in poorly-performing
stocks6. With a threshold δ, let At be the set of poorly-performing stocks (xt,i<δ), Bt be
the set of mean reversion (MR) stocks (xt,i<δ && xt+1,i>1), Ct be the set of non-mean
reversion (non-MR) stocks (xt,i<δ && xt+1,i<1), and Dt be the set of remaining stocks
(xt,i<δ && xt+1,i=1). In each period t, let us denote the percentage of a set U (U can be
either A, B, C, or D) as Pt (U) = |Ut|/

∣∣At
∣∣, where |·| denotes the cardinality of the set,

and the gain of uniformly investing in the set as Gt (U) = ∑
i∈Ut

xti/|Ut|. For a total of
n trading periods, we can calculate their average values as, P (U) = 1

n−1
∑n−1

t=1 Pt (U)

and G (U) = 1
n−1

∑n−1
t=1 Gt (U), respectively. In particular, we refer to the percentage

of mean reversion stocks as P (B), and the gain of mean reversion stocks as G (B). To
show whether buying poorly-performing stocks result in profit, we calculate the gain
of uniformly investing in poorly-performing stocks, denoted as G

(
A
)
, and the gain of

uniformly investing in the whole market, denoted as G
(
Market

)
. To compare the mean

reversion property in different frequencies, we convert G
(
A
)

to a daily basis, denoted
as Gday

(
A
)
.7

3The test program and datasets will be available at http://www.cais.ntu.edu.sg/∼libin/portfolios.
4The econometric detail is beyond the scope of this article, and one may refer to related econometric articles.
5Long-only means if something is considered undervalued, managers would invest, while if something is
considered overvalued, managers would avoid it.
6If short is allowed, we can also show whether shorting the well-performing stocks provides a higher return.
7For the US markets, we assume one trading day has 780×30 seconds and one trading week has 5 trading
days.
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Table II gives the statistics on eight real datasets with different intervals. Clearly,
mean reversion does exist in the real markets (P (B) > P

(
C
)
), and uniformly investing

in poorly-performing stocks provides a larger profit than market (G
(
A
)

> G
(
Market

)
).

By comparing Gday
(
A
)

on NYSE (O/N) daily and weekly datasets, we can see that
mean reversion is stronger in daily data than in weekly data. Moreover, it seems
that mean reversion is strongest in high frequency data, though the comparisons are
based on different assets and periods. Finally, both mean reversion stocks (B) and non-
mean reversion stocks (C) are important. However, the following proposed algorithm
is mainly based on mean reversion stocks, which one can easily extend to non-mean
reversion stocks.

Moreover, all state-of-the-art approaches only exploit the first order information of
a portfolio vector, while the second order volatility information may also benefit the
portfolio selection task. Empirical studies [Chopra and Ziemba 1993] show that, in
portfolio selection, errors in variance have about 5% impact on the objective value, as
do errors in mean. We do not consider the covariances among the portfolio vectors,
since they has much smaller impact on the final objective value [Chopra and Ziemba
1993]. To take advantage of both first and second order information, we adopt Confi-
dence Weighted (CW) learning [Crammer et al. 2008; Dredze et al. 2008], which was
originally proposed for classification. The basic idea of CW is to maintain a Gaussian
distribution for the classifier, and sequentially update the classifier distribution ac-
cording to Passive Aggressive (PA) learning [Crammer et al. 2006]. Thus, CW learning
can take advantage of both first and second order information for the solution.

To address these concerns with existing work, in this article, we present a novel on-
line portfolio selection method named Confidence Weighted Mean Reversion (CWMR).
In order to exploit the first and second order information of a portfolio vector, we model
the portfolio vector as a Gaussian distribution, which can satisfy our motivations and
is probably the most widely studied distribution. We do not consider higher orders
and other distributions because of their complexities. Then, we sequentially update
the distribution according to the mean reversion idea. On the one hand, we keep the
previous distribution if the portfolio is mean reversion profitable. On the other hand,
we move to a new distribution such that the new distribution is expected to profit,
while keeping it close to the previous distribution. Differently from CRP and Anti-
cor, CWMR actively exploits the mean reversion property of financial markets with a
powerful learning method. Moreover, compared with traditional online portfolio selec-
tion algorithms, which only consider the first order information, the proposed CWMR
algorithm exploits both the first and second order information.

4.2. Formulation

We model b as a diagonal Gaussian distribution with mean μ ∈ R
m and diagonal

covariance matrix � ∈ R
m×m with nonzero diagonal elements and zero for off-diagonal

elements. The ith element of μ represents the proportion of the ith element. The ith
diagonal term of � stands for the confidence on the ith proportion.

At the beginning of the tth period, we figure out a b based on the distribution
N (μ, �), i.e., b ∼ N (μ, �). Then, after xt reveals, the wealth increases by a factor
of b�xt. It is straightforward that the return D = b�xt can be viewed as a random
variable of the following univariate Gaussian distribution

D ∼ N
(
μ�xt, x�

t �xt

)
.

The distribution mean is the return of the mean vector and the variance is proportional
to the length of the projection of xt on �.
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According to the mean reversion idea, the probability of a profitable b with respect
to a predefined mean reversion threshold ε is defined as

Prb∼N (μ,�) [D ≤ ε] = Prb∼N (μ,�)

[
b�xt ≤ ε

]
.

For simplicity, we write Pr
[
b�xt ≤ ε

]
instead. The parameter ε can be chosen em-

pirically, we will discuss it in Section 4.3 and empirically evaluate its effect in Sec-
tion 5.4.3. Note that we are considering the mean reversion profitability in a portfolio
consisting of multiple stocks, thus this definition is equivalent to the motivating idea
of buying poorly-performing stocks.

The algorithm adjusts the distribution to ensure that the probability of a mean re-
version profitable b is higher than a confidence level parameter θ ∈ [0, 1]

Pr
[
b�xt ≤ ε

]
≥ θ .

This is a bit counterintuitive but reasonable with respect to the mean reversion idea.
If the portfolio return b�xt is less than a threshold with a high probability, the next
return tends to be higher in a high probability since xt+1 will revert.

Then, following the intuition underlying PA algorithms [Crammer et al. 2006], our
algorithm chooses the distribution closest to the current distribution N (μt, �t) in the
Kullback-Leibler (KL) [Kullback and Leibler 1951] divergence sense. This ensures that
if the current distribution satisfies the constraint, that is, it is mean reversion prof-
itable with a high probability, we retain the current distribution. As a result, at the
end of the tth period, the algorithm sets the parameters of the distribution by solving
the following optimization problem.

The Raw Optimization Problem CWMR.(
μt+1, �t+1

) = arg min DKL (N (μ, �) ‖N (μt, �t))

s. t. Pr
[
b�xt ≤ ε

]
≥ θ

μ ∈ �m.

(1)

The optimization problem (1) clearly reflects our motivation. On the one hand, if
current μt is mean reversion profitable, that is, the first constraint is satisfied, CWMR
chooses the same distribution, resulting in a passive CRP strategy. On the other hand,
if μt does not satisfy the constraint, then CWMR tries to figure out a new distribution,
which is expected to profit and is not far from the current distribution.

Now let us reformulate both objective and constraint for the optimization problem,
following Boyd and Vandenberghe [2004]. For the objective part, the KL divergence
between the two Gaussian distributions is given as follows.

DKL(N (μ, �) ‖N (μt, �t)) = 1
2

(
log
(

det�t

det�

)
+ Tr

(
�−1

t �

)
+ (μt − μ)� �−1

t (μt − μ) − d
)

.

For the constraint part, since b ∼ N (μ, �), b�xt has a univariate Gaussian distribu-
tion with mean μD = μ�xt and variance σ 2

D = x�
t �xt. Thus the probability of a return

less than ε is

Pr [D ≤ ε] = Pr
[

D − μD

σD
≤ ε − μD

σD

]
.

In the preceding equation, D−μD
σD

is a normally distributed random variable, the proba-

bility equals 	
(

ε−μD
σD

)
, where 	 is the cumulative distribution function of the Gaussian
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distribution. As a result, we can rewrite the constraint as, ε−μD
σD

≥ 	−1 (θ). Substitut-
ing μD and σD by their definitions and rearranging terms we can obtain

ε − μ�xt ≥ φ

√
x�

t �xt,

where φ = 	−1 (θ). Clearly, we require that the weighted summation of return and
standard deviation is less than the threshold. Now we can rewrite the preceding opti-
mization problem as the following.

The Revised Optimization Problem CWMR.

(
μt+1, �t+1

) = arg min
1
2

(
log
(

det�t

det�

)
+ Tr

(
�−1

t �
)

+ (μt − μ)� �−1
t (μt − μ)

)

such that ε − μ�xt ≥ φ

√
x�

t �xt

μ�1 = 1, μ � 0.

(2)

Note that the short version [Li et al. 2011b] assumes log utility [Bernoulli 1954;
Latané 1959] on μ�xt and is slightly different from this version. Since both ε and φ
are adjustable, they have the similar effect on μ. Assuming other parameters constant
except μ, as μ�xt > log μ�xt, current linear form can move μ towards the mean rever-
sion profitable portfolio more than log form can. However, log form in this constraint
causes another convexity issue besides the standard deviation on the right-hand side.
To solve the optimization problem with a log, Li et al. [2011b] chose to replace the log
term by its linear approximation, which may converge to a different solution. Thus,
we adopt return without log, which has no convexity issues concerning the log and its
linear approximation.

For optimization Problem (2), the first constraint is not convex in �, therefore we
have two ways to handle it. The first way [Dredze et al. 2008] is to linearize it by
omitting the square root, that is, ε − μ�xt ≥ φx�

t �xt. Thus we can have the first final
optimization problem, named CWMR-Var.

The Final Optimization Problem 1 CWMR-Var.

(
μt+1, �t+1

) = arg min
1
2

(
log
(

det�t

det�

)
+ Tr

(
�−1

t �
)

+ (μt − μ)� �−1
t (μt − μ)

)
such that ε − μ�xt ≥ φx�

t �xt

μ�1 = 1, μ � 0.

(3)

The second reformulation [Crammer et al. 2008] is to decompose � since it is positive
semidefinite (PSD), that is, � = ϒ2 with ϒ = Qdiag

(
λ

1/2
1 , . . . , λ1/2

m

)
Q�, where Q is

orthonormal and λ1, . . . , λm are the eigenvalues of � and thus ϒ is also PSD. This
reformulation yields the second final optimization problem, named CWMR-Stdev.

The Final Optimization Problem 2 CWMR-Stdev.

(
μt+1, ϒt+1

) = arg min
1
2

(
log

(
detϒ2

t

detϒ2

)
+ Tr

(
ϒ−2

t ϒ2
)

+ (μt − μ)� ϒ−2
t (μt − μ)

)

such that ε − μ�xt ≥ φ ‖ϒxt‖ , ϒ is PSD

μ�1 = 1, μ � 0.

(4)
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Clearly, revised optimization Problem (2), is equivalent to raw optimization Prob-
lem (1). From the revised problem, we proposed two final optimization Problems (3)
and (4), which are convex, and thus can be efficiently solved by convex optimiza-
tion [Boyd and Vandenberghe 2004]. The first variation, CWMR-Var, linearizes the
constraint, thus it results in an approximate solution for the revised optimization prob-
lem and the raw optimization problem. While the second variation, CWMR-Stdev, is
equivalent to revised optimization Problem (2), and results in an exact solution for
both the revised and raw optimization problems.

4.3. Algorithm

Now, let us generate the proposed algorithms based on the solutions of the two op-
timization problems. The solutions for optimization Problems (3) and (4) are shown
in Proposition 4.1 and Proposition 4.2, respectively. The proofs are presented in Ap-
pendix 6 and Appendix 6, respectively.

PROPOSITION 4.1. The solution to final optimization Problem (3) (CWMR-Var) is
expressed as

μt+1 = μt − λt+1�t (xt − x̄t1) , �−1
t+1 = �−1

t + 2λt+1φxtx�
t ,

where λt+1 corresponds to the Lagrangian multiplier calculated according to Equa-
tion (11) in Appendix A and x̄t = 1��txt

1��t1
denotes the confidence weighted average of xt.

PROPOSITION 4.2. The solution to final optimization Problem (4) (CWMR-Stdev) is
expressed as

μt+1 = μt − λt+1�t (xt − x̄t1) , �−1
t+1 = �−1

t + λt+1φ
xtx�

t√
Ut

,

where λt+1 denotes the Lagrangian multiplier calculated according to Equation (15)
in Appendix B, x̄t = 1��txt

1��t1
represents the confidence weighted average of xt, and Vt =

x�
t �txt and

√
Ut = −λt+1φVt+

√
λ2

t+1φ2V2
t +4Vt

2 denote the return variances for the tth and
t+1th period, respectively.

Initially, with no information available for the task, we simply initialize μ1 to uni-
form, and each diagonal element of the covariance matrix �1 to variance 1

m2 , or equiv-
alent standard deviation 1

m . It is worth noting that we solve the optimization problems
by ignoring the non-negativity constraint (μ � 0) for its complexity, which is a typical
way to reduce the complexity as in existing work [Agarwal et al. 2006; Helmbold et al.
1997, 1998]. To solve the issue that μ can be negative, we simply project the result-
ing μ to the simplex domain to ensure the simplex constraint [Agarwal et al. 2006].
The projection can be efficiently implemented in linear time [Duchi et al. 2008] with
respect to the dimension of a vector. In the context of investment, this means that
we first allow shorting, and later lower the leverage with the projection. Another re-
maining issue is that although the covariance matrix is nonsingular in theory, in real
computation, the covariance matrix � sometimes may be singular due to computer
precision. To avoid this problem and be consistent with the projection of μ, we rescale
� by normalizing its summation value to 1

m , which equals the sum of elements in μ1.
Note that we arbitrarily chose 1

m , while one can chose other values, which generally
do not affect the empirical performance too much. The final CWMR algorithms are
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Algorithm 2: Confidence Weighted Mean Reversion: CWMR
(
φ, ε, (μt, �t) , xt

1, t
)
.

Input: φ: Confidence parameter; ε ∈ [0, 1]: Mean reversion parameter; (μt, �t):
Current portfolio distribution; xt

1: Historical market sequence; t: Index of
current trading period

Output:
(
μt+1, �t+1

)
: Next portfolio distribution

1 Calculate the following variables:

Mt = μ�
t xt, Vt = x�

t �txt, Wt = x�
t �t1, x̄t = 1��txt

1��t1

2 Update the portfolio distribution:

CWMR-Var

⎧⎪⎪⎨
⎪⎪⎩

λt+1 as in Eq. (11) in Appendix 6
μt+1 = μt − λt+1�t (xt − x̄t1)

�t+1 =
(
�−1

t + 2λt+1φdiag2
(xt)

)−1

CWMR-Stdev

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λt+1 as in Eq. (15) in Appendix 6
√

Ut = −λt+1φVt+
√

λ2
t+1φ2V2

t +4Vt

2
μt+1 = μt − λt+1�t (xt − x̄t1)

�t+1 =
(
�−1

t + λt+1
φ√
Ut

diag2
(xt)

)−1

3 Normalize μt+1 and �t+1:

μt+1 = arg min
μ∈�m

∥∥μ − μt+1
∥∥2 , �t+1 = �t+1

mTr
(
�t+1

)

presented in Algorithm 2, and the online portfolio selection, with both deterministic
and stochastic CWMR algorithms, is illustrated in Algorithm 3.

The algorithms have two possible parameters, that is, the confidence parameter φ,
and the mean reversion parameter ε. Typically, the first parameter, φ, can be 1.28, 1.64,
1.95, or 2.57, with corresponding θ values 80%, 90%, 95%, or 99%. As we have found, φ
does not overly affect the final performance. On the contrary, the second parameter, ε,
has significant impact on the final performance. As our model is long-only, we put more
weight on the poorly-performing stocks, thus, ε is often in the range of [0, 1]. On the
one hand, if the value is too large, such as ε ≥ 1.2, the last portfolio distribution can
always satisfy the constraint and no update is required. With initial uniform portfolio,
CWMR will degrade to uniform CRP. On the other hand, if the value is too small,
such as ε ≤ 0.5, the constraint cannot always be satisfied and then the distribution
has to be frequently updated to satisfy the constraint. In between, CWMR updates the
distribution when the last distribution cannot satisfy the constraint. We will further
validate this analysis by evaluating the parameter effect in Section 5.4.3.

4.4. Analysis and Interpretation

In this section, we give some analysis and interpretations of the proposed algo-
rithms. First, we compare CWMR algorithms with Confidence Weight (CW) learning
[Crammer et al. 2008; Dredze et al. 2008]. Then, we analyze CWMR’s update schemes,
that is, μ and �, with running examples. Further, we analyze the behavior of the
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Algorithm 3: Online Portfolio Selection with CWMR.

Input: φ = 	−1 (θ): Confidence parameter; ε ∈ [0, 1]: Mean reversion parameter;
xn

1: Historical market sequence
Output: Sn: Final cumulative wealth

1 Initialization: t = 1, μ1 = 1
m1, �1 = 1

m2 I, S0 = 1
2 for t = 1, . . . , n do
3 Draw a portfolio bt from N (μt, �t):

Determinstic CWMR : bt = μt

Stochastic CWMR : b̃t ∼ N (μt, �t) , bt = arg min
b∈�m

∥∥∥b − b̃t

∥∥∥2

4 Receive stock price relatives: xt = (xt1, . . . , xtm) ;
5 Calculate the daily return and cumulative return: St = St−1 × (b�

t xt
)

;
6 Update the portfolio distribution:

(
μt+1, �t+1

) = CWMR
(
φ, ε, (μt, �t) , xt

1, t
)
;

7 end

stochastic version. Finally, we show the computational time complexity and compare
it to existing work.

The CWMR algorithms are partially motivated by CW learning, thus their for-
mulations and subsequent derivations are similar. However, they address different
problems, since CWMR aims to handle online portfolio selection, while CW focuses on
classification. Although both objectives adopt KL divergence to measure the closeness
between two distributions, their constraints reflect that they are oriented to different
problems. To be specific, CW’s constraint is the probability of a correct prediction,
while CWMR’s constraints are the probability of an underperforming portfolio in the
current period plus the simplex constraint. If there is mean reversion, the portfolio
should be profitable, in the next period. The formulations’ differences result in
different derivations.

Now we provide a preliminary analysis of the update behavior of mean μ, which
is the main concern for CWMR, to reflect its underlying mean reversion idea. Both
CWMR-Var and CWMR-Stdev have the same update on μ, that is, μt+1 = μt −
λt+1�t (xt − x̄t1). Obviously, λt+1 is non-negative and �t is PSD. The term xt − x̄t1
denotes excess return vector for the tth period, where x̄t is confidence weighted av-
erage of xt. Holding other terms constant, the mean μt+1 tends to move towards μt,
while the magnitude is negatively related to the previous excess return, which is in ef-
fect, the mean reversion idea. Meanwhile, these movements are dynamically adjusted
by optimal λt+1, previous covariance matrix �t, and mean μt, which catch both first-
and second-order information. To the best of our knowledge, none of previous online
portfolio selection algorithms have explicitly exploited the second order information of
b, while the second order information could contribute to the success of the proposed
algorithms.

Let us continue to analyze the update of the covariance matrix �. With only
non-zero diagonal elements, we can write the update of the ith variance as σ 2 =
σ 2

i /
(
1 + λt+1φ′x2

tiσ
2
i

)
, where φ′ = 2φ for CWMR-Var and φ′ = φ√

Ut
for CWMR-Stdev.

Since both λt+1 and φ′ are positive, poorly-performing stocks with lower values of xti
have higher variance terms than that of well-performing stocks with higher xti. Note
here that � denotes the covariance matrix of b rather than x. Thus, a higher value
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Table III. Running Example of CWMR-Stdev on Cover’s Game

t xt bt b�
t xt λt xt − x̄t1 diag (�t) μt

0 (0.25, 0.25) (0.5, 0.5)
1 (1.0, 0.5) (0.5, 0.5) 0.75 40.78 (0.25, -0.25) (0.10, 0.40) (0.0, 1.0)
2 (1.0, 2.0) (0.0, 1.0) 2.00 61.61 (-0.80, 0.20) (0.40, 0.10) (1.0, 0.0)
3 (1.0, 0.5) (1.0, 0.0) 1.00 75.56 (0.10, -0.40) (0.10, 0.40) (0.0, 1.0)
4 (1.0, 2.0) (0.0, 1.0) 2.00 31.61 (-0.80, 0.20) (0.40, 0.10) (1.0, 0.0)
5 (1.0, 0.5) (1.0, 0.0) 1.00 75.56 (0.10, -0.40) (0.10, 0.40) (0.0, 1.0)
...

...
...

...
...

...
...

...

means that the corresponding mean is more volatile than others. Since we move the
weights from well-performing stocks to poorly-performing ones, the latter will change
more significantly than the former, that is, the latter has higher volatility. In the next
update of μ, stocks with higher volatility would magnify the movement magnitude,
and the direction would be determined by the excess return vector.

To better illustrate the updates, we give running updates based on the classic exam-
ple by Cover and Gluss [1986]. Let a portfolio consist of cash and one volatility asset,
and the sequence of x is

(
1, 1

2

)
, (1, 2) ,

(
1, 1

2

)
, . . . . Obviously, market strategy can gain

nothing since no asset grows in the long run. The best CRP strategy, with b =
(

1
2 , 1

2

)
,

grows to
(

9
8

) n
2 at the end of the nth period. However, starting with μ0 =

(
1
2 , 1

2

)
, the

CWMR strategy can grow to 3
4 × 2

n−1
2 at the end of the nth period. The running de-

tails for the first 5 periods are shown in Table III, and further details can be easily
derived. Let us continue the preceding analysis of mean μ. In each period t, the mean
moves toward the previous mean and also moves far away from the excess return vec-
tor (xt − x̄t1), and the movement magnitude is determined by both λt and �t. Note that
in this example μ before projection is out of the simplex and is made sparse via nor-
malization, which is not usual case in real tests. In summary, both the first and second
order information contribute to the success of the strategy, according to the preceding
analysis.

Then, let us compare the deterministic CWMR with the stochastic version (Line 3 in
Algorithm 3), which includes a covariance matrix besides the mean to draw a portfolio.
Interestingly, we find that � negatively affects CWMR’s performance in the following
aspects. First, the stochastic b drawn from the distribution is always different from
the optimal mean μ, which obviously causes performance divergences. Given that �
converges to the zero matrix (see the recursive updates in the two propositions), the
distribution of b conditioning on the data converges to the point mass at the mean
parameter value μ = limt μt. Thus, it is clear that drawing weights b from the distri-
bution (the stochastic version) is suboptimal, since we already have an estimate of μ.
It is better to choose b as either the mode or mean (incidentally the same for the Gaus-
sian case), which is actually the deterministic version. Another effect caused by the
stochastic behavior is the additional projection, since sometimes the stochastic b may
be out of the simplex domain. To better understand these two aspects, let us continue
Cover’s game in Table III. For the first case, assuming we are at the beginning of the
first period, we have μ = (0.5, 0.5) and diag (�) = (0.25, 0.25). We draw stochastic b
for 10000 times, and the average b after projection is (0.5038, 0.4962) (the value before
projection is (0.5070, 0.4993)), which is slightly deviated from the optimal mean and
will result in different performance. For the second case, assuming at the beginning
of the second period, we have μ = (0, 1) and diag (�) = (0.1, 0.4). We average 10,000
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Table IV. Summary of Time Complexity Analysis for Online Portfolio Selection Algorithms

Methods Time Complexity Methods Time Complexity

UP O
(
nm) [Cover 1991] ONS O

(
m3n

)
O
(
m7n8

)
[Kalai and Vempala 2002] Anticor O

(
N3m2n

)
EG/SP/GRW/M0 O(mn) BK/BNN/CORN O

(
N2mn2

)
+O
(
Nmn2

)
CWMR O(mn)

Sources: All time complexities are acquired from their respective studies.
Notes 1: m denotes the number of stocks; n is the number of trading periods; N denotes the number of
experts.
Notes 2: Nonparametric learning approaches (BK, BNN, and CORN) require a nonlinear optimization
step each period, that is, bt+1 = arg maxb∈�m

∏
i

(
b�xi

)
, whose time complexity is generally high. To

produce an approximate solution, batch gradient projection algorithms [Helmbold et al. 1997] take O(mn),
while batch convex Newton method [Agarwal et al. 2006] take O(m3n). In the table, we set step O(mn)
time complexity. In our implementation, we adopt the Matlab optimization toolbox (function fmincon with
active-set) to obtain the exact solution.

stochastic b’s after projection, and get an average b = (0.1391, 0.8609), which is far
from the optimal mean (0, 1). In both cases, stochastic b tends to deviate from the op-
timal mean, especially in the second case, and thus underperforms the deterministic
CWMR, which is clearly shown in the experiments (see Table VII for a review).

Since computational time is of crucial importance for certain trading scenarios, such
as high frequency trading, which can occur in fractions of a second, we finally show
CWMR’s time complexity with m stocks and n periods, where n is typically much larger
than m. In the CWMR implementation, we only consider the diagonal elements of �,
thus the inverse can be computed in linear time. Moreover, the projection (Line 3 in
Algorithm 2) can be implemented8 in O(m) time [Duchi et al. 2008]. Thus, in total,
CWMR algorithms (Algorithm 2) take O(m) time per period. Straightforwardly, online
portfolio selection with the CWMR (Algorithm 3) takes O(mn) time. Table IV compares
the time complexity of CWMR with that of existing strategies. Clearly, the proposed
CWMR algorithms take no more time than any others.

4.5. CWMR-Mixture Algorithm

The proposed CWMR algorithms have two possible parameters, namely, φ and ε.
Though CWMR empirically performs robustly with respect to the parameters (c.f. pa-
rameter sensitivity evaluation in Section 5.4.3), their existence limits CWMR’s poten-
tial applicability. Moreover, although the proposed CWMR algorithm works well on
real markets (c.f. Section 5 for a review), the lack of a traditional regret bound would
reduce the confidence in its practical applicability. In this section, we address these two
drawbacks by creating a CWMR mixture algorithm, which mixes the proposed CWMR
algorithms with different parameter settings and other regret-bounded algorithms.

Since the mean reversion trading idea is counterintuitive, it is difficult to provide a
traditional regret bound9. Alternatively, we treat each CWMR algorithm with a speci-
fied parameter setting as one expert in a setting of multiple experts, which consists of
at least one universal strategy (such as UP, EG, ONS, etc.). Then we adopt no-regret
learning algorithms [Cesa-Bianchi and Lugosi 2006] to bound the whole system. In
this article, we use on idea similar to the buy and hold idea of Cover [1991], Akcoglu

8In the short version [Li et al. 2011b], we solved it using the Matlab optimization toolbox, which costs much
more time.
9Borodin et al. [2004] failed to provide a regret bound for the Anticor strategy, which also exploits the mean
reversion idea.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 1, Article 4, Publication date: March 2013.



4:18 B. Li et al.

et al. [2005] and Borodin et al. [2004], that is, we uniformly distribute the wealth
among N experts, then let them run, and finally pool them together. It is worth not-
ing that rather than pooling experts of the same class (Cover [1991] pools the CRP
class and Borodin et al. [2004] pools the Anticor class), we allow experts from differ-
ent classes. One can optionally use other expert learning algorithms, such as online
gradient update and online Newton update [Das and Banerjee 2011].

To begin with, let us define a set of N experts Q = {
Q1, . . . , QN}, including CWMR

experts and at least one universal strategy. Initially, each expert is assigned to equal
wealth, that is, for convenience, S0

(
Qj, xn) = 1, j = 1, . . . , N. At the beginning of the

tth period, each expert j generates his/her portfolio bj
t, j = 1, . . . , N. Then, the mixture

algorithm weights all experts’ portfolios according to their historical performance, that

is, bt =
∑N

j=1 bj
tSt−1

(
Qj,xn

)
∑N

j=1 St−1(Qj,xn)
. An individual expert with high historical performance has a

high impact on bt. After xt is revealed, the mixture algorithm can update the cumu-
lative wealth St and an individual expert can update its performance St

(
Qj, xn). In

summary, Algorithm 4 illustrates the general procedure of the proposed CWMR mix-
ture algorithm.

Clearly, the total wealth achieved by the mixture algorithm after n trading periods is
equivalent to the uniform weighted wealth of all experts (since each expert is assigned
equal initial wealth), that is,

Sn = 1
N

N∑
j=1

Sn

(
Qj, xn

)
. (5)

Thus, the final cumulative wealth is affected by all experts, and expert j’s contribution
is determined by its final performance Sn

(
Qj, xn).

Ideally, indexed by (φ, ε), we can choose CWMR experts such that they cover all
possible parameter settings, thus eliminating their effects. However, the cost of com-
bining all possible parameter settings is inhibitively high. To boost the computational
efficiency, we can choose finite discrete dimensions of the parameters, that is, a spec-
ified number of (φ, ε) combinations. On the other hand, choosing other experts can be
arbitrary. Typically, one can choose algorithms with different trading ideas, such that
the mixture algorithm can face different market scenarios.

The selection of experts also trades off an individual expert’s performance and its
computational time. First, Equation (5) clearly shows that each expert contributes to
the final cumulative wealth by its performance, thus, choosing a worse expert may
lower the final performance. Second, the mixture’s computation time is generally the
summation of all experts’ individual times. In other words, choosing an expert with
long running time may affect the practical scalability.

We present the theoretical regret bound of the proposed mixture algorithm in The-
orem 4.3 and further declare its universal property in Corollary 4.4. The proofs are
presented in Appendix 6 and Appendix 6, respectively.

THEOREM 4.3. Assume that the CWMR mixture algorithm P competes against a
finite class of N experts Q = {

Q1, . . . , QN}, which contains at least one regret-bounded
algorithm (assume Cover’s UP here). Then the worst-case logarithmic wealth ratio with
respect to best constant rebalanced portfolio is bounded as

sup
xn

sup
B∈�m

ln
Sn (B, xn)

Sn (P, xn)
≤ (m − 1) ln (n − 1) + ln N,
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Algorithm 4: The proposed CWMR Mixture (CWMR-Mix) framework.

Input: Q = {Q1, . . . , QN}: N specified experts; xn
1: Historical market sequence

Output: Sn: Final cumulative wealth
1 Initialization: S0 = 1, S0

(
Qj, xn) = 1, j = 1, . . . , N

2 for t = 1, 2, . . . , n do
3 Generate portfolio bj

t from expert Qj, j = 1, . . . , N;

4 Combine experts’ portfolios for the final portfolio: bt =
∑

j St−1

(
Qj,xn

)
bj

t∑
j St−1(Qj,xn)

;

5 Receive stock price relatives: xt = (xt1, . . . , xtm) ;
6 Update mixture’s cumulative return: St = St−1 × (b�

t xt
)
;

7 Update experts’ cumulative return: St
(
Qj, xn) = St−1

(
Qj, xn)×

(
bj

t · xt

)
;

8 end

where m denotes the number of stocks, n is the number of trading periods, and N denotes
the number of experts.

COROLLARY 4.4. The proposed CWMR mixture algorithm is a universal portfolio
selection algorithm.

Remark. Theorem 4.3 shows that the mixture algorithm’s worst-case logarithmic
wealth ratio is bounded with respect to any CRP strategy, or regret in the online port-
folio selection community. Compared with UP’s worst-case logarithmic wealth ratio,
the mixture has the additional term, ln N. However, since N is usually finite, it will
not affect the mixture’s universal property, as Corollary 4.4 shows. Since other regret-
bounded algorithms (e.g., EG and ONS) have the same regret bound as UP, changing
the regret-bounded algorithm does not affect the current regret bound. Nevertheless,
the preceding regret bound is easy to understand, and provides a theoretical guarantee
for the mixture algorithm, which asymptotically approaches the BCRP strategy. It is
worth noting that although the CMWR mixture algorithm is universal, the universal
property of CWMR itself is still an open question.

5. NUMERICAL EXPERIMENTS

5.1. Experimental Testbed on Real Data

In our empirical study, we focus on historical data in stock markets, which are easy to
obtain, and hence available for other researchers. Data from other markets, such as
currency and commodity markets, are either expensive or hard to obtain and process,
and thus reduce the experimental reproducibility. In our empirical experiments, we
employ eight real and diverse datasets10 from stock markets and index markets as
summarized in Table V.

The first dataset is the well-known NYSE dataset pioneered by Cover [1991] and
followed by most subsequent researchers in the field of online portfolio selection. This
dataset contains 5651 daily price relatives of 36 stocks11 in the New York Stock Ex-
change (NYSE) for a 22-year period, ranging from July 3rd 1962 to December 31st 1984.
We refer to this dataset as “NYSE (O).” For consistency, we further collected their lat-
est data from January 1st 1985 to June 30th 2010, which last for 6431 trading days. We

10All datasets and their compositions are available at http://www.cais.ntu.edu.sg/∼libin/portfolios.
11According to Helmbold et al. [1998], the dataset was originally collected by Hal Stern, and we do not know
the criteria for choosing these stocks.
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Table V. Summary of the Eight Real Datasets in our Numerical Experiments

Dataset Market Region Time frame Frequency # Data Points # Assets
NYSE(O) Stock US Jul. 3rd 1962 - Dec. 31st 1984 Daily 5651 36
NYSE(N) Stock US Jan. 1st 1985 - Jun. 30th 2010 Daily 6431 23
TSE Stock CA Jan. 4th 1994 - Dec. 31st 1998 Daily 1259 88
MSCI Index Global Apr. 1st 2006 - Mar. 31st 2010 Daily 1043 24
DJA Stock US Aug. 1st 2011 - Aug. 5th 2011 Half-Minute 3900 30
NDX Stock US Aug. 1st 2011 - Aug. 5th 2011 Half-Minute 3900 100
W-NYSE(O) Stock US Jul. 3rd 1962 - Dec. 31st 1984 Weekly 1130 36
W-NYSE(N) Stock US Jan. 1st 1985 - Jun. 30th 2010 Weekly 1286 23

denote the new dataset as “NYSE (N)”.12 This dataset consists of 23 stocks rather than
the previous 36 stocks, owing to the amalgamation and bankruptcy of certain stocks.
All price relatives are adjusted for splits and dividends, which is consistent with the
NYSE (O) dataset.

The third dataset is the “TSE” dataset used by Borodin et al. [2004], which consists
of 88 stocks13 from the Toronto Stock Exchange (TSE) containing price relatives of
1259 trading days, ranging from January 4th 1994 to December 31st 1998. The fourth
self-collected dataset, “MSCI”, is a collection of global equity indices, which are the
constituents of the MSCI World Index14. It contains 24 indices, which represent the
equity markets of 24 countries across the world, and totally consists of 1043 trading
days, ranging from April 1st 2006 to March 31st 2010.

The next the two datasets are high frequency intraday data collected from Interac-
tive Brokers15. The fifth dataset, “DJA”, contains 30 index composites from the Dow
Jones Industrial Average, while the sixth dataset “NDX” contains 100 index compos-
ites from the NASDAQ-100. With time intervals of 30 seconds, both datasets contain
3900 data points, or totally 5 trading days, ranging from August 1st 2011 to August 5th

2011.
The final two datasets are derived from the preceding two NYSE datasets to rep-

resent weekly frequency. We calculate each entry of weekly data by multiplying five
daily entries in the NYSE data, and name them “W-NSYE (O)” and “W-NYSE (N)”.
With the same number of assets, the weekly datasets contain 1130 and 1286 data
points, respectively.

Unlike previous studies, the preceding testbed covers a much longer trading pe-
riod from 1962 to 2011 and contains a much larger number of assets, from 23 to 100,
with different markets, which enables us to examine how the proposed CWMR strat-
egy performs under various market situations. The first three datasets are chosen
to test CWMR’s capability with stocks, while the MSCI dataset aims to test the pro-
posed CWMR on global indices, which may be potentially applicable to “Fund on Fund”
(FOF)16. The two high frequency datasets enable us to evaluate various algorithms on
the field of high frequency trading. To the best of our knowledge, we are the first to
evaluate online portfolio selection algorithms with high frequency data. Though the
weekly datasets, which are artificially calculated, may deviate from real data, they

12The dataset before 2007 was collected by Gábor Gelencsér (http://www.cs.bme.hu/∼oti/portfolio), we
collected the remaining data starting from 2007 to 2010.
13This dataset was collected by Borodin et al. [2004] and we do not know the criteria for selecting these
stocks.
14The constituents of MSCI World Index can be found on MSCI Barra (http://www.mscibarra.com), ac-
cessed on May 28, 2010.
15The dataset is collected based on IB Student Trading Lab (http://www.interactivebrokers.com). We
consider only intraday data and ignore the close-open gaps.
16Though many indices are tradable through exchange traded funds (ETFs), not every index is.
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can test the algorithms over longer trading intervals. Finally, as a remark, although
numerically tested on stock markets, the proposed CWMR could be generally applied
to any type of financial market.

5.2. Experimental Setup and Metrics

In our experiments, we implemented the proposed CWMR approaches, namely,
CWMR-Var and CWMR-Stdev. We denote the deterministic versions by CWMR-Var
and CWMR-Stdev and the stochastic ones by CWMR-Var-s and CWMR-Stdev-s. For
the latter, we repeat tests 100 times and report the average values.

Regarding the parameter settings, there are two key parameters in the proposed
CWMR algorithms. One is confidence parameter φ and the other is sensitivity param-
eter ε. Roughly speaking, the best parameters are often dataset dependent. In the
experiments, we simply set them empirically without tuning. In particular, we set the
sensitivity parameter ε to 0.5, and set the confidence parameter φ to 2.0, or equiva-
lently 95% confidence level, in both CWMR-Var(-s) and CWMR-Stdev(-s). As we will
examine the parameter sensitivity in Section 5.4.3, the proposed CWMR algorithm
is robust with respect to different parameter settings and our choices are not always
the best.

Moreover, we also implemented the proposed CWMR Mixture approach. Ideally, the
proposed CWMR Mixture approach does not contain any parameter, and tends to be ro-
bust. To make it computational efficient, we implemented the discrete version instead.
To be specific, we chose two parameters, that is, φ and ε, in a lattice. For confidence
level parameter φ, we chose 1.28, 1.64, 1.95, and 2.57, or equivalently in confidence
level, 80%, 90%, 95%, and 99%. For mean reversion parameter ε, we chose from 0 to
0.8 in an interval of 0.2. We chose EG as the additional regret-bounded algorithm for
its computational time (there is no essential difference arising from which universal
algorithm is chosen), which is required for regret guarantee. Thus, we have totally 21
experts, including 20 CWMR experts each parameterized with one knot of the lattice
plus EG algorithm. We refer to the mixture approaches as CWMR-Var-m and CWMR-
Stdev-m.

The general criterion for evaluating a trading strategy measure is its investment
return and risk. To measure investment return, we adopt the most common metric,
cumulative wealth at the end of n trading periods, that is, Sn. Another equivalent cri-
terion is annualized percentage yield (APY)17. The higher the cumulative wealth or
annualized percentage yield of a trading strategy, the better is the absolute return.
In addition to absolute return, we are also interested in a strategy’s risk and corre-
sponding risk-adjusted return. Thus, we adopt annualized standard deviation (STD)
of daily excess returns and annualized Sharpe ratio (SR)18 [Sharpe 1963, 1994] to
compare strategies’ volatility risk and volatility risk-adjusted return, respectively. Be-
sides volatility risk, we further measure a strategy’s drawdown risk and drawdown
risk-adjusted return by comparing maximum drawdown (MDD) and Calmar Ratio
(CR) [Magdon-Ismail and Atiya 2004]. The lower the annualized standard deviation
or maximum drawdown of a strategy, the less the risk. In a summary, the higher the
annualized Sharpe Ratio or Calmar Ratio of a strategy, the better the risk-adjusted
performance. The performance metrics are summarized in Table VI and details can be
found in the online appendix.

17APY = y
√

Sn − 1, where y represents the number of years corresponding to n trading periods, and we
assume 252 trading days in one year.
18SR = (APY − Rf )/σp, where Rf is the risk-free return (typically the return of Treasury bills, fixed at 4%
in this work), and σp is the annualized standard deviation of daily excess returns.
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Table VI. Summary of the Performance Metrics Used in the Numerical Experiments

Criteria Performance Metrics
Absolute return Cumulative wealth (Sn)∗ Annualized percentage yield (APY)
Risk Annualized standard deviation (STD) Maximum drawdown (MDD)
Risk-adjusted return Annualized Sharpe ratio (SR) Calmar ratio (CR)

∗This is the primary metric across the empirical evaluations.

Finally, due to the various frequencies of these datasets, CWMR algorithms exhibit
different behaviors across the datasets. For example, the annualized Sharpe ratios of
CWMR on the high frequency datasets are astronomically high, which makes the com-
parison inconsistent; on the other hand, with such a high frequency, the transaction
cost becomes crucially important for trading, as all methods approach zeros with the
existing transaction cost model [Blum and Kalai 1999; Borodin et al. 2004]. Moreover,
since we have a testbed of eight datasets, which is the largest as far as we know,
for concise presentation, we move some similar results on high frequency and weekly
datasets to an online appendix. Thus, to compare consistently and present clearly, we
mainly focus on daily datasets, and we only provide some main results for high fre-
quency and weekly data.

5.3. Comparison Methods

In our experiments, we compare the proposed algorithms with a number of existing
strategies as described in Section 3. Here we summarize these algorithms, whose pa-
rameters are set according to the recommendations from their respective studies19.

(1) Market. Market (uniform BAH) strategy.
(2) Best-stock. Best stock in a market, which is obviously a hindsight strategy.
(3) BCRP. Best constant rebalanced portfolios strategy in hindsight.
(4) UP. Cover’s Universal Portfolios implemented according to Kalai and Vempala

[2002].
(5) EG. Exponential Gradient with parameter η = 0.05, suggested by Helmbold et al.

[1998].
(6) ONS. Online Newton Step with parameter setting as suggested by Agarwal et al.

[2006], that is, η = 0, β = 1, and γ = 1/8.
(7) SP. Switching Portfolios with parameter γ = 1/4, as suggested by Singer [1997].
(8) GRW. Gaussian Random Walk strategy with parameter σ = 0.00005, recom-

mended by Levina and Shafer [2008].
(9) M0. A prediction-based algorithm with parameter β = 0.5, suggested by Borodin

et al. [2000].
(10) Anticor. BAH30(Anticor(Anticor))20 as a variant of Anticor to smooth the perfor-

mance volatility, which is the best solution proposed in Borodin et al. [2004].
(11) BK. Nonparametric kernel-based moving window strategy with W = 5, L = 10,

and c = 1.0 for daily datasets, which has the best empirical performance according
to Györfi et al. [2006] and c = 0.01 for high frequency datasets, because of its low
volatility.

(12) BNN. Nonparametric nearest neighbor-based strategy with parameter W = 5,
L = 10, and p� = 0.02 + 0.5 �−1

L−1 , as suggested by Györfi et al. [2008].
(13) CORN. Correlation-driven nonparametric learning approach with parameter

W = 5 and ρ = 0.1, as suggested by Li et al. [2011a].

19We can tune the parameters of competitors for better performance, but that is beyond the scope of this
article.
20In the short version [Li et al. 2011b], we use BAH30(Anticor), which performs slightly worse.
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Table VII. Cumulative Wealth Achieved by Various Trading Strategies on the Eight Datasets. The Top Two
Achievements in Each Dataset are Highlighted in Bold

Methods NYSE (O) NYSE (N) TSE MSCI DJA NDX W-NYSE (O) W-NYSE (N)

Market 14.50 18.06 1.61 0.91 0.93 0.92 14.43 18.17
Best-stock 54.14 83.51 6.28 1.50 0.98 1.01 53.80 83.09
BCRP 250.60 120.32 6.78 1.51 0.98 1.01 125.20 98.30
UP 26.68 31.49 1.60 0.92 0.93 0.92 23.95 27.83
EG 27.09 31.00 1.59 0.93 0.93 0.92 23.61 27.46
ONS 109.19 21.59 1.62 0.86 0.93 0.95 101.36 22.88
SP 27.08 31.55 1.60 0.93 0.93 0.92 23.89 27.89
GRW 27.73 30.45 1.61 0.93 0.93 0.92 23.86 27.37
M0 113.50 40.94 1.26 0.92 0.90 0.90 48.95 30.45
Anticor 2.41E+08 6.21E+06 39.36 3.22 1.07 1.19 1.93E+03 1.61E+03
BK 1.08E+09 4.64E+03 1.62 2.64 0.97 0.93 28.87 31.05
BNN 3.35E+11 6.80E+04 2.27 13.47 1.24 1.21 166.11 35.04
CORN 1.48E+13 5.37E+05 3.56 26.10 1.36 1.75 102.22 246.14

CWMR-Var 6.51E+15 1.44E+06 328.61 17.27 2.08 3.83 3.49E+05 2.16E+04
CWMR-Stdev 6.49E+15 1.41E+06 332.62 17.28 2.09 3.82 3.48E+05 2.14E+04
CWMR-Var-s 2.19E+15 7.47E+05 281.26 12.90 1.97 3.60 1.42E+05 1.29E+04
CWMR-Stdev-s 2.13E+15 7.38E+05 290.08 12.70 1.96 3.61 1.43E+05 1.17E+04
CWMR-Var-m 8.00E+15 2.03E+06 358.12 15.92 2.03 3.70 2.36E+05 1.65E+04
CWMR-Stdev-m 7.95E+15 2.01E+06 360.70 15.93 2.04 3.69 2.39E+05 1.69E+04

5.4. Experimental Results

5.4.1. Experiment 1. Evaluation of Cumulative Wealth. The main experiment is to evaluate
the cumulative wealth at the end of trading periods, and the results are illustrated in
Table VII.

From the results, we have some observations. First, the cumulative wealth achieved
by CWMR-Var and CWMR-Stdev are similar, since they are two different solutions
for the same optimization problem. Meanwhile, the performance achieved by the
stochastic version is always smaller than that of the deterministic version, which
validates the analysis in Section 4.4. Second, in most datasets, the cumulative wealth
achieved by the proposed CWMR algorithms significantly surpasses all existing
competitors, including the Anticor algorithm, which adopts the same mean reversion
trading idea. This verifies that the mean reversion trading idea does exist in various
financial markets, and the learning idea borrowed from CW can effectively exploit
such information. Moreover, the proposed CWMR mixture versions, equipped with a
regret bound, always achieve good results. To the best of our knowledge, no previous
work has ever claimed such a high cumulative wealth, especially on the benchmark
dataset “NYSE (O).”

It is worth discussing the results with different frequencies, as we first introduce
the high frequency data in the evaluation. On the two high frequency datasets con-
sisting of five trading days, although the markets suffered from a significant a drop,
the proposed CWMR still accumulated high return. In fact, on a daily basis, the re-
turns on high frequency data is much higher than those on low frequency data, that
is, daily and weekly datasets. In a real market with commissions, ordinary people can-
not obtain such a high return; while professional institutions may be able to obtain
these returns. Note that we only consider the mid-prices of the bid ask spread, while
in the high frequency scenario, the spread will have a considerable impact that is much
higher than the brokerage commission. The results are still interesting to us, as they
reflect that the short term market follows mean reversion and CWMR can efficiently
exploit such movements. On the other hand, though the market returns on the two
weekly NYSE datasets and their corresponding daily datasets are almost the same,
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Table VIII. Statistical t-test of the Performance Achieved by the Proposed CWMR (CWMR-Stdev) Algorithm
on the Eight Datasets

Statistics NYSE(O) NYSE(N) TSE MSCI DJA NDX W-NYSE(O) W-NYSE(N)

Size 5651 6431 1259 1043 3900 3900 1130 1286
MER (CWMR) 0.0070 0.0027 0.0057 0.0030 0.0002 0.0003 0.0127 0.0103
MER (Market) 0.0005 0.0005 0.0004 0.0000 -0.0000 -0.0000 0.0026 0.0025
Winning Ratio 56.17% 52.08% 56.00% 59.44% 63.49% 64.49% 59.29% 56.45%
α 0.0064 0.0021 0.0051 0.0030 0.0002 0.0004 0.0096 0.0072
β 1.2139 1.1325 1.5139 1.1161 1.1453 1.0502 1.2088 1.2876

t-statistics 15.9510 5.9496 3.9190 6.4078 17.8418 18.2656 7.5089 3.7249
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Notes 1: MER denotes mean excess return. Excess return equals daily return of a strategy minus daily
risk-free return.

online portfolio selection algorithms perform divergently. Some state-of-the-art, strate-
gies such as the three nonparametric learning algorithms, decrease to normal. CWMR
algorithms also decrease, but the results are still high compared to the benchmarks
and all other competitors. Finally, as we have analyzed in Section 4.1, the trading fre-
quency seems to dominate the results of CMWR, that is, empirically the higher the
trading frequency, the higher the return. Interestingly, Hazan and Kale [2009] come to
a similar conclusion for the ONS algorithm, “one expects to see improving performance
of our algorithm as the trading frequency increases.”

Even though the results are somehow beyond imagination, we are also interested in
whether the results can be generated by simple luck. To check this possibility, we con-
ducted widely accepted statistical tests among practitioners [Grinold and Kahn 1999]
(also refer to the online appendix). Table VIII summarizes the statistical test results.
Briefly speaking, there exists almost no chance that the amazing cumulative wealth is
generated by simple luck. Here, we claim again, even in the theoretical “perfect mar-
ket” without transaction costs and other practical issues, no existing work has ever
declared such high performance.

Another virtue of the proposed approach is its persistence during the entire period.
To better see this, we plot the wealth curves achieved by the proposed CWMR algo-
rithm (CWMR-Stdev), state-of-the-art algorithms (Anticor, BNN, and CORN), plus two
benchmarks (Market and BCRP). As other versions (CWMR-Var, CWMR-Var-Mix, and
CWMR-Stdev-Mix) perform similarly to CWMR-Stdev, we ignore them in the figures.
As shown in Figure 1, the proposed CWMR algorithms consistently get ahead of the
state-of-the-art techniques, not to mention the benchmarks. This consistency again
confirms the efficacy of the proposed CWMR algorithms.

5.4.2. Experiment 2. Evaluation of Risk-Adjusted Return. Besides the cumulative wealth
metric, we also conduct experiments to evaluate the risk-adjusted return (both volatil-
ity risk-adjusted and drawdown risk-adjusted) achieved by the proposed algorithms.

Figure 2(a) and Figure 2(b) demonstrate the volatility risk measured by annualized
standard deviation and corresponding risk-adjusted return measured by annualized
Sharpe ratio (SR). Along with the results achieved by the proposed CWMR, we plot
the results of the state-of-the-art algorithms (Anticor, BNN, and CORN) and two bench-
marks (Market and BCRP). Figure 2(a) shows that higher return often associates with
higher risk, that is, volatility risks achieved by CWMR on the four datasets are higher
than the benchmarks and competitors. However, Figure 2(b) clearly shows that in most
cases the volatility risk-adjusted returns achieved by the proposed CWMR approach
are higher than that of the benchmarks. This experiment again validates that the
proposed CWMR approach is preferable in terms not only of the cumulative return
metric, but also the volatility risk-adjusted return metric.
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Fig. 1. Trend of cumulative wealth achieved by various strategies during the entire period on the four daily
datasets.

Similarly, Figure 2(c) and Figure 2(d) show the results on the drawdown risk mea-
sured by maximum drawdown (MDD) and drawdown risk-adjusted return in terms of
Calmar ratio (CR) associated with some benchmarks and competitors. In Figure 2(c),
the MDDs achieved by the proposed approach are not always the best, but are gener-
ally modest. For example, in the NYSE (O) datasets, CWMR almost achieves the least
MDDs, which indicates the least drawdown risk. The drawdown risk-adjusted returns
shown in Figure 2(d) clearly show the superiority of the proposed CWMR compared
with the plotted benchmarks. These experiments validate superiority with respect to
the drawdown risk-adjusted return metric, and again, they corroborate the effective-
ness of the proposed CWMR approach.

5.4.3. Experiment 3. Evaluation of Parameter Sensitivity. The proposed CWMR approaches
contain two parameters, that is, the confidence parameter φ and the mean reversion
sensitivity parameter ε. Throughout the algorithm, the mean reversion sensitivity
parameter decisively influences the final performance, that is, the smaller the mean
reversion sensitivity, the better the final cumulative wealth. Figure 3 depicts its ro-
bustness with respect to the mean reversion sensitivity parameter, plus the final cu-
mulative wealth achieved by Market and BCRP. The results first verify our preceding
suspicion about the effect of the mean reversion sensitivity, that is, the final cumula-
tive wealth increases as the sensitivity parameter decreases and becomes stable after
crossing a data-dependent threshold. The results again verify that the mean reversion
trading idea works in financial markets and the proposed CWMR algorithm can suc-
cessfully exploit it, which generates significant final cumulative wealth, outperforming
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Fig. 2. Volatility analysis (Standard Deviation and Sharpe Ratio) and drawdown analysis (Maximum Draw-
down and Calmar Ratio) of various strategies on the daily stock datasets. The results of CWMR are the
rightmost bar on each dataset.

Market and BCRP strategy. Moreover, as analyzed in Section 4.4, CWMR degrades to
a uniform CRP strategy when ε is larger than 1. Finally, it seems that after ε falls
below certain critical values, the final wealth would be stable, which means the mean
reversion trading idea has been completely exploited. Needless to say, our empirical
parameter setting of ε = 0.5 is not the best one. However, even under this setting, the
proposed CWMR still significantly surpasses existing approaches.

5.4.4. Experiment 4. Evaluation of Practical Issues. In reality, an important and unavoid-
able issue is transaction cost. Generally, there are two ways to handle the transac-
tion cost. The first way, adopted in this study, is to include transaction costs during
portfolio rebalancing, while the portfolio selection process doesn’t take it into consid-
eration. The second way is to include the transaction costs in the portfolio selection
process [Györfi and Vajda 2008; Györfi et al. 2012]. In this work, we adopt the propor-
tional transaction costs model proposed by Blum and Kalai [1999] and Borodin et al.
[2004]. With this model, rebalancing a portfolio incurs a transaction cost on every buy
and sell operation, based upon a transaction cost rate γ ∈ (0, 1). At the beginning of
the tth trading period, portfolio manager rebalances the portfolio from the previous
closing price-adjusted portfolio b̂t−1 to a new portfolio bt, incurring a transaction cost
of γ

2 × ∑
i |bt,i − b̂t−1,i|, where the initial portfolio b̂0 is (0, . . . , 0). To the best of our

knowledge, this model cannot work for high frequency data, since even a small rate
will cause all methods to approach zero.
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Fig. 3. Parameter Sensitivity of the total wealth achieved by CWMR-Stdev with respect to the mean rever-
sion sensitivity parameter ε on the four daily datasets.

Figure 4 shows the results on the four daily datasets with varying transaction costs
from 0% to 1%, plus the cumulative wealth achieved by two benchmarks (Market
and BCRP) and the state-of-the-art strategies (Anticor, BNN, and CORN). We observe
that the performance with transaction costs is market dependent. In most cases, es-
pecially with small rates, CWMR can outperform the state-of-the-art algorithms. In
other cases, though both are powered by mean reversion, CWMR underperforms Anti-
cor, showing that aggressiveness results in more transaction costs. Nevertheless, com-
pared with the benchmarks, the results clearly demonstrate that on all datasets, the
performance is considerably robust with respect to the transaction costs21, where the
break-even rates range from 0.2% to 0.7%. Thus, the proposed CWMR can withstand
moderate transaction costs even though we do not explicitly tackle them during the
portfolio selection process.

Another practical issue in portfolio selection is margin buying, which allows the
portfolio managers to buy securities with cash borrowed from security brokers. Follow-
ing previous studies [Agarwal et al. 2006; Cover 1991; Helmbold et al. 1998], here the
margin setting is assumed to be 50% down and 50% loan, at an annual interest rate
of 6%, or at a daily interest rate of c = 0.000238. Thus, for each asset i, a new asset
named Margin Component is generated with its price relative equal to 2∗xti−1−c. By
adding Margin Component, we magnify both the potential profit and loss of a trading

21For example, for US equities and options, Interactive Brokers (https://www.interactivebrokers.com)
charges US$ 0.005 per share. Since the average price of 30 composite stocks in Dow Jones Industrial Average
was around US$50 at the end of August 2011, the commission is around 0.01% of trade value.
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Fig. 4. Robustness of the total wealth achieved by CWMR with respect to transaction cost rate (γ ).

strategy on the ith asset. Table IX depicts the cumulative wealth achieved by various
strategies when margin buying is allowed. We do not list CWMR-Var and its mixture
version since their performance is similar to CWMR-Stdev and corresponding mixture
version. As expected, the performance with margin buying in most cases, is signifi-
cantly improved. Moreover, in the case of margin buying, the proposed approaches still
surpass the state-of-the-art algorithms in most cases. Note that although leveraging
the capital (margin buying) does improve the cumulative returns here, it does not nec-
essarily improve the risk adjusted performance like the Sharpe ratio (when leveraging
is free), or may actually decrease their risk adjusted performance, as a price is paid for
leveraging. Nevertheless, this validates the efficacy of the proposed algorithms in the
case of margin buying.

5.4.5. Experiment 5. Evaluation of Computational Time. The proposed algorithm achieves
significant improvement over existing approaches, it is also computational efficient, as
we have analyzed in Section 4.4. Table X shows the total computational time of the
proposed CWMR (CWMR-Stdev and CWMR-Stdev-m) and four state of the art strate-
gies (Anticor, BK, BNN, and CORN), whose performance is comparable to the proposed
approach, on the eight datasets. Even the time costs per trading day of the competitors
are acceptable on daily and week datasets, their costs in high frequency datasets are
generally too expensive. On the contrary, CWMR computes much more efficiently than
its competitors, especially in the domain of high frequency trading [Aldridge 2010],
where transactions may occur in fractions of a second. Therefore, the computational
efficiency confirms the real-world large-scale applicability of the proposed algorithms.
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Table IX. Cumulative Wealth Achieved by Various Strategies on the Daily Stock Datasets with/without Margin
Loans (ML)

Algorithm
NYSE (O) NYSE (N) TSE MSCI

No ML with ML No ML with ML No ML with ML No ML with ML

Market 14.5 15.75 18.06 17.68 1.61 1.71 0.91 0.69
Best-stock 54.14 54.14 83.51 173.18 6.28 10.53 1.50 1.50
BCRP 250.6 3755.09 120.32 893.63 6.78 21.23 1.51 1.54
UP 26.68 62.99 31.49 57.03 1.60 1.69 0.92 0.71
EG 27.09 63.28 31.00 55.55 1.59 1.68 0.93 0.72
ONS 09.19 517.21 21.59 228.37 1.62 0.88 0.86 0.33
Anticor 2.41E+08 1.05E+15 6.21E+06 5.41E+09 39.36 18.69 3.22 3.40
BK 1.08E+09 6.29E+15 4.64E+03 3.72E+06 1.62 1.53 2.64 6.56
BNN 3.35E+11 3.17E+20 6.80E+04 5.58E+07 2.27 2.17 14.47 150.49
CORN 1.48E+13 1.10E+22 5.37E+05 1.72E+09 3.56 5.00 26.10 853.08
CWMR-Stdev 6.49E+15 6.59E+25 1.41E+06 7.31E+07 332.62 172.36 17.28 76.29
CWMR-Stdev-m 6.68E+15 1.73E+27 1.69E+06 5.16E+08 303.34 306.47 13.69 65.19

Top two achievements on each datasets are highlighted.

Table X. Computational Time Costs on the Real Datasets (Seconds)

Time NYSE(O) NYSE(N) TSE MSCI DJA NDX W-NYSE(O) W-NYSE(N)

Anticor 2.57E+03 1.93E+03 2.15E+03 306 1.44E+03 8.64E+03 494 363
BK 7.89E+04 5.78E+04 6.35E+03 2.60E+03 2.51E+04 1.39E+05 1.33E+03 1.31E+03
BNN 4.93E+04 3.39E+04 1.32E+03 2.55E+03 6.64E+04 1.20E+06 3.33E+03 2.62E+03
CORN 8.78E+03 1.03E+04 1.59E+03 457 1.08E+04 9.36E+04 550 567
CWMR 12 11 3 1 6 19 1 1
CWMR-m 67 54 54 8 35 211 11 9

5.5. Discussion and Thread of Validity

5.5.1. On Model Assumptions. Any statement about such encouraging empirical re-
sults would be incomplete without acknowledging the simplified assumptions made in
Section 2. To recall, we had made several assumptions regarding transaction cost, mar-
ket liquidity and market impact, which would affect the practical deployment of the
proposed algorithms.

The first assumption is that no transaction cost exists. In Section 5.4.4, we exam-
ined the effect of varying transaction costs, and the results show that the proposed
algorithm can withstand moderate transaction costs. Currently, with the wide-spread
adoption of electronic communication networks (ECNs) and multilateral trading facil-
ities (MTFs) on financial markets, various online trading brokers charge very small
transaction costs, especially for large institutional investors. They also use a flat-
rate22, based on the volume threshold one reaches. Such measures can facilitate port-
folio managers to lower their transaction costs.

The second assumption is that the financial market is liquid and one can buy and
sell any quantity at the quoted price. In practice, low market liquidity results in a
large bid-ask spread—the gap between prices quoted for an immediate buy and an
immediate sell. As a result, the execution of orders may incur a discrepancy between
the prices sent by an algorithm and the prices actually executed. Moreover, stocks
are often traded in multiples of a lot, which is a standard trading unit containing a
number of stock shares. In this situation, the quantity of stocks may not be arbitrary
divisible. In the experiments, we have tried to minimize the effect of market liquidity

22For example, for US equities and options, E*Trade (http://www.etrade.com, accessed on 16 March 2011.)
charges only $9.99 for $50000+ or 30+ stocks per quarter.
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by choosing stocks that have large market capitalization, which usually have small
bid-ask spreads and discrepancies, and thus have a high market liquidity.

The final assumption is that the portfolio strategy would have no impact on the mar-
ket, that is, the stock market will not be affected by any trading algorithm. In practice,
the impact can be neglected if the cumulative wealth is not too large. However, as the
experimental results show, the return generated by CWMR increases astronomically,
which would inevitably impact the market. One simple way to handle this issue is to
scale back the portfolio, as done by many quantitative funds. Moreover, the emerging
algorithmic trading techniques, which slice a big order into multiple smaller orders
and schedule these smaller orders to minimize the market impact, can significantly
decrease the market impact of an algorithm.

Here, we emphasize again that this study assumes a perfect market, which is con-
sistent with previous studies in the literature. It is important to note that even in such
a perfect financial market, no algorithm has ever claimed such a high performance.
Though it is common investment knowledge that past performance may not be a reli-
able indicator of future performance, such high performance does provide us confidence
that the proposed CWMR algorithms may work well in unseen future markets.

5.5.2. On Back-Tests. Back-tests in the historical markets may suffer from “data-
snooping bias.” One common data-snooping bias is the dataset selection issue. On the
one hand, we selected the two datasets, that is, NYSE (O) and TSE, based on previ-
ous studies, without consideration to the proposed approach. On the other hand, we
developed CWMR algorithms based solely on the NYSE (O) dataset, and the other
six datasets (NYSE (N), MSCI, DJA, NDX, W-NYSE(O) and W-NYSE(N) datasets)
were obtained after the algorithm was fully developed. However, even though we are
cautious about this dataset selection issue, it may still appear in the experiments,
especially for the two datasets with relatively long histories, that is, NYSE (O) and
NYSE (N). The NYSE (O) dataset, pioneered by Cover [1991] and followed by other
researchers, has become one standard dataset in the online portfolio selection commu-
nity. Since it contains 36 large cap NYSE stocks that survived in hindsight 22 years,
this dataset suffers from extreme survival bias. Nevertheless, it is still useful to com-
pare the performance among algorithms as done by all previous studies. The NYSE (N)
dataset, as a continuation of NYSE (O), contains 23 assets that have survived from
the previous 36 stocks for another 25 years. Therefore, it becomes even worse than the
NYSE (O) dataset in terms of survival bias. In a word, even though the experimental
results on these datasets clearly show the effectiveness of the proposed CWMR algo-
rithms, their benefits on datasets that do not exhibit survival bias may be tempered.

Besides the survival bias, the lengths of the datasets also challenges the applica-
bility of the proposed method. In finance and econometrics [Bondt and Thaler 1985,
1987; Jegadeesh 1991; Poterba and Summers 1988], it has been observed and demon-
strated that the mean reverting phenomenon does exist in a long term, e.g., several
years or decades, and thus may have no value to common investors. Our experiments
validate the existence of the phenomenon, and the durations of our daily/weekly data
are quite long, which is consistent with existing finance studies. However, the hypoth-
esis of mean reverting may not persist all the time in such long durations, and as a
result, the applicability of the proposed method may be challenged.

Another common bias is the asset selection issue. Three of the eight datasets
(NYSE (O), W-NYSE (O), and TSE) are collected by others, and to the best of our knowl-
edge, their assets are mainly the largest blue-chip stocks in their respective markets.
We collected NYSE (N) (also W-NYSE (N)) ourselves as a continuation of NYSE (O)
datasets, which again contain several of the largest survival stocks in NYSE (O). The
remaining three self-collected datasets (MSCI, DJA, and NDX) were chosen according
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to the market indices in their respective markets. We tried to avoid the asset selec-
tion bias by arbitrarily choosing the representative stocks in their respective markets,
which usually have large capitalization and high liquidity. Moreover, investing in these
largest assets may reduce the market impact caused by any strategy.

6. CONCLUSION

In this article, we propose a novel online portfolio selection strategy named Confi-
dence Weighted Mean Reversion (CWMR), which effectively learns portfolios by ex-
ploiting the mean reversion property in financial markets. The update schemes for
the proposed algorithms are obtained by solving two optimization problems, taking
into account the first and second order information of a portfolio vector, which goes
beyond the existing approaches that usually only consider the first order information.
The extended mixture version has a theoretic regret bound and is a universal portfo-
lio selection method. Empirically, the proposed approach beats a number of competing
state-of-the-art approaches on various up-to-date datasets collected from real markets.

In the future, we plan to study in detail the cause behind the existence of the mean
reversion property in the financial markets. This will help us to further understand the
nature of these markets. Second, we will develop more effective algorithms to improve
the performance in the presence of high transaction costs. We also intend to explore
the possibility of combining both the trend following and mean reversion principles
to provide a more practically effective solution for the online portfolio selection tasks.
Finally, we note that an interesting future direction is to extend our analysis for long-
short only portfolios.

APPENDIXES

A. PROOF OF PROPOSITION 4.1

PROOF. Since considering the non-negativity constraint introduces too much com-
plexity, we first relax the optimization problem without considering it, and later we
will project the solution to the simplex domain to obtain the required vector.

The Lagrangian for optimization Problem (3) is,

L =1
2

(
log
(

det�t

det�

)
+ Tr(�−1

t �) + (μt − μ)� �−1
t (μt − μ)

)
+λ(φx�

t �xt + μ�xt − ε) + η(μ�1 − 1).

Taking the derivative of the Lagrangian with respect to μ and setting it to zero, we can
get the update of μt+1,

0 = ∂L
∂μ

= �−1
t (μ − μt) + λxt + η1 =⇒ μt+1 = μt − �t (λxt + η1) , (6)

where �t is assumed to be nonsingular. Multiplying both sides of the update by 1�, we
can get η,

1 = 1 − 1��t (λxt + η1) =⇒ η = −λx̄t, (7)

where x̄t = 1��txt
1��t1

denotes the confidence weighted average of the tth price relative.
Plugging Eq. (7) into Eq. (6), we can get

μt+1 = μt − λ�t (xt − x̄t1) . (8)
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Moreover, taking the derivative of the Lagrangian with respect to � and setting it to
zero, we can also have the update of �t+1,

0 = ∂L
∂�

= −1
2

�−1 + 1
2

�−1
t + λφxtx�

t =⇒ �−1
t+1 = �−1

t + 2λφxtx�
t . (9)

Now let us solve the Lagrange multiplier λt+1 using KKT conditions. First follow-
ing Dredze et al. [2008], we can compute the inverse using Woodbury identity [Golub
and Van Loan 1996] as follows.

�t+1 =
(
�−1

t + 2λφxtx�
t

)−1 = �t − �txt
2λφ

1 + 2λφx�
t �txt

x�
t �t. (10)

The KKT conditions imply that either λ = 0, and no update is needed, or the constraint
in optimization Problem (3) is an equality after the update. Taking Equation (8) and
Equation (10) for the equality version of the first constraint, we get

ε − (μt − λ�t (xt − x̄t1)) · xt = φ

(
x�

t

(
�t − �txt

2λφ

1 + 2λφx�
t �txt

x�
t �t

)
xt

)
.

Now let Mt = μ�
t xt be the return mean, Vt = x�

t �txt be the return variance of the tth

trading period before updating, and Wt = x�
t �t1 be the return variance of the tth price

relative with cash. We can simplify the preceding equation to

λ2(2φV2
t − 2φx̄tVtWt) + λ (2φεVt − 2φVtMt + Vt − x̄tWt) + (ε − Mt − φVt) = 0. (11)

Let us define a = 2φV2
t −2φx̄tVtWt, b = 2φεVt−2φVtMt+Vt−x̄tWt, and c = ε−Mt−φVt.

It is worth nothing that this quadratic form equation may have two/one/zero real roots.
We can calculate its real roots (two real roots case: γt1 and γt2; one real root case: γt3)
as follows.

γt1 = −b +
√

b2 − 4ac
2a

, γt2 = −b −
√

b2 − 4ac
2a

, or γt3 = − c
b

.

To ensure the non-negativity of the Lagrangian multiplier, we can project its value to
[0, +∞),

λ = max {γt1, γt2, 0} , or λ = max {γt3, 0} , or λ = 0.

Note that these equations respectively correspond to three cases of real roots (two, one,
or zero).

In practical computation, as we only adopt the diagonal elements of the covariance
matrix, it is equivalent to compute λ from Eq. (11) but to update the covariance matrix
with the following rule instead of Eq. (9).

�−1
t+1 = �−1

t + 2λφdiag2
(xt) ,

where diag (xt) denotes the diagonal matrix with the elements of xt on the main
diagonal.

B. PROOF OF PROPOSITION 4.2

PROOF. Similar to the proof of Proposition 4.1, we relax the optimization problem
without the non-negativity constraint, and project the solution to the simplex domain
to obtain the required vector.
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The Lagrangian for optimization Problem (4) is

L = 1
2

(
log

(
detϒ2

t

detϒ2

)
+ Tr(ϒ−2

t ϒ2) + (μt − μ)� ϒ−2
t (μt − μ)

)

+ λ(φ ‖ϒxt‖ + μ�xt − ε) + η(μ�1 − 1).

Taking the derivative of the Lagrangian with respect to μ and setting it to zero, we can
get the update of μt+1.

0 = ∂L
∂μ

= ϒ−2
t (μ − μt) + λxt + η1 =⇒ μt+1 = μt − ϒ2

t (λxt + η1) ,

where ϒt is nonsingular. Multiplying both sides by 1�, we can get

1 = 1 − 1�ϒ2
t (λxt + η1) =⇒ η = −λx̄t,

where x̄t = 1�ϒ2
t xt

1�ϒ2
t 1

is the confidence weighted average of the tth price relative. Plugging

it into the update scheme of μt+1, we can get

μt+1 = μt − λϒ2
t (xt − x̄t1) .

Moreover, taking the derivative of the Lagrangian with respect to ϒ and setting it to
zero, we have,

0 = ∂L
∂ϒ

= −ϒ−1 + 1
2

ϒ−2
t ϒ + 1

2
ϒϒ−2

t + λφ
xtx�

t ϒ

2
√

x�
t ϒ2xt

+ λφ
ϒxtx�

t

2
√

x�
t ϒ2xt

.

We can solve the preceding equation to obtain ϒ−2,

ϒ−2
t+1 = ϒ−2

t + λφ
xtx�

t√
x�

t ϒ2
t+1xt

.

The preceding two updates can be expressed in terms of the covariance matrix as
follows.

μt+1 = μt − λ�t (xt − x̄t1) , �−1
t+1 = �−1

t + λφ
xtx�

t√
x�

t �t+1xt

. (12)

Here, �t+1 is PSD and nonsingular.
Now let us solve the Lagrangian multiplier using its KKT condition. Follow-

ing Crammer et al. [2008], we compute the inverse using the Woodbury identity [Golub
and Van Loan 1996].

�t+1 = �t − �txt

⎛
⎝ λφ√

x�
t �t+1xt + λφx�

t �txt

⎞
⎠x�

t �t. (13)

Similar to the proof of Proposition 4.1, let us set Mt = μ�
t xt, Vt = x�

t �txt, Wt = x�
t �t1,

and Ut = x�
t �t+1xt. Multiplying the preceding equation by x�

t (left) and xt (right), we

get Ut = Vt − Vt

(
λφ√

Ut+λφVt

)
Vt, which can be solved for Ut,

√
Ut =

−λφVt +
√

λ2φ2V2
t + 4Vt

2
. (14)
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The KKT condition implies that either λ = 0, and no update is needed, or the constraint
in the optimization Problem (4) is an equality after the update. Substituting Eq. (12)
and Eq. (14) into the equality version of the constraint, after rearranging in terms of
λ, we get

λ2

⎛
⎝(Vt − x̄tWt + φ2Vt

2

)2

− φ4V2
t

4

⎞
⎠+ 2λ (ε − Mt)

(
Vt − x̄tWt + φ2Vt

2

)

+ (ε − Mt)
2 − φ2Vt = 0.

(15)

Let a =
(
Vt − x̄tWt + φ2Vt

2

)2 − φ4V2
t

4 , b = 2 (ε − Mt)
(
Vt − x̄tWt + φ2Vt

2

)
, and c =

(ε − Mt)
2 − φ2Vt. Note here we only consider real roots of this quadratic form equa-

tion. Thus, we can obtain γt as its roots (two real roots case: γt1 and γt2; one real root
case: γt3),

γt1 = −b +
√

b2 − 4ac
2a

, γt2 = −b −
√

b2 − 4ac
2a

or γt3 = − c
b

.

To ensure the non-negativity of the Lagrangian multiplier, we project the roots to
[0, +∞).

λ = max {γt1, γt2, 0} , or λ = max {γt3, 0} , or λ = 0,

which corresponds to three possible cases (two, one or zero real roots).
Following the proof of Proposition 4.1, we can update the diagonal covariance matrix

as follows.

�−1
t+1 = �−1

t + λ
φ√
Ut

diag2
(xt) ,

where diag (xt) denotes the diagonal matrix with the elements of xt on the main
diagonal.

C. PROOF OF THEOREM 4.3

PROOF. Before presenting our theorem, we first introduce two lemmas, which are
given in Cesa-Bianchi and Lugosi [2006] (Example 10.3 and Theorem 10.3).

LEMMA C.1. Assume that the investor competes against a finite class Q ={
Q1, . . . , QN} of investment strategies. A strategy P divides the initial wealth into N

equal parts and invests each part according to experts Qj. Then the total wealth of the
strategy is Sn (P, xn) = 1

N
∑N

j=1 Sn
(
Qj, xn), and the worst-case logarithmic wealth ratio

is bounded as

sup
xn

sup
Q∈Q

ln
Sn
(
Q, xn)

Sn (P, xn)
≤ ln N.

LEMMA C.2. If μ is the uniform density on the probability simplex �m, then the
wealth achieved by Cover’s Universal Portfolio (UP) algorithm satisfies

sup
xn

sup
B∈�m

ln
Sn (B, xn)

Sn (UP, xn)
≤ (m − 1) ln (n + 1) .
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First of all, it is not difficult to derive the following.

sup
xn

sup
B∈�m

ln
Sn (B, xn)

Sn (P, xn)
= sup

xn
ln

supB∈�m Sn (B, xn)

Sn (UP, xn)

Sn (UP, xn)

Sn (P, xn)

≤ sup
xn

ln
supB∈�m Sn (B, xn)

Sn (UP, xn)
+ sup

xn
ln

Sn (UP, xn)

Sn (P, xn)

≤ sup
xn

ln
supB∈�m Sn (B, xn)

Sn (UP, xn)
+ sup

xn
sup
Q∈Q

ln
Sn
(
Q, xn)

Sn (P, xn)
.

Since we we buy and hold the experts with equal initial wealth S0
(
Qj, xn) = 1, j =

1, . . . , N, we can apply Lemma C.1 to bound the worst-case regret bound with respect
the best experts in the expert pool, that is, the second term in the last equation. Fur-
ther, we apply Lemma C.2 to bound the worst-case regret bound with respect to the
BCRP strategy, that is, the first term of the last equation. Combining the two lemmas,
we can achieve the conclusion stated in the theorem.

D. PROOF OF COROLLARY 4.4

PROOF. According to the result of Theorem 4.3 and the definition of universal prop-
erty in Section 3.3, we have

1
n

sup
xn

sup
B∈�m

ln
Sn (B, xn)

Sn (P, xn)
≤ (m − 1) ln (n − 1) + ln N

n
n→∞−−−−→ 0.

According to the definition, the proposed CWMR mixture algorithm is universal.
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