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Cost-Sensitive Online Classification

Jialei Wang, Peilin Zhao, Steven C.H. Hoi
School of Computer Engineering, Nanyang Technological University, Singapore 639798

Email: {jl.wang, zhao0106, chhoi}@ntu.edu.sg

Abstract—Both cost-sensitive classificationand online learning
have been studied extensively in data mining and machine
learning communities, respectively. It is a bit surprising that
there was very limited comprehensive study for addressing an
important intersecting problem, that is, cost-sensitive online
classification. In this paper, we formally study this problem, and
propose a new framework for cost-sensitive online classification
by exploiting the idea of online gradient descent techniques.
Based on the framework, we propose a family of cost-sensitive
online classification algorithms, which are designed to directly
optimize two well-known cost-sensitive measures: (i) maximiza-
tion of weighted sum of sensitivity and specificity, and (ii)
minimization of weighted misclassification cost. We analyze the
theoretical bounds of the cost-sensitive measures made by the
proposed algorithms, and extensively examine their empirical
performance on a variety of cost-sensitive online classification
tasks.

Keywords-cost-sensitive learning, online learning, classifica-
tion

I. I NTRODUCTION

Online learningrepresents a family of efficient and scal-
able machine learning methods, which has been extensively
studied in machine learning and data mining literature [5],
[15], [21], [25], [27], [29]. In general, the goal of online
learning is to incrementally learn some prediction models
to make correct predictions on a stream of examples that
arrive sequentially. Online learning is advantageous for its
high efficiency and scalability for large-scale applications,
and has been applied to solve online classification tasks in
a variety of real-world data mining applications.

Despite being studied extensively in machine learning,
most existing online learning techniques are unsuitable
and potentially would not be effective enough to solve a
cost-sensitive classificationtask, an important data mining
problem which takes the misclassification costs into con-
sideration [10], [7]. This is because most existing online
learning studies often concern the performance of an online
classification algorithm in terms of predictionmistake rate
or accuracy, which is obviouslycost-insensitiveand thus
inappropriatefor many real applications in data mining, es-
pecially for cost-sensitive classification tasks where datasets
are often class-imbalanced and the misclassification costsof
instances from different classes can be very different [24],
[4], [9], [20].

To address the above challenge of cost-sensitive classifi-
cation, researchers especially in data mining literature have

proposed more meaningful metrics, such as the weighted
sum ofsensitivityandspecificity[13], [3] and the weighted
misclassification cost[10], [1]. Over the past decades, sub-
stantial research efforts have been devoted to developing
batch classification algorithms to improve the cost-sensitive
measures, including the weighted sum of sensitivity and
specificity and the weighted misclassification cost met-
rics [10], [1]. However, these batch classification algorithms
often suffer from low efficiency and poor scalability when
solving large-scale problems, making them unsuitable for
online classification applications.

Although both cost-sensitive classificationand online
learning have been studied extensively in data mining and
machine learning communities, respectively, there were very
few comprehensive studies on cost-sensitive online classifi-
cation in both data mining and machine learning literature.In
this paper, we formally investigate this problem by attempt-
ing to develop cost-sensitive algorithms for solving an online
cost-sensitive classification task. As the first comprehensive
study, in this paper, we propose a new framework of Cost-
Sensitive Online Classification to resolve this challenging
open problem. The key challenge of our framework is how
to develop an effective cost-sensitive online algorithm which
can directly optimize a predefined cost-sensitive measure
(e.g., balanced accuracy or weighted misclassification cost)
for an online classification task, and further offer theoretical
guarantee of the proposed algorithm.

To this end, we summarize the major contributions in
this work as follows: (i) we propose a family of cost-
sensitive online algorithms using online gradient descent
learning technique to tackle the online optimization task of
maximizing the weighted sum or minimizing the weighted
misclassification cost; (ii) we theoretically analyze the cost-
sensitive measure bounds of the proposed algorithms, and
extensively examine their empirical performance of cost-
sensitive online classification tasks.

The rest of the paper is organized as follows. Section II
briefs the related works. Section III formulates the problem
and presents the proposed algorithms. Section IV theo-
retically analyzes the bounds of the proposed algorithms.
Section V discusses our experimental results, and finally
Section VI concludes this work.



II. RELATED WORK

Our work is mainly related to two groups of research in
data mining and machine learning: (i) cost-sensitive classi-
fication in data mining literature, and (ii) online learningin
machine learning literature.

Cost-sensitive classification has been extensively studied
in data mining and machine learning [18], [26], [30]. To
address this problem, researchers have proposed a variety of
cost-sensitive metrics. The well-known examples include the
weighted sum ofsensitivityandspecificity[13], [3], and the
weightedmisclassification costthat takes cost into consider-
ation when measuring classification performance [10], [1].
As a special case, when the weights are both equal to 0.5, the
weighted sum of sensitivity and specificity is reduced to the
well-known balanced accuracy[3]. Over the past decades,
various batch learning algorithms have been proposed for
cost-sensitive classification in literature [22], [23], [7], [10],
[19], [17], [20].

Online learning has been extensively studied in machine
learning community. Various online learning methods have
been actively proposed in literature [21], [15], [5]. Examples
include the well-known Perceptron algorithm [21], [11], the
recent Passive-aggressive (PA) learning [5], and many other
recently proposed algorithms, many of which usually follow
the principle of large margin learning [6], [12], [14], [8].
Most online learning algorithms are cost-insensitive, except
the prediction-based PA algorithm (’CPAPB ’) [5] and the
perceptron algorithm with uneven margin (’PAUM’) [16].
However, to the best of our knowledge, no existing work in
this area had attempted to directly optimize the two cost-
sensitive metrics in an online learning setting. Finally, we
note that our work is very different from another recent
online learning study [28], which aims to optimize AUC, but
cannot be guaranteed to optimize the cost-sensitive measures
in our study.

III. C OST-SENSITIVE ONLINE CLASSIFICATION

A. Problem Formulation

Without loss of generality, let us consider an online binary
classification problem. At each learning round, the learner
receives an instance and predicts its class label as “+1” or
“-1”. After making the prediction, the learner receives the
true label of the instance and suffers a loss if the prediction
is incorrect. At the end of each round, the learner makes use
of the received training example and it class label to update
the prediction model.

Formally, let us denote byxt ∈ R
n the instance received

at the t-th learning step, andwt ∈ R
n a linear prediction

model learned from the previoust − 1 training examples.
We also denote the prediction for thet-th instance as
ŷt = sign(wt · xt), while the value|wt · xt|, known as
the “margin”, is used as the confidence of the learner on
the prediction. The true label for instancext is denoted as

yt ∈ {−1,+1}. If ŷt 6= yt, the learner made a mistake;
otherwise it made a correct prediction.

For binary classification, the result of each prediction for
an instance can be classified into four cases: (1)True Positive
(TP) if ŷt = yt = +1; (2) False Positive(FP) if ŷt = +1
andyt = −1; (3) True Negative(TN) if ŷt = yt = −1; and
(4) False Negative(FN) if ŷt = −1 andyt = +1.

We now consider a sequence of training examples
(x1, y1), . . . , (xT , yT ) for online learning. Then, for conve-
nience, we denote byM the set of indexes that correspond
to the trials of misclassification:

M = {t |yt 6= sign(wt · xt), ∀t ∈ [T ]}

where [T ] = {1, . . . , T }. Similarly, we denote byMp =
{t |t ∈ M and yt = +1} the set of indexes for false
negatives, andMn = {t |t ∈ M and yt = −1} the set
of indexes for false positives.

Further, we introduce notationM = |M| to denote the
number of mistakes,Mp = |Mp| to denote the number of
false negatives, andMn = |Mn| to denote the number of
false positives. Also we use notationIp

T = {i ∈ [T ]|yi =
+1} to denote the set of indexes of the positive examples,
In
T = {i ∈ [T ]|yi = −1} to denote the set of indexes

of negative examples,Tp = |Ip
T | to denote the number of

positive examples, andTn = |In
T | to denote the number of

negative examples.
For performance metrics,sensitivityis defined as the ratio

between the number of true positivesTp − Mp and the
number of positive examples;specificity is defined as the
ratio betweenTn−Mn and the number of negative examples;
and accuracy is defined as the ratio between the number
of correctly classified examples and the total number of
examples. These can be summarized as:

sensitivity =
Tp −Mp

Tp

,

specificity =
Tn −Mn

Tn

,

accuracy =
T −M

T

Consider an online binary classification task, without loss
of generality, we assume positive class is the rare class,
i.e., Tp ≤ Tn, the number of positive examples is smaller
than the number of negative examples. For simplicity, we
also assume that‖xt‖ ≤ 1. For traditional online learning,
the performance is measured by the prediction accuracy (or
mistake rate equivalently) over the sequence of examples.
This is inappropriate for imbalanced data because a trivial
learner that simply classifies any example as negative could
achieve a quite high accuracy for a highly imbalanced
dataset. Thus, a more appropriate metric is to measure the
sumof weightedsensitivityandspecificity, i.e.,

sum = ηp × sensitivity+ ηn × specificity (1)



whereηp + ηn = 1 and0 ≤ ηp, ηn ≤ 1 are two parameters
to trade off between sensitivity and specificity. Notably,
when ηp = ηn = 0.5, the correspondingsum is the well
known balanced accuracy. In general, the higher thesum
value, the better the classification performance. Besides,
another approach is to measure the total misclassification
cost suffered by the algorithm, which is defined as:

cost = cp ×Mp + cn ×Mn (2)

where cp + cn = 1 and 0 ≤ cp, cn ≤ 1 are the
misclassification cost parameters for positive and negative
classes, respectively. The lower thecostvalue, the better the
classification performance.

B. Algorithms

In this section, we propose a framework of Cost-Sensitive
Online Classification for cost-sensitive classification byop-
timizing two cost-sensitive measures. Before presenting our
algorithms, we first prove the following important proposi-
tion that motivates our solution.

Proposition 1: Consider a cost-sensitive classification
problem, the goal of maximizing the weighted sum in (1)
or minimizing the weighted cost in (2) is equivalent to
minimizing the following objective:

∑

yt=+1

ρI(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0) (3)

where ρ =
ηpTn

ηnTp
for the maximization of the weighted

sum, andρ =
cp
cn

for the minimization of the weighted
misclassification cost.

Proposition 1 gives the explicit objective function for
optimization, but the indicator function is not convex. To
facilitate the online optimization task, we replace the indi-
cator function by its convex surrogate, i.e., either one of the
following modified hinge loss functions:

ℓI(w; (x, y)) = max(0, (ρ ∗ I(y=1) + I(y=−1)) − y(w · x)) (4)

ℓII(w; (x, y)) = (ρ ∗ I(y=1)+I(y=−1))∗max(0, 1− y(w · x)) (5)

As a result, we can formulate the optimization problem for
cost-sensitive classification as follows:

F∗

T (w)=
1

2
‖w‖2 + C

T
∑

t=1

ℓ∗(w; (xt, yt)) ∗ ∈ {I, II} (6)

where‖w‖2 is introduced to regularize the complexity of
the linear classifier andC is a positive penalty parameter
of the cumulative loss. The idea of the above formulation is
somewhat similar to the biased formulation of batch SVM
for learning with imbalanced datasets [1].

Now our goal is to find an online learning solution to
tackle the above convex optimization (6). To this end, we
propose to solve the problem using the online gradient
descent approach [31], [2], that is,

wt+1 = wt − λ∇ℓt(wt)

where λ is a learning rate parameter andℓt(w) =
ℓ∗(w; (xt, yt)), ∀∗ ∈ {I, II}. Specifically, when using the
loss function (4), the update rule can be expressed as:

wt+1 =

{

wt + λytxt if ℓt(wt) > 0
wt otherwise

We refer to the above resulting cost-sensitive online classi-
fication algorithm as “CSOGD-I” for short.

When using the loss function (5), the update rule can be
expressed as:

wt+1 =

{

wt + λρtytxt if ℓt(wt) > 0
wt otherwise

whereρt = ρ ∗ I(yt=1) + I(yt=−1). We refer to the above
resulting algorithm as “CSOGD-II” for short.

Finally, Algorithm 1 summarizes the two proposed
CSOGD algorithms.

Algorithm 1 The proposed CSOGD algorithms.

INPUT: learning rateλ; bias parameterρ =
ηpTn

ηnTp
for

“sum” andρ =
cp
cn

for “cost”
INITIALIZATION: w1 = 0.
for t = 1, . . . , T do

receive instance:xt ∈ R
n;

predict: ŷt = sign(wt · xt);
receive correct label:yt ∈ {−1,+1};
suffer lossℓt(wt) = ℓ∗(wt; (xt, yt)); ∗ ∈ {I, II}
if (ℓt(wt) > 0)

update classifier:wt+1 = wt − λ∇ℓt(wt);
end if

end for
OUTPUT: wT+1.

Remark.In Algorithm 1, one practical concern is about
setting the value ofρ when the goal is to optimize the
weighted sum performance. In the algorithm,ρ is formally
defined asρ =

ηpTn

ηnTp
. However, the values ofTn and Tp

might be unknown in a real-world online learning task. In
practice, one could try to approximate the ratioTn

Tp
according

to the distribution of online received training data instances
over the past sequence, and adaptively update this ratio
during the online learning process.

IV. A NALYSIS OF COST-SENSITIVE MEASURE BOUNDS

Although the above proposed algorithm is simple, very
limited existing study has formally investigated it for online
learning tasks. Below we theoretically analyze its perfor-
mance for classification tasks in terms of two types of cost-
sensitive measures.

To ease our discussion, we denote byS the set of
indexes that correspond to the trials when a margin error
happens,S = {t |ℓt(wt) > 0}. Similarly, we denote by
Sp = {t |ℓt(wt) > 0 and yt = +1}, Sn = {t |ℓt(wt) > 0
andyt = −1}, Sp = |Sp|, andSn = |Sn|.



Firstly, we will prove the following lemma, which gives
the loss regret bound achieved by the online learning algo-
rithm, and will facilitate later theoretical analysis.

Lemma 1:Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, wherext ∈ R

n, yt ∈ {−1,+1} and‖xt‖ ≤ 1 for
all t. Then for anyw ∈ R

n, for CSOGD-I:

T
∑

t=1

ℓt(wt) ≤
T
∑

t=1

ℓt(w) + ‖w‖
√

Sp + Sn

and for CSOGD-II:
T
∑

t=1

ℓt(wt) ≤
T
∑

t=1

ℓt(w) + ‖w‖
√

ρ2Sp + Sn

Thus, by our proposed method, we can guarantee the
following bound on the sum ofηp × sensitive + ηn ×
specificity, whereηp + ηn = 1 andηp, ηn > 0.

Theorem 1:Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, wherext ∈ R

n, yt ∈ {−1,+1} and‖xt‖ ≤ 1 for
all t. By settingρ =

ηpTn

ηnTp
, for anyw ∈ R

n, we then have
the bounds of the proposed algorithms:

sum of CSOGDI ≥ 1−
ηn
Tn

(

T
∑

t=1

ℓt(w) + ‖w‖
√

Sp + Sn)

sum of CSOGDII ≥ 1−
ηn
Tn

(

T
∑

t=1

ℓt(w) + ‖w‖
√

ρ2Sp + Sn)

One limitation of the above algorithm is that for a real
online learning task, we may not know the ratioTn

Tp
in ad-

vance. To address this issue, an alternative way is to consider
the cost of the algorithm for performance evaluation, which
does not need to know the ratioTn

Tp
in advance. Specifically,

instead of settingρ =
ηpTn

ηnTp
, we propose to setρ =

cp
cn

,
wherecp andcn are the cost of false negative and the cost
of false positive, respectively. We assumecp + cn = 1, and
cn, cp > 0. Finally, the following theorem gives the cost
bound of the proposed cost based algorithm.

Theorem 2:Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, wherext ∈ R

n, yt ∈ {−1,+1} and‖xt‖ ≤ 1 for
all t. By settingρ =

cp
cn

, for anyw ∈ R
n, we then have the

bounds of the proposed algorithms:

cost of CSOGDI ≤ cn

[

T
∑

t=1

ℓt(w) + ‖w‖
√

Sp + Sn

]

cost of CSOGDII ≤ cn

[

T
∑

t=1

ℓt(w) + ‖w‖
√

ρ2Sp + Sn

]

V. EXPERIMENTS OFCOST-SENSITIVE ONLINE

CLASSIFICATION

This section is to evaluate the empirical performance of
the two proposed algorithms (CSOGD-I and CSOGD-II). To
ease our discussions, we denote by CSOLsum the proposed

CSOL algorithm that aims to maximize the weighted sum of
sensitivity and specificity, and CSOLcos the proposed CSOL
algorithm that aims to minimize the overall misclassification
cost.

A. Experimental Testbed and Setup

We compare two CSOGD algorithms with a number of
state-of-the-art online learning algorithms, including Percep-
tron, “ROMMA” and its aggressive version “agg-ROMMA”,
and two versions of the Passive-Aggressive algorithms
(“PA”) [5], i.e., PA-I and PA-II. Besides, we also compare
with the existing cost-sensitive online algorithms: prediction-
based PA algorithm (’CPAPB ’) [5] and the perceptron
algorithm with uneven margin (’PAUM’) [16].

To examine the performance, we test all the algorithms on
a number of benchmark datasets from web machine learning
repositories. All of them can be downloaded from LIBSVM
website1. For space limitation, we randomly choose some
of them for our following discussions, which are listed in
Table 1.

Table I
L IST OF BINARY DATASETS IN OUR EXPERIMENTS.

dataset #Examples #Features #Pos:#Neg
covtype 581012 54 1:1
german 1000 24 1:2.3
w8a 64700 300 1:32.5

To make a fair comparison, all algorithms adopt the
same experimental setup. In particular, for all the compared
algorithms, the penalty parameterC was set to 10; for the
proposed CSOLsum algorithms, we setηp = ηn = 1/2
for all cases, while for CSOLcos, we setcp = 0.95 and
cn = 0.05; for PAUM, the uneven margin was set toρ;
for PB-CPA, ρ(−1, 1) was set to 1 andρ(1,−1) was set
to ρ. The learning rateλ of CSOGD-I was set to 0.2, and
the learning rateλ of CSOGD-II was set to 0.1. The value
of ρ was set tocp

cn
for CSOLcos and ηpTn

ηnTp
for CSOLsum,

respectively. We also evaluate the parameter sensitivity about
the cost-sensitive weights in our experiments.

All the experiments were conducted over20 random
permutations for each dataset. The results are reported
by averaging over these 20 runs. We evaluate the online
classification performance by several metrics:sensitivity,
specificity, the weightedsum of sensitivity and specificity,
and the weightedcost.

B. Evaluation of Weighted Sum Performance

We first evaluate the weighted sum performance. The
first three columns of Table 2 summarize the results of the
algorithms. Some observations can be drawn below.

First of all, by examining thesumresults, we found that
CSOGD always achieves the best among all the datasets,
which significantly outperforms all the online algorithms,

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Table II
EVALUATION OF THE COST-SENSITIVE CLASSIFICATION PERFORMANCE OFCSOGDAND OTHER EXISTING ALGORITHMS.

Algorithm “sum” on covtype “cost” on covtype
Sum(%) Sensitivity(%) Specificity (%) Cost Sensitivity(%) Specificity (%)

Perceptron 66.149± 0.034 66.771± 0.056 65.528± 0.051 94563.580± 150.542 66.771± 0.056 65.528± 0.051
ROMMA 63.799± 0.562 66.266± 2.963 61.332± 4.064 96545.407± 7371.897 66.266± 2.963 61.332± 4.064
agg-ROMMA 64.833± 0.628 68.768± 2.936 60.897± 4.113 89876.875± 7293.558 68.768± 2.936 60.897± 4.113
PA-I 65.880± 0.044 66.263± 0.045 65.498± 0.057 95934.380± 125.245 66.263± 0.045 65.498± 0.057
PA-II 66.103± 0.043 66.550± 0.047 65.656± 0.055 95137.125± 130.178 66.550± 0.047 65.656± 0.055
PAUM 69.867± 0.035 69.825± 0.050 69.908± 0.048 33239.145± 85.815 90.414± 0.031 50.013± 0.022
CPAPB 65.891± 0.044 66.484± 0.046 65.298± 0.056 72060.113± 129.526 75.765± 0.047 54.081± 0.064
CSOGD-I 74.947± 0.022 77.543± 0.051 72.351± 0.052 35544.630± 80.287 89.366± 0.030 53.475± 0.034
CSOGD-II 75.526± 0.018 78.960± 0.041 72.091± 0.048 14752.020± 31.166 99.245± 0.010 14.547± 0.074

Algorithm “sum” on german “cost” on german
Sum(%) Sensitivity(%) Specificity (%) Cost Sensitivity(%) Specificity (%)

Perceptron 62.001± 1.259 64.967± 2.229 59.036± 1.483 114.182± 6.309 64.967± 2.229 59.036± 1.483
ROMMA 60.504± 1.496 64.400± 2.588 56.607± 2.202 116.647± 7.239 64.400± 2.588 56.607± 2.202
agg-ROMMA 61.012± 1.386 65.517± 3.012 56.507± 2.156 113.500± 8.260 65.517± 3.012 56.507± 2.156
PA-I 61.654± 1.495 65.000± 2.372 58.307± 1.472 114.342± 6.863 65.000± 2.372 58.307± 1.472
PA-II 61.893± 1.467 65.300± 2.420 58.486± 1.390 113.425± 6.974 65.300± 2.420 58.486± 1.390
PAUM 65.019± 1.144 52.367± 2.173 77.671± 0.980 102.045± 6.052 68.367± 2.171 66.029± 1.243
CPAPB 61.850± 1.601 65.500± 2.218 58.200± 1.858 112.612± 7.229 65.650± 2.514 57.957± 1.338
CSOGD-I 70.690± 0.846 77.367± 1.284 64.014± 1.039 77.313± 3.514 77.283± 1.244 64.086± 1.068
CSOGD-II 70.619± 0.824 77.667± 1.475 63.571± 0.703 84.747± 4.635 75.067± 1.603 60.893± 1.278

Algorithm “sum” on w8a “cost” on w8a
Sum(%) Sensitivity(%) Specificity (%) Cost Sensitivity(%) Specificity (%)

Perceptron 79.011± 0.319 65.717± 0.614 92.305± 0.079 871.072± 12.103 65.717± 0.614 92.305± 0.079
ROMMA 78.559± 0.267 62.230± 0.440 94.888± 0.204 854.022± 11.630 62.230± 0.440 94.888± 0.204
agg-ROMMA 79.090± 0.191 61.094± 0.381 97.086± 0.115 805.900± 7.383 61.094± 0.381 97.086± 0.115
PA-I 79.703± 0.300 63.621± 0.596 95.785± 0.100 800.330± 11.264 63.621± 0.596 95.785± 0.100
PA-II 79.998± 0.312 64.307± 0.633 95.689± 0.099 790.747± 11.521 64.307± 0.633 95.689± 0.099
PAUM 80.849± 0.344 63.011± 0.694 98.686± 0.024 723.015± 11.433 62.646± 0.632 98.819± 0.021
CPAPB 80.933± 0.304 70.998± 0.613 90.868± 0.183 798.985± 11.668 70.031± 0.601 92.077± 0.150
CSOGD-I 83.159± 0.258 71.128± 0.533 95.191± 0.058 681.158± 9.100 71.136± 0.525 95.185± 0.059
CSOGD-II 85.619± 0.254 89.289± 0.330 81.949± 0.355 652.142± 8.337 85.331± 0.429 87.803± 0.285

including two cost-sensitive online algorithms (PAUM and
CPA). This shows that it is important to study effective cost-
sensitive algorithms.

Second, by examining bothsensitivity and specificity
metrics, we found that CSOGD is not only guaranteed to
achieve the bestsensitivityfor all cases, but also can produce
a fairly good specificity performance for most cases. This
shows that the proposed approach for CSOGD is effective
in improving the accuracy of predicting the examples from
the rare class.

Third, similar to the previous results, the two CSOGD al-
gorithms in general achieved comparable sum performance,
in which CSOGD-I tends to perform slightly better than
CSOGD-II.

C. Evaluation of Weighted Cost Performance

We further evaluate the performance of the CSOLcos

algorithm in terms of the cost metric. The last three columns
of Table 2 summarize the results of total cost evaluation.
From the experimental results, we can also draw several
observations.

First of all, we found that the two existing cost-sensitive
algorithms (PAUM and CPAPB ) usually outperform the
other cost-insensitive algorithms, in which PAUM seems to
be more effective than CPAPB for most cases.

Second, among all the algorithms, we found that the
proposed CSOGD algorithms achieve significantly less total
misclassificationcost than the other algorithms for most
cases. For example, on the dataset “w8a”, the total mis-
classification cost of CSOGD-II is about 20% less than that
of PA algorithms, and about 10% less than that of PAUM.

Further, by examining bothsensitivity and specificity
metrics, we found that CSOGD often achieves the best
sensitivity result, but does not always guarantee the best
results forspecificity. Finally, by examining the two CSOGD
algorithms themselves, we found that CSOGD-II tends to
perform sightly better than CSOGD-I (except on the dataset
“german”).

VI. CONCLUSION

As an attempt to fill the gap between cost-sensitive
classification and online learning in machine learning and
data mining, this paper investigated a new framework of
Cost-Sensitive Online Classification, which aims to directly
optimize cost-sensitive measures for online classification
tasks. We proposed a family of effective algorithms based
on online gradient descent, theoretically analyzed their cost-
sensitive bounds, and finally examined their empirical per-
formance extensively. Our encouraging results show that



the proposed algorithms considerably outperform the tradi-
tional online learning algorithms for cost-sensitive online
classification tasks. Through this study, we hope to inspire
researchers in both data mining and machine learning to
further explore in-depth theory of cost-sensitive online clas-
sification and the application of new cost-sensitive online
learning techniques to tackle a variety of emerging chal-
lenges in real-world data mining applications.
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