
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2016

Top-k Dominating Queries on Incomplete Data
Xiaoye MIAO

Yunjun GAO

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Gang CHEN

Huiyong CUI

DOI: https://doi.org/10.1109/TKDE.2015.2460742

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MIAO, Xiaoye; GAO, Yunjun; ZHENG, Baihua; CHEN, Gang; and CUI, Huiyong. Top-k Dominating Queries on Incomplete Data.
(2016). IEEE Transactions on Knowledge and Data Engineering. 28, (1), 252-266. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2894

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2015.2460742
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2015.2460742, IEEE Transactions on Knowledge and Data Engineering

1

Top-k Dominating Queries on Incomplete Data
Xiaoye Miao, Yunjun Gao, Member, IEEE, Baihua Zheng, Member, IEEE, Gang Chen, Huiyong Cui

Abstract—The top-k dominating (TKD) query returns the k objects that dominate the maximum number of objects in a given dataset.
It combines the advantages of skyline and top-k queries, and plays an important role in many decision support applications. Incomplete
data exists in a wide spectrum of real datasets, due to device failure, privacy preservation, data loss, and so on. In this paper, for the first
time, we carry out a systematic study of TKD queries on incomplete data, which involves the data having some missing dimensional
value(s). We formalize this problem, and propose a suite of efficient algorithms for answering TKD queries over incomplete data. Our
methods employ some novel techniques, such as upper bound score pruning, bitmap pruning, and partial score pruning, to boost query
efficiency. Extensive experimental evaluation using both real and synthetic datasets demonstrates the effectiveness of our developed
pruning heuristics and the performance of our presented algorithms.

Index Terms—Top-k dominating query, Incomplete data, Query processing, Dominance relationship, Algorithm

F

1 INTRODUCTION

G IVEN a set S of d-dimensional objects, top-k dominating
(TKD) query ranks the objects o in S based on the

number of the objects in S dominated by o, and returns the k
objects from S that dominate the maximum number of objects.
Here, an object o dominates another object o′, if o is no worse
than o′ in all dimensions, and is better than o′ in at least one
dimension. Since the TKD query identifies the most significant
objects in an intuitive way, it is a powerful decision making
tool to rank objects in many real life applications. Take the
typical MovieLens dataset from a movie recommender system
(http://www.imdb.com/) as an example. MovieLens includes
a group of movies with the ratings from audiences, where
every movie is represented as a multi-dimensional object with
each dimension corresponding to a rating in the range of [1,
5] from an audience. Typically, a higher rating indicates a
better recognition. As an example, given two movies o1 = (5,
3, 4) and o2 = (3, 3, 2), we understand that there are three
audiences scoring o1 and o2, where the first audience (w.r.t. the
first dimension) scores o1 and o2 as 5 and 3 respectively, the
second audience (w.r.t. the second dimension) scores both o1
and o2 as 3, and the third audience (w.r.t. the third dimension)
scores o1 and o2 as 4 and 2 respectively. Hence, among three
audiences, both the first and the third audiences think o1 is
better than o2, and the second audience thinks they are equally
good. According to the dominance definition, it can derive that,
o1 dominates o2, meaning that no audience rates o2 higher
than o1. Thus, if a movie dominates many other movies, it
is very likely that the movie is rather popular. Note that,
MovieLens dataset is widely utilized in many previous works,
including [1], [2]. Intuitively, a TKD query could identify
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the k most popular movies for moviegoers. Because of its
large application base, the TKD query has received lots of
attention from the database community [3], [4], [5], [6], [7],
[8], [9]. Nonetheless, we would like to highlight that existing
work related to this query only focuses on complete data or
uncertain data.

In a real movie recommender system, it is very common
that the ratings from some users are missing, because a user
tends to only rate those movies he/she knows. As a result,
each movie is denoted as a multi-dimensional object with
some blank (i.e., incomplete) dimensions. Therefore, the set
of movie ratings is incomplete. As shown in Fig. 1, since
the audience a2 watches the last three movies m2, m3, and
m4 but not the first one m1, i.e., Schindler’s List (1993), a2
only rates movies m2, m3, and m4. Data incompleteness is
universal, and querying incomplete data has become more
and more important recently. It has also triggered lots of
efforts in the database community, including incomplete data
model [10], [11], [12], query evaluation [13], indexing [14],
[15], skyline computation [1], [2], [16], similarity search [17],
top-k retrieval [18], [19], etc.

Here, we would like to point out the difference between
incomplete data and uncertain data. In this paper, as illustrated
in Fig. 1, we treat a data object with missing value(s) as an
incomplete data object, which follows the model introduced in
[1] that requires zero prior knowledge of missing dimensional
value(s). On the other hand, for uncertain data, the uncertainty
of missing data value(s) is usually expressed in terms of
probabilities or is derived by some probability distributions.
Normally, these probabilities have been specified in an original
dataset. As pointed out explicitly in [20], “missingness is the
state of being missing” for missing data, and the missingness
implies “a static state, not fluid or probabilistic one”. Thus, the
incomplete data model (the one our work is based on) and the
probabilistic concept (the one used by uncertain data) are two
approaches for handling missing data. It is worth mentioning
that, compared with uncertain data model, incomplete data
model has one significant advantage, i.e., it does not require
any assumption on data correlation or prior knowledge.
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m2 The Godfather (1972)

m3 The Silence of the Lambs (1991)

Film Name
Film Ratings from Audiences

m1 Schindler's List (1993)

m4 Star Wars (1977)

a1 a2 a3 a4 a5

 3 4 2

5 3 4

2 1 5 3
3 1 5 3 4

ID

Fig. 1: Example of a movie recommender system

In this paper, we consider an incomplete dataset where some
objects face the missing of attribute values in some dimen-
sions, and study the problem of TKD query processing over
incomplete data. In particular, a TKD query on incomplete
data returns the k objects that dominate the maximum number
of objects from a given incomplete data set. Note that, the
definition of the dominance relationship over incomplete data
follows the definition presented in [1]. Specifically, an object
o dominates another object o′, denoted as o ≺ o′, if o is no
worse than o′ in all common observed dimensions, and o is
better than o′ in at least one common observed dimension.
To facilitate the presentation, we define a function score(o)
that counts the number of the objects dominated by object o.
Consider the four movies listed in Fig. 1 as an example dataset
S, i.e., S = {m1, m2, m3, m4}. Movie m2 dominates movie m3.
This is because, on the two common observed dimensions
2 and 3, m2.[2] > m3.[2] and m2.[3] > m3.[3]. Thus, we can
get the score of m2, i.e., score(m2) = |{mi ∈ S|m2 ≺ mi}| =
|{m1,m3}| = 2. Similarly, we have score(m1) = 0, score(m3)=
0, and score(m4) = |{m1}|= 1. Given a T1D (k = 1) query on
the dataset S, movie m2 is returned for its largest score value.

At first glance, TKD queries on incomplete data share some
similarities with the skyline operator over incomplete data [1],
since they both are based on the same dominance definition.
However, we would like to highlight that TKD queries on
incomplete data have a desirable advantage, i.e., its output is
controllable via a parameter k, and hence, it is invariable to
the scale of the incomplete dataset in different dimensions. In
addition, we want to emphasize the dominance relationship
definition on incomplete data is actually meaningful. Take
movies m1 and m2 in the recommender system depicted in
Fig. 1 as an example. The audiences a1 and a2 only rate m2
but not m1, whereas the audiences a4 and a5 only rate m1 but
not m2. Thus, we cannot determine the dominance relationship
between m1 and m2 according to the rates from audiences
a1, a2, a4, and a5. On the other hand, based on audience
a3, m2 is better than m1 as he/she gives a higher score to
m2 compared with m1. To sum up, for the two movies m1
and m2, one audience ranks m2 higher than m1 while none
of audiences ranks m2 lower than m1. Therefore, we argue
that m2 is liked by more audiences, and hence, it deserves a
stronger recommendation compared with m1.

To the best of our knowledge, this is the first attempt to
explore the TKD query on incomplete data. Although the TKD
query over complete data or uncertain data has been well stud-
ied, TKD query processing on incomplete data still remains
a big challenge. This is because existing techniques [3], [4],
[5], [6], [7], [8] cannot be applied to handle the TKD query
over incomplete data efficiently. Specifically, the R-tree/aR-
tree and the transitivity of dominance relationship used in
traditional and uncertain databases are not directly applicable
to incomplete data. It is partially because R-tree/aR-tree could

not be built on incomplete data directly, since the MBRs of
tree nodes do not exist due to the missing dimensional values
of data objects. Also, the transitivity of dominance relationship
does not hold for incomplete data. In addition, the probability
model of uncertain TKD queries is different from our model
as mentioned earlier. Consequently, new efficient algorithms
catered for incomplete data are desired.

An intuitive method for supporting the TKD query on
incomplete data is to conduct exhaustive pairwise comparisons
among the whole dataset to get the score of every object
o, i.e., the number of the objects dominated by o, and to
return the k objects with the highest scores. Clearly, this
approach is inefficient, due to the extremely large size of
the candidate set and the expensive cost of brute-force based
score computation. Hence, in this paper, we first propose two
algorithms, namely, extended skyband based (ESB) algorithm
using local skyband technique and upper bound based (UBB)
algorithm using upper bound score pruning, to effectively
reduce the candidate set. Also, we present bitmap index guided
(BIG) algorithm, which calculates the score values via fast bit
operations under bitmap index, to cut down significantly the
score computation cost. Furthermore, we develop the improved
BIG (IBIG) algorithm by employing the bitmap compression
techniques and the binning strategies to trade the efficiency
for space in the TKD query over incomplete data. In brief,
the key contributions of this paper are summarized as follows.
• We formalize the problem of TKD query in the context

of incomplete data. To our knowledge, there is no prior
work on this problem.

• We propose efficient algorithms for processing TKD
queries on incomplete data, using several novel heuristics.

• We present an adaptive binning strategy with an efficient
method for choosing the appropriate number of bins to
minimize the space of bitmap index for IBIG.

• We conduct extensive experiments using both real and
synthetic datasets to demonstrate the effectiveness of our
developed pruning heuristics and the performance of our
proposed algorithms.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 formulates the problem.
Section 4 elaborates our efficient algorithms for TKD query
processing on incomplete data. Experimental results and our
findings are reported in Section 5. Finally, Section 6 concludes
the paper with some directions for future work.

2 RELATED WORK

In this section, we first overview previous work on TKD
queries in traditional and uncertain databases, and then survey
the existing work related to querying incomplete data.

2.1 Top-k Dominating Queries

Papadias et al. [5] first introduce the top-k dominating (TKD)
query as a variation of skyline queries, and they present a
skyline based algorithm for processing TKD queries on the
traditional complete dataset indexed by an R-tree. To boost
efficiency, Yiu and Mamoulis [6], [7] propose two approaches



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2015.2460742, IEEE Transactions on Knowledge and Data Engineering

3

based on the aR-tree to tackle the TKD query. More recently,
some new variants of TKD queries are studied, including
subspace dominating query [21], continuous top-k dominating
query [22], [23], metric-based top-k dominating query [9], top-
k dominating query on massive data [24], etc.

In addition, the probabilistic top-k dominating (PTKD)
query has also been explored [3], [4], [8], [25]. Specifically,
Lian and Chen [3], [4] investigate PTKD query on uncertain
data, which returns the k uncertain objects that are expected to
dynamically dominate the largest number of uncertain objects
in both the full space and subspace. Zhang et al. [8] consider
the threshold-based PTKD query in full spaces. Zhan et al. [25]
adopt the parameterized ranking semantics to formally define
TKD query on multi-dimensional uncertain objects.

Note that, as mentioned in Section 1, the traditional and
probabilistic TKD query algorithms using the R-tree/aR-
tree and/or the transitivity of dominance relationship are not
applicable to the TKD query on incomplete data.

2.2 Querying Incomplete Data
Data missing is a ubiquitous issue, and the study of in-
complete data has attracted much attention. There are many
efforts on modeling incomplete data, such as c-table [12],
the classical logic and modal logic tools for modeling and
processing incomplete data [13], model comparisons for in-
complete data [11], I-SQL and world-set algebra language for
incomplete data [10], etc. In addition, there are four common
index structures to index incomplete data, namely, bitstring-
augmented R-tree (BR-tree), MOSAIC [15], bitmap index, and
quantization index [14].

Recently, many queries over incomplete data have been
investigated, including ranking queries [18], [19], skyline
queries [1], [2], [16], and similarity queries [17]. Haghani
et al. [18] solve continuous monitoring top-k queries over
incomplete data streams. Soliman et al. [19] explore a novel
probabilistic model, and formulate several types of ranking
queries on such model. Khalefa et al. [1] develop ISkyline
algorithm to obtain skyline objects from incomplete data. Gao
et al. [2] propose efficient kISB algorithm for processing
k-skyband queries over incomplete data. Lofi et al. [16]
present an approach to compute the skyline using crowd-
enabled databases with the challenge of dealing with missing
information in datasets. Cheng et al. [17] study the similarity
search on dimension incomplete data.

It is worth pointing out that, our work differs from all
the aforementioned works in that we aim at the problem
of processing top-k dominating queries on incomplete data,
which is, to our knowledge, the first attempt on this problem.

3 PROBLEM FORMULATION

In this section, we formalize the dominance relationship and
the TKD query on incomplete data. Table 1 summarizes the
symbols used frequently in the rest of this paper.

To simplify the representation and computation, we use a
dash “-” to represent a missing dimensional value for an object
o, and a bit vector with d bits, denoted as βo, to denote whether
dimensional values of the object o are missing, e.g., the i-th

TABLE 1: Symbols and description
Notation Description
o a d-dimensional data object with missing values on some

dimensions
S a set of d-dimensional data objects o
o.[i] the i-th dimensional value of an object o
βo a bit vector corresponding to an object o with d bits denoting

whether the d-th dimensional value of o is observed
≺ dominance
SC (SG) the candidate (final result) set of a TKD query
τ the k-th highest score of objects in SC
F a priority queue containing the objects in S sorted in descending

order of their MaxScore
Iset(o) a set of dimensions i of an object o where o.[i] is observed
Φ(o) a set of objects in S that are incomparable to o
Γ(o) a set of objects o′ that are strictly worse than o in all dimensions

for which the values of o and o′ are both observed
Λ(o) a set of objects o′ that share the same value as o in at least one

dimension and meanwhile are dominated by o

bit of βo is on (i.e., 1) if its i-th dimensional value of o is
observed; otherwise, the i-th bit is off (i.e., 0). As an example,
in Fig. 2, the incomplete object c = (5, -) has its βc = 10,
since it has only one observed dimensional value 5 on x-axis.
In addition, two objects o and o′ are comparable only if they
both have observed values in at least one common dimension,
i.e., the result of bitwise-and (&) of their bit vectors is not
zero (βo & βo′ ̸= 0).

To analyze missing data, there are three different missing
models [26], i.e., missing completely at random (MCAR),
missing at random (MAR), and not missing at random
(NMAR). Without loss of generality, in this paper, we assume
that the values are at least approximately missing at random,
and we only consider the objects with at least one observed
dimensional value. Based on these assumptions, the dominance
relationship on incomplete data [1] is introduced below.

Definition 1: (dominance relationship on incomplete
data [1]). Given two objects o and o′, o dominates o′, denoted
as o ≺ o′, if the following two conditions hold: (i) for every
dimension i, either o.[i] is no larger than o′.[i] or at least one
of them is missing, i.e., ∀i with βo[i] & βo′ [i] = 1, o.[i]≤ o′.[i];
and (ii) there is at least one dimension j, in which both o.[ j]
and o′.[ j] are observed and o.[ j] is less than o′.[ j], i.e., ∃ j with
βo[ j] & βo′ [ j] = 1, o.[ j]< o′.[ j].

In the above definition, the smaller the value, the better. Take
Fig. 2 as an example. Object f = (4, 2) is said to dominate
object c = (5, -) as f .[1](= 4)< c.[1](= 5) satisfies. For objects
c and e = (-, 4), they both only have one dimensional observed
value and they do not dominate each other, since they are
not comparable. Note that, the dominance relationship over
incomplete data loses the transitivity. As shown in Fig. 2, f ≺ e
and e≺ b according to Definition 1. Nonetheless, f does not
dominate b. Moreover, as mentioned in [1], there may be a
cyclic dominance relationship on incomplete data.

The dominance relationship defined in Definition 1 is mean-
ingful. Given two objects o and o′, if we have no information
about their missing value(s), there is no clear judgement
on which object is better for the dimensions with missing
value(s). Therefore, we can only utilize the common observed
dimensional values to decide the dominance relationship of
those two objects, as discussed in Section 1.

It is worth noting that, there are other similar dominance
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Fig. 2: Illustration of a TKD query

B3 ( -, -, 4, 9)   C1 (2, -,  -, 3)
D2 (2, 1, -, 4)   A4 ( -, 7, 4, 5)
C2 (2, -,  -, 1)   C3 (3, -,  -, 2)
B2 ( -, -, 3, 1)   B5 ( -, -, 7, 4)
C4 (3, -,  -, 3)   C5 (3, -,  -, 4)
A2 ( -, 1, 2, 1)   A3 (-, 1, 3, 4)
D5 (5, 5, -, 4)   A5 (-, 4, 8, 3)
D1 (3, 5, -, 2)   B4 (-,  -, 3, 7)
D3 (2, 4, -, 1)   A1 (-, 3, 1, 3)
B1 ( -, -, 1, 2)   D4 (4, 4, -, 5)

Fig. 3: A sample dataset

definitions over incomplete data, such as missing flexible dom-
inance (MFD) operator which is flexible, reasonable, and fair
in many real-life applications. MFD differentiates three cases
of the corresponding dimensional values for two incomplete
objects o and o′, case (i) both o.[i] and o′.[i] are observed;
case (ii) only one of o.[i] and o′.[i] is observed; and case
(iii) both are missing, in order to flexibly emphasize on the
existence values. Assume that there is a weight vector W
= {w1,w2, · · · ,wd} corresponding to the data space D with
cardinality |D| = d, and a real parameter λ (0 < λ < 1). Based
on Definition 1, MFD defines an additional weight for two
objects o≺ o′, termed as Ω(o, o′), as the accumulated weight
on which at least one of the corresponding dimensional values
is observed. Formally, Ω(o, o′) = ∑i∈D1

wi+λ ∑ j∈D2 w j, where
D1 contains all the dimensions i such that both o.[i] and o′.[i]
are observed, and D2 contains all the dimensions j such that
one and only one of o.[ j] and o′.[ j] is observed. It is important
to note that, the dimensions where both objects miss their
values are ignored in Ω, and a larger Ω(o, o′) value indicates
a higher recognition for the dominance o≺ o′.

Take two objects o1 = (-, 3, 2) and o2 = (-, 2, -) as an
example. Since o1 ≺ o2, MFD operator defines a weight Ω(o1,
o2) = w2 +λw3. Thus, by setting the score of an object o as
the accumulated Ω values between o and objects O dominated
by o (i.e., score(o) = ∑o′∈O Ω(o,o′)), the TKD query could
identify the most meaningful and influential objects over
incomplete dataset. Note that, it is fair for the object that has
very different number of attributes, and the weight vector W
can be tunable flexibly in different real-life applications.

Without loss of generality, in this paper, we formalize the
score of an object o in Definition 2 and the TKD query
on incomplete data in Definition 3 based on Definition 1.
However, as mentioned earlier, our proposed algorithms can
be easily generalized to solve the TKD query under MFD
operator, which is also one of our future work.

Definition 2: (score). Given an incomplete dataset S and
an object o ∈ S, the score of o, denoted as score(o), is the
number of the objects o′ ∈ S−{o} that are dominated by o,
i.e., score(o)=|{o′ ∈ S−{o}|o≺ o′}|.

Definition 3: (TKD query on incomplete data). Given an
incomplete dataset S, a top-k dominating (TKD) query over S
retrieves the set SG ⊆ S of k objects with highest score values,
i.e., SG ⊆ S and |SG|= k and ∀o∈ SG, ∀o′ ∈ (S−SG), score(o)
≥ score(o′).

Consider the dataset shown in Fig. 2, object f dominates
3 objects {a, c, e}, and hence, score( f ) = 3. Similarly, based
on Definition 2, score(b) = score(c) = score(e) = 2, score(d)
= 1, and score(a) = 0. Thus, a T1D (k = 1) query on the
dataset depicted in Fig. 2 returns the result set {f}, as it has
the maximal score. Note that, when there is a tie, we adopt

random selection as a tie breaker in this paper.
It is important to note that, following the previous works [1],

[2], [14], [15], we focus on this incomplete data model to
solve TKD query. There are another two popular methods to
tackle incomplete data including the one based on probability
distribution [3], [4], [8] and the one based on missing value
inference [20], [26] via Expectation-Maximization (EM) prin-
ciple, multiple imputation, or human intelligence. The missing
data inference method to process the TKD query will be
exploited in our future work. In addition, unless mentioned
otherwise, the incomplete dataset illustrated in Fig. 3 serves
as a running example in the rest of the paper.

4 TKD QUERY ON INCOMPLETE DATA

In this section, we first present three efficient algorithms, i.e.,
extended skyband based (ESB) algorithm, upper bound based
(UBB) algorithm, and bitmap index guided (BIG) algorithm,
to support TKD query processing on incomplete data. Then,
we propose an improved BIG (IBIG) algorithm based on BIG,
to further minimize the space cost of bitmap index.

4.1 Extended Skyband Based Algorithm
The intuitive method (denoted as Naive) for the TKD query
on incomplete data is to compute the score of every object
o by conducting exhaustive pairwise comparisons among the
whole dataset, and to return the k objects with the highest
scores. However, this Naive approach is inefficient due to the
extremely large size of the candidate set and the expensive
cost of score computation.

Fortunately, the objects with observed attributes falling
inside the same set of dimensions actually satisfy the transitive
dominance relationship. To this end, we re-organize the objects
into buckets. Here, each bucket corresponds to a given subset
of d′ (≤ d) dimensions, and it accommodates all the objects
whose observed attributes fall in those d′ dimensions exactly.
Accordingly, we present our first algorithm, namely, extended
skyband based (ESB) algorithm, which uses local skyband
technique to answer the TKD query over incomplete data.
Here, we borrow the concept of k-skyband (kSB) query on
incomplete data [2]. The kSB query is a variant of skyline
queries, and it retrieves the objects dominated by less than k
objects. Since the objects within the same bucket share the
same bit vector, they can be regarded as a complete dataset
in d′-dimensional space with d′ ≤ d. If we perform a kSB
query for each bucket, the kSB query results collectively form
a candidate set for a TKD query, as stated in Lemma 1.

Lemma 1: (local skyband technique). Given an incom-
plete dataset S, let bucket Ob represent the set of objects o∈ S
sharing the same bit vector b, i.e., Ob = {o∈ S | βo = b}, and SS
be the local skyband object set returned by a k-skyband query
over Ob. For an object o∈Ob, if o is not included in SS, o can
not be returned by the TKD query on S, i.e., o /∈ SS⇒ o /∈ SG.
Proof. By contradiction. Assume that there is an object o′ ∈Ob
with o′ /∈ SS but o′ ∈ SG. As o′ /∈ SS, o′ is dominated by at least
k objects from the bucket Ob, denoted as Do′ with |Do′ | ≥ k.
Since the dominance relationship over the objects inside the
same bucket satisfies transitivity, the objects dominated by o′
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Algorithm 1 Extended Skyband Based Algorithm (ESB)
Input: an incomplete data set S, a parameter k
Output: the result set SG of a TKD query on S
/* kSB(O): the result set of a k-skyband query on a bucket O. */
1: initialize sets SC← SG←∅
2: for each object o ∈ S do
3: insert o into a bucket O based on βo (create O if necessary)
4: for each bucket O do
5: SC← SC

∪
kSB(O)

6: for each object o ∈ SC do
7: update score(o) by comparing o with all the objects in S
8: add the k objects in SC having the highest scores to SG
9: return SG

are also dominated by all the objects in Do′ . In other words,
all the objects in Do′ dominate more objects than o′, and thus,
they all have higher scores than o′. As |Do′ | ≥ k, it is confirmed
that o′ /∈ SG, which contradicts with our assumption. Thus, our
assumption is invalid. The proof completes. �

On top of the candidate set formed based on Lemma 1,
we propose ESB algorithm with its pseudo-code depicted in
Algorithm 1. ESB adopts the pruning-and-filtering method to
tackle the TKD query on incomplete data. It first partitions
objects o ∈ S into its corresponding bucket based on its βo
(lines 2-3), and then performs a local kSB query for objects
within the same bucket (lines 4-5). The collection of the
returned results from kSB queries form a candidate set SC
to complete the pruning step. Next, the filtering step starts.
ESB ranks the candidates in SC based on their score values,
and returns the top-k candidates with the highest scores as the
final query result (lines 6-9). Example 1 illustrates how ESB
algorithm works.

Example 1: Assume ESB algorithm is invoked for a T2D
(k = 2) query over our sample dataset shown in Fig. 3, with the
processing steps illustrated in Fig. 4. It first clusters the objects
into buckets based on their bit vectors. For instance, when the
first object B3 in Fig. 3 is evaluated, a bucket B corresponding
to the bit vector, i.e., βB3 = 0011, is created, and B3 is the
first object enrolled. In total, four buckets are created with
each having five objects, as depicted in Fig. 4. Note that, it
is a coincidence that there are five objects in each of the four
buckets. ESB then performs local 2-skyband queries on the
objects within every bucket, with the local 2-skyband objects
returned by each bucket, denoted as Ss, highlighted in Fig. 4.
Four sets of local 2-skyband objects form the candidate set
SC that contains 11 objects, with SC = {A1, A2, A3, B1, B2,
C1, C2, C3, D1, D2, D3}. For these 11 objects in SC, we then
derive their scores based on the numbers of objects in S they
dominate. As shown in Fig. 4, objects A2 and C2 share the
same highest score (i.e., 16), and thus, they are returned as
the final result (i.e., SG) of the T2D query over S. �

4.2 Upper Bound Based Algorithm
Although ESB algorithm can answer TKD queries on incom-
plete data, its performance is highly dependent on the size of
SC, which is determined by the nature of data. In an extreme
case, |SC| = |S|, meaning that the filtering step of ESB fails
since it cannot filter out any object. As a result, the scores

C4
C5

B1
B2

B3
B4
B5

A1
A2
A3

A4
A5

C1
C2
C3

D1
D2
D3

D4
D5

A2C2

A B C D

SS

SGSC

A1 A2 A3 B1 B2 C1 C2 C3 D1 D2 D3

A1 A2 A3 B1 B2 C1 C2 C3 D1 D2 D3

Fig. 4: Example of ESB

of all objects have to be derived. Motivated by the instability
of ESB algorithm, we propose the upper bound based (UBB)
algorithm for supporting the TKD query over incomplete data,
which utilizes the upper bound scores of objects to determine
the access order of objects to reduce the candidate set size.

In particular, UBB integrates the ranking process into the
object evaluation, and enables an early termination of TKD
query processing before evaluating all the candidates. Based
on this intention, we present the concept of upper bound
score that returns the maximum number of the objects that a
specified object o dominates, i.e., the upper bound of score(o),
as stated in Lemma 2 below.

Lemma 2: (upper bound score). Given an object o∈ S, let
Ti(o) be the maximum set of the objects p dominated by o on
the i-th dimension. Formally, Ti(o) can be defined as

Ti(o) =

{
{p ∈ S−{o}|o.[i]≤ p.[i]}∪Si if i ∈ Iset(o)
S otherwise

(1)

where Si represents the set of the objects whose i-th di-
mensional values are missing, and Iset(o) denotes the set of
dimensions where o has observed values. Based on Ti(o), the
upper bound of score(o), denoted as MaxScore(o), could be
derived as MaxScore(o) = min{|T1(o)|, |T2(o)|, ..., |Td(o)|}.
Proof. First, we prove that |Ti(o)| is an upper bound score
for an object o ∈ S. On the one hand, for the case that i /∈
Iset(o), it is obvious that |Ti(o)| (= |S|) is an upper bound
for score(o). On the other hand, if i ∈ Iset(o), according to
Eq. (1), the object set Ti(o) contains all objects that are not
better than o in the i-th dimension and all the objects with their
i-th dimensional values missing. Based on Definition 1, Ti(o)
contains all the possible objects that have the potential to be
dominated by o. Thus, |Ti(o)| is an upper bound of score(o)
for i ∈ Iset(o). In summary, we can conclude that |Ti(o)| is
an upper bound for score(o). Then, it is easy to find that the
minimum cardinality of Ti(o) for 1≤ i≤ d (i.e., MaxScore(o))
is also an upper bound score for o. The proof completes. �

For ease of understanding, we illustrate how to derive
MaxScore(B3) for object B3 in our sample dataset (shown in
Fig. 3). We first get T1(B3) = T2(B3) = S because B3.[1] and
B3.[2] are missing, T3(B3) = {A4, A5, B5, C1, C2, C3, C4, C5,
D1, D2, D3, D4, D5}, and T4(B3) =∅. Then, MaxScore(B3) =
min{|T1(B3)|, |T2(B3)|, |T3(B3)|, |T4(B3)|}= 0. It is worth not-
ing that, MaxScore can be calculated at O(N · lgN) cost based
on the B+-tree structure, where N is the dataset cardinality.
Based on the concept of MaxScore(o), a pruning strategy is
developed, as stated in Heuristic 1, which serves as an early
termination condition in UBB algorithm.

Heuristic 1: (upper bound score pruning). Given a TKD
query on an incomplete dataset S, let SC be a candidate set
containing k objects for the query and τ be the smallest score
for all objects in SC, i.e., |SC| = k and ∀c ∈ SC, score(c) ≥ τ
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Algorithm 2 Upper Bound Based Algorithm (UBB)
Input: an incomplete data set S, a parameter k, a pre-computed
priority queue F sorting all objects from S in descending order
of their MaxScore
Output: the result set SG of a TKD query on S
1: initialize sets SC← SG←∅ and τ ←−1
2: while F is not empty do
3: o←de-queue(F)
4: if MaxScore(o)≤ τ then break // Heuristic 1
5: else
6: score(o)← Get-Score(o)
7: if score(o)> τ or τ < 0 then
8: SC← SC

∪
{o}

9: if |SC|> k then
10: SC← SC−{p} with p ∈ SC and score(p)=τ
11: update τ ←min{score(c) | c ∈ SC} if |SC|= k
12: return SG← SC

C2 A2 B2 B1 C3 D3 A1 C1 C4 D1 A5 A3 B5 C5 D2 D5 A4 D4 B4 B3ID

MaxScore

Fig. 5: The priority queue F for the dataset in Fig. 3

and ∃c′ ∈ SC, score(c′) = τ . For a specified object o ∈ S with
MaxScore(o) ≤ τ , it can be safely pruned away as it cannot
be an actual answer object for the TKD query over S.
Proof. First, ∀c ∈ SC, score(c) ≥ τ . Second, score(o) ≤
MaxScore(o) ≤ τ . Thus, ∀c ∈ SC, score(c) ≥ score(o). As
|SC|= k, there are k objects having higher scores than o, and
object o cannot be a real answer object for the TKD query. �

Based on Heuristic 1, we develop UBB algorithm with its
pseudo-code presented in Algorithm 2. It takes as inputs an
incomplete dataset S, a parameter k, and a priority queue F
with all the objects o ∈ S sorted in descending order of their
MaxScore(o). First of all, UBB initializes two sets SC and SG
to empty, and sets τ as -1 (line 1). Here, τ is to record the
minimum score of the objects in SC, and it is set to -1 if the set
SC contains less than k objects. It then visits the objects in F
one by one until F is empty or early termination condition is
satisfied (lines 2-11). Specifically, UBB dequeues the top object
o of F . If MaxScore(o) ≤ τ , the early termination condition
of Heuristic 1 is satisfied, and the while-loop can be finished.
Note that the condition MaxScore(o) ≤ τ , and objects in F are
sorted based on descending order of MaxScore guarantee that
object o and all the remaining objects in F have their scores
bounded by τ . In addition, it also ensures that the candidate set
SC is full, and it contains k objects with their scores ≥ τ ≥ 0.
On the other hand, if the early termination condition is not
satisfied, the evaluation continues (lines 5-11). UBB computes
score(o) via a function Get-Score that derives score(o) based
on pairwise comparisons (line 6). If τ is -1, the candidate
set SC is not full, and object o is enrolled into SC (line 8).
Otherwise, if score(o) is larger than τ , object o is also enrolled
into SC to replace the object p∈ SC having smallest score value
(i.e., τ). τ is updated as well if SC is updated (lines 9-11).

Example 2: We illustrate UBB algorithm for a T2D query
on a sample dataset depicted in Fig. 3, with the priority queue
F over the sample dataset shown in Fig. 5. First, UBB evaluates
the head object of F (object C2 first and object A2 second),
after which SC = {C2,A2} and τ = 16. Then, UBB evaluates
the next dequeued object B2. As MaxScore(B2) = 16, the early
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Fig. 6: The bitmap index for the dataset in Fig. 3

termination condition is satisfied. Thus, UBB returns {C2,A2}
as the final result set of the T2D query and terminates. �
4.3 Bitmap Index Guided Algorithm
Our proposed UBB algorithm limits the size of candidate set
by utilizing upper bound score pruning technique for the TKD
query on incomplete data. However, the upper bound score
may be rather loose, thereby we have to derive the real scores
for many objects (even the whole dataset) via exhaustive pair
comparisons, which degrades search performance significantly.
Thus, an efficient score computation method is in demand.
As a solution, we introduce a newly proposed bitmap index
on incomplete data and propose the bitmap index guided
(BIG) algorithm to solve the TKD query on incomplete data.
Combining MaxScore technique, BIG enables a novel bitmap
pruning using a bitmap index, and employs fast bit-wise
operations for more efficient score computation. Furthermore,
we also develop an improved version of BIG (denoted as
IBIG) to minimize the bitmap storage cost via the bitmap
compression techniques and an adaptive binning strategy.

As we know, the traditional bitmap index (e.g., [27], [28],
[29], [30]) is based on complete data, and it supports domi-
nance relationship checking via bit-wise operations. Nonethe-
less, it is not applicable to our problem which is based
on incomplete data. Hence, a new bitmap index has to be
designed to deal with missing data. Moreover, the dominance
relationship of TKD query with incomplete data cannot be
derived based only on the bit operations. Thus, an efficient
algorithm based on the bitmap index supporting missing data
is also desired.

Specifically, our new bitmap index is built as follows. First,
an object o is represented by a bit string with ∑d

i=1(Ci + 1)
bits in the bitmap index, where each dimension of o is
represented by a sub-string with (Ci +1) bits. Here, Ci is the
total number of different observed values (i.e., domain) on the
i-th dimension, and the extra one bit denotes the missing value.
Take the sample dataset (shown in Fig. 3) as an example. For
the 1st dimension, there are in total four different observed
values, i.e., {2, 3, 4, 5}, contributed by 20 objects in the dataset
with C1 = 4. Thus, we use a (4 + 1)-bit string to represent the
values of the 20 objects in the 1st dimension in the bitmap
index. Note that, for a group of values on any dimension, our
bitmap index only cares about how many different values are
there on this dimension in order to decide the length of the sub-
bit string for representing the dimension. Hence, the bitmap
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Q
P

nonD

Fig. 7: The Venn diagram of object sets P, Q, Φ, and nonD

index does support floating-point numbers. If every object has
distinct i-th dimensional values for a given dataset, Ci could
be as large as the dataset cardinality. It is worth noting that,
the values of Cis do not influence query efficiency but only
the bitmap storage cost.

Next, we explain how to use a sub-string with (Ci +1) bits
to index the values observed in the i-th dimension. In short, the
(Ci +1) bits refer to a series of ranked dimensional values in
the i-th dimension. Take the five-bit string representing the 1st
dimension (with four observed values 2, 3, 4, and 5) introduced
above as an example. The first bit is w.r.t. the missing case, the
second bit corresponds to the dimensional value 2, the third
bit refers to the dimensional value 3, and so on. We utilize the
range encoding method to form the bitmap index. If a value
is observed, its corresponding bit, together with all the bits
following it, is set to 0. As an example, C1.[1] = 2, and hence,
the bit w.r.t. value 2 (i.e., the second bit) and all the subsequent
bits are set to 0 (i.e., 10000); and D4.[1] = 4, and thus, the
bit w.r.t. value 4 (i.e., the fourth bit) and all the following
bits are set to 0 (i.e., 11100). It is important to note that, the
missing value is always encoded as a sub-string with all ’1’,
in order to simplify dominance checking. The bit-strings of all
the objects form the bitmap index. We plot the bitmap index
for our sample dataset in Fig. 6, where we also list o.[i] values
under vi columns for ease of reference.

We are now ready to introduce the score computation (refer
to Definition 2). To begin with, we introduce four object
sets w.r.t. an object o, i.e., P, Q, Φ(o), and nonD(o), with
their containment relationship plotted in Fig. 7. Specifically,
Q denotes the set of objects, excluding object o, that are not
better than o or missing in the dimensions in Iset(o); P is a
subset of Q which refers to the set of objects that are strictly
worse than o or missing on each dimension in Iset(o); Φ(o)
represents the set of objects that are incomparable to o; and
nonD(o) refers to the set of objects in (Q−P) that are not
dominated by o.

In the following, we first explain how the bitmap index
can facilitate the computation of sets Q and P, as presented
in Definition 4. It is important to note that, both Qi and Pi

consist of the objects that might be dominated by o purely
based on the values in the i-th dimension, and Pi is a subset
of Qi. In this paper, for clarity, we represent the corresponding
(vertical) bit-vectors encoding the object sets Qi and Pi as [Qi]
and [Pi] respectively, which are abstracted from the bitmap
index. Specifically, both [Qi] and [Pi] have the length of |S|
bits, with one bit corresponding to an object in S. If an object
is included in Qi or Pi, the corresponding bit in [Qi] or [Pi]
is set to 1 in our bitmap index. Otherwise, the bit is set to 0.

Definition 4: Let Qi = Pi = S if o.[i] is missing; otherwise
Qi = {p ∈ S | o.[i]≤ p.[i]∨ p.[i] is missing} and Pi = {p ∈ S |
o.[i]< p.[i]∨ p.[i] is missing}, then sets Q and P are calculated
as

Q =
d∩

i=1

Qi−{o} P =
d∩

i=1

Pi (2)

For instance, our sample dataset has 20 objects, and hence,

C2 A2 B2 B1 C3 D3 A1 C1 C4 D1

19 17 16 15 15 15 12 12 12 12
A5

10
A3 B5 C5 D2 D5 A4 D4 B4 B3

8 8 8 8 8 3 3 1 0
ID

MaxScore

19 17 16 15 13 15 10 12 10 9 5 8 4 7 8 4 1 3 1 0MaxBitScore

Fig. 8: Comparison between MaxScore and MaxBitScore

the bit-vectors [Qi] and [Pi] for a specified object o have 20
bits, with the first bit w.r.t. A1, the second bit w.r.t. A2, and so
on. Take B3 as an example. Its corresponding set Q3 = {A4,
A5, B3, B5, C1, C2, C3, C4, C5, D1, D2, D3, D4, D5}, and
the corresponding bit-vector [Q3]= 00011001011111111111.
Thus, based on bit-vectors [Qi] and [Pi] in the bitmap index,
we can easily get sets Q and P by fast bit-wise operations,
without comparing the real dimensional values (utilized in
ESB and UBB algorithms).

In addition, we observe that set Q, which is formed at a
small cost by bit-wise operations with the help of our bitmap
index, provides another upper bound score MaxBitScore(o), as
stated in Heuristic 2.

Heuristic 2: (bitmap pruning). Given an incomplete
dataset S and a candidate set SC for a TKD query containing
k objects in S, let τ be the minimum score of the objects in
SC. For a specified object o∈ (S−SC) with MaxBitScore(o) =
|Q| ≤ τ , it can be pruned away safely since it cannot be a real
answer object for the TKD query on S.
Proof. Given an object o with score(o)= λ , there are λ objects
dominated by o, denoted as R = {pn | o ≺ pn, pn ∈ S,n =
1, ...,λ}. We can easily observe that ∀pn ∈ R, pn ∈Q. Hence,
R is a subset of Q, i.e., R ⊆ Q, and thereby, λ = score(o) =
|R| ≤ |Q|= MaxBitScore(o) ≤ τ . Consequently, we are certain
that score(o)≤ τ and the proof completes. �

Back to our example object B3. We have
∩4

i=1 Qi = {B3},
and thus, MaxBitScore(B3) = |Q| = |

∩4
i=1 Qi−{B3}| = 0. If

SC has k objects with τ = 1, object B3 can be discarded safely
based on Heuristic 2. It is worth noting that, compared with
MaxScore(o), MaxBitScore(o) actually offers a tighter upper
bound for score(o), i.e., MaxBitScore(o) ≤ MaxScore(o) as
stated in Lemma 3. We also list these two upper bounds for
our sample objects in Fig. 8 for illustration purpose.

Lemma 3: Given a TKD query on an incomplete dataset S
and an object o ∈ S, MaxBitScore(o)≤ MaxScore(o).
Proof. On the one hand, for each object q ∈ Q, the condition
(i.e., o.[i]≤ q.[i]∨q.[i] is missing) holds for all the dimensions
i ∈ Iset(o) where o.[i] is observed. Hence, we can get that q ∈
Ti(o) for all the dimensions i∈ Iset(o). On the other hand, for
the dimensions i′ where o.[i′] is missing, Ti′(o) = S according
to Eq. (1), and thus, we have q∈ Ti′(o). In a word, assume that
min{|T1(o)|, |T2(o)|, ..., |Td(o)|} = |Tt(o)|, we have q ∈ Tt(o).
As a summary, for any q∈Q, we have q∈ Tt(o) and hence Q⊆
Tt(o). Thus, MaxBitScore(o) = |Q| ≤ |Tt(o)| =MaxScore(o).
The proof completes. �

As we know, score(o) = |R| if set R contains the set of
objects dominated by object o. Assume that we partition R into
two disjoint sub-sets Γ(o) and Λ(o) such that Γ(o)=P−Φ(o),
which includes all the objects o′ that are strictly worse than o
in all dimensions where both o and o′ have observed values
(i.e., Iset(o)∩ Iset(o′)) and meanwhile are dominated by o,
and set Λ(o) = Q−P−nonD(o), which consists of the objects
o′′ that share the same value as o in at least one dimension
and meanwhile are dominated by o. Then, we have score(o) =
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Algorithm 3 Get-Score Algorithm for BIG (BIG-Score)
Input: a bitmap index, an object o, Φ(o), τ , SC, k
Output: the score of o, i.e., score(o)
1: get [Pi] and [Qi] of o for each 1≤ i≤ d from bitmap index
2: Q←

∩d
i=1 Qi−{o}, MaxBitScore(o)← |Q|

3: if |SC|= k and MaxBitScore(o)≤ τ then // Heuristic 2
4: return 0 // o is pruned away
5: else
6: P←

∩d
i=1 Pi, Γ(o)← P−Φ(o)

7: for each pair of ⟨p, i⟩ ∈ (Q−P)× Iset(o) do
8: if p.[i] = o.[i] then p.tagT ← p.tagT +1
9: nonD(o)← nonD(o)∪{p ∈ (Q−P) | p.tagT = |βp & βo|}

10: Λ(o)← Q−P−nonD(o)
11: return score(o)← |Γ(o)|+ |Λ(o)|

|Γ(o)|+ |Λ(o)|= |Q−Φ(o)−nonD(o)|.
BIG-Score implements the score calculation based on

bitmap index using score(o)= |Γ(o)|+ |Λ(o)|, with its pseudo-
code listed in Algorithm 3. First, before deriving the real score,
it derives the upper bound MaxBitScore(o), and compares it
with τ , the minimum score value of a candidate object (lines 1-
2). If the filtering condition depicted in Heuristic 2 is satisfied,
object o can be filtered out immediately without calculating
its score (lines 3-4). Otherwise, the object passes the filtering,
and we need to derive its real score based on |Γ(o)|+ |Λ(o)|
(lines 5-11). To be more specific, it derives Γ(o) (line 6)
and Λ(o) (lines 7-10). As mentioned earlier, (Q−P) forms a
candidate set for nonD(o), and hence, for objects p∈ (Q−P),
BIG-Score checks each observed dimension i of o to find the
objects with p.[i] = o.[i]. A counter tagT is associated with
every object p ∈ (Q−P) to count the number of dimensions
i such that p.[i] = o.[i]. In other words, objects p ∈ (Q−P)
with corresponding tagT being equivalent to |Iset(o)∩Iset(p)|
form nonD(o). Once nonD(o) is formed, Λ(o) value is derived,
and BIG-Score returns |Γ(o)|+ |Λ(o)| and terminates.

With the support of bitmap index, we propose BIG algorithm
by integrating bit-wise operation on score computation and
bitmap pruning to process efficiently the TKD query on incom-
plete data. Its main framwork is given in Algorithm 4, which is
similar as UBB algorithm. Note that, BIG utilizes MaxScore(o)
and MaxBitScore(o) for filtering. Given an object o, it first
calculates MaxScore(o) and then compares it with τ . If object o
cannot be filtered by MaxScore(o), it computes MaxBitScore(o)
and again compares it against τ . As MaxBitScore(o) stands for
a tighter upper bound of score(o), more unqualified objects are
expected to be filtered out. For all the qualified objects, we
need to derive their actual scores via BIG-Score.

Example 3: We illustrate how BIG algorithm answers a
T2D query issued on our sample dataset. Suppose the cor-
responding priority queue F and the bitmap index are ready,
as shown in Fig. 5 and Fig. 6 respectively. In addition, Φ is
available with ∀o ∈ S, Φ(o) =∅. BIG starts its evaluation by
continuously en-queueing the head entry from F . First, object
C2 is evaluated. BIG invokes BIG-Score to compute C2’s score.
Specifically, BIG-score first gets the corresponding bit vectors
of C2 from the bitmap index (depicted in Fig. 6) as follows:
[P1] = 11111111110011110011, [P2] = 11111111111111111111,
[P3] = 11111111111111111111, [P4] = 10111101111011111011,

Algorithm 4 BIG Algorithm
Input: a bitmap index of an incomplete dataset S, F , Φ, k
Output: the result set SG of the TKD query on S
Lines 1-5 are the same as lines 1-5 in Algorithm 2 including the
upper bound score pruning
6: get score(o) by calling BIG-Score function // Algorihm 3
Lines 7-12 are identical to lines 7-12 in Algorithm 2

[Q1] = 11111111111111111111, [Q2] = 11111111111111111111,
[Q3] = 11111111111111111111, [Q4] = 11111111111111111111.

Since |SC| = 0, it then computes
∩4

i=1[Q
i] = 1111111111

1111111111, [P] =
∩4

i=1[P
i] = 10111101110011110 011, and

sets |Γ(C2)| = |P−Φ(C2)| = |P| = 14. Next, BIG-Score exam-
ines the objects in Q−P = {A2, B2, C1, D2, D3}. Thereafter,
as Iset(C2) = {d1,d4}, BIG-Score checks values of the objects
from (Q−P) w.r.t. the first and the fourth dimensions. On the
first dimension, it finds objects {C1, D2, D3} with values being
C2.[1]. It gets objects {A2, B2, D3} having the same fourth
dimensional value as C2.[4]. Among those objects, A2, B2,
and D3 form nonD(C2) because each of them has tagT value
equivalent to the number of dimensions that it is comparable
with C2. Thereafter, |Λ(C2)| = |Q−P−nonD(C2)| = 2, and
score(C2) = |Γ(C2)| + |Λ(C2)| = 14+2= 16. Object C2 is then
enrolled into a candidate set SC. Next, object A2 is evaluated.
Similarly, BIG invokes BIG-Score to get score(A2) = 16, and
enrolls A2 to SC. Now, |SC|= 2 and τ = 16. Then, object B2 is
evaluated. As MaxScore(B2) = 16 which is the same as τ , BIG
terminates early according to Heuristic 1. Finally, the result
set {C2, A2} of the T2D query is returned. �

4.4 Improvement on BIG

Although BIG algorithm can significantly improve the search
performance of TKD queries over incomplete data compared
with ESB and UBB algorithms, we are also aware that the
bitmap index size (denote as costs) is rather large, i.e., costs =
∑d

i=1(Ci + 1)×|S|, especially when the dimensionality of the
search space (i.e., d) is high and/or the domain cardinality
(i.e., Ci) is high. To this end, we propose the improved BIG
(termed as IBIG) algorithm to efficiently address the storage
issue by using the bitmap compression technique and the
binning strategy. Specifically, the compression techniques are
applied on the “vertical” bitsets, such as [Qi] and [Pi], while
the binning strategy compresses the bitmap index on the
“horizontal” bitsets, i.e., for the bit-string of every object in
the dataset. In the following, we detail these two techniques
utilized in IBIG algorithm respectively.

First, we introduce two most efficient and popular com-
pression techniques, i.e., Word Aligned Hybrid (WAH) [29]
and Compressed ‘n’ Composable Integer Set (CONCISE) [31],
to compress the bitmap index vertically. In this paper, we
choose CONCISE instead of WAH. This is because, as shown
in [31], CONCISE has better compression ratio than WAH,
and its computational complexity is comparable to that of
WAH. We also demonstrate that CONCISE does perform better
than WAH via an empirical evaluation, to be reported in
Section 5.1. Please refer to [29], [31] for the details of WAH
and CONCISE. However, we also notice that even after we
incorporate CONCISE into IBIG, the bitmap space could still be
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large. The reason is that, the bitmap encoded method we used,
i.e., range encoding, is not amenable to compression [30].
As to be confirmed in our experiments (to be presented in
Section 5.1), the existing compression techniques are not very
effective when they are applied to our setting.

Therefore, we propose the binning strategy for IBIG in
order to further cut down the bitmap storage consumption
horizontally. Instead of using one bit for one distinct value,
it utilizes one bit to encode a range of dimensional values
to reduce the index size. Before we formally introduce the
concept of the binning strategy, we first present an intuitive
example to introduce its main idea. As depicted in Fig. 6,
there are four distinct observed values (i.e., 2, 3, 4, 5) in the
first dimension, and the original bitmap index uses a five-bit
string to represent the values accordingly. Now assume that
we use two value bins to capture the observed values in the
same dimension, with one bin covering value 2 and the other
covering values 3, 4, and 5. Consequently, we only need a
three-bit string to represent the observed values in the first
dimension, one bit for missing value and two bits for two
value bins. Under this binning strategy, our sample object D4
with D4.[1] = 4 is represented as 110 instead of 11100 in the
original bitmap index.

For ease of presentation on the binning strategy, we intro-
duce some notations. For each dimension i, we order objects
based on their corresponding values (i.e., o.[i]), with mini and
maxi referring to the minimum and maximum observed values
in the i-th dimension. Let N be the cardinality of the dataset,
Nik represent the number of objects that have the k-th smallest
value in the i-th dimension, and Si denote the set of objects
with the missing values in the i-th dimension. The basic idea of
our binning strategy is to employ one bit to encode a range of
values. In other words, it partitions the observed values in one
dimension into multiple bins with each bin capturing a range.
The ranges w.r.t. two different bins are disjoint, and the ranges
w.r.t. all the bins in the i-th dimension cover the domain of
the values in the i-th dimension. Note that, we assume that
the number of bins in the i-th dimension, denoted as (ξi +1),
is specified, with ξi bins for all the observed values and one
bin for the missing value.

Next, we explain how to partition the observed values in
the i-th dimension into ξi bins. We first sort all the observed
values in the i-th dimension based on ascending order, and
then utilize Eq. (3) to determine the capacity of the first bin
for the i-th dimension, denoted as bi1. In particular, the first
bin of the i-th dimension will cover first bi1 distinct values of
that dimension, i.e., all the objects with their observed values
in the i-th dimension falling with the range of [mini, v(bi1)]
are accommodated by the first bin. Note that, v(bi1) denotes
the bi1-th minimal observed value in the i-th dimension.

bi1

∑
k=1

Nik ≈ (N−|Si|)/ξi (3)

Take our sample dataset as an example. For the first dimen-
sion (i = 1), we suppose ξ1 = 2 and have |S1| = 10 as there
are 10 objects with missing observed values in this dimension.
Among objects with observed values in the first dimension,
there are four objects with the smallest value 2, four objects
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Fig. 9: The binned bitmap index for the dataset in Fig. 3

with the second smallest value 3, one object with the third
smallest value 4, and one object with the largest value 5, i.e.,
N11 = 4, N12 = 4, N13 = 1, and N14 = 1. Based on Eq. (3),
we have (N−|S1|)/ξ1 = 10/2 = 5. Consequently, b11 is set to
1, and the first bin covers N11 = 4 objects with the smallest
value 2 (i.e., objects C1, C2, D2, and D3). Note that, although
N11 = 4 is smaller than the capacity of the first bin, we cannot
increase b11 to 2 as N11 +N12 = 8 > 5.

bi2

∑
k=bi1+1

Nik ≈ (N−|Si|−
bi1

∑
k=1

Nik)/(ξi−1) (4)

Then, we can determine the value of bi2 according to
Eq. (4). Note that, Eq. (4) is general, and it can help to
approximate bik values for 1 < k < ξi. Once the bik values for
the first (ξi−1) bins are derived, the v(bik) value for the last
bin (i.e., k = ξi) is set to maxi in order to cover the remaining
objects. Back to our sample dataset, for the first dimension
(i.e., i = 1), since ξ1 = 2 and v(b11) = 2, v(b12) is set to
max1(= 5), and the second bin will hold all the objects o
with o.[1] ∈ (2,5]. If we set ξ1 = ξ2 = 2 and ξ3 = ξ4 = 3, the
binned bitmap index for our sample dataset is shown in Fig.
9. Compared with the original bitmap index depicted in Fig.
6, the binning strategy can reduce the bitmap storage overhead
efficiently.

Our binning strategy is flexible and adaptive. It can better
accommodate the situation where there are more objects in
one value than that in others. In particular, for uniformly
distributed data, every bin generated by the strategy contains
the same number of dimensional values. When the data
distribution is not uniform, our binning strategy automatically
adapts to the data distribution and minimizes the fluctuation in
query processing. Note that, we will address the issue of how
to choose a proper ξ in Section 4.5, based on the trade-off
between index storage cost and query processing cost.

After we present the structural difference between the
bitmap index and the binned bitmap index, we then explain
the impact of the new binned bitmap index on the search
algorithm. First, the content of set Qi is different. In the
binned bitmap index, given an object o, if o.[i] is observed,
set Qi contains all the objects that are located in the same
bin as o.[i]. Second, the bitmap pruning presented in Heuris-
tic 2 is still applicable to binned bitmap index, whereas
the statement MaxBitScore(o) ≤ MaxScore(o) presented in
Lemma 3 is no longer valid. Consequently, the filtering based
on MaxBitScore(o) under binned bitmap index might not be
able to achieve a good pruning power. As an alternative, we
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develop a new partial score pruning heuristic, as presented in
Heuristic 3, to help prune away certain unqualified objects.
Third, the detailed algorithm for score calculation under
binned bitmap index, termed as BIG-Score, is slightly different
from that under the original bitmap index.

Heuristic 3: (partial score pruning). Given a TKD query
over an incomplete dataset S and a candidate set SC containing
k objects, let τ be the smallest score for all objects in SC. For
a specified object o ∈ (S−SC), if |nonD(o)| > |Q|− |Φ(o)|−
τ , the object o can be discarded safely.
Proof. The proof is intuitive, and skipped for space saving. �

As shown in Algorithm 5, IBIG-Score shares the same flow
as BIG-Score and Get-Score. It first implements the filtering
step based on Heuristic 2 (lines 2-4). If object o cannot
be filtered, its score score(o) has to be derived based on
|Γ(o)|+ |Λ(o)| (lines 5-14). Like BIG-Score, it derives Γ(o)
and forms nonD(o) (lines 6-13). Nevertheless, unlike BIG-
Score, it implements Heuristic 3 (lines 11-12). Once nonD(o)
is formed, Λ(o) can be derived, and score(o) is obtained to
complete IBIG-Score (lines 14-15).

As a summary, our IBIG algorithm is an improved version of
BIG, and it shares the same framework as BIG. There are two
major differences. First, IBIG is built on binned bitmap index,
which employs an existing bitmap compression method (e.g.,
CONCISE in our implementation) and the binning strategy.
Second, IBIG algorithm invokes IBIG-Score for score calcu-
lation while BIG algorithm relies on BIG-Score. As IBIG is
similar as BIG in terms of query processing, we omit an
illustrative example for space saving. It is worth pointing out
that, in order to get the score of an object o, we utilize B+-
trees in our implementation to get the set nonD(o) quickly and
to avoid unqualified checks. However, the usage of B+-trees is
optional, which depends on the trade-off between extra space
cost and enhanced efficiency.

4.5 Discussion

As mentioned earlier, the number of bins in the i-th dimension
(i.e., ξ value) has a direct impact on the performance of IBIG
algorithm. In the following, we present an analytical model to
analyse the space cost and query processing cost affected by
ξ , and discuss how to select a proper ξ value to optimize the
space-time trade-off for IBIG. For ease of analysis, let N, d,
and σ be the cardinality, the dimensionality, and the missing
rate of the dataset, respectively. Then, the space cost, denoted
as costs, is the size of the binned bitmap index, formally,

costs = N× (ξ +1)×d (5)
On the other hand, the query cost, denoted as costt , can

be approximated by the cost incurred to form set nonD(o), as
stated in Eq. (6). The reason is that the score calculation based
on |Q−Φ(o)− nonD(o)| relies on Q, Φ(o), and nonD(o).
Given the fact that Q can be formed by fast bit-operations
and Φ(o) is an input, the cost of score calculation is mainly
contributed by the formation of set nonD(o). In addition, score
calculation is the most expensive operation in TKD query
processing, and its cost dominates the main query cost.

costt = d× (log(σN)+

⌈
σN
ξ

⌉
−1) (6)

Algorithm 5 Get-Score Algorithm for IBIG (IBIG-Score)
Input: a binned bitmap index, an object o, Φ(o), τ , SC, k
Output: the score of o, i.e., score(o)
1: get [Pi] and [Qi] of o for each 1≤ i≤ d from bitmap index
2: Q←

∩d
i=1 Qi−{o}, MaxBitScore(o)← |Q|

3: if |SC|= k and MaxBitScore(o)≤ τ then // Heuristic 2
4: return 0 // o is pruned away
5: else
6: P←

∩d
i=1 Pi, Γ(o)← P−Φ(o)

7: for each pair of ⟨p, i⟩ ∈ (Q−P)× Iset(o) do
8: if p.[i] = o.[i] then p.tagT ← p.tagT +1
9: else if p.[i]< o.[i] then

10: nonD(o)← nonD(o)∪{p}
11: if |SC|= k and |nonD(o)|> |Q|− |Φ(o)|− τ then
12: return 0 // o is discarded by Heuristic 3
13: nonD(o)← nonD(o)∪{p ∈ (Q−P)|p.tagT = |βp & βo|}
14: Λ(o)← Q−P−nonD(o)
15: return score(o)← |Γ(o)|+ |Λ(o)|

In particular, for an object o that cannot be pruned away,
IBIG has to form the set nonD(o) in order to obtain its real
score. However, the cost of getting nonD(o) is related to
the value of ξ . In our implementation, for each observed
dimension of o, we need to traverse the B+-tree to locate
the minimum boundary of the bin where o is located, which
takes log(σN) cost. To further validate whether all the objects
located in this bin are worse than o in this dimension, we need
to access (⌈σN/ξ⌉−1) key values via the sequential scanning
in B+-tree in the worst case. Consider that, in the worst case,
we need to traverse all the B+-trees, and thus, the total cost
is d×(log(σN)+ ⌈σN/ξ⌉−1).

Based on Eq. (5) and Eq. (6), we can find that as the value of
ξ grows, the space saving is reduced and the query processing
cost drops, which will be confirmed in our experiments (to be
presented in Section 5.1). This is because when ξ ascends, the
range of dimensional values captured by every bin becomes
small, and the average key value size (i.e., ⌈σN/ξ⌉−1) visited
by IBIG in every B+ tree becomes small. In an extreme case
when ξ is set to the number of distinct dimensional values
(i.e., ξ = C+1), the binned bitmap index is the same as the
bitmap index built by BIG.

In other words, a small ξ value can help to cut down the
index size efficiently but the query cost is increased. Hence, we
cannot minimize both the index size and the query processing
cost simultaneously. As both the space cost and the query cost
are important performance metrics, and they both are affected
by ξ , we consider the product of those two costs as the main
cost, as shown in Eq. (7).

cost = costs× costt

= N · (ξ +1) ·d2 · (log(σN)+

⌈
σN
ξ

⌉
−1) (7)

ξ =

√
σN

log(σN)−1
(8)

Note that, some existing works have also adopted the same
equation to analyze the cost [30]. Therefore, in order to
optimize the trade-off between space cost and query cost, we
try to minimize cost, i.e., we set the derivative of cost to be
zero and obtain the optimal value of ξ as depicted in Eq. (8).
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TABLE 2: Parameter ranges and default values

k (of top-k dominating query)
Number of objects N
Dimensionality dim
Missing rate 

Parameter

4, 8, 16, 32, 64
50K, 100K, 150K, 200K, 250K
5, 10, 15, 20, 25
0, 5, 10, 20, 30, 40

Range

Dimensional cardinality c 50, 100, 200, 400, 800

(a) CPU time (b) Bitmap compression ratio

Fig. 10: WAH vs. CONCISE

As an example, for N =100K and σ = 0.1, we can get the
optimal bin size ξ = 29. When N =16K and σ = 0.2, the
optimal bin size ξ is 17. We will further verify the accuracy
of our analysis in our empirical study.

Before we end our discussion, we analyze the time com-
plexities of our proposed algorithms. Let N be the dataset
cardinality. First, ESB and UBB algorithms take O(N2) time
for TKD query processing. This is because both algorithms
might need to derive the score for each object in the worst
case, and score calculation via the basic Get-Score(o) function
has to conduct pairwise comparisons between o and the
other (N− 1) objects. Second, both BIG and IBIG have their
complexities as O(N2), as the score computation of one object
using bitwise operations can be finished in O(N) and they both
need to check all the objects in the worst case. However, we
would like to highlight that BIG and IBIG algorithms are much
more efficient than ESB and UBB algorithms, with the help of
fast bit-wise operations based on the (binned) bitmap index,
as demonstrated in our experimental results.

5 EXPERIMENTAL EVALUATION

In this section, we verify the effectiveness of the bitmap
compression and the binning strategy of bitmap index, and
evaluate the performance of our proposed algorithms for TKD
queries over incomplete data. All algorithms are implemented
in Java SE7, and all experiments are conducted on an Intel
Core i5 Duo 3.10GHz PC with 4GB RAM, running Microsoft
Windows 7 Professional Edition.

In our experiments, we use both real and synthetic datasets.
For real datasets, we employ MovieLens, NBA, and Zillow
that are widely utilized in many previous works on domi-
nance problem [1], [2], [5], [7], [8], [9], [21], [22], [23]. (i)
MovieLens contains 3,700 movie records, with each having
60 dimensions representing the ratings from 60 audiences.
The rating values vary from 1 to 5, and the missing rate of
MovieLens is 95%, i.e., only 5% of the ratings are available.
(ii) NBA includes the complete records of 16,000 NBA players
in multiple dimensions. We extract 4 attributes, i.e., game
played, minutes played, total points, and offensive rebounds,
and remove some statistics randomly to achieve 20% missing
rate. (iii) Zillow contains 200,000 entries about real estate
in the United States with five attributes, namely, number of
bedrooms, number of bathrooms, living area, lot area, and
estimated price, with missing rate of 14.2%. In addition,

TABLE 3: Preprocessing time (in seconds) of proposed algorithms

MovieLens

NBA

Zillow

IND

Dataset
0.02     0.1

  1.3

  3.8

  0.7

    0.5

  24.5

  22.3

        0.3

      44.8

  5749.3

    225.1

      0.1

      1.1

1049.7

    70.6

MaxScore Bitmap index Binned bitmap index

AC  0.7   21.9     201.3     61.9

synthetic datasets are generated based on independent (IND)
and anti-correlated (AC) distributions respectively, following
the common methodology used in [32]. We remove some
attribute values randomly to simulate the incomplete datasets.

We explore several factors in our experiments, including k,
cardinality N, dimensionality dim, missing rate σ (i.e., the
probability that o.[i] is missing for any object o in S), and
dimensional cardinality c (i.e., the number of distinct values
on one dimension). The settings of all these parameters are
summarized in Table 2, where the default values are shown
in bold. In every set of experiments, we only change one
parameter, with the rest set to their defaults. In addition, in our
experiments, the intuitive Naive method (mentioned in Section
4.1) is also implemented as the baseline for TKD queries on
incomplete data, in addition to our newly proposed ESB, UBB,
and BIG (IBIG) algorithms.

5.1 Bitmap Compression and Binning Strategy
The first set of experiments evaluates the efficiency of two
compression approaches, i.e., WAH and CONCISE, on real
datasets for IBIG algorithm. We report the CPU time and
the bitmap compression ratio in Fig. 10. Here, the bitmap
compression ratio is the ratio of the size of a compressed
bitmap to that of its original bitmap. It is observed that CON-
CISE has slightly better compression ratio and less CPU time
than WAH. Hence, in the rest of experimental evaluation, we
use CONCISE compression technique for IBIG algorithm. Note
that, our results are consistent with the discussion presented
in [31], i.e., CONCISE is better than WAH. In addition, we also
observe that NBA, because of its distribution, is not suitable
for compression, as its compression ratio is near to 1. This
also shows that existing compression techniques might not be
able to reduce the size of bitmap index efficiently.

The second set of experiments verifies the effect of the
binning strategy on the performance of IBIG algorithm under
different bin size ξ s, compared against that of BIG algorithm.
The CPU time and the bitmap index sizes are reported in
Fig. 11 by varying ξ values. Here, we assume that ξis in
different dimensions share the same value ξ on MovieLens,
NBA, IND, and AC datasets, since they share similar domain
in different dimensions. For Zillow, there are 6, 10, 35, ξ , and
1000 bins w.r.t. the five dimensions (i.e., number of bedrooms,
number of bathrooms, living area, lot area, and price), because
these five domains are very different.

Consistent with our expectation, as ξ value increases, the
efficiency of IBIG is improved while the index size (with SBIG
and SIBIG being the sizes of original bitmap index and binned
bitmap index respectively) also grows. As the number of bins
ascends, the binned bitmap index requires more space to index
bins, and hence, the space saving from the binning strategy is
less significant. Note that, BIG incurs shorter query time than
IBIG in some cases (with small bin size). This is because,
the smaller the bin size, the more the objects in every bin,
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Fig. 11: TKD cost on incomplete data vs. ξ
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Fig. 12: TKD cost on incomplete real data vs. k

k
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k

(b) AC

Fig. 13: TKD cost on incomplete synthetic data vs. k

TABLE 4: Dissimilarity (denoted as DJ) of the TKD query result
between ours and the one based on missing value inference method

DJ

k

0.400 0.400 0.476 0.476

4 16 32

0.562

64

resulting in more validation cost for IBIG algorithm. However,
the storage cost of BIG is much more expensive than that of
IBIG in all cases. In addition, the index size of IBIG under
Zillow remains almost unchanged under different ξ values,
since the bin size only on one dimension increases with other
setting to their defaults. In general, IBIG with the binning
strategy does effectively cut down the storage cost, and its
CPU cost in most cases (e.g., when ξ is not too small) is
comparable with that under original BIG.

Recall that, based on the analysis presented in Section 4.5,
the optimal bin size ξ is near 29 when N = 100K and σ = 0.1
for IND and AC. For NBA with N = 16K and σ = 0.2, the
optimal bin size ξ is derived near 17. They are consistent
with our experimental results. It is worth mentioning that, we
will further improve the space-time trade-off discussion in our
future work for the datasets with different/special dimensional
domains, such as MovieLens with domain range [1, 5] and
Zillow with very different dimension domains. Without loss
of generality, in the rest of experiments, we employ IBIG
algorithm with 2, 64, 3000, 32, and 32 bins for MovieLens,
NBA, Zillow, IND, and AC respectively.

5.2 Results on TKD Queries over Incomplete Data
In this subsection, we first report the preprocessing time
incurred by MaxScore and Φ computation, (original) bitmap
index, and binned bitmap construction in Table 3 under default
settings. Note that, constructing original bitmap index is more
costly than constructing the binned one. This is because, the
original bitmap index needs to create and maintain more bit-
vectors than the binned one, resulting in more overhead. In
the following, we study the impact of various parameters on
the performance of TKD query processing algorithms.

For real datasets, we explore the influence of k on the
efficiency of algorithms. Fig. 12 shows the experimental
results when k varies from 4 to 64. Obviously, in all cases,
BIG and IBIG outperform ESB, UBB, and Naive algorithms,
and all the algorithms incur more CPU time as k grows. This
is because BIG and IBIG utilize three effective heurisitcs to

reduce the candidate set size, and they both derive the scores
of objects via faster bitwise operations. When k ascends, more
candidate objects have to be evaluated, resulting in longer
CPU time. Furthermore, under the comparable query time,
IBIG incurs a much smaller space cost, as compared with
BIG (i.e., SIBIG < SBIG). In addition, we also observe that the
advantage of BIG (IBIG) over UBB becomes less significant
in NBA dataset. The reason is that the upper bound score
(i.e., MaxScore) used in UBB is rather tight for NBA, and it
prunes a large number of objects, which leaves very limited
space of improvement for the bitwise operations and heuristics
employed by BIG (IBIG) to demonstrate their power. Note
that, due to space limitation and the big performance gap
among algorithms, we have to plot the performance in log
scale. Under this plot setting, UBB seems to be very close to
IBIG on NBA in terms of performance. Nonetheless, we would
like to highlight that IBIG constantly outperforms UBB under
NBA dataset with different k values. On the other hand, the
advantage of BIG (IBIG) over ESB and UBB is significant under
other datasets. Also notice that, as discussed in Section 4.1,
Naive is clearly inferior to other algorithms and hence is
skipped in the rest of experiments.

In addition, in order to show how the TKD query result
on incomplete data (denoted as A) is close to the one based
on missing value inference method (denoted as B), we report
the Jaccard distance DJ (= 1− |A∩B|

|A∪B| ) between A and B on
NBA dataset under various k values in Table 4. Note that, in
order to get the TKD query result based on missing value
inference method, we use GraphLab Create implementation
(https://dato.com/products/create/) to predict the missing val-
ues, where factorization model is chosen and all parameters
are set to defaults with the number of factors set to 8 and
L2 regularizations used on the factors, and the optimization
process is iterated at a maximum of 50 times. Consider that,
for the TKD query, DJ = 1− |A∩B|

2k−|A∩B| , and DJ is a decreasing
function for |A∩B|. If A and B share k

2 answer objects, the

Jaccard distance DJ is 1−
k
2

2k− k
2

(= 2
3 ). Since all the DJ in

Table 4 are smaller than 2
3 , it means that the number of shared

answer objects between A and B is larger than k
2 (i.e., they

share more than half of answer objects).
For synthetic datasets, we evaluate the influence of param-
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Fig. 14: TKD cost on incomplete synthetic data vs. N
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Fig. 15: TKD cost on incomplete synthetic data vs. dim
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Fig. 16: TKD cost on incomplete synthetic data vs. σ
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Fig. 17: TKD cost on incomplete synthetic data vs. c
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Fig. 18: Pruning heuristic efficiency vs. k for TKD queries on incomplete data

eters k, N, dim, missing rate σ , and dimensional cardinality c
on the performance of algorithms. First, we report the results
under various k in Fig. 13. Similar to the results on real
datasets, BIG and IBIG perform much better than ESB and
UBB, and SIBIG is much smaller than SBIG.

Second, we explore the impact of cardinality N by changing
N between 50K and 250K, with the results plotted in Fig. 14.
Again, BIG and IBIG are better than other algorithms, and CPU
time increases with the growth of N. This is because the cost
of score computation for candidate TKD objects increases as
N ascends, and BIG and IBIG minimize the cost via reducing
the candidate set size using effective pruning heuristics and
simplify the score computation via fast bitwise operations.

Then, Fig. 15 depicts the experimental results under differ-
ent dimensionality dim. As expected, BIG and IBIG perform
the best, and CPU time increases with dim. As dim grows,
the cost for an object to be compared with other objects (i.e.,
score computation) ascends, and therefore, query cost grows.

Next, we vary missing rate σ in the range [0, 40%], and
report the results in Fig. 16. Evidently, BIG and IBIG consis-
tently perform much better than ESB and UBB. Note that, CPU
time for the algorithms drops as σ grows. The reason is that,
with the growth of missing rate σ , the number of comparable
objects with respect to a given object decreases. Thus, the
score computation cost drops, and CPU time decreases.

Finally, Fig. 17 shows the algorithm costs by varying
dimensional cardinality c. Obviously, BIG and IBIG outperform
others in all cases. It is observed that CPU time is not very
sensitive to c, especially for AC dataset, since the query result
does not fluctuate significantly with various c.

To sum up, based on the above experimental results, we
can conclude that BIG and IBIG perform the best, followed
by UBB, and ESB is the worst. It is worth noting that, under
comparable query time, IBIG consumes less storage than BIG
in all cases. Hence, in real-life applications with costly/limited

storage space, IBIG is a more promising choice than BIG.

5.3 Effectiveness of Pruning Heuristics
The last set of experiments evaluates the effectiveness of
our developed heuristics. Fig. 18 plots the number of the
objects pruned under different k values on IBIG algorithm. It is
observed that, the upper bound score pruning (i.e., Heuristic 1)
is effective for MovieLens, NBA, Zillow, and IND, but not
for AC. This is because the dataset following anti-correlated
distribution has rather small k-th highest score, indicating that
the condition of Heuristic 1 is hard to satisfy under AC.
The bitmap pruning (i.e., Heuristic 2) is effective for NBA,
Zillow, IND, and AC, but not for MovieLens. The reason
is that, for MovieLens, the MaxBitScore of objects is rather
loose due to its high missing ratio, i.e., 95%. The partial
score pruning (i.e., Heuristic 3) is effective for all datasets.
Note that, the three heuristics are not run in parallel, i.e.,
in Fig. 18, the number of the objects pruned by Heuristic 2
excludes those pruned by Heuristic 1, and the number of
the objects pruned by Heuristic 3 excludes those pruned by
Heuristic 1 and Heuristic 2. Because of different distributions,
all three heuristics perform differently in different datasets.
Nonetheless, they all can help to shrink the search space.

6 CONCLUSIONS
Consider the wide range of applications for top-k dominating
(TKD) queries and the pervasiveness of incomplete data,
we, in this paper, study the problem of the TKD query on
incomplete data where some dimensional values are missing.
To efficiently address this, we first propose ESB and UBB
algorithms, which utilize novel techniques (i.e., local skyband
technique and upper bound score pruning) to prune the search
space. In order to further reduce the cost of score computation,
we present BIG algorithm, which employs the upper bound



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2015.2460742, IEEE Transactions on Knowledge and Data Engineering

14

score pruning, the bitmap pruning and fast bitwise operations
based on the bitmap index to improve the score computation
and boost query performance accordingly. Moreover, in order
to trade efficiency for space, we propose IBIG algorithm by
using the bitmap compression technique and the binning strat-
egy over BIG, and develop a method to choose the appropriate
number of bins. Considerable experimental results on both real
and synthetic datasets confirm the effectiveness and efficiency
of our presented heuristics and algorithms. In the future, we
will further study how to improve the quality of TKD query
over incomplete data.
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[12] T. Imieliński and W. Lipski Jr, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, pp. 761–791, 1984.

[13] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for databases and information systems, pp. 307–356,
1998.

[14] G. Canahuate, M. Gibas, and H. Ferhatosmanoglu, “Indexing incomplete
databases,” in EDBT, pp. 884–901, 2006.

[15] B. C. Ooi, C. H. Goh, and K.-L. Tan, “Fast high-dimensional data search
in incomplete databases,” in VLDB, pp. 357–367, 1998.

[16] C. Lofi, K. El Maarry, and W.-T. Balke, “Skyline queries in crowd-
enabled databases,” in EDBT, pp. 465–476, 2013.

[17] W. Cheng, X. Jin, J. Sun, X. Lin, X. Zhang, and W. Wang, “Search-
ing dimension incomplete databases,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 3, pp. 725–738, 2014.

[18] P. Haghani, S. Michel, and K. Aberer, “Evaluating top-k queries over
incomplete data streams,” in CIKM, pp. 877–886, 2009.

[19] M. A. Soliman, I. F. Ilyas, and S. Ben-David, “Supporting ranking
queries on uncertain and incomplete data,” VLDB J., vol. 19, no. 4,
pp. 477–501, 2010.

[20] J. Graham, Missing data: Analysis and design. Statistics for Social and
Behavioral Sciences, Springer, 2012.

[21] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos, “Progressive
processing of subspace dominating queries,” VLDB J., vol. 20, no. 6,
pp. 921–948, 2011.

[22] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, “Continuous
top-k dominating queries,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 5,
pp. 840–853, 2012.

[23] B. Santoso and G. Chiu, “Close dominance graph: An efficient frame-
work for answering continuous top-k dominating queries,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 8, pp. 1853–1865, 2014.

[24] X. Han, J. Li, and H. Gao, “Tdep: efficiently processing top-k dominat-
ing query on massive data,” KAIS, pp. 1–30, 2014.

[25] L. Zhan, Y. Zhang, W. Zhang, and X. Lin, “Identifying top k dominating
objects over uncertain data,” in DASFAA, pp. 388–405, 2014.

[26] R. J. Little and D. B. Rubin, Statistical analysis with missing data,
Second edition. Wiley, 2002.

[27] D. Sacharidis, P. Bouros, and T. Sellis, “Caching dynamic skyline
queries,” in SSDBM, pp. 455–472, 2008.

[28] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in VLDB, pp. 301–310, 2001.

[29] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap indexes for
faster search operations,” in SSDBM, pp. 99–108, 2002.

[30] K. Wu, A. Shoshani, and K. Stockinger, “Analyses of multi-level and
multi-component compressed bitmap indexes,” ACM Trans. Database
Syst., vol. 35, no. 1, p. 2, 2010.

[31] A. Colantonio and R. Di Pietro, “CONCISE: Compressed ’n’ composable
integer set,” Inf. Process. Lett., vol. 110, no. 16, pp. 644–650, 2010.

[32] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, pp. 421–430, 2001.

Xiaoye Miao received the BS degree in com-
puter science from Xi’an Jiaotong University,
China, in 2012. She is currently working to-
ward the PhD degree in the College of Com-
puter Science, Zhejiang University, China. Her
research interests include uncertain and incom-
plete databases.

Yunjun Gao received the PhD degree in com-
puter science from Zhejiang University, China,
in 2008. He is currently an associate profes-
sor in the College of Computer Science, Zhe-
jiang University, China. His research interests
include spatial and spatio-temporal databases,
metric and incomplete/uncertain data manage-
ment, and spatio-textual data processing. He is a
member of the ACM and the IEEE, and a senior
member of the CCF.

Baihua Zheng received the PhD degree in com-
puter science from Hong Kong University of
Science & Technology, China, in 2003. She is
currently an associate professor in the School
of Information Systems, Singapore Management
University, Singapore. Her research interests in-
clude mobile/pervasive computing and spatial
databases.

Gang Chen received the PhD degree in
computer science from Zhejiang University,
China. He is currently a professor in the Col-
lege of Computer Science, Zhejiang University,
China. His research interests include relational
database systems and large-scale data man-
agement. He is a member of the ACM and a
senior member of the CCF

Huiyong Cui received the BS degree in com-
puter science from Zhejiang University of Tech-
nology, China, in 2013. He is currently working
toward the MS degree in the College of Com-
puter Science, Zhejiang University, China. His
research interest includes uncertain and incom-
plete databases.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2016

	Top-k Dominating Queries on Incomplete Data
	Xiaoye MIAO
	Yunjun GAO
	Baihua ZHENG
	Gang CHEN
	Huiyong CUI
	Citation


	TKDE2460742.pdf

