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Jialei Wang, Peilin Zhao, Steven C.H. Hoi
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Email: {jl.wang, zhao0106, chhp@ntu.edu.sg

Abstract—Both cost-sensitive classificatiaand online learning
have been studied extensively in data mining and machine
learning communities, respectively. It is a bit surprising that
there was very limited comprehensive study for addressingra
important intersecting problem, that is, cost-sensitive aline
classification. In this paper, we formally study this problem, and
propose a new framework for cost-sensitive online classiftion
by exploiting the idea of online gradient descent technique
Based on the framework, we propose a family of cost-sensitv
online classification algorithms, which are designed to dictly
optimize two well-known cost-sensitive measures: (i) maniiza-
tion of weighted sum of sensitivity and specificity and (ii)
minimization of weighted misclassification costWe analyze the
theoretical bounds of the cost-sensitive measures made blyet
proposed algorithms, and extensively examine their empidal
performance on a variety of cost-sensitive online classiftion
tasks.

Keywords-cost-sensitive learning, online learning, classifica-
tion

I. INTRODUCTION

proposed more meaningful metrics, such as the weighted
sum of sensitivityand specificity[13], [3] and the weighted
misclassification codi0], [1]. Over the past decades, sub-
stantial research efforts have been devoted to developing
batch classification algorithms to improve the cost-sesgsit
measures, including the weighted sum of sensitivity and
specificity and the weighted misclassification cost met-
rics [10], [1]. However, these batch classification aldoris
often suffer from low efficiency and poor scalability when
solving large-scale problems, making them unsuitable for
online classification applications.

Although both cost-sensitive classificatiomnd online
learning have been studied extensively in data mining and
machine learning communities, respectively, there werg ve
few comprehensive studies on cost-sensitive online ¢iassi
cation in both data mining and machine learning literatlre.
this paper, we formally investigate this problem by attempt
ing to develop cost-sensitive algorithms for solving ariroel

Online learningrepresents a family of efficient and scal- cost-sensitive classification task. As the first comprelvens
able machine learning methods, which has been extensivebtudy, in this paper, we propose a new framework of Cost-
studied in machine learning and data mining literatQiie [5],Sensitive Online Classification to resolve this challeggin
[15], [21], [25], [27], [29]. In general, the goal of online open problem. The key challenge of our framework is how
learning is to incrementally learn some prediction modelgto develop an effective cost-sensitive online algorithriclh
to make correct predictions on a stream of examples thatan directly optimize a predefined cost-sensitive measure
arrive sequentially. Online learning is advantageous t®r i (e.g., balanced accuracy or weighted misclassificatiot) cos

high efficiency and scalability for large-scale applicasp

for an online classification task, and further offer theicadt

and has been applied to solve online classification tasks iguarantee of the proposed algorithm.

a variety of real-world data mining applications.

Despite being studied extensively in machine learning, To this end, we summarize the major contributions in
most existing online learning techniques are unsuitablehis work as follows: (i) we propose a family of cost-
and potentially would not be effective enough to solve asensitive online algorithms using online gradient descent
cost-sensitive classificatiotask, an important data mining learning technique to tackle the online optimization tagk o
problem which takes the misclassification costs into conmaximizing the weighted sum or minimizing the weighted
sideration [[10], [[7]. This is because most existing onlinemisclassification cost; (ii) we theoretically analyze tluste
learning studies often concern the performance of an onlingensitive measure bounds of the proposed algorithms, and

classification algorithm in terms of predictionistake rate
or accuracy which is obviouslycost-insensitiveand thus

inappropriatefor many real applications in data mining, es-

pecially for cost-sensitive classification tasks wheraskts

extensively examine their empirical performance of cost-
sensitive online classification tasks.

The rest of the paper is organized as follows. Section I

are often class-imbalanced and the misclassification ofsts briefs the related works. Section Il formulates the prable
instances from different classes can be very different,[24]and presents the proposed algorithms. Section IV theo-

[4], 91, [2Q].

retically analyzes the bounds of the proposed algorithms.

To address the above challenge of cost-sensitive classifBection V discusses our experimental results, and finally

cation, researchers especially in data mining literataeeh

Section VI concludes this work.



Il. RELATED WORK ye € {—1,4+1}. If g # y;, the learner made a mistake;
otherwise it made a correct prediction.

For binary classification, the result of each prediction for
an instance can be classified into four casesT(¢ Positive
(TP) if 4, = y; = +1; (2) False Positive(FP) if j; = +1
andy, = —1; (3) True NegativgTN) if ¢, =y, = —1; and
(4) False NegativgFN) if j, = —1 andy; = +1.

We now consider a sequence of training examples
1,Y1)s- -, (xr,yr) for online learning. Then, for conve-
nience, we denote by the set of indexes that correspond
to the trials of misclassification:

Our work is mainly related to two groups of research in
data mining and machine learning: (i) cost-sensitive ¢lass
fication in data mining literature, and (ii) online learniimg
machine learning literature.

Cost-sensitive classification has been extensively studie
in data mining and machine learning [18], [26], [30]. To
address this problem, researchers have proposed a vafriety{)
cost-sensitive metrics. The well-known examples inclige t \*
weighted sum ogensitivityand specificity[13], [3], and the
weightedmisclassification coghat takes cost into consider-
ation when measuring classification performarice [10], [1]. M = {t |y; # sign(w; - x;), Vt € [T]}

As a special case, when the weights are both equal to 0.5, the

weighted sum of sensitivity and specificity is reduced to thewhere [T] = {1,...,T}. Similarly, we denote byM, =
well-known balanced accuracy3]. Over the past decades, {t [t € M and y; = +1} the set of indexes for false
various batch learning algorithms have been proposed foregatives, and\,, = {t |t € M and y; = —1} the set
cost-sensitive classification in literatufe [22], [23]],[f{10],  of indexes for false positives.

[19], [17], [20]. Further, we introduce notation/ = |M| to denote the

Online learning has been extensively studied in machin@umber of mistakes),, = |M,]| to denote the number of
learning community. Various online learning methods havefalse negatives, and/,, = |M,,| to denote the number of
been actively proposed in literatufe [21]. [15], [5]. Exdem false positives. Also we use notatid, = {i € [T]|y; =
include the well-known Perceptron algorithm [21],[11]eth -+1} to denote the set of indexes of the positive examples,
recent Passive-aggressive (PA) learning [5], and manyroth&l?: = {i € [T]ly; = —1} to denote the set of indexes
recently proposed algorithms, many of which usually follow of negative examples]), = |Z%| to denote the number of
the principle of large margin learning![6], [12], [14],1[8]. positive examples, and,, = |Z7| to denote the number of
Most online learning algorithms are cost-insensitive,eptc  nNegative examples.
the prediction-based PA algorithm ('CR4’) [5] and the For performance metricsgnsitivityis defined as the ratio
perceptron algorithm with uneven margin (PAUM{)_[16]. between the number of true positivds — M, and the
However, to the best of our knowledge, no existing work innumber of positive examplespecificityis defined as the
this area had attempted to directly optimize the two costyatio betweer’,—M,, and the number of negative examples;
sensitive metrics in an online learning setting. Finally w and accuracyis defined as the ratio between the number
note that our work is very different from another recentof correctly classified examples and the total number of
online learning study [28], which aims to optimize AUC, but examples. These can be summarized as:

cannot be guaranteed to optimize the cost-sensitive messur T _ M
in our study. sensitivity = ———=,
TP
T, — M,
I1l. COSTSENSITIVE ONLINE CLASSIFICATION specificity = %7
. n
A. Problem Formulation T_M

Without loss of generality, let us consider an online binary accuracy = T

classification problem. At each learning round, the IearneE:onsider an online binary classification task, without loss

receives an instance and predicts its class label as “+1” Of¢ qonerality, we assume positive class is the rare class,
“.1”. After maklng the predlCtIOﬂ, the learner receives thei.e., Tp < T, the number of positive examples is smaller

true label of the instance and suffers a loss if the predictio han the number of negative examples. For simplicity, we
is incorrect. At the end of each round, the learner makes US<o assume thalx, || < 1. For traditionai online Iearnin’g

of the ref:e_ived training example and it class label to updatg, . performance is measured by the prediction accuracy (or
the prediction model. ) ) mistake rate equivalently) over the sequence of examples.
Formally, let us denote by, € R" the |r_1$tance re(_:e!ved This is inappropriate for imbalanced data because a trivial
at thet-th learning step, anav, € R" a linear prediction |o5ner that simply classifies any example as negative could
model learned from the previous— 1 training examples.  ;cnieve a quite high accuracy for a highly imbalanced
We also denote the prediction for theth instance as jaiaset. Thus, a more appropriate metric is to measure the

ge = sign(w; - x;), while the value|w, - x|, known as g mof weightedsensitivityand specificity i.e.,
the “margin”, is used as the confidence of the learner on

the prediction. The true label for instange is denoted as sum = 1, X sensitivity + n, X speci ficity (1)



wheren, +n, = 1 and0 < n,,n, < 1 are two parameters where A is a learning rate parameter anf(w) =
to trade off between sensitivity and specificity. Notably, £*(w; (z+,y:)), Vx € {I,II'}. Specifically, when using the
whenn, = n, = 0.5, the correspondingum is the well  loss function[(%), the update rule can be expressed as:

known balanced accuracy. In general, the higher shm Wi+ Ayexe i £(we) > 0
Wii1 = {

value, the better the classification performance. Besides, W, otherwise

another approach is to measure the total misclassification

cost suffered by the algorithm, which is defined as: We refer to the above resulting cost-sensitive online tlass
fication algorithm as “CSOGD-I" for short.

cost = cp X My +cn X My, (2) When using the loss functiofil(5), the update rule can be

where ¢, + ¢, = 1 and 0 < ¢,¢, < 1 are the expressed as:
misclassification cost parameters for positive and negativ  we Apryexy I Ly(wy) >0
classes, respectively. The lower thestvalue, the better the Wi+l = Wy otherwise

classification performance. where p, = p# I(y,_1) + I(,,__1). We refer to the above

B. Algorithms resulting algorithm as “CSOGD-II" for short.

In this section, we propose a framework of Cost-Sensitive " inally, Algorithm [1 summarizes the two proposed
Online Classification for cost-sensitive classificationdpy ~ CSOCD algorithms.
timizing two cost-sensitive measures. Before presenting o
algorithms, we first prove the following important proposi-

Algorithm 1 The proposed CSOGD algorithms.

tion that motivates our solution. INPUT: Iearnlng rate); bias parametep = ZP = for

Proposition 1: Consider a cost-sensitive classification “sum” andp = < for “cost”
problem, the goal of maximizing the weighted sum [ih (1) INITIALIZATION wy = 0.
or minimizing the weighted cost inJ(2) is equivalent to for t =1,...,7 do
minimizing the following objective: receive instancex; € R"”;

redict: §; = sign(wy - x¢);
Z Pliyiwxi<0) + Z T(ywx, <0) (3) Eeceive %:orrectgla(be[yt e){—l, +1};
w=t suffer lossl;(wy) = 0*(wy; (x4, y1)); * € {I, 11}

where p = Z’)i for the maximization of the weighted if (Li(wy) > 0)
sum, andp = gp for the minimization of the weighted update classifierw; 1 = w, — AV (wy);
misclassification cost. end if

Proposition 1 gives the explicit objective function for end for
optimization, but the indicator function is not convex. To OUTPUT: wr;.
facilitate the online optimization task, we replace theiind
cator function by its convex surrogate, i.e., either oneneft  Remark.In Algorithm 1, one practical concern is about

following modified hinge loss functions: setting the value ofp when the goal is to optimize the
lws (x,)) = max(0, (p* iy + Iye—1)) — y(w X)) (&) weighted sum pnerformance In the algorithmis formally
P (9)) = (p* Loty (ye1))emax(0, 1 — y(w - x)) (5) defined asp = J=7-. However, the values of’, and T,

might be unknown in a real-world online learning task In
As a result, we can formulate the optimization problem forpractice, one could try to approximate the ra?oaccordmg
cost-sensitive classification as follows: to the distribution of online received training data instes
over the past sequence, and adaptively update this ratio
Fi(w)= —HwH2 + CZE i (x¢,y¢)) *€{I,II} (6) during the online learning process.

IV. ANALYSIS OF COSTSENSITIVE MEASUREBOUNDS

where||w||? is introduced to regularize the complexity of : o
. o . " Although the above proposed algorithm is simple, very
the linear classifier and’ is a positive penalty parameter
limited existing study has formally investigated it for ord

of the cumulative loss. The idea of the above formulation i
SIearnlng tasks. Below we theoretically analyze its perfor-

somewhat similar to the biased formulation of batch S\/Mmance for classification tasks in terms of two types of cost-
for learning with imbalanced datasets [1]. o yp
sensitive measures.

Now our goal is to find an online learning solution to ) .
Lo . To ease our discussion, we denote Bythe set of
tackle the above convex optimizatidd (6). To this end, we. : .
ndexes that correspond to the trials when a margin error

ropose to solve the problem using the online gradien o
Sesréent approach [31'\.?2] that is ° ° Lappens,S = {t [t(ws) > 0}. Similarly, we denote by
T ’ ' Sp = {t |ét(wt) > 0 and Yt = —|—1}, Sn = {t |ét(wt) >0
Wit = Wi — )\Vﬁt(wt) andyt = —1}, S, = |Sp|, andS = |Sn|



Firstly, we will prove the following lemma, which gives CSOL algorithm that aims to maximize the weighted sum of
the loss regret bound achieved by the online learning algosensitivity and specificity, and CSQJ, the proposed CSOL
rithm, and will facilitate later theoretical analysis. algorithm that aims to minimize the overall misclassifioati

Lemma 1:Let (x1,91),...,(xr,yr) be a sequence of cost.
examples, where;, € R”, y, € {—1,+1} and|x.|| <1 for

all . Then for anyw € R", for CSOGD-I: A. Experimental Testbed and Setup

!

. - We <]:corr:1pare tvx:o CISOGD algljorithf:ns withI adnumber of
state-of-the-art online learning algorithms, includiregéep-
;gt(wt) = ;ét(w) FlIwllv/Sp + Sn tron, “ROMMA’” and its aggressive version “agg-ROMMA”,
and two versions of the Passive-Aggressive algorithms
and for CSOGD-It: (“PA) [5], i.e., PA-I and PA-II. Besides, we also compare
T with the existing cost-sensitive online algorithms: potidin-
D l(wi) < lu(w) + |[wlly/p2S, + Sn based PA algorithm (CPAz’) [5] and the perceptron
t=1 t=1 algorithm with uneven margin (PAUM’)[16].

Thus, by our proposed method, we can guarantee the To examine the performance, we test all the algorithms on
following bound on the sum ofy, x sensitive + 1, X a number of benchmark datasets from web machine learning
speci ficity, wheren, + n, = 1 andn,, n, > 0. repositories. All of them can be downloaded from LIBSVM

Theorem 1:Let (x1,41),. .-, (x7,yr) be a sequence of websitell. For space limitation, we randomly choose some
examples, wherg, € R”, 3, € {—1,+1} and||x,|| < 1for  of them for our following discussions, which are listed in
all t. By settingp = ;’pﬁ for anyw € R”, we then have Table 1.

HT !
the bounds of the prop(p)sed algorithms: Table |
LIST OF BINARY DATASETS IN OUR EXPERIMENTS
T
n | dataset | #Examples| #Features| #Pos:#Neg|

S f D > 1—— V4
sum of GS0GDr = 1=7 (Z (W) +[wllv'Sp + Su) Covtype | 581012 56 | 11

=1 german 1000 24 1.2.3

w8a 64700 300 1:32.5

T
‘ I
sum of CSOGDy; > 1—T—n(;€t(w)—|—|\w|\ p2S, + Sp)

. . , To make a fair comparison, all algorithms adopt the
One limitation of the above algorithm is that for a real g5 me experimental setup. In particular, for all the compare

online learning task, we may not know the ra@g inad- gi50rithms, the penalty parametérwas set to 10; for the
vance. To address this issue, an alternative way is to Oe'”s'dproposed CSOl,,,,, algorithms, we set), = 5, = 1/2

the cost of the algorithm for perfqrmance evaluatiqn, whichso 411 cases, while for CSQL,, we setc, = 0.95 and
does not need to know the rat% in advance. Specifically, ¢, = 0.05: for PAUM, the uneven margin was set fo
instead of settingp = ZP?; we propose to sep = E—P for PB-CPA, p(—1,1) was set to 1 angh(1,—1) was set
wherec, andc, are the cost of false negative and the costto p. The learning rate\ of CSOGD-| was set to 0.2, and
of false positive, respectively. We assume+ ¢, = 1, and  the learning rate\ of CSOGD-II was set to 0.1. The value
cn,¢p > 0. Finally, the following theorem gives the cost of p was set toz—: for CSOL.,, and % for CSOLsym,
bound of the proposed cost based algorithm. respectively. We also evaluate the parameter sensitibibyita
Theorem 2:Let (x1,41),..., (X7, yr) be a sequence of the cost-sensitive weights in our experiments.
examples, wherg; € R, y, € {—1,+1} and||x;|| < 1 for All the experiments were conducted ove6 random
all ¢t. By settingp = z—: for anyw € R”, we then have the permutations for each dataset. The results are reported
bounds of the proposed algorithms: by averaging over these 20 runs. We evaluate the online
T classification performance by several metrissnsitivity,
cost of CSOGD; < ¢, {th(w) + HWH\/M} specificity, the weightedsum of sensitivity and specificity,
= and the weightedost

B. Evaluation of Weighted Sum Performance

We first evaluate the weighted sum performance. The
first three columns of Table 2 summarize the results of the
algorithms. Some observations can be drawn below.

First of all, by examining thesumresults, we found that

CSOGD always achieves the best among all the datasets,

This section is to evaluate the empirical performance ofyhich significantly outperforms all the online algorithms,
the two proposed algorithms (CSOGD-I and CSOGD-II). To

ease our discussions, we denote by C§QL the proposed Thttp:/www.csie.ntu.edu.twicjlin/libsvmtools/datasets/

T
cost of CSOGD;; < ¢, [Zét(w) + [[wll\/p?Sp + Sn}
t=1

V. EXPERIMENTS OFCOSTSENSITIVE ONLINE
CLASSIFICATION


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

EVALUATION OF THE COST-SENSITIVE CLASSIFICATION PERFORMANCE OICSOGDAND OTHER EXISTING ALGORITHMS.

Table I

Algorithm "sum” on coviype "cost” on coviype

Sum(%) | Sensitivity(%) | Specificity (%) Cost | Sensitivity(%) [ Specificity (%)
Perceptron 66.149+ 0.034 | 66.771+ 0.056 | 65.528+ 0.051 94563.580+ 150.542 | 66.771+ 0.056 | 65.528+ 0.051
ROMMA 63.799+ 0.562 66.266+ 2.963 | 61.332+ 4.064 96545.407+ 7371.897 | 66.266+ 2.963 | 61.332+ 4.064
agg-ROMMA | 64.833+ 0.628 | 68.768+ 2.936 | 60.897+ 4.113 89876.875+ 7293.558 | 68.768+ 2.936 | 60.897+ 4.113
PA-1 65.880+ 0.044 66.263+ 0.045 | 65.498+ 0.057 95934.380+ 125.245 | 66.263+ 0.045 | 65.498+ 0.057
PA-II 66.103+ 0.043 66.550+ 0.047 | 65.656+ 0.055 95137.125+ 130.178 | 66.550+ 0.047 | 65.656+ 0.055
PAUM 69.867+ 0.035 | 69.825+ 0.050 | 69.908+ 0.048 33239.145+ 85.815 90.414+ 0.031 | 50.013+ 0.022
CPApPB 65.891+ 0.044 66.484+ 0.046 | 65.298+ 0.056 72060.113+ 129.526 | 75.765+ 0.047 | 54.081+ 0.064
CSOGD-I 74.947+ 0.022 | 77.543+ 0.051 | 72.351+ 0.052 35544.630+ 80.287 89.366+ 0.030 | 53.475+ 0.034
CSOGD-II 75.526+ 0.018 78.960+ 0.041 | 72.091+ 0.048 14752.020+ 31.166 99.245+ 0.010 | 14.547+ 0.074
Algorithm "sum” on german "cost” on german

Sum(%) | Sensitivity(%) | Specificity (%) Cost | Sensitivity(%) [ Specificity (%)
Perceptron 62.001+ 1.259 | 64.967+ 2.229 | 59.036+ 1.483 114.182+ 6.309 64.967+ 2.229 | 59.036+ 1.483
ROMMA 60.504+ 1.496 64.400+ 2.588 | 56.607+ 2.202 116.647+ 7.239 64.400+ 2.588 | 56.607+ 2.202
agg-ROMMA | 61.012+ 1.386 | 65.517+ 3.012 | 56.507+ 2.156 113.5004+ 8.260 65.517+ 3.012 | 56.507+ 2.156
PA-1 61.654+ 1.495 65.000+ 2.372 | 58.307+ 1.472 114.342+ 6.863 65.000+ 2.372 | 58.307+ 1.472
PA-II 61.893+ 1.467 | 65.300+ 2.420 | 58.486+ 1.390 113.425+ 6.974 65.300+ 2.420 | 58.486+ 1.390
PAUM 65.019+ 1.144 52.367+ 2.173 | 77.671+ 0.980 102.045+ 6.052 68.367+ 2.171 | 66.029+ 1.243
CPApB 61.850+ 1.601 | 65.500+ 2.218 | 58.200+ 1.858 112.6124+ 7.229 65.650+ 2.514 | 57.957+ 1.338
CSOGD-I 70.690+ 0.846 77.367+ 1.284 | 64.014+ 1.039 77.313+ 3.514 77.283+ 1.244 | 64.086+ 1.068
CSOGD-II 70.619+ 0.824 | 77.667+ 1.475 | 63.571+ 0.703 84.747+ 4.635 75.067+ 1.603 | 60.893+ 1.278
Algorithm “sum” on w8a ‘cost” on w8a

Sum(%) | Sensitivity(%) [ Specificity (%) Cost | Sensitivity(%) [ Specificity (%)
Perceptron 79.011+ 0.319 65.717+ 0.614 | 92.305+ 0.079 871.072+ 12.103 65.717+ 0.614 | 92.305+ 0.079
ROMMA 78.559+ 0.267 | 62.230+ 0.440 | 94.888+ 0.204 854.022+ 11.630 62.230+ 0.440 | 94.888+ 0.204
agg-ROMMA 79.090+ 0.191 61.094+ 0.381 | 97.086+ 0.115 805.900+ 7.383 61.094+ 0.381 | 97.086+ 0.115
PA-I 79.703+ 0.300 | 63.621+ 0.596 | 95.785+ 0.100 800.330+ 11.264 63.621+ 0.596 | 95.785+ 0.100
PA-II 79.998+ 0.312 64.307+ 0.633 | 95.689+ 0.099 790.747+ 11.521 64.307+ 0.633 | 95.689+ 0.099
PAUM 80.849+ 0.344 | 63.011+ 0.694 | 98.686+ 0.024 723.015+ 11.433 62.646+ 0.632 | 98.819+ 0.021
CPApPB 80.933+ 0.304 70.998+ 0.613 | 90.868+ 0.183 798.985+ 11.668 70.031+ 0.601 | 92.077+ 0.150
CSOGD-I 83.159+ 0.258 | 71.128+ 0.533 | 95.191+ 0.058 681.158+ 9.100 71.136+ 0.525 | 95.185+ 0.059
CSOGD-II 85.619+ 0.254 89.289+ 0.330 | 81.949+ 0.355 652.142+ 8.337 85.331+ 0.429 | 87.803+ 0.285

including two cost-sensitive online algorithms (PAUM and Second, among all the algorithms, we found that the
CPA). This shows that it is important to study effective eost proposed CSOGD algorithms achieve significantly less total
sensitive algorithms. misclassificationcost than the other algorithms for most
Second, by examining botlsensitivity and specificity cases. For example, on the dataset “w8a”, the total mis-
metrics, we found that CSOGD is not only guaranteed tcclassification cost of CSOGD-II is about 20% less than that
achieve the bestensitivityfor all cases, but also can produce of PA algorithms, and about 10% less than that of PAUM.
a fairly good specificity performance for most cases. This Further, by examining botrsensitivity and specificity
shows that the proposed approach for CSOGD is effectivenetrics, we found that CSOGD often achieves the best
in improving the accuracy of predicting the examples fromsensitivity result, but does not always guarantee the best
the rare class. results forspecificity Finally, by examining the two CSOGD
Third, similar to the previous results, the two CSOGD al-algorithms themselves, we found that CSOGD-II tends to
gorithms in general achieved comparable sum performancgerform sightly better than CSOGD-| (except on the dataset
in which CSOGD-I tends to perform slightly better than “german”).
CSOGD-II.

C. Evaluation of Weighted Cost Performance V1. CoNcCLUSION

We further evaluate the performance of the CSQL As an attempt to fill the gap between cost-sensitive
algorithm in terms of the cost metric. The last three column<lassification and online learning in machine learning and
of Table 2 summarize the results of total cost evaluationdata mining, this paper investigated a new framework of
From the experimental results, we can also draw severalost-Sensitive Online Classification, which aims to disect
observations. optimize cost-sensitive measures for online classificatio

First of all, we found that the two existing cost-sensitive tasks. We proposed a family of effective algorithms based
algorithms (PAUM and CPAg) usually outperform the on online gradient descent, theoretically analyzed thest-c
other cost-insensitive algorithms, in which PAUM seems tosensitive bounds, and finally examined their empirical per-
be more effective than CRA; for most cases. formance extensively. Our encouraging results show that



the proposed algorithms considerably outperform the tradi[15] V. Li and P. M. Long. The relaxed online maximum margin
tional online learning algorithms for cost-sensitive aeli
classification tasks. Through this study, we hope to inspir
researchers in both data mining and machine learning t
further explore in-depth theory of cost-sensitive onlitese
sification and the application of new cost-sensitive online

learning techniques to tackle a variety of emerging chal

lenges in real-world data mining applications.
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