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Query Processing in OODB 

HweeHwa Pang’, Hongjun Lu2, BengChin Ooi’ 

lInstitute of Systems Science 
department of Information Systems and Computer Science 

National University of Singapore 
Kent Ridge, Singapore 05 11 

Abstract In obiect-oriented databases, relationships are 
generally maintained explicitly. The partial result of a retrieved 
object can be used to efficiently retrieve related objects. Instead 
of optimizing joins as in relational database systems, pointer 
chasing is optimized in object-oriented database systems. 
Further, semantics inherent in the object-oriented database, like 
superclass-subclass relationships and composite-component 
relationships between object classes, must be realised. In this 
paper, we describe our initial result in query optimization in an 
object-oriented database system. Semantic qu;;; 
transformation is used to preprocess the query. 
semantically optimized query is then translated into a query 
evaluation plan which comprises method invocations that can 
be evaluated directly by the system. In the process of query 
evaluation plan generation, initial results tend to show that a 
one source query plan is almost optimal. A prototype based on 
this design has been completed and some results from a 
simulation study on this prototype are also reported in this 
paper. 

1. Introduction 

One of the essential properties of the object-oriented database 
systems is encapsulation, whereby information in any class is 
hidden from users and the only way to access the information is 
through methods provided in that class. Methods are 
procedures written in a programming language. The 
computational completeness of the programming language 
makes methods significantly more expressive than the relational 
algebra. However, it is still desirable to provide an ad-hoc 
query interface to object-oriented database management systems 
(OODBMS) that allows users to pose high level queries in a 
declarative language, much like SQL in the relational context. 
Such a language has limited expressive power but, on the other 
hand, allows users to interact with the OODBMS using the 
schema and is ideal for non-expert users. A query processor 
must be provided to translate such high level queries to 
invocations of methods in the database. Due to the nature of the 
object-oriented concepts, some features that are absent in 
relational database systems must now be considered. Before a 
query can be processed, all its inherent semantics such as the 
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scope of a class must be realised. Since more semantics are 
captured in OODB, it is desirable that the available semanuc 
knowledge is used to optimize the query. In contrast to 
relational database systems, joins of two unrelated objects are 
not that common in OODBMS. Objects in a query are usually 
related, and their relationships are explicitly maintained. As 
such, objects can be retrieved using the information stored in 
the already retrieved objects. In this paper we present our effort 
in query optimization in an OODBMS. 

In [Kor88], Korth attempted to recast a subset of object queries 
as relational queries so as to enable those queries that are 
expressible in a relational language to be optimized using 
standard relational techniques. Osbom [Osb88] investigated 
query optimization on an object algebra, taking into account the 
difference between identity and quality of the results of two 
queries. The EXODUS optimizer generator [GrD87] creates an 
optimizer from a rule-based description of the query algebra. 
The algebra can be extended by augmenting an algebra 
description file. Freytag [Fre87] used transformation rules to 
generate query evaluation plans (QEPs) from initial query 
specifications. The transformation rules can easily be modified 
to accommodate changes or extension to the set of possible 
QEPs that the optimizer is capable of generating. 

This paper reports the design of our query processor. When 
the query processor receives a high level query, semantics 
inherent in the relationships that involve object classes in the 
query are used to modify it to ensure the correctness of the 
query results. Such relationships include the superclass- 
subclass and composite-component relationships. The next step 
is semantic optimization, a technique which uses available 
semantic knowledge to transform the query into a new query 
that produces the same answer as the original query, but 
requires less resources to evaluate. As semantic optimization 
increases the processing overhead considerably, efficiency of 
the overall optimizer must be taken into consideration. In the 
final step, an efficient query evaluation plan is generated, in 
which the sequence of the retrieval of objects and their access 
methods are determined. Once the QEP is determined, the 
elementary operations are then mapped into method invocations 
which can be evaluated directly by the OODBMS. There may 
be more than one method to implement an elementary 
operation, and the method that is most efficient in the query 
context will be selected. The final sequence of method 
invocations makes up the executable QEP. Since OODBMS 
supports extensible data types and hence new methods, it is 
important that the set of methods available to the optimizer be 
extensible. The translation process is guided by a search 
strategy that is of polynomial complexity. Some preliminary 
studies were carried out on a prototype we developed, and the 
results show that our design is indeed feasible and reasonably 
efficient. 
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Database Schema: 
supplier(name, address, supplies) 
cxgo@de. &SC, quantity, supplies, collecrs) 
vehicle(vehicle#, de.%, class, engcotttp, collects, drives) 
engine(engine#, capacity, engComp) 
employ@name. clearance, rank. belongsTo) 
manager(name, clearance, rank, belongslb) 
driver(name, clearance, rank, belongsTo, license#, licenseClass, 
licenseDate, drives) 
supervisor(name. clearance, rank, belongsTo, license#, licenseClass, 
licenseDate, drives) 
&parlment(name, securityClass, belongsTo) 

Note. Attributes in italic arc pointers used to implement relationships between object classes. 

Figure 2.1: An Example Database 

The paper is organized as follows. In Section 2, we give an 
overview of the query processor. Section 3 describes the 
semantic transformations that are carried out on a query before 
it is translated into a QEP. Section 4 presents the selection of 
the cheapest access path and the method for retrieving each 
object class. The generation of a QEP, based on the access path 
and methods chosen, is described in Section 5. Implementation 
and empirical results are presented in Section 6. We canclude 
in Section 7 with discussion on future work. 

2. Preliminary 

The concept of object-oriented engenders different requirements 
in query processing strategies. Firstly, instances of the 
subclasses of an object class are also instances of it. When 
instances of the class are requested, implicitly instances of the 
subclasses are also required (unless explicitly stated otherwise). 
Assuming that instances of the subclasses are not duplicated in 
the object class itself [Ba*87], the query processor has to 
explicitly add to queries subclasses of those object classes 
requested. 

The second issue arises from the fact that there might be 
composite-component relationships between object classes 
involved in a query. To be semantically correct, such 
relationships must be taken into account during query 
evaluation. 

engine vehicle 

w 

Query: Get the cngik# of each vehicle driven by class 3 drivers. 

Fig&e 2.2: A Query Access Path 

Consider the database schema shown in Figure 2.1, which is 
used in all the examples in this paper. In this example, we 
assume that a subclass (e.g. manager and driver) inherits all the 
attributes, including the relationships, of its superclass (e.g. 
employee). Unlike relational databases in which each 
relationship is usually represented by a separate relation, 
relationships in object-oriented databases are typically 
represented by pointers. Hence each object instance in a class 
participating in a relationship contains an associated set of 
pointers. This set of pointers stores the object ids of instances 
in other participating classes associated to it by this relationship 

(e.g. belongsTo). Some fields might also be attached to the set 
of pointers to represent attributes of the relationship. 

A query in our system involves object classes that are linked by 
relationships. Retrieval begins with a chosen object class. All 
other object classes can only be retrieved through pointers in 
those classes that have already been accessed. Given a query, 
there are many ways to execute the query. Each way gives rise 
to an access path. Figure 2.2 shows an access path for a query 
involving some object classes (represented by circles) and 
relationships (represented by solid lines between the object 
classes) in the schema in Figure 2.1. The arrows denote the 
sequence in which object classes are accessed, and parallel 
branches starting from a vertical bar denotes parallel retrieval of 
these branches. In each access path diagram, there is at least 
one object class with no incoming arc. Such object classes are 
known as sources and the remaining object classes are 
intermediates. Object class engine is a source and the rest are 
intermediates. Object classes with no outgoing arcs are further 
known as sinks. Object classes driver and supervisor are sinks. 
Furthermore, if two or more branches merge at an object class, 
that class is known as a sync. 

All the inputs to the optimizer are given in the following 
conceptual format. 

(SELECT (projectList) (joinPredicateList} 
1 selectPredicateList) 
(relationshipList) (classList)) 

The different parts of the query describe the attributes required, 
the join predicates and selection predicates on object classes, 
the relationships between the object classes involved, and the 
object classes to be accessed, respectively. A join predicate is 
one that involves attributes from more than one object class, 
while a selection predicate is one that involves attributes from 
only one class. To avoid ambiguity in the query path, the 
relationships joining the object classes involved in a query have 
to be explicitly identified. Though there are some redundancies, 
this representation is nevertheless chosen to improve the clarity 
of our illustrations. In what follows, restriction predicates are 
used to refer to join predicates and selection predicates 
collectively. 

A declarative query is mapped to a series of elementary 
operations and commands. The following is a list of 
elementary operations: 
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(SCAN class [attributeList) (joinPredicateList] 
(selectPredicateList) resultClass) 

Denotes an object class scan, with the attributes required 
(in the attributelist) from it and the join and selection 
predicates that have to be satisfied. resultclass is a virtual 
class (view) that contains the instances that form the 
results. Before concatenating the output to the partial 
result in resultclass, the join predicates in 
joinPredicateList are evaluated and instances that do not 
satisfy all the join predicates are eliminated. The access 
path and retrieval method are not specified. 

(FORK (list1 ) . . {list,)) 
This is a keyword which activates n parallel threads to 
retrieve the n lists of object classes. 

(LINK (source) (sink) (joinPredicateList] 
[ selectPmdicateList) 
{relationshipList) (classlist) rest&Class) 

Denotes retrieval of an arbitrary number of object classes 
(given in classlist) without specifying their order, except 
for the source and possibly the sink. The join predicates 
(in joinpredicatelist) and selection predicates (in 
se1ectPredicateLi.u) that the results must satisfy, and the 
relationships between object classes (in relationshiplist) 
are also given. The output is to be placed in resultClass. 

There must be at least one implementation (method) for each 
elementary operation. The most efficient method in the query 
context will be chosen, and the chosen method will replace the 
elementary operation. The final sequence of methods makes up 
the QEP and can be executed by the DBMS directly. As the 
choice of the most efficient methods is system-dependent, we 
will only briefly explain how this is done, using the elementary 
retrieval operation, scan, as illustration. The main emphasis of 
this paper, however, is on the transformation from declarative 
queries to elementary operations. 

Each class definition includes the various methods that can be 
used to retrieve the object instances in it. In addition, a function 
must be provided for each method that gives its estimated 
execution cost. For example, the definition of class A might be 

class A { 
attributes: 

a 
1 
: ..; 

am: ..; 
class methods: 

scan(A, . ..). scan&A, ..); 

scan(A, . ..>. scanu(A, ..); 
costt(A, sf, ..): ..; 

cost,&, sf, ..>: ..; 

scanCost(A, sf, ..): t& costi(A, sf, ..); 

In the definition, scan1 and scann are methods that implement 
the elementary retrieving operation scan using different 
searching techniques. To estimate the cost of retrieving any 
object class, all the cost estimation functions in that class are 
evaluated, and the lowest cost is returned. The method chosen 
to retrieve the class is the one associated to the lowest estimated 
cost. Note that 

. Each cost function costi associated with method scar+ 
requires a compulsory argument sf, which represents the 
selectivity factor. The estimation of selectivity factors 
will be discussed in Section 4. 

. Object classes in an QQDB are related by superclass- 
subclass relationships, with the system class being the 
superclass of ail other classes. Hence the object classes 
form a directed acyclic graph (DAG). If a particular 
retrieval method scani is shared by all the object classes in 
a subgraph in the DAG, that method can be factored out 
and placed in the root of that subgraph. This way all the 
classes in the subgraph will inherit the method. For 
example, an indexed retrieval method and a sequential 
retrieval method, together with their associated cost 
functions, might be provided in the root class (the root of 
the object class DAG), and all the other classes can inherit 
these methods by default. 

The optimizer, outlined in Figure 2.3, consists of four 
modules. Semantic preprocessing transforms queries to reflect 
the semantics inherent in the object-oriented database, eg. the 
superclass-subclass relationships and the composite-component 
relationships between object classes. This module is essential 
for the correctness of the query results. Semantic optimization 
uses semantic constraints to modify the queries so that they can 
be evaluated more efficiently, without changing the semantics 
of the queries. Access path selection decides on the order to 
retrieve object classes and the method to use to access each 
object class. QEP generation produces series of method 
invocations to execute the queries. 

3. Semantic Transformations 

3.1 Semantic Preprocessing 

The semantic preprocessor uses four preprocessing rules to 
make semantics inherent in the object-oriented context explicit. 
This step is necessary for the cotrectness of the query results. 
. Adding Subclasses 

Since instances of an object class include those that 
belong to its subclasses, subclasses (and in turn their 
subclasses) of object classes involved in the query must 
be added to it. Note that the subclasses inherit the 
selection predicates and join predicates on the object 
class. The subclasses of each object class can be 
identified from the schema and is available from the data 
dictionary during runtime. For example, 

(SELECT (driver.name, vehicle.vehicle#) ( ) ( ) 
(drives) (driver, vehicle)) 

query 
Semantic Access Path QEP 

Preprocessin Selection Generation 

Figure 2.3: Overview of the Optimizer 
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becomes 

(SELECT ( (drivername, supervisor.name), 
vehicle.vehicle#) ( ) { ) 

(drives) (driver, supervisor, vehicle)) 

which means driver.name and supervisor.name will be 
“unioned” together to form one attribute in the results. 

. Identifying Existing Subclasses 
Among the classes listed in the query, some might be 
subclasses of others. For example, 

(SELECT (driver.name, supervisor.name, 
vehicle.vehicle#) ( ) ( ) 

(drives) (driver, supervisor, vehicle)) 

As it is, the results would be wrong since driver.name 
and supervisor.name get “multiplied” together. A 
transformation is required to group together the classes 
related by superclass-subclass relationships: 

(SELECT ( (driver.name, supervisor.name), 
vehicle.vehicle#) ( ) ( ) 

(drives) (driver, supervisor, vehicle)) 

. Deep Retrieval 
When a composite class is to be retrieved, it is possible to 
automatically retrieve some of its component classes. 
Whether this rule is active depends on the value of a 
system variable. The depth of retrieval, i.e. number of 
layers of components thus retrieved, can either be 
computed dynamically based on available display space, 
or be some pre-determined values that might vary from 
class to class, or be given as part of the query. For 
example, 

(SELECT (driver.name, vehicle.*) ( ) ( ) 
(drives) (driver, vehicle)) 

is transformed to 

(SELECT (driver.name, vehicle.*, engine.*) ( ) 
( ] (drives, engComp) (driver, vehicle, engine )) 

There are different ways to present the results. If 
relations are used, a component class is shown as a 
“nested” relation in the relation that represents its 
composite class. Note that we represent a nested object 
such as vehicle.engine as two objects with a relationship. 

. Identifying Existing Components 
Among the classes to be retrieved, some might be 
components of others but these composite-component 
relationships are not stated in the query. For example, 

(SELEa (driver.name, vehicle.vehicle#, 
engine.capacity) ( ) ( ) 

(drives) (driver, vehicle, engine)) 

The results of this query would not be (logically) correct 
since engine and vehicle simply get “multiplied” together, 
and would not show the engine capacity of each vehicle. 
This preprocessing rule makes the composite-component 
relationships explicit: 

(SELECT (driver.name, vehicle.vehicle#, 
engine.capacity) ( ) ( ) 

(drives, engcomp) (driver, vehicle, 
engine)) 

3.2 Semantic Optimization 

Semantic query optimization was first proposed by King 
[Kin8 1] and by Hammer and Zdonik [HaZSO] . Three semantic 
optimization rules - restriction elimination, restriction 
introduction and class elimination (the equivalence of relation 
elimination), have been incorporated into our optimizer. In 
[PLO!20], we presented an efficient algorithm to implement 
these optimization rules and we briefly discuss it here. In our 
approach, all possible transformations are tentatively applied to 
the query. Instead of physically modifying the query, the 
transformation process classifies the predicates in the query into 
imperative, optional or redundant. An irnperative predicate is 
one whose removal will affect the final results. An optional 
predicate is one that, though its inclusion or exclusion does not 
affect the final results, might affect the execution efficiency of 
the query by enabling us to make use of indices, or by cutting 
down the number of instances returned from some object 
classes and thereby reducing the size of intermediate results. A 
redundant predicate affects neither the final results nor the 
execution efficiency. At the end of the transformation process, 
all the imperative predicates are retained while the redundant 
predicates are eliminated. Whether an optional predicate should 
be retained depends on the estimated cost savings it can help 
bring about and the cost of evaluating it. This effectively means 
the task of choosing the beneficial transformations is delayed 
until all the possible transformations have been considered. 
Using this approach, previous transformations do not preclude 
other transformations and the order of transformations is 
immaterial. Hence the algorithm is of polynomial complexity. 
Another advantage of this approach is there is no need to check 
the profitabilities of all the transformations, eg. those 
transformations that re-classify predicates to redundant should 
always be carried out. Another issue addressed in the paper is 
the grouping of semantic constraints to reduce the overhead of 
retrieving constraints and checking whether each constraint is 
relevant to the current query. Constraints are grouped according 
to the object classes they reference. When optimizing a query, 
only selected groups of constraints are considered. At the same 
time, constraints are also classified as intra- or inter-class, 
depending on the number of object classes each references. 
This classification is exploited during optimization to reduce the 
transformation overhead. 

4. Access Path Selection 

In this section, we use the following nota.tions. NCARD(Oi) is 
the number of object instances in class Oi, and is available in 
the data dictionary. Di refers to the number of instances in Oi 
that have to be retrieved from the stora.ge device. After the 
retrieval, the instances might be tested against some selection or 
join predicates and only those instances which satisfy the 
predicates are returned. Pi measures the number of such 

returned instances. Hence Pi I Di. 

4.1 Estimation of Selectivity Factors 

Before the optimizer can calculate the costs of different access 
paths, it first has to estimate the selectivity factor for each 
attribute and object class. The selectivity factor is defined as 
the number of the qualified instances over the total instances. It 
will be used to estimate the number of instances that need to be 
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mievexj and the number of instances that will be returned from 
each object class. When accessing attributes, there are two 
possible categories of selections. 

. Selection before retrieval: This is the selection on an 
attribute via an index such that only instances that satisfy 
the restriction predicates on the indexed attribute are 
retrieved We denote the selectivity factor before retrieval 
of object Oi based on attribute Aj as SFBib When the 
attribute is not important to the discussion, only SFBi is 
used. 

. Selection after retrieval: This is the selection on attributes 
which are not part of the index. Whether an instance 
satisfies the restriction predicates on the attribute can only 
be determined after the instance has been retrieved. We 
denote the selectivity factor after retrieval of object Oi 
based on attribute Aj as SFAC. 

Estimation of selectivity factors before retrieval for sources and 
selectivity factors after retrieval has been studied by various 
researchers. The System R optimizer [SAC791 used simple 
statistics, such as the minimum and maximum values in a given 
attribute, to estimate selectivity factors of attributes. This 
scheme produces good selectivity estimates only if the attribute 
values are uniformly distributed. Equi-depth histograms have 
been proposed as an alternative for estimating selectivity of 
attributes whose values are n t uniformly distributed [ShC84, 
MuD88]. In our current p rot2 type, we use a simple scheme that 
is similar to System R to minimize overhead. With this scheme, 
the selectivity factor before retrieval, SFQ for an intermediate 
Oi accessed directly via pointers from ObJect classes 0,, O,, .., 
and 0, is defined as: 

SFuij = fi SFA,, 
k =I 

Selectivity factors are used to estimate the number of object 
instances to be retrieved, and the number of instances that will 
be returned. Assuming restriction predicates on different 
attributes are independent (indeed this condition is satisfied 
since redundant predicates are removed), the selectivity factor 
before/after retrieval of an object class Oi, SFBJSFAi, is the 
product of the selectivity factors before/after retrieval of the 
attributes in that class. From now on we shall refer only to 
selectivity factors of object classes. Hence 

Di = SFBi X NCARD(Oi) 
Pi = SFAi X NCARD(Oi) 

4.2 Determination of Access Path 

We now present the algorithm for access path determination. 
This has been demonstrated to be a hard combinatorial problem 
[SwG88] and algorithms like simulated annealing and 
techniques based on local search have been developed [Pas821 
to solve it. In our current implementation, only those access 
paths with one source am considered. This reduces the access 
path determination problem to the problem of finding the 
reachability between any two nodes. Hence the algorithm is of 
polynomial complexity. Our justification for using this 
simplified approach is, since our selectivity factors are only 
estimates of the actual values, it is futile to attempt very detailed 
computations as the errors from estimating the selectivity 
factors would get magnified. 

Any object class in the query can be used as the source in the 
access path. We define a selectivity matrix Y which contains 
selectivity factor on the object id in each object class as follows. 
For a query involving m object classes, 

y = ( Wij ), 1 <ijIm 

I1 ifi=j 

J.fij = 1 SFAi if Q and Oj am connected by an arc 

l0 otherwise 

When evaluating a query, the selection on object classes 
accessed previously might reduce the number of instances in 
the current object class that need to be retrieved. Assuming an 
access path of O,, .., Om. The selectivity factors on O,, .., 0, 

1 need to be propagated to Oi. Hence we define Y2”, n 11 as 

9” = ( vijzn ) 

where 

The selectivity matrix Y” can be interpreted as follows. If we 
start from Oi and access intermediates via object ids, the 
selectivity factor before retrieval of an object class Oj linked by 

at most n relationships to Oi is yijn. Hence for a query 

involving m object classes, we need to compute Ytt, n 2 m-l to 
know the selectivity factor before retrieval of any object class 
given an arbitrary source. The number of matrix muhiplications 
is thus p = rlog2m-11, and the total number of primary 

operations needed is m3 x rr0g2d1. 

Having computed the selectivity matrix Yp, we compute the 
cost matrix Q, as follows. 

@ = ( 4tij ) 

where 

l$ij = SCaJlCOSt(i, WijP, . ..> 

Every bij E @ gives US the minimum cost of retrieving object 
class Oj If we use Oi as the source. Hence we choose as source 
Oi such that the total cost of retrieving all the object classes is 
the lowest. 

COSl+~ = mitt g $ij 

IS&m j=l 

4Qj E @ 

We use as access path the one from which we derive the lowest 
retrieval cost using the chosen source. Figure 2.2 shows a 
possible access pttth with engine as the source. 

The most expensive part of our access path selection algorithm 
is the computation of the selectivity matrix. Hence the time 
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complexity of the algorithm is o(m310gZm), where m is the 
number of object classes in the query. An access path chosen 
by our algorithm is essentially a tree with the source as root. 
We prefer such paths because they do not contain sync& so 
each branch of the tree can be retrieved in parallel without 
having to wait for another branch at a sync. 

5. QEP Generation 

After the access path has been determined, the QEP can be 
generated from the query using QEP generation rules. We 
define predicate A(j) such that A(i) evaluates to true if all the 
attributes involved in join predicate j have already been 
retrieved, otherwise A(j) is false. In addition, we define 
function F as follows: 

. F(p) returns the set of object classes referenced by p, 
where p is a restriction predicate, i.e. join predicate or 
selection predicate. 

. F(a) returns the set of object classes that contain attribute 
a. 

The query is first converted to algebraic form using the 
following rule to ease the generation process. 

(SELECT el e2 e3 e4 e5) + 
(REQUIRE el (LINK (to) ( ) e2 e3 e4 e5 
resultClass)) 

Note that a dummy source, rV has been introduced into the 
term LINK. This is to facilitate generation of QEP and will be 
removed at the end of the process. resulfCZuss will contain the 
results of the query and is initialized to au empty class. 

Example 5.L The algebraic form for the query “get the 
names of those drivers whose license classifications equal the 
classifications of the vehicles they are driving, and whose 
vehicles have engine capacity greater than 1OOOcc”. 

(SELECT ( (driver.name, supervisor.name) } 
(driver.licenseClass = vehicle.class, 
supervisor.licenseClass = vehicle.class) 
(enginecapacity > 1fKKl) 
(drives, engcomp) 
(driver, supervisor, vehicle, engine)) 

F 
L 
J 
S 
R 
T 

i-2 

Sf 

jf 

is transformed to 

(REQUIRE ( (driver.name, supervisor.name) ) 
(LINK (to, I I 

(driver.licenseClass = vehicleclass, 
supervisor.licenseClass := vehicle.class) 
(engine.capacity > 1000) 
(drives, engcomp) 
(driver, supervisor, vehicle, engine) 
resultClass)) 

The generation of QEPs can be divided into three steps. In the 
first step, the optimizer transforms the query to reflect the 
access path chosen. The notations for the QEP generation rules 
used in this step are listed in Table 5.1. 

. When the sink in the access path has been reached, Rule 
5.1 terminates the step by replacing the LINK operation 
with a null list. 

Rule 5.1: (LINK F L J S R T resultClass) +-Cl 

where Cl = (F = L). 

. The following two rules generate a SCAN operation for 
the first object class in the access path, and the selection 
predicates on this object class are moved into the SCAN 
operation. The object class that is linked to this first 
object class will in turn be the fit among the remaining 
classes. The difference between the two rules is the 
treatment of join predicates that involve the first object 
class. If a join predicate also involves another object class 
which has yet to be retrieved, Rule -5.2 keeps it with the 
LINK operation; otherwise Rule 5.3 is used to move it 
into the SCAN operation. 

Rule 5.2: (LINK (t,) L Ju(jf)Su(sf)Ru(r) 
C2A Itot@( 

w(~ 
1 
) resultclass + 

((SCAN tf ( ) ( ) ( sf) resultclass) 

(LINK (t,) L Ju(jf r E tt-r) S R T 
resultClass)) 

Rule 5.3: (LINK (t,) L Ju(jf) Su(sf) Ru(r) 
C2 A A(js 

w(~ 
1 
) resultClass + 

((SCAN tf ( ) (jt) ( sf) resultclass) 

Table 5.1: Notations for QEP Generation Rules 

asetofsources,F=()or(td 
a set of sinks, L = ( ) or (tt) 
a list of join predicates 
a list of selection predicates 
a list of relationships 
a list of object classes 
a set of values retrieved from attribute r in the previous SCAN 
the selection predicates on object class tf 
the join predicates that refer to object class tf 
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(LINK ( tl ) L Ju( r E $r) S R T resultclass)) 

where c2 = (r links t,and tl) 

. The next two rules generate a SCAN operation for the 
first object class in the access path and divides the 
remaining object classes (together with their selection 
predicates and relationships) into sub-blocks that are 
evaluated in parallel. Each of these sub-blocks contains 
an object class that is linked to the fast object class, and 
which will in turn be the first in the sub-block. The 
difference between Rule 5.4 and Rule 55 is the treatment 
of join predicates that involve the first object class, and is 
similar to the difference between Rule 5.2 and Rule 5.3. 

(LINK &,I (t,,+ll Jnu& r,, 6 f&,) SnRn 
Tn resultClass)) 

(LINK h+, 1 L J,+,%) %+, Rn+l Tn+l 
resultClass)) 

Rule 5.7: (LINK (tf) L Ju(jf) Su(sf) Ru(rl,..,rn) 

Tu ( t , ,. .,t”,t,+, ) resultC1ass + 
C4 A AI&) 

((SCAN tf ( ) (j,) ( sf) resultClass) 
(FORK 

(LINK ($1 (fn+l) Jluir, E $-r,) S, R, T, 
resultClass) 

Rule 5.4: (LINK (t,) L Ju(jf) Su(sfJ Ru(rt,..,r,) 
c3/? Ilot@( 

Tu( t _ , ) resultclass + 
7. 7 

((SC& t,Y{ I I ) {sf) resultclass) 
(FORK 

(LINK (t, ) 1, J,u{jf r1 E tfrl) St R, T, 
resultClass) 

. . 

(LINK It,) L JnuCif rn E $-.r,) Sn R,, T, 
resultClass))) \ 

Rule 5.5: (LINK ($1 L Ju(jf] Su(sf) Ru(rl,..,rn) 
C3 A A(if) 

Tu( t __ t ) resultclass + 
1’ ‘n 

((SCAN ti’( ) (j,) ( sf) resultclass) 
(FORK 

(LINK (t,) L Jlu(rt E tfrl} St R, T, 
rest&Class) 

(LINK (t,) L J,u{r, E tfrn} Sn Rn T, 
resultClass))) 

where C3 = (tii, j E Ji, t E TiU(t;) for some t E r(i)) 

A tiil s E Si, T(S) = t where t E TiU(ti)) 

^(I: Ji=J)I\(L Si=S)h(~Ri=R)*(~Ti=T) 
i+l i=l i=l i=l 

A (iil ri links tr and ti)) 

. The last two rules are similar to Rule 5.4 and Rule 5.5, 
except there is a sync at the end of the parallel sub- 
blocks. 

Rule 5.6: (LINK (tl) L Ju(jf) Su[sf] Ru{rt,..,m) 

W+,t,,,t,,+J 
resultclass -+c4A not@(ir)) 

((SCAN I,. { ] ( ) ( sf) resultclass) 
(FORK 

(LINK It, I ttn+l) J,u& r1 E ffrll S, RI 
T, resultChss) 

(LINK ($1 It,,,,) J,,Mr,,E $.‘,,I SnR,,Tn 
resultClass)) 
CLINK 4t+l) L Jn*l %+I %I+1 T*+l 
resultcl:lass)) 

n+l 

where C4 = (( iyt j E Ji, t E TiU( ti) for SOITS t E J?(j)) 
II+1 

A (iyl s E Si, T(S) = t where t E TiU( 6)) 
n+l n+l n+l n+l 

A(U Ji=J)r\(U Si=S)A(U Ri=R)A(U Ti=T) 
i+l i=l i=l i=l 

A (itI ri links tp and b)) 

In the second step of QEP generation, each attribute specified in 
REQUIRE is moved into the SCAN operations for the object 
classes that contain the attribute, and finally the term REQUIRE 
is removed. 

(REQUIRE ( ) (.. ..)) + (.. ..) 

(REQUIRE (..a..) (..(SCAN t (.. ..) J S 

resultclass)..)) +c5 
(REQUIRE (.. ..) (..(SCAN t (..a..) J S 

resultclass)..)) 

where C5 = (t E T(a)). 

Example 5.2: For the query in Example 5.1, if the access 
path in Figure 3.2 is chosen, the corresponding QEP would be 

((SCAN engine [ ) ( ) (capacity > 1000] resultClass) 
(SCAN vehicle ( ) (engcomp E 
resultClass.engine.engComp) ( ) resultclass) 
(FORK 

(SCAN driver [name) 
{licenseClass = vehicle.class, drives E 

resultClass.vehicle.drives) 
( ) resultClass) 

(SCAN supervisor (name) 
(licenseClass = vehicle.class, drives E 

resultClass.vehicle.drives) 
( ) resultClass))) 
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Table 6.1 Database Sizes 

Strictly speaking, attributes (including those that represent 
relationships) in an object class that are involved in selection or 
join predicates should appear in the attribute list of the 
corresponding SCAN operation, so that they will be in 
resultClass for evaluation of the predicates. Furthermore, if 
such attributes am not among those required in the final results, 
they should be dropped from resultCluss immediately after the 
relevant predicates have been evaluated. However, we leave out 
such attributes to simplify the presentation of our QEP 
generation rules and examples. 

While determining the access path, the optimizer had to decide 
on the cheapest method scani to retrieve each object class i. In 
the last step, this is reflected in the QEP by changing each 
SCAN operation to scani . 

6. Implementation and Empirical Analysis 

Our prototype query optimizer was implemented on a SUN- 
3/160 workstation. As different parts of our object-oriented 
database system (OODB) are currently being developed, the 
effectiveness of our optimizer was evaluated as follows. A 
sample database whose schema is shown in Figure 2.1 was 
built. All possible paths in this schema were identified, where a 
path consists of a series of interconnecting object classes and 
relationships, and no object class or relationship appears more 
than once, A “sensible” query was formulated for each such 
path and thus a set of queries was generated. From this set of 
queries, 40 test queries were randomly chosen and sent to the 
optimizer. After optimization, each pair of original and 
optimized query was sent to a DBMS to be executed. A 
relational DBMS, Oracle 5.0 running on an IBM RT, was used 
to simulate the cost ratios of the optimized and original queries. 
Although relational DBMS and OODB might use different 
access mechanisms, we believe an improvement in execution 
efficiency in the relational context would most likely indicate a 
similar improvement in OODB context. 

In our experiments, each object class had an average of 3 
semantic constraints attached to it. The database was populated 
with randomly generated data, the amount of which was varied 
to test the performance of the optimizer under different database 
sizes. Here we present the performance under four database 
instances, each of increasing size. Some statistics of the 
database instances are given in Table 6.1. 

Table 6.2 shows the ratio of the cost of optimized query 
(including query transformation time) and the cost of original 
query for each pair of queries and each database instance. For 
DB 1, the smallest database we used, performance worsened for 
40% of the queries, and the extra overheads were limited to 
about 10%. Only 34% of the queries executed faster after 
optimization, out of which 20% were significant 
improvements. This result is expected because when the 
database is small, execution times of the original queries are 
low (in our experiment most of them took 1 to 2 seconds). 
Unless the outputs can be obtained without going to the 
database, the overheads of optimization usually more than 
offset the little savings derived. As the database grew in size, 
semantic optimization became much more effective. For DB4, 
the largest database we used, 67% of the queries executed 
faster after optimization. Furthermore, some queries (27%) 
which originally either took hours to exec:ute or could not be 
executed at all (because the system ran out of resources) were 
able to be executed significantly faster after optimization. 

We conclude, as one may expect, that it is probably not worth 
doing semantic optimization when the database is small or 
when the query execution cost is expected to be low, i.e. the 
semantic optimizer should be disabled. (in fact it has a 
monitoring mechanism which would cause it to disable itself 
automatically). However when the database is large or when 
the query execution cost is expected to be high, the usefulness 
of the semantic optimizer is apparent. 

Since the optimizer does not exhaustively check all the possible 
access paths, the QEPs generated might not always be optimal. 
However, our search strategy gives us access paths that are 
optimal or near-optimal in most cases. We evaluated 100 
different queries with average selectivity factors equal to 0.25, 
0.5, and 0.75 in turn and calculated the ratio of the cost of the 
optimal access path to the cost of the best one-source access 
path. The results are shown in Table 6.3. We observe that, for 
70% of the queries, we were only able to reduce the execution 
costs by at most another 20% if we had continued to search for 
the optimal paths instead of stopping after getting the best one- 
source paths. These potential savings did not justify the extra 
computation and space overheads involved, especially when the 
query execution costs were relatively low. Hence in our 
current implementation we feel it suffices to consider only one- 
source paths. However, if a stop criterion for the searching of 
the optimal path can be determined, then search space is worth 
enlarged by considering multiple source access paths. 

Table 6.2: Ratio of Optimized Cost and Original Cost 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 
DBl _ 20 _ _ _ _ _ _ 7 7 26 40 
DB2 _ 20 27 7 13 33 
DB3 13 13 7 r I r 7 7 13 40 _ _ 
DB4 27 13 _ _ 7 _ _ 7 13 - 33 
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Table 6.3: Optimality of One-Source Paths 

Cost of optimal path 
Cost of best l-source path 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Percentage of queries 6% 6% 9% 9% - 24% 3% 43% 

7. Conclusion 

This paper reports the design and implementation of a query 
processor for our OODBMS. In this work, we clearly describe 
the process of translating a declarative query that possibly 
involves many classes and relationships into a sequence of 
method invocations that can be evaluated directly by the 
OODBMS. Each method invocation activates a method that 
retrieves objects in the class which the method belongs to. 
Several issues peculiar to the query optimization in OODBMS 
were discussed, in particular, the optimization of using 
pointers maintained in the objects to answer the query. In order 
to support new data types and new methods, the program 
transformation approach is adopted to generate the QEP. Some 
simulation studies have been carried out on this prototype query 
processor. The initial result shows that the optimizer is 
effective. 

Our current work in this area is to enhance the access path 
determination algorithm to incorporate joins, instead of doing 
only pointer-chasing. Recall that in this work, if class B 
precedes class A in the chosen access path, objects in B can be 
retrieved only via pointers from A. Under certain 
circumstances, it might be cheaper to retrieve all the objects in 
A and then perform the join operation between these objects 
and the retrieved objects from B. Of course, incorporating joins 
complicates the algorithm considerably but we feel it is a 
possibility worth exploring. 
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Appendix 

In this Appendix, we show how we derive the QEP in Example 
5.2 from the query in Example 5.1, using the access path in 
Figure 3.2. 

(REQU&EI (($~jname, supervisor.name) ) 
0 

(drivcr.licenseClass = vehicle.class, 
supervisor.licenseClass = vehicle.class) 
(englnc.capacity > 1000) 
(drlvcs, cngComp) 
(driver, supervisor, vehicle, engine) 
resultclass)) 

1 by Rule 5.2 
(REQUIRE ( (dtiver.name, supervisor.natne] ) 

((SCAN to ( ) ( ) ( ) resultClass) 
0-M bszine~ iI 

(driver.licenseClass = vehicle.class, 
supervisor.licenseClass = vebicle.class) 
(enginecapacity 5 1000) 
(drives, engComp) 
(driver, supervisor, vehicle) 
resullClass))) 

1 by Rule 5.2 
(REQUIRE ( (drivername, supervisor.name) ) 

((SCAN to ( ) ( ) () resultClass) 
(SCAN engine ( ) () (engine.capacity > 1000) 

resultClass) 
@JNK (vchiclc) () 

[ drlver.liccnseClass = VehiCkCk3SS, 
supervisor.licenseClass = vehicle.class, 
engComp E resultClass.engine.engComp) 

tiives) 
[driver, supervisor) 
resultclass))) 

-1 by Rule 5.5 

(REQUIRE ( (driver.name, supervisor.name) ) 
((SCAN to ( ) ( ) (1 resultClass) 
(SCAN engine () ( ) (engine.capacity > 1000) 

tesultClass) 
(SCAN vehicle ( ) (engcomp E 
resultClass.engine.engComp) ( ) 

rcsultClass) 
(FORK 

(LINK (driver) () 
(driver.licenseClass -= vehicle.class, 
drives E nxultClass.vehicle.drives) { ) 
( ) ( ) resultClass) 

(LINK (supervisor) ( ) 
{ supervisor.licenseClass = vehicle.class, 
drives E resultClass.vehicle.drives) (1 
( I t 1 =~t(J=m)) 

1 by Rule 5.3 
(REQUlRE ( {driver.name, supervisor.name) ) 

((SCAN to ( ) ( ) () resultClass) 
(SCAN engine ( ) ( ) (enghxzcapacity > 1000) 

resullclass) 
(SCAN vehicle ( ) (engcomp E 

resultCiass.cngine.engComp) () 
tcsultClass) 

(FORK 
((SCAN driver I ) . . 

(driver.li&rseClass := vehicle.class. 
drives E resultClass.vehlcle.drlves) () 
rcsultclass) 

(LINK () (] () () () () resultClass)) 
((SCAN supervisor ( ) 

(supervisor.licenseClass = vehicle.class, 
drives E nesultClass.vehicle.drives] ( ) 
resultClass) 

(LINK () () (} () () () resultClass))))) 
3. by Rule 5.1 

(REQUIRE ( (driver.name, supervisor.name) ) 
((SCAN t ( ) ( ) ( ) resultClass) 
(SCAN e&inc ( ) () (engkcapacity > 1000) 
resultClass) 
(SCAN vehicle ( ) (engcomp E 
resultClass.cngine.engComp) ( ) 

rcsultclass) 
(FORK 

(SCAN driver ( ) 
(driver.licenseClass = vehicle.class, 
drives E resultClass.vehicle.drives) ( ) 
resultclass) 

(SCAN supervisor ( ) 
(supervisor.licenseClass = vehicle.class, 
drives E m.sultClassvebicle.drives) () 
resultclass)))) 

1 project attributes, remove dummy scan 

((SCAN engine () { ) (capacity > 1ooO) resuhCla& 
(SCAN vehicle ( ) (engComp l 
resultClass.enginc.engComp) { ) resultClass) 
@OF= 

(SCAN driver (name) 
(licenseClass = vehicle.class:, drives E 
rcsultClass.vehicle.drives) ( } 

rcsultClass) 
(SCAN supervisor (name) 

(1icenscClass = vehicle.class, drives E 
rcsultClass.vehicle.drives) ( ) 

lwlltclass))) 
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