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ABSTRACT
Multipartite entity resolution seeks to match entity mentions
across several collections. An entity mention is presumed
unique within a collection, and thus could match at most one
entity mention in each of the other collections. In addition
to domain-specific features considered in entity resolution,
there are a number of domain-invariant structural contraints
that apply in this scenario, including one-to-one assignment
as well as cross-collection transitivity. We propose a princi-
pled solution to the multipartite entity resolution problem,
building on the foundation of Markov Logic Network (MLN)
that combines probabilistic graphical model and first-order
logic. We describe how the domain-invariant structural con-
straints could be expressed appropriately in terms of Markov
logic, flexibly allowing joint modeling with domain-specific
features. Experiments on two real-life datasets, each span-
ning four collections, show the utility of this approach and
validate the contributions of various MLN components.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.2.8 [Database Applications]: Data mining

Keywords
entity resolution; markov logic network; structural constraints;

1. INTRODUCTION
Often the same entity, be it a person, document, or ob-

ject, is mentioned in several separate collections, and there
is a need to identify that several mentions refer to the same
entity. For instance, when two health organizations merge,
the medical records of patients need to be integrated. While
shopping for a camera, one may wish to compare prices on
online shops, such as BestBuy, Newegg, or Amazon.
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This problem, formalized by [3], is known by several terms
including entity resolution [2, 9], deduplication, or reference
reconciliation. Most works focus on either the similarity
measure between two mentions [10, 7, 6], or the algorithmic
framework to match the mentions (e.g., graph matching [5]).

This paper focuses on structural constraints facing the en-
tity resolution problem. Real-world scenarios have varying
structures. In one scenario (deduplication), a single col-
lection may contain duplicate elements to be resolved. In
a different scenario (referred to as multipartite resolution),
two or more collections need to be integrated into a uni-
fied collection, by resolving which entity from one collection
corresponds to which entity from another collection.

Focusing on the multipartite resolution scenario, we as-
sume that each collection is free of duplicates, because each
collection belongs to a party (e.g., an online shop, or a hos-
pital) with an interest in maintaining a high-quality collec-
tion, or because the collection has been previously cleaned
up through deduplication (a related, yet distinct research
problem). Thus, when integrating two collections, there is a
natural constraint that a mention from one collection could
match at most one mention from the other. One possible
approach is graph matching [5], whereby a one-to-one as-
signment may be obtained from maximum weight bipartite
matching. However, for three or more collections [15], the
3-dimensional matching problem is NP-hard [1].

Here, we take the approach of incorporating structural
constraints into entity resolution with Markov Logic Net-
work (MLN) [12]. An MLN-based formulation has several
advantages. First, the proposed domain-invariant structural
constraints can be combined with previous MLN predicates
for entity resolution based on domain-specific features [14]
or constraints [13]. Second, it is “extendable”, as MLN is an
open framework that allows joining the entity resolution task
with other mutually-reinforcing tasks such as segmentation
[11]. Third, MLN is probabilistic, whereby the importance
of different constraints can be learned from data.

Contributions. First, we describe a series of domain-
invariant structural constraints for MLN-based bipartite en-
tity resolution (see Section 3), and investigate how the con-
straints extend to multipartite structures (see Section 4).
Second, we validate the effectiveness of these constraints on
real-life datasets of phones and cameras (see Section 5).

2. OVERVIEW
Problem Statement. As input, we are given a set of N

collections {X1, X2, . . . , XN}. Each collection Xi consists of
Mi entity mentions, where each mention in Xi is associated



with some features. Our focus in this work is on structural
constraints, and not on the feature set or similarity measure.
For simplicity, and without loss of generality, for subsequent
discussions we assume there is a single feature, which is the
name of the entity, and we use Jaccard similarity [6].

We associate two mentions x ∈ Xi and y ∈ Xj from dif-
ferent collections with a binary variable Match(x, y), whose
value is 1 if x and y“match”, i.e., referring to the same entity,
and is 0 otherwise. Our objective is to determine the states
of these variables for all pairs of entity mentions. If x and x′

belong to the same collection Xi, trivially Match(x, x′) = 0,
i.e., each collection is assumed to be free of duplicates.

Markov Logic Network (MLN). Our approach is to
express structural constraints for entity resolution as first-
order logic formulae. Each formula may use four types
of symbols: constants, variables, functions, and predicates.
Constants are objects in the domain of interest, which in this
case are the entity mentions. Variables, e.g., x, range over
objects in the domain. Predicates represent relations among
objects, e.g., Similar(x, y) is a predicate that indicates that
x and y are similar in feature, whereas Match(x, y) represents
that x and y refer to the same entity. The formulae for the
structural constraints are specified in Sections 3 and 4.

Some constraints are hard constraints, i.e., they must be
satisfied. Others are probabilistic constraints, i.e., solutions
that satisfy them are more likely to be correct. The first-
order logic formulae are weighted, with higher weight in-
dicating higher probabilities. To model these weights in a
principled manner, as well as to learn them from data, we
employ Markov Logic Network (MLN) [12], which combines
probabilistic graphical model and first-order logic. An MLN
is a set of weighted first-order logic formulae (each formula
ft is associated with weight wt). φ is a possible solution in
the space of possible solutions Φ. The probability P (Φ = φ)
is expressed in Equation 1, where Z is the partition function
and ft(φ) is 1 if the formula ft holds in φ and 0 otherwise.

P (Φ = φ) =
1

Z
exp

(∑
t

wtft(φ)

)
(1)

In the inference stage, we use the learnt weights to esti-
mate the probability of Match(x, y) for every pair of entity
mentions from any two different collections.

3. BIPARTITE ENTITY RESOLUTION
In this section, we begin with the first-order logic formulae

for constraints in bipartite entity resolution.
Similarity Constraint. There are various features used

to match entities in entity resolutions. Some are domain-
specific [14], which are not our focus here. Instead, we use
a domain-invariant constraint specifying that matching en-
tities share some level of similarity. We introduce the pred-
icate Similar(x, y) when x and y has a similarity above a
certain threshold (we try different values based on Jaccard
and settle on 0.5 for experiments). The basic formula links
Similar (which is observed) to Match (to be determined).

There are several possible instantiations. The first in-
stantiation (Equation 2) indicates that similar pairs should
match, which may be too stringent when polysemy is an is-
sue, i.e., many similar entity mentions do not match in real
life. The second instantiation (Equation 3) indicates that
matching pairs should be similar, which is more appropri-
ate for the electronic products datasets that we experiment

with, where different products may share similar features
(e.g., iPhone 5 models of different memory sizes).

Similar(x, y)⇒ Match(x, y) (2)

Match(x, y)⇒ Similar(x, y) (3)

Cardinality Constraint. Due to the assumption that
each collection is duplicate-free, an entity mention x ∈ Xi

cannot match more than one mention within another col-
lection Xj . Otherwise, the two entity mentions y, y′ ∈ Xj

matched to x would effectively be themselves matched. This
“at most one”rule is expressed in Equation 4, where full stop
indicates that it is an inviolable hard rule. In some scenarios,
we need an “at least one” rule (Equation 5), if every mention
within a collection must match at least one mention in an-
other collection. If there is a bijection or one-to-one match
between two collections of the same size, we model it by us-
ing both at-most-one and at-least-one rules simultaneously.

Match(x, y) ∧ Match(x, y′) ∧ (y = y′). (4)

∀x ∈ Xi, ∃y ∈ Xj , Match(x, y). (5)

Preference Constraint. While the similarity constraint
helps to ensure that matching pairs have some level of sim-
ilarity, it may result in false positives. If a mention x is
similar to two different mentions y and y′, there should be a
way for x to favor a match with the more similar mention.
We therefore introduce another predicate Prefer(x, y, y′),
which indicates that x is more similar to y than to y′.

We then link Prefer to Match. The following first-order
logic formula is inspired by the Stable Marriage Problem
[4], where the objective is to arrive at a matching of “men”
and “women”, such that no unmatched couple would rather
be with each other than with their respective partners. Ex-
pressed in first-order logic, Equation 6 makes it more likely
that if x is matched to y, and x′ to y′, we would not have
the case where x prefers y′ to y, and y′ prefers x to x′.

Match(x, y) ∧ Match(x′, y′)⇒ (6)

!(Prefer(x, y′, y) ∧ Prefer(y′, x, x′))

Global Constraint. The preference constraint above in-
duces a local optimization by preferring one matching pair
over another. There is no guarantee that the matching is op-
timized in a global way for all pairs. Complementarily, this
is the strength of graph matching [5]. In graph matching,
every mention is a vertex in a bipartite graph. Each edge
between two mentions is weighted by the similarity value.
Employing maximum weight bipartite matching obtains the
matching with the highest sum of similarities. Due to the
flexibility of MLN, it is feasible to be informed by this global
solution. We introduce another predicate MaxWeight(x, y)
that indicates that (x, y) is part of the maximum weight bi-
partite matching solution. For generality, we also model the
greedy version [5], which iteratively constructs the matching
solution by selecting the highest-weighted edges first, as the
predicate Greedy(x, y). It is feasible to factor these results
into the MLN formulation, as shown in Equations 7 and 8.

MaxWeight(x, y)⇒ Match(x, y) (7)

Greedy(x, y)⇒ Match(x, y) (8)



4. MULTIPARTITE ENTITY RESOLUTION
When there are N > 2 collections to be integrated, the

problem turns into multipartite entity resolution. On one
hand, the multipartite scenario can be decomposed into its
N(N − 1)/2 constituent bipartite scenarios, which enables
the re-use of constraints defined in Section 3. On the other
hand, modeling the problem jointly has the benefit of poten-
tially allowing the bipartite matches to correct one another.

Cross-Collection Transitivity. The basic mechanism
to join the bipartite matches is through cross-collection tran-
sitivity. Suppose x ∈ Xi matches y ∈ Xj , and in turn y
matches z ∈ Xk, it is probable that x also matches z, as
expressed in Equation 9. This essentially creates two “path-
ways” for x to match z. One is direct, through the bipar-
tite constraints defined in Section 3. The other is indirect,
through transitivity via y. However, these two pathways
may not always agree, which may result in errors.

Match(x, y) ∧ Match(y, z)⇒ Match(x, z) (9)

To combat this, we accumulate even more evidence from
a greater number of collections. For instance, for four col-
lections involving v ∈ Xl, Equation 10 is a more efficient
rule that allows accumulation of evidence by combining two
cross-collection transitivities. This rule has a notion of “ma-
jority”. There are now three pathways, the direct pathway
to Match(x, z) based on constraints defined in Section 3, and
two indirect pathways via y, i.e., Match(x, y) ∧ Match(y, z),
as well as via v, i.e., Match(x, v) ∧ Match(v, z). If the direct
pathway is incorrect, and the two indirect pathways are cor-
rect and in agreement, the latter two (intuitively forming a
“majority”) could have a corrective effect on the former.

Match(x, y) ∧ Match(y, z)∧
Match(x, v) ∧ Match(v, z) ⇒ Match(x, z) (10)

Label vs. Feature Transitivity. In the above, we
rely on the target label Match(x, y) to model cross-collection
transitivity. This is not ideal for MLN, because the target
label is not grounded, and is to be learned. As a result, it
induces too much dependency among the four collections,
and may propagate errors. To break these dependencies, we
propose to ground the transitivities on observed features.
One way is to express these transitivities in terms of global
constraints, as shown in Equation 11 (using MaxWeight pred-
icate) and Equation 12 (using Greedy predicate).

MaxWeight(x, y) ∧ MaxWeight(y, z)∧
MaxWeight(x, v) ∧ MaxWeight(v, z) ⇒ Match(x, z) (11)

Greedy(x, y) ∧ Greedy(y, z)∧
Greedy(x, v) ∧ Greedy(v, z) ⇒ Match(x, z) (12)

5. EXPERIMENTS
The primary objective is to study the effectiveness of the

MLN approach, and the contributions of various MLN rules.
Datasets. Existing datasets for entity resolution com-

prise at most two collections. As our interest is in the mul-
tipartite scenario, we construct two new real-life datasets
comprising four collections each. Cameras consists of the

Constraint MLN
#1 #2 #3 #4 #5 #6 #7 #8 #9

Similarity X X X X X X X X X
Cardinality X X X X X X X X
Preference X X X X X X X
Global
(MaxWeight)

X X X

Global (Greedy) X X X
Cross-Collection
Transitivity
(MaxWeight)

X X

Cross-Collection
Transitivity
(Greedy)

X X

Domain-Specific
(SameModel)

X X

Table 1: MLN’s with Various Components

names of 80 cameras that existed on all four Web sites stud-
ied (Overstock, Newegg, BestBuy, and Amazon). Phones
consists of the names of 70 mobile phones obtained from the
same four Web sites. We use 30 entities for training, and
the rest for testing. The size of the data is restricted by the
need to manually label the matching across four collections.

Comparative Methods. Our main focus is on the com-
parison of various MLN constraints. Table 1 lists the nine
MLN’s to be studied, indicating the constraints included by
each MLN. For learning and inference, we build the MLN
solutions on the Alchemy [8] library. In addition, we will
compare to two graph matching approaches, namely maxi-
mum weight bipartite matching, as well as its greedy version.

Metric. MLN outputs the probability that two mentions
match. One possible metric is the likelihood of true matches.
However, to put our approach on the same footing as graph
matching that outputs binary outcomes, we discretize the
probabilities to 1 (matched) or 0 (not matched) by assigning
each entity mention to the highest probability match (taking
into account any conflict). We then measure the accuracy
of the pairs according to the ground truth labels.

Bipartite Entity Resolution. First, we look at the pro-
gression of structural constraints in the bipartite scenario
(see Section 3). Table 2 shows the accuracies for Cameras,
while Table 3 shows the accuracies for Phones. For four col-
lections, there are six bipartite scenarios. Each row shows
accuracies for each bipartite scenario. The last row is the
overall accuracies, averaging the first six rows. MLN#1 that
only has similarity constraint performs poorly because the
one-to-one constraint is not enforced. By adding cardinality
constraint, MLN#2 improves in accuracy significantly. The
greatest boost in accuracy comes from adding preference
constraint as in MLN#3, because the relative ranking of
similarities helps to arrive at better pairings. Adding global
constraints, through factoring in the MaxWeight (MLN#4)
or Greedy (MLN#5), results in only a small increment in ac-
curacies. These show that the progression of structural con-
straints result in better performances across both datasets.

Multipartite Entity Resolution. In multipartite set-
tings, it is possible to gain further accuracies by modeling
all the collections jointly, rather than by decomposing them
into the constituent bipartite settings. Table 4 compares
accuracy of bipartite versus multipartite modeling. Only
the average accuracies are shown due to space limitation.
Whether MaxWeight or Greedy is used in the global and
cross-collection transitivity constraints, multipartite mod-



MLN#1 MLN#2 MLN#3 MLN#4 MLN#5

Overstock-Newegg 18.0% 18.0% 90.0% 94.0% 90.0%
Overstock-BestBuy 4.0% 10.0% 88.0% 88.0% 88.0%
Overstock-Amazon 8.0% 30.0% 92.0% 94.0% 92.0%
Newegg-BestBuy 16.0% 26.0% 78.0% 96.0% 76.0%
Newegg-Amazon 6.0% 16.0% 72.0% 70.0% 72.0%
BestBuy-Amazon 12.0% 16.0% 72.0% 72.0% 72.0%

Average 10.7% 19.3% 82.0% 85.7% 81.7%

Table 2: Bipartite Entity Resolution - Cameras

MLN#1 MLN#2 MLN#3 MLN#4 MLN#5

Overstock-Newegg 2.5% 12.5% 100.0% 95.0% 100.0%
Overstock-BestBuy 10.0% 10.0% 82.5% 82.5% 85.0%
Overstock-Amazon 12.5% 20.0% 85.0% 90.0% 82.5%
Newegg-BestBuy 12.5% 7.5% 95.0% 95.0% 95.0%
Newegg-Amazon 7.5% 35.0% 95.0% 100.0% 100.0%
BestBuy-Amazon 10.0% 12.5% 92.5% 100.0% 92.5%

Average 9.2% 16.3% 91.7% 93.8% 92.5%

Table 3: Bipartite Entity Resolution - Phones

elling helps to improve the accuracies, e.g., from 85.7% to
90.0% for Cameras and from 93.8% to 96.7% for Phones,
in the case of MaxWeight-based constraints.

Comparison to Graph Matching. Our focus is on
MLN-based approaches. Previously, when MaxWeight and
Greedy are used, they are factored into the MLNs. For
completeness, we include a comparison to graph matching
on its own. For bipartite matching, we use MaxWeight
(MW2) and Greedy (G2) directly. For multipartite match-
ing (MaxWeight is NP-hard), we rely on Greedy for three
(G3) and four (G4) sources respectively, as defined in [15].
Table 5 shows that MLN#6 and MLN#7 are quite similar
to (in some cases slightly better than) graph matching. Im-
portantly, MLN has not resulted in a drop in accuracy, while
providing benefits such as extendability and probabilities.

Extendability via Domain-Specific Feature. Our fo-
cus here is on domain-invariant rules. However, to illustrate
the potential extendability of MLN, we show how the ad-
dition of one new domain-specific rule may improve the ac-
curacies. The rule is SameModel(x, y) ⇒ Match(x, y). It
uses a new predicate SameModel, specific to the domain of
consumer electronics (cameras, phones), indicating whether
two mentions share similar model and brand. Table 6 shows
that by adding this rule, MLN#8 outperforms MLN#6, and
similarly MLN#9 outperforms MLN#7. This extendability
shows the value of MLN-based approach, which allows addi-
tional rules, constraints, or even tasks to be modeled jointly.

6. CONCLUSION
We explore a framework for expressing structural con-

straints for multipartite entity resolution using MLN. Exper-
iments on real-life datasets indicate the promise of this ap-
proach, showing how the various structural constraints con-
tribute to the overall effectiveness. As future work, we plan
to investigate further how factoring in domain-specific fea-

with MaxWeight with Greedy
Bipartite Multipartite Bipartite Multipartite
MLN#4 MLN#6 MLN#5 MLN#7

Cameras 85.7% 90.0% 81.7% 82.0%
Phones 93.8% 96.7% 92.5% 93.3%

Table 4: Multipartite Entity Resolution

with MaxWeight with Greedy
MLN#6 MW2 MLN#7 G2 G3 G4

Cameras 90.0% 87.3% 82.0% 81.7% 81.5% 85.0%
Phones 96.7% 95.8% 93.3% 92.5% 91.9% 92.5%

Table 5: Comparison to Graph Matching

with MaxWeight with Greedy
without with domain-

specific
without with domain-

specific
MLN#6 MLN#8 MLN#7 MLN#9

Cameras 90.0% 90.7% 82.0% 83.0%
Phones 96.7% 98.3% 93.3% 93.3%

Table 6: Adding Domain-Specific Feature

tures and constraints, in addition to the proposed domain-
invariant structural constraints, can result in more flexible
and yet more accurate entity resolution through MLN.

7. REFERENCES
[1] Y. Crama, A. G. Oerlemans, and F. C. Spieksma.

Approximation algorithms for three-dimensional
assignment problems with triangle inequalities.
Springer, 1996.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 2007.

[3] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. JASA, 1969.

[4] D. Gale and L. S. Shapley. College admissions and the
stability of marriage. American mathematical monthly,
1962.

[5] J. Gemmell, B. I. P. Rubinstein, and A. K. Chandra.
Improving entity resolution with global constraints.
arXiv preprint arXiv:1108.6016, 2011.

[6] P. Jaccard. Etude comparative de la distribution florale
dans une portion des Alpes et du Jura. Impr. Corbaz,
1901.

[7] M.A. Jaro. Probabilistic linkage of large public health
data files. Statistics in Medicine, 1995.

[8] S. Kok, P. Singla, M. Richardson, P. Domingos,
M. Sumner, H. Poon, and D. Lowd. The Alchemy
system for statistical relational AI. University of
Washington, Seattle, 2005.
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