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Abstract
Traditional multiple kernel learning (MKL) algorithms are essentially supervised learning in

the sense that the kernel learning task requires the class labels of training data. However, class
labels may not always be available prior to the kernel learning task in some real world scenarios,
e.g., an early preprocessing step of a classification task or an unsupervised learning task such as
dimension reduction. In this paper, we investigate a problem of Unsupervised Multiple Kernel
Learning (UMKL), which does not require class labels of training data as needed in a conventional
multiple kernel learning task. Since a kernel essentially defines pairwise similarity between any two
examples, our unsupervised kernel learning method mainly follows two intuitive principles: (1) a
good kernel should allow every example to be well reconstructed from its localized bases weighted
by the kernel values; (2) a good kernel should induce kernel values that are coincided with the
local geometry of the data. We formulate the unsupervised multiple kernel learning problem as an
optimization task and propose an efficient alternating optimization algorithm to solve it. Empirical
results on both classification and dimension reductions tasks validate the efficacy of the proposed
UMKL algorithm.
Keywords: Kernel Methods, Multiple Kernel Learning, Unsupervised Learning, Dimension Re-
duction

1. Introduction

Kernel learning is an active research topic in machine learning. The family of kernel based machine
learning algorithms has been extensively studied over the past decade (Shawe-Taylor and Cristian-
ini, 2004). The well-known examples include Support Vector Machines (SVM) (Vapnik, 1998),
Kernel Logistic Regression (Zhu and Hastie, 2001), and Kernel PCA for denoising (Mika et al.,
1998), etc. These kernel methods have been successfully applied to a variety of real applications
and often achieved promising performance.

The crux of kernel methods is kernel, which is in general a function that defines an inner product
of any two samples in some induced Hilbert space (Shawe-Taylor and Cristianini, 2004; Hofmann
et al., 2008). By mapping data from an input space to some Reproducing Kernel Hilbert space
(RKHS) which can be potentially high-dimensional, traditional linear methods can be extended with
reasonable effort to yield considerably better performance. Many empirical studies have shown that
the choice of kernel often affects the resulting performance of a kernel method significantly. In fact,
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inappropriate kernels usually result in sub-optimal or even poor performance when applying kernel
methods to solve a real-world problem.

For many real-world situations, it is often not easy to choose an appropriate kernel, which usu-
ally requires some domain knowledge that may be difficult for non-expert users. To address such
limitations, recent years have witnessed the active research on learning effective kernels automat-
ically from data (Lanckriet et al., 2004; Sonnenburg et al., 2006; Hoi et al., 2007; Zhuang et al.,
2011b). One popular technique for kernel learning is Multiple Kernel Learning (MKL) (Lanckriet
et al., 2004; Sonnenburg et al., 2006), which aims at learning a linear (or convex) combination of a
set of predefined kernels in order to identify a good target kernel for the applications. Comparing
with traditional kernel methods using a single fixed kernel, MKL does exhibit its strength of auto-
mated kernel parameter tuning and capability of concatenating heterogeneous data. Over the past
few years, MKL has been actively studied, in which a variety of algorithms have been proposed
to resolve the efficiency of MKL (Sonnenburg et al., 2006; Xu et al., 2008), and a lot of extended
MKL techniques have been proposed to improve the regular MKL method (Gehler and Nowozin,
2008; Varma and Babu, 2009; Corinna Cortes and Rostamizadeh, 2009b,a; Kloft et al., 2009; Jin
et al., 2010).

Despite being studied extensively, existing MKL methods are essentially supervised learning
which requires class labels of training data available for the kernel learning task. However, the
class labels of training data may not always be available for some learning tasks. Examples include
unsupervised learning tasks such as dimension reduction, clustering, or some early preprocessing
step of a supervised classification task for choosing a kernel before obtaining the labeled data. By
the above motivations, in this paper, we address a challenging problem of Unsupervised Multiple
Kernel Learning (UMKL), which aims to determine a linear combination of multiple kernels by
learning only from unlabeled data.

The UMKL task is more challenging than traditional MKL tasks since no class labels are avail-
able to the learning task. In this paper, we propose to attack the unsupervised multiple kernel
learning problem by exploiting two intuitions: (1) a good kernel should allow every example to
be well reconstructed from its localized bases weighted by the kernel values; (2) a good kernel
should induce kernel values that are coincided with the local geometry of the data. We formulate
the problem as an optimization task by combining the above two intuitions and propose an iterative
algorithm to efficiently solve the optimization task.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of MKL.
Section 3 presents the problem formulation and the proposed UMKL algorithm. Section 4 gives our
empirical evaluations on the proposed UMKL algorithm. Section 5 concludes this work.

2. Background Review

In this section, we introduce some preliminaries of traditional multiple kernel learning (MKL) in a
supervised learning setting, followed by some discussion on related work.

2.1. Supervised Multiple Kernel Learning

We first introduce some common notations. We use bold upper case letters to denote matrices, bold
lower case letters to denote vectors, and curlycue upper case letter to denote sets. The notation [·]
with subscripts denotes the corresponding entries of a vector or matrix.
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In a typical supervised multiple kernel learning task, we are given a collection of n training
samples D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd is the input feature vector and yi is the class
label of xi. The conventional multiple kernel learning (MKL) can be formulated into the following
optimization task:

mink∈Kminf∈Hk
λ‖f‖Hk

+
n∑

i=1

`(yif(xi)), (1)

where `(·) denotes some loss function, e.g. the hinge loss `(t) = max(0, 1− t) used for SVM, Hk

is the reproducing kernel Hilbert space associated with kernel k,K denotes the optimization domain
of the candidate kernels, and λ is a regularization parameter.

The above optimization aims to simultaneously identify both the optimal kernel k from domain
K and the optimal prediction function f from the kernel Hilbert space Hk induced by the optimal
kernel k. By the representer theorem(Schölkopf et al., 2001), the decision function f(x) is in form
of a linear expansion of kernel evaluation on training sample xi’s, i.e.,

f(x) =
n∑

i=1

βik(xi,x),

where βi’s are the coefficients. In traditional MKL (Lanckriet et al., 2004), K is chosen to be a set
of any convex combination of m predefined base kernels:

Kconv=
{
k(·, ·)=

m∑
t=1

µtkt(·, ·) :
m∑
t=1

µt=1, µt≥0
}
,

where each candidate kernel k is some combination of the m base kernels {k1, . . . , km}, µt is the
coefficient of the tth base kernel and Nm = {1, . . . ,m}. Based on the above definition of Kconv,
the decision function of regular MKL can be written as:

f(x) =
n∑

i=1

βi

m∑
t=1

µtkt(xi,x) =
n∑

i=1

m∑
t=1

βiµtkt(xi,x) . (2)

2.2. Related Work

Although MKL in general can be formulated as a convex optimization task, such an optimization
task is usually difficult to solve. In literature, researchers have spent extensive efforts in developing
efficient solvers for supervised MKL. Some representative examples include (Gehler and Nowozin,
2008; Varma and Babu, 2009; Corinna Cortes and Rostamizadeh, 2009b,a; Kloft et al., 2009; Xu
et al., 2010). In addition to the efficiency issue, some recent studies have attempted to overcome
some limitations of regular MKL techniques (Cortes, 2009). For example, some studies have ad-
dressed the limitation of using linear combination of multiple kernels by exploring more flexible
kernel combination methods (Gehler and Nowozin, 2008; Varma and Babu, 2009; Corinna Cortes
and Rostamizadeh, 2009b,a; Zhuang et al., 2011a). Most of these methods essentially follow the
same large margin learning framework of SVM. Very recently, Cortes et. al. proposed the two-stage
kernel target alignment (Cortes et al., 2010), which isolates the kernel learning task from SVM. It
exhibits the state-of-the-art empirical performance when comparing with other conventional kernel
learning techniques.
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In MKL, the objective function follows the regularization framework of SVM, i.e., loss + reg-
ularization. The norm of f in RKHS as a regularization term penalizes the complexity of SVM
effectively as it upper bounds of the Rademacher complexity of the function class induced by a
single kernel(Bartlett and Mendelson, 2002). When the kernel class varies during the learning, it
always introduces more complexity(Lanckriet et al., 2004; Srebro and Ben-David, 2006; Ying and
Campbell, 2009). Unlike the existing supervised multiple kernel learning algorithms, we study un-
supervised multiple kernel learning that does not require the class labels of training data available
in the learning task. Different from some existing unsupervised kernel learning studies that follow
the large margin learning principle (Valizadegan and Jin, 2006; Zhao et al., 2009; M. Ehsan Ab-
basnejad and Mandava, 2010), our unsupervised multiple kernel learning method is inspired in part
by some recent studies on the two-stage kernel learning (Cortes et al., 2010) and manifold-based
semi-supervised learning (Yu et al., 2009).

3. Unsupervised Multiple Kernel Learning

In this section, we formally formulate the problem of unsupervised multiple kernel learning and
then present an iterative algorithm to solve the optimization task.

3.1. Problem Formulation

Consider a collection of n training samples D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd is the
input feature vector and yi is the unknown class label of xi, and a set of m predefined kernel
functions {kt(·, ·), t = 1, . . . ,m}. The goal of an Unsupervised Multiple Kernel Learning (UMKL)
task is to find an optimal linear combination of the m kernel functions, i.e., k∗(·, ·) ∈ Kconv, where
Kconv is defined as follows:

Kconv=
{
k(·, ·)=

m∑
t=1

µtkt(·, ·) :
m∑
t=1

µt=1, µt≥0
}

(3)

Unlike supervised MKL, the key challenge of UMKL is how to seek the optimal kernel k∗(·, ·)
purely from the unlabeled training data. In other words, we need some principles/intuitions to guide
the kernel learning task, which should be independent of class labels.

To attack the challenge, we propose to formulate the unsupervised multiple kernel learning task
by exploiting the following two intuitive principles:

• A good kernel should enable each training instance to be well reconstructed from the localized
bases weighted by the kernel values. In other words, for each xi we expect the optimal kernel
can minimize the approximation error ‖xi −

∑
j kijxj‖2;

• A good kernel should induce kernel values that are coincided with the local geometry of the
training data. This is equivalent to finding the optimal kernel that minimizes the distortion
over all training data

∑
ij kij‖xi − xj‖2, where kij = k(xi,xj).

Besides, we also exploit the locality preserving principle, which has been shown effective for
many unsupervised dimension reduction and semi-supervised learning tasks. In particular, to infer
such a local structure, we introduce a set of local bases for each xi ∈ X , denoted Bi ⊂ X , which is
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used to reconstruct sample xi and compute the distortion as well. Combining the above principles,
we formulate the optimization problem for UMKL as follows:

min
k∈Kconv ,B

1

2

n∑
i=1

∥∥∥∥xi −
∑

xj∈Bi

kijxj

∥∥∥∥2 + γ1

n∑
i=1

∑
xj∈Bi

kij
∥∥xi − xj

∥∥2 + γ2
∑
i

|Bi| (4)

where both the target kernel k ∈ Kconv and the local basis set Bi are unknown variables to be
optimized, γ1 controls the trade-off between the coding error and the locality distortion, γ2 controls
the size of local basis set.

To simplify the formulation, for each xi, we introduce a matrix D ∈ {0, 1}n×n in which each
column vector d ∈ {0, 1}n indicates its neighbors, i.e., Bi = {xj : dj 6= 0}. As a result, the
optimization problem can be re-written in a matrix-based form:

minµ,D
1

2

∥∥∥X(I−K◦D
)∥∥∥2

F
+γ1tr K◦D◦M

(
11>

)
+ γ2‖D‖1,1 (5)

s.t. [K]ij =

m∑
t=1

µtk
t(xi,xj), 1 ≤ i, j ≤ n,µ>1 = 1,µ ≥ 0,D ∈ {0, 1}n×n,

where the i-th column of X is the point xi, matrix [M]ij := x>i xi+x>j xj−2x>i xj is the Euclidean
distance matrix defined on X. For the above notations, ◦ denotes an element-wise multiplication of
two matrices, ‖ · ‖2F denotes the Frobenius-norm of a matrix, and tr denotes the trace of a matrix.

By further constraining the size of each local base to some fixed constant B ∈ N+, we can
rewrite the formulation into the final formulation as follows:

minµ∈∆,D
1

2

∥∥∥X(I−K◦D
)∥∥∥2

F
+γtr K◦D◦M

(
11>

)
(6)

s.t. D ∈ {0, 1}n×n, ‖di‖1 = B, i = 1, . . . , n,

where ∆ = {µ : µ>1 = 1,µ ≥ 0} is the domain of a simplex, the parameter B � n is used to
control the size of Bi for each xi, the kernel K is defined by [K]ij =

∑m
t=1 µtk

t(xi,xj), 1 ≤ i, j ≤
n, and the previous parameter γ1 is abbreviated as γ.

The above formulation essentially treats the kernel evaluation κi as a local coding coordinate of
xi. With the additional constraint κ>1 = 1, such a local coding system allows a linear approxima-
tion of a target function as shown by (Yu et al., 2009):

Theorem 1 Let (κ,B) be an arbitrary coordinate coding on Rd. Let f be an (α, β, p)-Lipschitz
smooth function, i.e., |f(x) − f(x′)| ≤ α‖x − x′‖ and |f(x′) − f(x) − ∇f(x)>(x′ − x)| ≤
β‖x− x′‖1+p, α, β > 0, p ∈ (0, 1]. For all x ∈ Rd, we have:∣∣∣f(x)−∑

xj∈B
κ(x,xj)f(xj)

∣∣∣ ≤ α‖x−∑
j

κ(x,xj)xj‖+β
∑
xj∈B

|κ(x,xj)|‖xj−
∑
j

κ(x,xj)xj‖1+p.

For practical purpose, we exclude the constraint κ>1 = 1. Instead, we deem the coding as kernel
evaluation result, which is sampled from a predefined set Kconv. Moreover, for each data point xi,
we learn a set of local bases, rather than a global basis set. This allows to further exploit locality
characterization of the data. Such local bases are also useful for discovering the data topology,
which is essential for machine learning and data mining tasks such as data embedding.
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3.2. Alternating Optimization Algorithm

It is not difficult to see that the optimization task (6) is essentially a mixed integer programming
task, which is difficult to solve directly. In our approach, we propose an alternating optimization
algorithm by solving µ and D alternatively (Bezdek and Hathaway, 2003). The similar idea is
commonly applied in many machine learning studies (Tan et al., 2010; Kang et al., 2011).

3.2.1. SOLVING µ BY FIXING D

We first fix the variable D and then attempt to solve µ. Since D is fixed, all the original constraints
on the variable D can be ignored. Further, it is not difficult to see that the objective function can be
rewritten as:

J(µ) = µ>
( m∑

t=1

n∑
i=1

κt,iκ
>
t,i ◦ did

>
i ◦P

)
>µ+ z>µ, (7)

where [z]t :=
∑n

i=1(2γv ◦ di − 2pi ◦ di)
>κt,i, P = X>X, κt,i := [kt(xi,x1), . . . , k

t(xi,xn)]
>

is the i-th column of the t-th kernel matrix, p and v are the columns of P and M corresponding to
xi, respectively.

As a result, the original optimization problem (6) w.r.t. µ essentially is reduced to a Quadratic
Program (QP) (Boyd and Vandenberghe, 2004), which can be solved efficiently by an off-the-shelf
convex optimization toolkit.

3.2.2. SOLVING D BY FIXING THE KERNEL K

Second, we attempt to solve D by fixing the values of µ and the kernel K.
Notice that the columns of D are independent of each others. That is, the solution of a column di

for a specific sample xi would not affect the solutions to the bases of the other samples. Therefore,
we can solve each column di of D separately.

In our approach, we propose a greedy algorithm to tackle the original mixed integer program-
ming problem after fixing µ. To this end, we re-formulate (6) w.r.t. d as

J(d) = d>
(
κκ> ◦P

)
d +

(
2γκ ◦ v − 2κ ◦ p

)>
d, (8)

where the common subscript of d,κ,p,v are omitted. Let Q abbreviate κκ> ◦P, and c abbreviate
2γκ◦v−2κ◦p, we can simplify the objective function as J(d) = d>Qd+c>d. Next we propose
a greedy algorithm to solve d based on the submodular functions (Nemhauser et al., 1978).

First of all, it is not difficult to show that J(d) is a submodular function, i.e., J(d1) + J(d2) ≥
J(d1|d2) + J(d1&d2), where | and & are the bit-wise “or” and “and” operations, respectively.
Following the principle of submodular functions, we initialize all the entries of d to zero (i.e., the
base set Bi = ∅); then at each step, we greedily add one sample x∗ into the base set Bi, which
implies to set one component of d to 1. We choose the sample x∗ as the one that minimizes the
increase of J(d), i.e.,

x∗=argmin
xj∈X−Bi

2
∑

t:xt∈Bi

Qtj+Qjj+cj

This process is repeated until the number of nonzero entries of d is reached B.
The following theorem (Nemhauser et al., 1978) guarantees the performance of the above greedy

approach of optimizing Bi (i.e., the solution of d).

134



UNSUPERVISED MULTIPLE KERNEL LEARNING

Theorem 2 Let d∗ denote the optimal solution of (8), and d̂ denote the approximation solution
found by the greedy algorithm. We have

J(d̂) ≥ J(d∗)(1− 1/e),

if J(d) satisfies the following conditions: 1) J(d1) ≤ J(d2) if d1 ⊂ d2; 2) J(d) is a submodular
function, and 3) J(0) = 0.

Finally, Algorithm 1 summarizes the details of the proposed UMKL algorithm. After learning
the kernel, it can be used in many machine learning tasks, including supervised, semi-supervised,
and unsupervised learning tasks (e.g., classification, and dimension reduction, etc).

Algorithm 1 UMKL: Unsupervised Multiple Kernel Learning
Input: Unlabeled data X, base kernels Kbase = {k1, . . . , km}, γ, B;
Output: Kernel weight µ, bases indicator matrix D.

1: Initialize [M]ij = x>i xi + x>j xj − 2x>i xj , µ = 1/m, P = X>X;
2: repeat
3: W =

∑m
t=1

∑n
i=1 κt,iκ

>
t,i ◦ did

>
i ◦P, [z]t :=

∑n
i=1(2γv ◦ di − 2pi ◦ di)

>κt,i;
4: µ = argminµµ>Wµ+ z>µ;
5: for each xi do
6: Set Bi = ∅; Q = κκ> ◦P; c = κ(2γv − 2p);
7: for |Bi| < B do
8: x∗=argminxj∈X−Bi 2

∑
t:xt∈Bi Qtj+Qjj+cj ;

9: Bi = Bi ∪ {x∗};
10: end for
11: end for
12: until convergence

4. Experiments

In order to examine the efficacy of the proposed UMKL algorithm, we apply the proposed UMKL
algorithm to two scenarios: (i) a pre-processing tool to find an appropriate kernel for classification
task, and (ii) a nonlinear dimension reduction tool for machine learning and data mining tasks.

4.1. Experimental Testbed and Setup

We evaluate the performance of the proposed UMKL algorithms for binary classification tasks on a
testbed with a number of publicly available data sets as shown in Table 112.

Following the settings of previous MKL studies (Xu et al., 2008), for each data set, we create the
set of base kernelsK as follows: (1) Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26})
on all features and on each single feature; (2) polynomial kernels of degree 1 to 3 on all features and
on each single feature. Each base kernel matrix is normalized to unit trace. The training instances
are normalized to be of zero mean and unit variance, and the test instances are also normalized using
the same mean and variance of the training data. To get stable results, for each data set, we repeat
each algorithm 20 times and compute the average results of the 20 runs.

1. http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2. http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
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Table 1: The statistics of the 12 binary-class data sets used in our experiments.
Data Set Breast Diabetes Waveform Sonar Liver German
# instances 683 768 400 208 345 1,000
# dimensions 10 8 21 60 6 24
Data Set Australian Thyroid Heart Banana Titanic FlareSolar
# instances 690 140 270 400 150 666
# dimensions 14 5 13 2 3 9

4.2. Experiment I: Unsupervised MKL versus Supervised MKL

The first experiment is to examine whether the proposed UMKL algorithm can produce good results
yb comparing it with traditional supervised kernel learning (SKL) algorithms on the same set of
training data. Specifically, we have compared the following algorithms:

AvgKernel: The average combination of multiple kernels;

MKLLevel: The convex multiple kernel learning algorithm, that is, the target kernel class is Kconv

defined in (3). We use the extended level method (Xu et al., 2008) to learn the kernel;

LpMKL: The MKL algorithm with Lp norm regularization over the kernel weight (Kloft et al.,
2009). We adopt their cutting plane algorithm with second order Taylor approximation of Lp;

GMKL: The Generalized MKL algorithm in (Varma and Babu, 2009). The target kernel class is the
Hadamard product of single Gaussian kernel defined on each dimension;

KTA: The Two-stage Kernel Learning by Kernel Target Alignment in (Cortes et al., 2010);

UMKL: The proposed Unsupervised MKL algorithm with the greedy base set selection approach.
We first learn the kernel by UMKL and then apply the kernel for learning an SVM classifier.

For parameter settings, the regularization parameter C in SVM for all the compared methods is
determined by 5-fold cross validation on the training data over the range of {10−2, 10−1, . . . , 102}.
For a fair comparison, the same set of base kernels was adopted by MKLLevel, LpMKL, KTA, and
UMKL. For LpMKL, we examine p = 2, 3, 4 and report the best result. For the proposed UMKL
algorithm, the parameters γ and B were also chosen by cross validation on the training data.

For each data set, we randomly sample 50% of all instances as training data, and use the rest as
test data. The classification accuracy is shown in Table 2, from which we can draw two observations.

First, UMKL is comparable with supervised kernel learning algorithms. Among the evaluated
12 data sets, UMKL reports 6 best results, which is the largest among all the evaluated methods.
None of the compared 4 algorithms, i.e., MKL, LpMKL, GMKL, and KTA, can outperform the pro-
posed UMKL algorithm significantly. The average rank of UMKL is comparable with KTA. These
three algorithms are significantly better than MKL and GMKL. This result verifies the efficacy of
UMKL clearly. When the half of the data have labels for training, SKL and UMKL, which does not
use the label information, produce similar classification accuracy.

Second, among the SKL algorithms, KTA yield the best performance. The average rank of
KTA among SKL algorithms is the best. Traditional MKL cannot result in the best accuracy on any
evaluated data sets. The results of KTA on thyroid are statistically significant better than other SKL
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Table 2: The evaluation of classification performance of a number of different algorithms. Each
element in the table shows the mean and standard deviation of classification accuracy (%).
The bold element indicates the best performance.

Data Set AvgKernel MKLlevel LpMKL GMKL KTA UMKL
Breast 95.5±1.0 96.5±0.8 96.2±0.7 97.0±1.0 96.5±0.8 97.0±0.6
Diabetes 65.4±2.0 75.8±2.5 72.6±2.5 66.4±2.5 75.2±3.3 77.1±2.3
Titanic 76.2±4.2 77.1±2.9 77.0±3.0 76.7±3.1 78.9±1.2 79.2±2.5
Heart 75.6±6.0 83.0±2.9 76.7±3.8 77.0±3.6 82.0±1.9 84.7±2.6
German 69.5±1.5 71.4±2.8 74.3±1.4 70.4±1.6 72.1±1.1 74.8±1.8
Australian 66.7±5.6 85.0±1.5 84.5±1.6 80.0±2.3 87.2±0 86.3±1.3
Banana 86.1±2.3 90.2±2.0 87.5±2.6 83.4±2.7 92.1±1.7 90.2±1.9
Thyroid 82.6±4.4 92.9±2.9 93.1±2.2 94.6±2.1 97.9±1.3 91.2±2.7
FlareSolar 64.8±1.6 67.6±2.0 64.8±1.8 65.3±1.8 66.7±2.3 67.8±1.8
Waveform 73.5±7.1 88.2±1.6 88.9±2.0 88.2±1.8 88.5±2.5 88.4±2.5
Sonar 59.1±9.7 78.3±3.5 84.8±3.2 78.8±4.6 81.3±2.9 81.0±2.9
Liver 57.6±2.3 62.3±4.5 69.4±2.9 63.6±2.6 68.7±1.5 68.3±4.3

methods. Figure 1 illustrates the performance comparison of both UMKL and KTA algorithms by
varying the fraction of training data instances on two datasets. For most situtations, the performance
of UMKL is consistently better or comparable to that of the KTA algorithm, which again validates
the efficacy of the unsupervised multiple kernel learning algorithm.

Third, to further examine why UMKL works well, we compare the performance of UMKL and
KTA on two datasets: heart and titanic, by varying the ratios between training data and test data.
Figure 1 shows the comparison results. When the number of training data is small, the unsupervised
approach outperforms the supervised approach, which probably because the supervised multiple
kernel learning algorithms suffer from over-fitting when training data is insufficient. We can see
that as the training data becomes larger, the performance of KTA grows quickly and the difference
between UMKL and KTA becomes smaller.
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Figure 1: Classification accuracy of UMKL and KTA by varying #train/#test.
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4.3. Experiment II: UMKL for Dimensionality Reduction

Our second experiment is to examine if the proposed UKML algorithm is effective for an unsuper-
vised dimension reduction task using the kernel learning techniques. To this purpose, we apply the
UMKL algorithm as a tool to learn an appropriate kernel function for Kernel PCA, which is a classi-
cal nonlinear dimensionality reduction technique that chooses the dominating principle component
in the feature space. Typically, it is often non-trivial to select the appropriate kernel for kernel PCA
based on given data.

Specifically, in this experiment, we compare the following different approaches of choosing
kernels for kernel PCA towards dimension reduction tasks:

Gaussian: We consider a single Gaussian kernel, where the band-width parameter σ was fixed to 1
in our experiments;

Average: The average kernel by combining the set of multiple kernels via a uniformly linear com-
bination approach, where the set of multiple kernels is the same as the previous experiment;

MMUKL: The maximum margin based unsupervised kernel learning algorithm (Valizadegan and
Jin, 2006), which was inspired by Maximum Margin Clustering for learning a linear combi-
nation of multiple kernels towards clustering;

UMKL: The proposed UMKL algorithm to identify the appropriate linear combination of multiple
kernels on the same set of multiple kernels, in which the parameter γ was fixed to 100, and B
was fixed to 10.

Table 3: The classification accuracy of a 5-NN classifier on the projected data by KPCA with three
different kinds of kerenls, i.e., a gaussian kernel with fixed sigma=1, the average combina-
tion of multiple kernels, and the kernel learned by UMKL on 9 benchmark data sets. For
each dataset, the bold element indicates the best performance.

Data Set Gaussian Kernel Average Kernel MMUKL UMKL
Breast 95.1±0.8 92.7±2.7 95.7±0.9 95.2±1.3
Diabetes 64.6±2.4 65.1±2.3 63.8±2.6 66.3±2.5
Heart 56.2±3.5 61.5±5.8 57.4±4.3 72.4±5.9
German 63.9±1.7 64.3±1.9 64.1±1.5 64.9±2.2
Australian 57.7±2.3 55.9±2.6 67.1±8.5 72.9±3.8
FlareSolar 61.9±3.4 62.5±3.6 62.4±3.8 63.0±3.5
Waveform 59.4±3.5 63.2±4.1 66.5±8.7 76.9±3.9
Sonar 50.7±5.0 56.7±5.8 52.6±7.3 57.0±7.2
Liver 52.9±4.5 52.0±3.3 53.6±2.6 53.2±3.3

In this experiment, for each of the above approaches, we apply it to reduce data from the original
dimensionality to 2 dimensions, and then adopt a 5-nearest neighbor classification scheme to evalu-
ate the classification performance on the reduced data. For each data set, we randomly sample 50%
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of all instances as training data, and use the rest as test data. To obtain stable results, for each data
set, we repeat the randomized sampling process 20 times, run each algorithm on these randomly
sampled training/test data, and finally compute the average results of each algorithm over these 20
runs. We adopt 9 benchmark datasets as used in Experiment I 3.
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Figure 2: The classification accuracy of 5-NN after KPCA with Gaussian kernel of sigma=1,the
average combination of multiple kernels, the kernel learned by UMKL on 9 benchmark
data sets. The parameter B of UMKL is fixed to 10.

Table 3 and Figure 2 summarize the experimental results of the kernel PCA by three kinds of
different kernels for supervised classification tasks. From the results, we could see that the proposed
UMKL algorithm is able to learn a better kernel that is considerably more effective than either a
single gaussian kernel or an average kernel via a uniformly linear combination for most cases. The
results are particularly impressive on several datasets including heart, australian, waveform, where
UMKL significantly surpasses the other two approaches.

In addition to the fixed number of reduced dimensions, we also try to examine how the compared
algorithms work when applying KPCA to obtain projected data of a varied numbers of dimensions.
Figure 3 shows the experimental results of evaluating the classification performance on the data by
applying KPCA to obtain low-dimensional data of varied numbers of dimensions. From the results,

3. Note that we do not use three of the datasets (i.e., Banana, Titanic, and THyroid) because of their original dimension-
ality is already very slow (e.g., 2,3,5 respectively)
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it is clear that UMKL performs consistently better than both the single gaussian kernel and the
average kernel on all the cases of varied numbers of dimensions.

Moreover, we also evaluate the classification performance by examining the effects of varied
numbers of nearest neighbors, i.e., k, used in the k-NN classifiers. Figure 4 shows the detailed
results of classification evaluation by varying the number of nearest neighbors on the waveform
dataset. The proposed UMKL algorithm consistently surpasses the other two baselines. Figure 5
gives more results on the other datasets. For most of the datasets, the proposed UMKL algorithm
achieves the best or close to the best performance among all compared schemes.
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Figure 3: The classification accuracy of 5-NN on the embedded data of the waveform dataset with
varied number of dimensions by applying KPCA with four different kernels: (i) a gaus-
sian kernel of sigma=1, (ii) an average combination of multiple kernels, (iii) the kernel
learned by MMUKL, and (iv) the kernel learned by UMKL.

Finally, we examine the time efficiency of the two different unsupervised kernel learning algo-
rithms for learning an optimal linear combination of multiple kernels. Table 4 shows the evaluation
of average running time costs taken by the two algorithms on different datasets. It is clear to see that
the proposed UMKL algorithm is significantly more efficient than the MMUKL algorithm. This is
because, unlike the proposed simple algorithm, MMUKL has to resolve a semi-definite program,
which is often highly computationally intensive, making it inefficient and non-scalable for large
applications.
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Table 4: The average running time cost of kernel learning by MMUKL and UMKL (seconds).
Data Set heart waveform sonar liver flaresolar breast diabetes australian german
MMUKL 5.59 15.22 1.43 11.80 94.76 128.57 89.34 124.92 233.42
UMKL 0.61 3.27 0.37 2.00 9.68 11.07 23.97 9.22 31.39
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Figure 4: The classification accuracy of k-NN with varied numbers of nearest neighbors on the
embedded data of the waveform dataset by applying KPCA with four different kernels:
(i) a gaussian kernel of sigma=1, (ii) an average combination of multiple kernels, (iii) the
kernel learned by MMUKL, (iv) the kernel learned by UMKL.

5. Conclusion

In this paper we propose a novel unsupervised multiple kernel learning (UMKL) method, which is
able to identify an appropriate linear combination of multiple kernels purely from unlabeled data. In
particular, the proposed UKML approach deems the kernel evaluation result of a data instance as its
local coding, and adopts an efficient iterative algorithm to learn the kernel and the local set of basis
simultaneously. We apply UKML for two machine learning tasks: (i) kernel learning for choosing
appropriate kernels in a classification task, and (ii) kernel selection in a kernel-based dimension
reduction task based on the well-known Kernel PCA technique. Empirical results show that the
classifier using the kernel learned by UMKL is comparable with the state-of-the-art supervised MKL
algorithms, and the KPCA scheme using the kernel learned by UKML considerably outperforms the
conventional approaches. Future research will address the theoretical analysis of the Unsupervised
Multiple Kernel Learning algorithm and apply the proposed technique to more applications.
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Figure 5: The classification accuracy of k-NN on the embedded data by applying KPCA with four
different kernels: (i) a gaussian kernel of sigma=1, (ii) uniform combination of multiple
kernels, (iii) the kernel learned by MMUKL, (iv) the kernel learned by UMKL.
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