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Enhancing Bag-
of-Words Models
with Semantics-
Preserving
Metric Learning

Lei Wu
Michigan State University

Steven C.H. Hoi
Nanyang Technological University

I
mage annotation is an important tech-

nique to enable users to search massive,

unlabeled images using existing text-

retrieval tools. Recent years have

witnessed intensive research on image

annotation and object recognition. For exam-

ple, some studies have employed search-based

annotation methods to annotate an image

with common tags of similar images retrieved

from tagged image databases,1 and some stud-

ies have formulated image annotation as a stan-

dard classification problem.2,3 One of the key

issues for existing image-annotation methods

is to find an effective feature representation

for images. Recently, the bag-of-words (BoW)

model4 has been actively studied for image rep-

resentation. The BoW approach takes advan-

tages of some recent advances in computer

vision, such as the powerful scale invariant

feature transform (SIFT) feature descriptor

technique.5

In the SIFT method, BoW first builds a code-

book by collecting SIFT descriptors and cluster-

ing them into k clusters using some existing

clustering algorithm (for example, k-means6).

With the codebook that is formed by the

centroids of the resulting k clusters, BoW repre-

sents any image as a histogram of the code-

words, which can be adopted for any existing

classification or annotation methods. One key

limitation of the existing BoW model is that

semantics are lost during the codebook-

generation process, which may considerably

harm the discrimination capabilities of the

BoW representation due to the well-known

issue of the semantic gap.

To overcome the drawback of the regular

BoW model, this article introduces a promising

scheme of semantics-preserving metric learning

(SPML), which considers the distance between

the semantically identical features as a mea-

surement of the semantic gap, and is designed

to learn an optimized metric by minimizing

this semantic gap to build more effective code-

books for BoW. The task can be formulated as a

distance-metric learning problem with side in-

formation, which is generally a semidefinite

programming problem. We first discuss a

batch optimization algorithm to effectively

resolve the optimization task,7 followed by

presenting a novel, online SPML algorithm

(OSPML) to ensure our technique is efficient

and scalable for large-scale applications.

In this article we investigate the challenge of

reducing the semantic gap for building BoW

models for image representation; propose a

novel OSPML algorithm for enhancing BoW

by minimizing the semantic loss, which is effi-

cient and scalable for enhancing BoW models

for large-scale applications; apply the proposed

technique for large-scale image annotation and

object recognition; and compare it to the state

of the art.

Algorithm framework
We propose an SPML algorithm for improv-

ing the process of BoW’s visual-words genera-

tion. Figure 1 illustrates the flowchart of the

proposed framework. First of all, in the metric-

learning process, objects in the images are seg-

mented and tagged by users. SIFT features are

extracted from the images to represent the

objects. The SIFT features that are located at

the same semantic parts of the objects are con-

sidered relevant to each other, and will be used

as the similar pairwise constraints in our metric-

learning task; on the other hand, any two SIFT

features that are located at different semantic

parts of the objects are considered irrelevant,

and will be treated as the dissimilar pairwise
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constraints in our metric-learning task. We

refer to such a collection of similar and dissim-

ilar pairwise constraints as side information,

which is critical to the metric-learning task.

We propose a novel scheme to optimize the

distance metric from the side information by

minimizing the semantic loss. We define the

semantic loss as the following two cases:

� two features with different semantics are

mapped into the same visual word, and

� two features with the same semantics are

mapped into different visual words.

The semantic loss is mainly due to the

well-known semantic gap. That is, the similar-

ity between low-level features doesn’t reflect

the correlation between their semantics. We

propose to measure the semantic gap by com-

puting the distance between semantically iden-

tical features, illustrated in Figure 2. In the

figure, the two tires drawn on the car are

semantically identical features, and their dis-

tance in feature space is defined as the measure-

ment of the semantic gap. The idea of our work

is to search for a proper distance metric so that

the semantically identical features are mapped

to the same (or very close) place, while the

semantically different features are mapped to

diverse places (far from each other). Such an

optimized distance metric is used to build the

semantics-preserving codebook (SPC), which is

essential to the BoW representation for image

annotation and object categorization.

In traditional BoW, an image is represented

by the histogram of visual words from a code-

book. This simple representation has some

drawbacks. First of all, both the visual words

extracted from the object regions and the visual

words extracted from the background regions

are all incorporated for generating the BoW

model. Such a simple approach, however,

brings the background noise into the resulting

model, which is supposed to describe only the

object. Moreover, this representation might be

influenced if an image contains multiple

objects. However, many real-world images usu-

ally contain multiple objects. As a result, all

other irrelevant objects in the images will be-

come noises when building the regular BoW

model for certain objects. Although this prob-

lem may be partially resolved by some latent

topic analysis, it suffers from several challenges,

for example, it’s often difficult to determine an

appropriate number of latent topics for such

approaches.

For the reasons discussed previously, our

new SPML approach aims to preserve the se-

mantics by modeling each individual object

rather than simply modeling a whole image.

In particular, we adopt some training images

labeled by human beings, for example, MIT’s

Labelme testbed8 where the objects are all

well-segmented and labeled by real users.
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Figure 1. The key process of building the semantics-preserving, bag-of-words

model. The method consists of two key steps: semantics-preserving distance

metric learning, and object-based codebook generation.

Semantic
gap

Figure 2. Illustration for the measurement of a

semantic gap. For the same semantic parts of

objects, the ideal way is to map them to the same

place (as shown on the left side), while regular

approaches often map them into different places

(as shown in the right side), leading to the

semantic-gap problem.
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By the proposed SPML framework, we first

apply SIFT to extract local features from each

image. The SIFT features that are located at

the regions of the same semantics (labels) in

all the images are collected to represent the se-

mantics. To preserve the semantics in the BoW

model, all the collected features related to the

same semantics are clustered into one or several

discriminative visual words for representing the

object, where the clustering process adopts an

optimized distance metric designed to mini-

mize the overall semantic loss.

It’s worth noting that the metric is learned

on the basis of a sample of features, and will

be fixed and used for the whole feature set.

The visual words used for representing an ob-

ject might describe different semantic parts or

different views of the object. Finally, the set

of visual words used for one object is often dif-

ferent from the set used for another different

object. This process is different from the regular

BoW model where all objects share the same set

of visual words. Next, we present a novel learn-

ing technique designed to find an optimal dis-

tance metric to overcome the limitation of

semantic loss during the codebook-generation

process.

Learning to optimize metrics

for enhancing BoW
Codebook generation is a critical step in

building the BoW model. Instead of generating

the codebook by applying simple k-means clus-

tering in Euclidean space, which often leads to

much semantic loss, we suggest a novel metric-

learning scheme that exploits side information

for minimizing the semantic loss in the code-

book-generation process.

Problem formulation

We first introduce the concept of side infor-

mation. Consider a set of pairwise feature

instances fðxi1, xi2ÞgNi¼1 and a set of correspond-

ing instance constraints fðzi1,zi2,yiÞgNi¼1, where

xi1 2 Rd and xi2 2 Rd are two d-dimensional fea-

ture instances, for example, SIFT feature vec-

tors. Here, xi1 indicates the first feature vector

in the pair, and xi2 is the second feature vector

in the pair; zi1 and zi2 are binary indicators to

indicate whether a feature instance is located

at the object region or the background region

in the image. The variable yi indicates whether

the feature instances in pair ðxi1, xi2Þ are of the

same semantics. If both xi1 and xi2 are on

the same semantic part, then yi ¼ þ1; other-

wise, yi ¼ �1.

In general, side information can be gener-

ated automatically from locations of feature

points in well-segmented images. For example,

in Labelme, objects and background regions are

manually separated for each image, and differ-

ent parts of the objects are also manually seg-

mented by users. Hence, if two feature vectors

are located at the same region or at the regions

of the same semantic label, they will be consid-

ered as having the same semantic meaning, that

is, yi ¼ 1. Similarly, in the Pascal visual object

classes (VOC) 2006 datasets (see http://www.

pascal-network.org/challenges/VOC/voc2006/

results.pdf), objects in each image are separated

from the background by a bounding box.

Thus, two features that are in the same bound-

ing box or in the bounding boxes with the

same label are treated as having the same

semantic meanings.

Given the side information, the goal of our

task is to learn a distance metric A to measure

distance between any two visual features

xi1 and xi2 represented in the following

framework:

d xi1; xi2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1 � xi2Þ>Aðxi1 � xi2Þ

q
where matrix A 2 Rdxd is the target distance

metric that must be positive and semidefinite

with respect to the properties of a valid metric,

that is, A � 0. To find an optimal metric A, the

basic principle of our metric-learning task is

that distances between visual feature vectors

of the same semantics should be minimized,

and distances between feature vectors of differ-

ent semantics should be maximized. On the

basis of this principle, we can search for the

optimal metric that facilitates clustering

the feature vectors of the same semantics

into the same visual words, so each visual

word has a certain specific semantic meaning.

To this end, we formulate our distance-metric

learning problem into the following

optimization:

min
A�0;b

X
i

zi1zi2�i þ
�

2
trðAA>Þ

s:t:yiðkxi1 � xi2 kA �bÞ � �i; �i � 0; i ¼1; . . . ;n

where k�kA is the Mahanalobis distance be-

tween two features under metric A, tr(�) is

a trace operator, and � is a regularization
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parameter. The first term of the objective func-

tion consists of the slack variables that ac-

count for the semantic loss with respect to

the side information of n pairwise constraints

fðxi1, xi2, zi1, zi2, yiÞgNi¼1. With the first inequal-

ity constraint, minimizing this term makes

the distance between two semantically identi-

cal features closer, and thus more likely to be

mapped into the same visual word. The second

term of the objective function is a regulariza-

tion term, which is designed to prevent over-

fitting by minimizing the model complexity.

By solving the optimization problem, we can

obtain the optimized distance metric A and

the threshold variable b that could be used to

determine whether two features are similar or

dissimilar. In general, this optimization

belongs to a general semidefinite program,

which is often hard to solve with global optima

for large applications.

Batch algorithm

We first introduce a batch gradient descent al-

gorithm by combining with an active constraint

selection scheme to solve the optimization effi-

ciently. To simplify the notation, we denote

the feature matrix as X 2 RNtr�d, where Ntr is

the number of SIFT features in the training set,

and d is the feature dimension. We also represent

all the feature pairs ðxi1, xi2Þ in the training data

by two feature matrices X1 ¼ ½x11, x21, � � � , xn1	>

and X2 ¼ ½x12, x22, � � � , xn2	>, and similarly

their constraints by three matrices Z1 ¼
diagðz11, z21, � � � ,zn1Þ, Z2¼ diagðz12, z22, � � � , zn2Þ,
and Y ¼ diag½ y1, � � � , yn	. The proposed iterative

optimization algorithm is described as follows.

Firstly, we choose an active subset of infor-

mative side information from the training

data as the training instances. We denote St as

the active set at the t-th iteration. The informa-

tive training instances in St satisfy either one of

the two conditions: features are of the same se-

mantics but with large distance in the current

metric space; or features are of different seman-

tics but with small distance in the current met-

ric space. Specifically, St is found by combining

the following two subsets:

Sþt ¼ xi1; xi2; yið Þj 1þ yið Þkxi1 � xi2 k2A 41
� �

;

S�t ¼ fðxi1; xi2; yiÞjð1� yiÞ kxi1 � xi2 k2A 51g

Secondly, on the basis of the active set St

at the t-th iteration, we then apply the

gradient descent technique to search for the

optimal metric A and threshold b as follows:

Atþ1  At � �
t rAL,btþ1  bt � �

t rbL, where

rAL  �A þ DXZ1Z2Y>DX

� �
, DX ¼ X1 � X2,

rbL trðZ1Z2YÞ, and � is a learning rate.

Finally, to enforce the valid metric con-

straint, at the end of each iteration, we project

the current solution of metric A back to a

positive semidefinite cone by an eigen decom-

position approach.

Online algorithm

We now present a more efficient and scalable

algorithm to solve the metric-learning problem

with an online-learning approach. We denote

by At and bt the solution at the t-th step. For

online learning, we assume the pairwise con-

straints are given sequentially. For each

received pairwise constraint ðxi1, xi2, zi1, zi2, yiÞ,
we use current solution At and bt to make pre-

dictions on the constraint, and then measure

the incurred loss. Whenever the loss is non-

zero, that is, zi1zi2�i 40, we update the solu-

tion with the following optimization:

min
A�0;b

�i þ
�

2
tr AA>
� �

� � tr AA>t

� �
� 1

2
k b� bt k2

	 

ð1Þ

s:t:yi kxi1 � xi2 kA �bð Þ � �i; �i � 0

where both � and � are regularization parame-

ters. In Equation 1, we add the last regulariza-

tion term to prevent the new solution from

deviating too much from the previous solu-

tion, and simplify zi1zi2�i into �i since zi1zi2

will be1 for any nonzero loss.

The following theorem gives the optimal

solution for each step of the proposed OSPML

algorithm:

Atþ1 ¼
�

�
At �

�

�
Gt ; and btþ1 ¼ bt þ

�

�

where Gt ¼ yiðxi1 � xi2Þðxi1 � xi2Þ> and the opti-

mal � is

� ¼ min 1;
�

tr GtG
>
t

� � yi kxi1 � xi2 k At � btð Þ
 !

The details of the proof to the above theo-

rem can be found in the ‘‘Proof of Theorem 1’’

sidebar (next page). Finally, Algorithm1, shown

in Figure 3, illustrates the process of the OSPML

algorithm.
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Application to codebook generation
The codebook for BoW can be generated by

clustering SIFT features into visual words (or

codewords) under the optimized metric. Differ-

ent visual words can represent different views

or different parts of an object. We propose to

generate the codebook for each object category

so that the linkage between the codewords in

the codebook and the high-level semantics of

object category can be effectively established,

which is essential to bridge the gap between

low-level features and high-level semantics.

Specifically, for each object category, we first

collect all the related features from the same

object regions, and then perform the k-means

clustering6 on the basis of the optimized dis-

tance metric A that is obtained from the pro-

posed SPML scheme. The k-means clustering

produces a set of k clusters (whose centroids

are used as visual words or codewords) for

this object category. Finally, we form the SPC

by gathering all the codewords from every ob-

ject category.

In general, there are two important issues for

building the SPC: codebook size assignment

and visual word generation.

Codebook size assignment

One key challenge of our codebook genera-

tion is to assign varied numbers of codes for di-

verse objects of different complexity. In our

codebook size assignment approach, we follow

two principles: the number of codes increases

linearly with respect to the visual complexity

of an object category; and the visual complex-

ity of an object category can be measured by

the diversity of its associated features.

In our solution, we apply information

theory to measure the visual complexity of an

[3B2-9] mmu2011010024.3d 18/2/011 16:38 Page 28

Proof of Theorem 1
Proof: To solve the optimization problem, we define the

Lagrangian:

L A; b; �i ; �; �ð Þ ¼ �i þ
�

2
tr AA>
� �

� �tr AA>t

� �
þ �

2
kb� bt k2

þ � yi kxi1 � xi2 kA�bð Þ � �ið Þ � ��i

where � � 0 and � � 0 are Lagrangian multipliers. The

optimal solution can be found by setting the gradients of

the Lagrangian with respect to A and b to zeros

respectively, that is,

@L A; b; �i ; �; �ð Þ
@A

¼ �A� �At þ �Gt ¼ 0

and

@L A; b; �i ; �; �ð Þ
@b

¼ � b� btð Þ � � ¼ 0

where Gt ¼ yiðxi1 � xi2Þðxi1 � xi2Þ> : As a result, we have the

optimal solution as follows:

Atþ1 ¼
�

�
At �

�

�
Gt and btþ1 ¼ bt þ

�

�

where � is an unknown variable to be determined. To find

the optimal � value, we differentiate the Lagrangian with

respect to �i and setting it to 0, that is,

@L A; b; �i ; �; �ð Þ
@�i

¼ 1� � � � ¼ 0 ðAÞ

Equation A indicates that � �1 given the fact that � �0.

Plugging the Equations (A) and (B) back into the original

Lagrangian, we have:

Lð�Þ ¼ � �2

2�
trðAtA

T
t Þ þ

�2

2�
trðGtG

>
t Þ

þ �yiðkxi1 � xi2 kA � bÞ � �i ðBÞ

By differentiating the above with respect to � and then set-

ting it to 0, we can find the solution for � :

� ¼ �

trðGtGT
t Þ

yi kxi1 � xi2 kAt
� btð Þ

Finally, combining the previous result that � �1, we thus

prove the conclusion of the theorem.

INPUT:

SIFT feature matrix: X 2 RN�d , and pairwise constraints: ðxi1, xi2, zi1, zi2, yi Þ;
and parameters � and �

PROCEDURE:

1: initialize metric and threshold: A ¼ I ,b ¼ 1

2: set iteration step t ¼ 0;

repeat
4: (1) sample one constraint ðxi1,xi2,zi1,zi2,yi Þ and calculate

lt ¼ zi1zi2yi jjxi1 � xi2jjAt
� bt

5: if ðlt 4 0Þ then

6: (2) calculate the optimal � value: � ¼ min
�
1, �

tr Gt G
>
t

� � yi jjxi1 � xi2jjAt
� bt

�
7: (3) update the metric and threshold: At þ 1 ¼ �

�At � �
�Gt , and, bt þ 1 ¼ bt þ �

�

8: end if

9: t ¼ t þ 1

until convergence

OUTPUT: feature metric A ¼ PSD(At þ 1), threshold variable bt þ 1

Figure 3. The online

semantics-preserving

metric learning

(OSPML) algorithm.
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object category. Given an object category that

contains a bag of features from their associated

images, we assume that each feature in the cat-

egory can be generated from the bag in some

probability. Specifically, we denote by Ci an ob-

ject category and by xj some feature. The gener-

ative probability pðxjjCiÞ can be estimated as

follows:

pðxjjCiÞ ¼
1ffiffiffiffiffiffi
2�
p

�
exp�

jjxj�x̂jj2
A

2�2

where

x̂ ¼ 1

nCi

X
xj2Ci

xj

and nCi
is the total number of features related

to the objects from Ci. On the basis of this

probability, we calculate the entropy of the

bag as a measurement of the object’s visual

complexity

HðCiÞ ¼ �
X
xj2Ci

pðxjjCiÞlogpðxjjCiÞ

Finally, we assign object Ci the number of

codes LCi
that are proportional to its visual

complexity, that is,

LCi
¼ Lmax �

HðCiÞ
log nCi

� �

where Lmax is the maximum size of the SPC for

each category. The total number of visual

words for all categories is Lmax �M, where M

is the number of categories.

Visual word generation

Visual word generation is a key step of code-

book generation for producing a set of LCi
vi-

sual words for each object category Ci by

applying k-means clustering on the associated

features. Specifically, we denote by Xi a collec-

tion of features belonging to object category

Ci, that is, Xi ¼ fðx; yÞjx 2 X; y ¼ Ci;Ci 2 C,

where y denotes the object category label of

feature x, X is the feature space, and C is the

label space. The algorithm first applies the k-

means clustering on Xi with the optimized

metric A to generate a set of K clusters,

denoted by fcij; rijjj ¼ 1 � � �;Kg, where K is set

to be larger than maxiLCi
, cij denotes the center

of the j-th cluster, and rij denotes the range

radius of the cluster, which is defined as the

largest distance from the features to the cluster

center.

Moreover, to reduce noisy clusters, we sort

the K clusters by their sizes Sij computed as

follows:

Sij ¼
X

x

	 kx� cij kA; rij

� �
where 	 a; bð Þ ¼

1 a � b

0 otherwise

(

The algorithm then chooses top LCi
largest

clusters as the set of visual words to form the

codebook for category Ci. Finally, the algorithm

combines all the visual words from every object

category and outputs the set of visual words

along with their ranges, that is, fwk; rkgLmax
k¼1 , as

the final SPC.

Visual word histogram

To apply SPC during the test phase, the key

is to generate a visual word histogram for each

novel test image. We first extract SIFT features

from a novel image, and map each of the

extracted SIFT features x 2 Rd to a visual word

ID k in the cookbook. Each visual feature can

be assigned to multiple visual words among dif-

ferent object categories because the ranges of

visual words may overlap each other and the

same semantics may appear in different objects.

In our approach, we assign a feature to a visual

word when the distance between them is

smaller than some range radius.

Specifically, we define some mapping func-

tion �ðx; kÞ between feature x and visual word

wk as follows:

� x; kð Þ ¼
1 jjx� wkjjA 5 rk

0 otherwise

(

We apply this mapping function to compute

the frequency of a visual word wk appearing in

image I as

fIðkÞ ¼
X

x2I
�ðx; kÞ

Finally, we can obtain the visual word histogram

by normalizing the visual word frequencies as

follows:

hIðwkÞ ¼
fIðkÞPLmax

v¼1 fIðvÞ

With this representation, we can annotate an

image simply by adopting a Bayes classifier

similar to the approach used in Wu et al.3

Experiments
This section presents our extensive experi-

ments to empirically evaluate the performance
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of the proposed SPML method and the existing

BoW model for image annotation and object

categorization. In addition to testing the pro-

posed metric-learning algorithm, we show

that the proposed semantics-preserving BoW

framework can be integrated with other exist-

ing distance metric learning (DML) techniques.

We evaluate different implementations by

adapting other existing DML algorithms to

our framework.

Experimental testbed

We formed a large and diverse image testbed

consisting of 1,073 different object categories

and 10,000 images, of which 6,964 images

were from Labelme and the rest were from

Flickr. The objects in our testbed included

cars, trees, buildings, persons, lights, ladders,

sidewalks, air conditioners, mailboxes, signs,

bicycles, umbrellas, and so on. For feature ex-

traction, we adopted the SIFT descriptor to ex-

tract local visual features from the images.

Each image contained about 1,000 SIFT features

represented in 128-dimensional space. In total,

the entire data set consisted of about

13,570,000 SIFT features, which presented a

great challenge for applying machine learning

techniques.

We chose this data set for several reasons.

First of all, images from the Labelme data set

have high-quality, user-generated object seg-

mentation and labeling information. The seg-

mentation and labeling information can be as

detailed as parts of the objects, such as the

front light of a car, the door of a building,

and so on. Such detailed labeling information

can help generate high-quality side informa-

tion for learning distance metrics. Secondly,

this data set is large in that it has over 1,000

common categories and 10,000 images with

13 million SIFT features. Third, these object cat-

egories commonly appear in daily life. Specifi-

cally, for each image, there are on average 20

objects positioned and occluded as they exist

in the real world. And for each category, there

are on average 20 instances. The distribution

of the categories and tags and their frequency

values are shown in Figure 4. It’s a great chal-

lenge for any model to detect and annotate

these objects in such a complex situation. Fi-

nally, the data set consisting of images from

both Labelme and Flickr enables us to examine

if the learned distance metric from one data set

could also be applied or generalized to another

data set.

Experimental settings

We compare the proposed SPML method

with state-of-the-art DML methods. In particu-

lar, we implemented two SPML algorithms: a

batch algorithm (SPML)7 and an online algo-

rithm (OSPML). We compare these against

other metric-learning algorithms, including rel-

evant component analysis (RCA),9 information

theoretic metric learning (ITML),10 large margin

nearest neighbor (LMNN),11 and neighborhood

components analysis (NCA).12 We imple-

mented these under the same settings.

RCA is parameter-free. For ITML, we set the

algorithm convergence threshold to 10�4, and

the slack variable to 1. For LMNN, we set the

step size 10�9, the multiplicative factor to 1.1,

and the cut-off threshold to 10�22. For NCA,

we set the length to 5, the Wolfe-Powell param-

eters RHO and SIG to 0.01 and 0.5, and the

slope ratio to 100.

Experiment 1: annotation performance

The ground truth of annotation was gener-

ated by Web users from the Labelme project.

We adopted standard performance metrics,

that is, average precision and average recall, to

evaluate the annotation performance at the

top N annotations.

In our experiment, we performed distance

metric learning by five-fold cross validation

on Labelme data, in which four folds are used

for building the codebook and one fold is
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Figure 4. The

distribution of the tags

and their frequency

values in our image

data collection.
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used for testing the annotation performance.

Then we applied the learned metric on the

Flickr data. In our methods, there are two key

parameters: the constraint size (that is, the

number of sampled pairwise constraints) and

the codebook size. In this experiment, we sim-

ply fixed the constraint’s size to 10,000 and the

codebook size to 2,500. Figure 5 shows the

comparison results of different approaches,

including a regular BoW method and several

implementations of our semantics-preserving

BoW scheme using different DML algorithms.

As Figure 5 shows, we found that most DML-

based algorithms significantly improve the an-

notation performance of the regular BoW in

terms of both precision and recall. Compared

to the other existing DML algorithms, the pro-

posed SPML and OSPML algorithms also have

clear advantages. These results show that the

codebook generated with our SPML technique

is more discriminative than the regular BoW,

and that SPML is effective in reducing the

semantic loss during codebook generation.

Experiment 2: object vs. general codebook

Our SPML scheme in general adopts an

object-based codebook, which is denoted as

object codebook. Unlike the regular BoW that

adopts a general codebook without considering

specific objects, our object codebook enjoys

several advantages, such as high efficiency

and excellent scalability. In addition, as with

regular BoW, we can generate a general code-

book by applying the similar metric-learning

technique as used in the SPML scheme.

This experiment is designed to compare the
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performance between object codebook and

general codebook.

We have implemented two kinds of

semantics-preserving codebooks. One is an

object codebook similar to the previous exper-

iment, and the other is a global semantics-

preserving codebook similar to the regular

BoW except for the usage of the optimized

metric. Finally, we compared a regular BoW

codebook, denoted as BoW, and an improved

BoW model with a soft codeword assign-

ment,13 denoted as BoW(soft).

Figure 6 summarizes the comparison results.

Both SPC approaches performed considerably

better than the regular BoW codebook.

Further, by comparing object-based and global

codebooks, we found that both of the two

object codebooks consistently surpassed their

corresponding global codebooks in all top an-

notation results. These results again validate

the effectiveness of the SPML technique.

Experiment 3: annotation performance

of varied codebook sizes

This experiment evaluates the performance

under different codebook sizes. We fixed the

size of the tag corpus at 1,000 and gradually

increased the size of the codebook to evaluate

the average precision and average recall of the

top 50 annotations under each codebook. The

performance evaluation results are shown in

Figure 7.

As shown in Figure 7, we found that the

codebook size could influence the perfor-

mance. If the codebook size is too small, it

might not be discriminative enough. If the
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codebook size is too large, it may bring noise.

Typically, the optimal size of the codebook

may depend on the data set, which could be

chosen by cross validation in practice.

Also we found that the number of codes for

each category is small. It seems the discrimina-

tive of visual words is not on the number, but

whether these visual words exactly describe

the specific object. Even for the global code-

book, we might find for some objects, the

high frequent visual word is not much. An-

other fact is the number of codes also deter-

mined by the visual complexity of the object.

In Labelme data, most of the objects, such as

a window, road, lake, sky, cloud, railing, and

so on, are not complex. For those visually sim-

ple objects, we found that one code is enough.

For the global codebook, we found that not all

visual words are useful. In the Bayes classifier,

we might use just a few high-frequency codes

that can determine the objects. Besides, we

found that other irrelevant codes might even

decrease the performance. We often see that

when the number of categories increase, the

performance of the global codebook might

decrease.

Experiment 4: annotation performance

of varied number of tags

This experiment is to discover the relation

between the number of tags and the annota-

tion performance. We fixed the codebook size

to 3,000, randomly chose the first 100 tags,

and then gradually increased the tag corpus

size. We then evaluated the annotation perfor-

mance within each chosen tag corpus. Our goal
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was to examine how the tag corpus size influen-

ces the performance. Figure 8 shows the evalu-

ation results.

We found that the performance is improved

when the number of tags increases. This is be-

cause each image usually contains multiple

objects, some of which might not appear in a

small tag corpus. When increasing the tag cor-

pus size, objects find their proper tags more eas-

ily from the tag corpus, leading to a boost in

the annotation performance. When the num-

ber of tags is too small, it’s less likely to find

an image with proper tags that describe the

same object as the target image. Therefore,

increasing the size of tag corpus generally

improves the annotation performance of the

target image.

Experiment 5: application to object

recognition

To further examine the performance of the

proposed online SPML technique for object rec-

ognition, we applied the technique on the

Pascal VOC 2006 object-recognition challenge.

Unlike the Labelme data set where objects are

manually well segmented, the objects in the

VOC 2006 data set are only marked in the

images with a rough bounding box. The num-

ber of object categories is only 10 for the VOC

2006 data set, which is much smaller than the

Labelme data set. Although this data set

seems less challenging, we believe both of

them could help to examine the robustness of

our techniques as they generally have different

data distributions.
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For object recognition, we adopted discrimi-

native classification models, that is, support

vector machines (SVMs). In particular, all the

VOC 2006 training data is used to train the

codebook as well as a set of binary SVM classi-

fiers in which each of the SVM classifiers

would be employed to detect one object cate-

gory. Once the classifiers were trained, we

tested the performance of the SVM classifiers

on the VOC 2006 test set, and compared the

results with the existing BoW model as well as

some other state-of-the-art object-recognition

methods, including XRCE,14 AP06-Lee,15 and

QMUL-LSPCH.15 Because there are only 10 ob-

ject categories, we fixed the codebook size to

500 during the codebook-learning process. For

the parameters in SVM training, we adopted

the default settings (C ¼ 1) with the radial-

basis-function kernel of � ¼ 0:07. Finally, we

measured the detection performance by the

area under the (receiver operating characteris-

tic, or ROC) curve (AUC).

Table 1 shows the AUC results. First of all,

we found that most DML-based approaches sig-

nificantly outperformed the regular BoW with-

out metric learning. Second, by examining

different DML algorithms, we found that the

SPML and OSPML algorithms achieved the

best performance. Moreover, compared to

the other state-of-the-art object-recognition

approaches, the proposed algorithms often

obtained the best results for most cases. Finally,

we found that the proposed online SPML algo-

rithm is mostly comparable to the batch SPML

algorithm for most cases.

Experiment 6: evaluation

of computational cost

As indicated, we adopted the five-fold cross

validation approach in which four folds of the

data are used to learn the metric and generate

the codebook, and one fold is used for object

annotation. In the experiment, we focused on

comparing the computational time costs of

the OSPML algorithm, which can efficiently

learn the metrics in a scalable manner. We

have extensively evaluated the performance of

our technique on a large data set of millions

of features with various DML algorithms to

learn metrics for codebook generation.

By computing the average time costs of all

the compared DML algorithms in the object-

annotation experiments, we found RCA, an

extremely simple algorithm, is most efficient,

taking about 1.58 seconds. We found LMNN

to be the least efficient algorithm, taking

about 1,545.35 seconds for optimizing the

metric. Among the rest, NCA, the second

least-efficient algorithm, took about 391.13 sec-

onds, and ITML took about 80.37 seconds. For

the two semantics-preserving metric-learning

algorithms, the batch SPML algorithm took

about 8.28 seconds, while the proposed online

algorithm OSPML took about 5.85 seconds,

ranking the second most-efficient algorithm

among all the compared algorithms.

Conclusion
Encouraging results indicated that our tech-

nique is effective and promising for large-scale

multimedia applications. In our future work,
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Table 1. Comparison of area under the (receiver operating characteristic) curve results on the Pascal

visual object classes 2006 data set.

Category BoW

AP06-

Lee LSPCH XRCE RCA ITML LMNN NCA SPML OSPML

Bicycle 56.91 79.10 94.80 94.30 93.45 96.98 94.12 95.34 99.89 99.82

Bus 56.61 63.70 98.10 97.80 97.57 98.17 97.79 95.98 97.15 97.16

Car 60.31 83.30 97.50 96.70 94.42 93.17 93.13 93.13 94.54 94.31

Cat 61.08 73.30 93.70 93.30 92.19 94.15 92.97 93.32 93.33 93.12

Cow 68.53 75.60 93.80 94.00 93.91 92.18 92.77 92.75 94.18 93.97

Dog 73.22 64.40 87.60 86.60 87.77 92.11 90.06 89.97 94.42 94.32

Horse 28.83 60.70 92.60 92.50 93.22 95.58 96.18 93.85 95.18 95.19

Motorbike 36.01 67.20 96.90 95.70 92.19 94.37 94.75 94.19 96.97 97.01

Person 60.78 55.00 85.50 86.30 92.18 93.33 94.18 91.31 92.68 93.17

Sheep 60.74 79.20 95.60 95.10 97.19 97.15 92.39 95.67 97.44 97.28

Average 56.30 70.15 93.61 93.23 93.41 94.72 93.83 93.55 95.58 95.54
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we plan to develop more effective algorithms to

solve the optimization task of the distance met-

ric learning problem to further improve the effi-

ciency and scalability of the proposed BoW

models. In addition, we plan to work on mining

probabilistic constraints from noisy data of user-

contributed photo collections, discovering the

relation between visual words to reduce their re-

dundancy, and applying our technique to other

real large-scale multimedia applications. MM
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Related Work
Our work is generally related to the bag-of-words stud-

ies,1,2 for which we refer readers to a comprehensive survey

on BoW.1 On the other hand, from a machine-learning view-

point, our work is related to supervised distance metric learn-

ing (DML). This work mainly follows our recent study.3 This

article differs in that we propose a novel online semantics-

preserving, metric-learning algorithm, which is more efficient

and scalable for large-scale applications. Here, we briefly dis-

cuss some related work on distance metric learning.

In the literature, DML has been actively studied. Existing

DML studies can be roughly grouped into two major cate-

gories. One category is to learn metrics with class labels,

such as neighborhood components analysis (NCA),4 which

are often studied for classification.5 NCA learns a distance

metric by extending the nearest-neighbor classifier. The max-

imum-margin nearest neighbor (LMNN) classifier6 extends

NCA through a maximum margin framework. Information-

theoretic metric learning (ITML)7 presented the metric-

learning problem from the information-theory approach,

and achieved the optimal metric by minimizing the differen-

tial relative entropy between two multivariate Gaussians

under constraints on the distance function.

The other category of DML is to learn metrics from pair-

wise constraints that are mainly used for clustering and re-

trieval. Examples include relevant components analysis

(RCA)8 and discriminative component analysis (DCA),9

among others. RCA learns a global linear transformation

from the equivalence constraints. The learned linear trans-

formation can be used directly to compute distance be-

tween any two examples. DCA and kernel DCA9 improve

RCA by exploring negative constraints and capturing nonlin-

ear relationships using contextual information. Essentially,

RCA and DCA can be viewed as extensions of linear discrim-

inant analysis by exploiting the must-link constraints and

cannot-link constraints.
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