
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-1992

Query Optimization in OODB
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Hongjun LU
National University of Singapore

Beng Chin OOI
Institute of Systems Science, Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
Hwee Hwa PANG; LU, Hongjun; and OOI, Beng Chin. Query Optimization in OODB. (1992). Database Systems for Advanced
Applications '91: Proceedings of the Second International Symposium on Database Systems for Advanced Applications, April 2-4, 1991, Tokyo,
Japan. 1-10. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2876

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Query Processing in OODB

HweeHwa Pang’, Hongjun Lu2, BengChin Ooi’

lInstitute of Systems Science
department of Information Systems and Computer Science

National University of Singapore
Kent Ridge, Singapore 05 11

Abstract In obiect-oriented databases, relationships are
generally maintained explicitly. The partial result of a retrieved
object can be used to efficiently retrieve related objects. Instead
of optimizing joins as in relational database systems, pointer
chasing is optimized in object-oriented database systems.
Further, semantics inherent in the object-oriented database, like
superclass-subclass relationships and composite-component
relationships between object classes, must be realised. In this
paper, we describe our initial result in query optimization in an
object-oriented database system. Semantic qu;;;
transformation is used to preprocess the query.
semantically optimized query is then translated into a query
evaluation plan which comprises method invocations that can
be evaluated directly by the system. In the process of query
evaluation plan generation, initial results tend to show that a
one source query plan is almost optimal. A prototype based on
this design has been completed and some results from a
simulation study on this prototype are also reported in this
paper.

1. Introduction

One of the essential properties of the object-oriented database
systems is encapsulation, whereby information in any class is
hidden from users and the only way to access the information is
through methods provided in that class. Methods are
procedures written in a programming language. The
computational completeness of the programming language
makes methods significantly more expressive than the relational
algebra. However, it is still desirable to provide an ad-hoc
query interface to object-oriented database management systems
(OODBMS) that allows users to pose high level queries in a
declarative language, much like SQL in the relational context.
Such a language has limited expressive power but, on the other
hand, allows users to interact with the OODBMS using the
schema and is ideal for non-expert users. A query processor
must be provided to translate such high level queries to
invocations of methods in the database. Due to the nature of the
object-oriented concepts, some features that are absent in
relational database systems must now be considered. Before a
query can be processed, all its inherent semantics such as the

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

scope of a class must be realised. Since more semantics are
captured in OODB, it is desirable that the available semanuc
knowledge is used to optimize the query. In contrast to
relational database systems, joins of two unrelated objects are
not that common in OODBMS. Objects in a query are usually
related, and their relationships are explicitly maintained. As
such, objects can be retrieved using the information stored in
the already retrieved objects. In this paper we present our effort
in query optimization in an OODBMS.

In [Kor88], Korth attempted to recast a subset of object queries
as relational queries so as to enable those queries that are
expressible in a relational language to be optimized using
standard relational techniques. Osbom [Osb88] investigated
query optimization on an object algebra, taking into account the
difference between identity and quality of the results of two
queries. The EXODUS optimizer generator [GrD87] creates an
optimizer from a rule-based description of the query algebra.
The algebra can be extended by augmenting an algebra
description file. Freytag [Fre87] used transformation rules to
generate query evaluation plans (QEPs) from initial query
specifications. The transformation rules can easily be modified
to accommodate changes or extension to the set of possible
QEPs that the optimizer is capable of generating.

This paper reports the design of our query processor. When
the query processor receives a high level query, semantics
inherent in the relationships that involve object classes in the
query are used to modify it to ensure the correctness of the
query results. Such relationships include the superclass-
subclass and composite-component relationships. The next step
is semantic optimization, a technique which uses available
semantic knowledge to transform the query into a new query
that produces the same answer as the original query, but
requires less resources to evaluate. As semantic optimization
increases the processing overhead considerably, efficiency of
the overall optimizer must be taken into consideration. In the
final step, an efficient query evaluation plan is generated, in
which the sequence of the retrieval of objects and their access
methods are determined. Once the QEP is determined, the
elementary operations are then mapped into method invocations
which can be evaluated directly by the OODBMS. There may
be more than one method to implement an elementary
operation, and the method that is most efficient in the query
context will be selected. The final sequence of method
invocations makes up the executable QEP. Since OODBMS
supports extensible data types and hence new methods, it is
important that the set of methods available to the optimizer be
extensible. The translation process is guided by a search
strategy that is of polynomial complexity. Some preliminary
studies were carried out on a prototype we developed, and the
results show that our design is indeed feasible and reasonably
efficient.

1

Published in Database Systems for Advanced Applications '91: Proceedings of the Second International Symposium on Database
Systems for Advanced Applications, April 2-4, 1991, Tokyo, Japan. pp. 1-10.

Database Schema:
supplier(name, address, supplies)
cxgo@de. &SC, quantity, supplies, collecrs)
vehicle(vehicle#, de.%, class, engcotttp, collects, drives)
engine(engine#, capacity, engComp)
employ@name. clearance, rank. belongsTo)
manager(name, clearance, rank, belongslb)
driver(name, clearance, rank, belongsTo, license#, licenseClass,
licenseDate, drives)
supervisor(name. clearance, rank, belongsTo, license#, licenseClass,
licenseDate, drives)
&parlment(name, securityClass, belongsTo)

Note. Attributes in italic arc pointers used to implement relationships between object classes.

Figure 2.1: An Example Database

The paper is organized as follows. In Section 2, we give an
overview of the query processor. Section 3 describes the
semantic transformations that are carried out on a query before
it is translated into a QEP. Section 4 presents the selection of
the cheapest access path and the method for retrieving each
object class. The generation of a QEP, based on the access path
and methods chosen, is described in Section 5. Implementation
and empirical results are presented in Section 6. We canclude
in Section 7 with discussion on future work.

2. Preliminary

The concept of object-oriented engenders different requirements
in query processing strategies. Firstly, instances of the
subclasses of an object class are also instances of it. When
instances of the class are requested, implicitly instances of the
subclasses are also required (unless explicitly stated otherwise).
Assuming that instances of the subclasses are not duplicated in
the object class itself [Ba*87], the query processor has to
explicitly add to queries subclasses of those object classes
requested.

The second issue arises from the fact that there might be
composite-component relationships between object classes
involved in a query. To be semantically correct, such
relationships must be taken into account during query
evaluation.

engine vehicle

w

Query: Get the cngik# of each vehicle driven by class 3 drivers.

Fig&e 2.2: A Query Access Path

Consider the database schema shown in Figure 2.1, which is
used in all the examples in this paper. In this example, we
assume that a subclass (e.g. manager and driver) inherits all the
attributes, including the relationships, of its superclass (e.g.
employee). Unlike relational databases in which each
relationship is usually represented by a separate relation,
relationships in object-oriented databases are typically
represented by pointers. Hence each object instance in a class
participating in a relationship contains an associated set of
pointers. This set of pointers stores the object ids of instances
in other participating classes associated to it by this relationship

(e.g. belongsTo). Some fields might also be attached to the set
of pointers to represent attributes of the relationship.

A query in our system involves object classes that are linked by
relationships. Retrieval begins with a chosen object class. All
other object classes can only be retrieved through pointers in
those classes that have already been accessed. Given a query,
there are many ways to execute the query. Each way gives rise
to an access path. Figure 2.2 shows an access path for a query
involving some object classes (represented by circles) and
relationships (represented by solid lines between the object
classes) in the schema in Figure 2.1. The arrows denote the
sequence in which object classes are accessed, and parallel
branches starting from a vertical bar denotes parallel retrieval of
these branches. In each access path diagram, there is at least
one object class with no incoming arc. Such object classes are
known as sources and the remaining object classes are
intermediates. Object class engine is a source and the rest are
intermediates. Object classes with no outgoing arcs are further
known as sinks. Object classes driver and supervisor are sinks.
Furthermore, if two or more branches merge at an object class,
that class is known as a sync.

All the inputs to the optimizer are given in the following
conceptual format.

(SELECT (projectList) (joinPredicateList}
1 selectPredicateList)
(relationshipList) (classList))

The different parts of the query describe the attributes required,
the join predicates and selection predicates on object classes,
the relationships between the object classes involved, and the
object classes to be accessed, respectively. A join predicate is
one that involves attributes from more than one object class,
while a selection predicate is one that involves attributes from
only one class. To avoid ambiguity in the query path, the
relationships joining the object classes involved in a query have
to be explicitly identified. Though there are some redundancies,
this representation is nevertheless chosen to improve the clarity
of our illustrations. In what follows, restriction predicates are
used to refer to join predicates and selection predicates
collectively.

A declarative query is mapped to a series of elementary
operations and commands. The following is a list of
elementary operations:

2

(SCAN class [attributeList) (joinPredicateList]
(selectPredicateList) resultClass)

Denotes an object class scan, with the attributes required
(in the attributelist) from it and the join and selection
predicates that have to be satisfied. resultclass is a virtual
class (view) that contains the instances that form the
results. Before concatenating the output to the partial
result in resultclass, the join predicates in
joinPredicateList are evaluated and instances that do not
satisfy all the join predicates are eliminated. The access
path and retrieval method are not specified.

(FORK (list1) . . {list,))
This is a keyword which activates n parallel threads to
retrieve the n lists of object classes.

(LINK (source) (sink) (joinPredicateList]
[selectPmdicateList)
{relationshipList) (classlist) rest&Class)

Denotes retrieval of an arbitrary number of object classes
(given in classlist) without specifying their order, except
for the source and possibly the sink. The join predicates
(in joinpredicatelist) and selection predicates (in
se1ectPredicateLi.u) that the results must satisfy, and the
relationships between object classes (in relationshiplist)
are also given. The output is to be placed in resultClass.

There must be at least one implementation (method) for each
elementary operation. The most efficient method in the query
context will be chosen, and the chosen method will replace the
elementary operation. The final sequence of methods makes up
the QEP and can be executed by the DBMS directly. As the
choice of the most efficient methods is system-dependent, we
will only briefly explain how this is done, using the elementary
retrieval operation, scan, as illustration. The main emphasis of
this paper, however, is on the transformation from declarative
queries to elementary operations.

Each class definition includes the various methods that can be
used to retrieve the object instances in it. In addition, a function
must be provided for each method that gives its estimated
execution cost. For example, the definition of class A might be

class A {
attributes:

a
1
: ..;

am: ..;
class methods:

scan(A, . ..). scan&A, ..);

scan(A, . ..>. scanu(A, ..);
costt(A, sf, ..): ..;

cost,&, sf, ..>: ..;

scanCost(A, sf, ..): t& costi(A, sf, ..);

In the definition, scan1 and scann are methods that implement
the elementary retrieving operation scan using different
searching techniques. To estimate the cost of retrieving any
object class, all the cost estimation functions in that class are
evaluated, and the lowest cost is returned. The method chosen
to retrieve the class is the one associated to the lowest estimated
cost. Note that

. Each cost function costi associated with method scar+
requires a compulsory argument sf, which represents the
selectivity factor. The estimation of selectivity factors
will be discussed in Section 4.

. Object classes in an QQDB are related by superclass-
subclass relationships, with the system class being the
superclass of ail other classes. Hence the object classes
form a directed acyclic graph (DAG). If a particular
retrieval method scani is shared by all the object classes in
a subgraph in the DAG, that method can be factored out
and placed in the root of that subgraph. This way all the
classes in the subgraph will inherit the method. For
example, an indexed retrieval method and a sequential
retrieval method, together with their associated cost
functions, might be provided in the root class (the root of
the object class DAG), and all the other classes can inherit
these methods by default.

The optimizer, outlined in Figure 2.3, consists of four
modules. Semantic preprocessing transforms queries to reflect
the semantics inherent in the object-oriented database, eg. the
superclass-subclass relationships and the composite-component
relationships between object classes. This module is essential
for the correctness of the query results. Semantic optimization
uses semantic constraints to modify the queries so that they can
be evaluated more efficiently, without changing the semantics
of the queries. Access path selection decides on the order to
retrieve object classes and the method to use to access each
object class. QEP generation produces series of method
invocations to execute the queries.

3. Semantic Transformations

3.1 Semantic Preprocessing

The semantic preprocessor uses four preprocessing rules to
make semantics inherent in the object-oriented context explicit.
This step is necessary for the cotrectness of the query results.
. Adding Subclasses

Since instances of an object class include those that
belong to its subclasses, subclasses (and in turn their
subclasses) of object classes involved in the query must
be added to it. Note that the subclasses inherit the
selection predicates and join predicates on the object
class. The subclasses of each object class can be
identified from the schema and is available from the data
dictionary during runtime. For example,

(SELECT (driver.name, vehicle.vehicle#) () ()
(drives) (driver, vehicle))

query
Semantic Access Path QEP

Preprocessin Selection Generation

Figure 2.3: Overview of the Optimizer

3

becomes

(SELECT ((drivername, supervisor.name),
vehicle.vehicle#) () {)

(drives) (driver, supervisor, vehicle))

which means driver.name and supervisor.name will be
“unioned” together to form one attribute in the results.

. Identifying Existing Subclasses
Among the classes listed in the query, some might be
subclasses of others. For example,

(SELECT (driver.name, supervisor.name,
vehicle.vehicle#) () ()

(drives) (driver, supervisor, vehicle))

As it is, the results would be wrong since driver.name
and supervisor.name get “multiplied” together. A
transformation is required to group together the classes
related by superclass-subclass relationships:

(SELECT ((driver.name, supervisor.name),
vehicle.vehicle#) () ()

(drives) (driver, supervisor, vehicle))

. Deep Retrieval
When a composite class is to be retrieved, it is possible to
automatically retrieve some of its component classes.
Whether this rule is active depends on the value of a
system variable. The depth of retrieval, i.e. number of
layers of components thus retrieved, can either be
computed dynamically based on available display space,
or be some pre-determined values that might vary from
class to class, or be given as part of the query. For
example,

(SELECT (driver.name, vehicle.*) () ()
(drives) (driver, vehicle))

is transformed to

(SELECT (driver.name, vehicle.*, engine.*) ()
(] (drives, engComp) (driver, vehicle, engine))

There are different ways to present the results. If
relations are used, a component class is shown as a
“nested” relation in the relation that represents its
composite class. Note that we represent a nested object
such as vehicle.engine as two objects with a relationship.

. Identifying Existing Components
Among the classes to be retrieved, some might be
components of others but these composite-component
relationships are not stated in the query. For example,

(SELEa (driver.name, vehicle.vehicle#,
engine.capacity) () ()

(drives) (driver, vehicle, engine))

The results of this query would not be (logically) correct
since engine and vehicle simply get “multiplied” together,
and would not show the engine capacity of each vehicle.
This preprocessing rule makes the composite-component
relationships explicit:

(SELECT (driver.name, vehicle.vehicle#,
engine.capacity) () ()

(drives, engcomp) (driver, vehicle,
engine))

3.2 Semantic Optimization

Semantic query optimization was first proposed by King
[Kin8 1] and by Hammer and Zdonik [HaZSO] . Three semantic
optimization rules - restriction elimination, restriction
introduction and class elimination (the equivalence of relation
elimination), have been incorporated into our optimizer. In
[PLO!20], we presented an efficient algorithm to implement
these optimization rules and we briefly discuss it here. In our
approach, all possible transformations are tentatively applied to
the query. Instead of physically modifying the query, the
transformation process classifies the predicates in the query into
imperative, optional or redundant. An irnperative predicate is
one whose removal will affect the final results. An optional
predicate is one that, though its inclusion or exclusion does not
affect the final results, might affect the execution efficiency of
the query by enabling us to make use of indices, or by cutting
down the number of instances returned from some object
classes and thereby reducing the size of intermediate results. A
redundant predicate affects neither the final results nor the
execution efficiency. At the end of the transformation process,
all the imperative predicates are retained while the redundant
predicates are eliminated. Whether an optional predicate should
be retained depends on the estimated cost savings it can help
bring about and the cost of evaluating it. This effectively means
the task of choosing the beneficial transformations is delayed
until all the possible transformations have been considered.
Using this approach, previous transformations do not preclude
other transformations and the order of transformations is
immaterial. Hence the algorithm is of polynomial complexity.
Another advantage of this approach is there is no need to check
the profitabilities of all the transformations, eg. those
transformations that re-classify predicates to redundant should
always be carried out. Another issue addressed in the paper is
the grouping of semantic constraints to reduce the overhead of
retrieving constraints and checking whether each constraint is
relevant to the current query. Constraints are grouped according
to the object classes they reference. When optimizing a query,
only selected groups of constraints are considered. At the same
time, constraints are also classified as intra- or inter-class,
depending on the number of object classes each references.
This classification is exploited during optimization to reduce the
transformation overhead.

4. Access Path Selection

In this section, we use the following nota.tions. NCARD(Oi) is
the number of object instances in class Oi, and is available in
the data dictionary. Di refers to the number of instances in Oi
that have to be retrieved from the stora.ge device. After the
retrieval, the instances might be tested against some selection or
join predicates and only those instances which satisfy the
predicates are returned. Pi measures the number of such

returned instances. Hence Pi I Di.

4.1 Estimation of Selectivity Factors

Before the optimizer can calculate the costs of different access
paths, it first has to estimate the selectivity factor for each
attribute and object class. The selectivity factor is defined as
the number of the qualified instances over the total instances. It
will be used to estimate the number of instances that need to be

4

mievexj and the number of instances that will be returned from
each object class. When accessing attributes, there are two
possible categories of selections.

. Selection before retrieval: This is the selection on an
attribute via an index such that only instances that satisfy
the restriction predicates on the indexed attribute are
retrieved We denote the selectivity factor before retrieval
of object Oi based on attribute Aj as SFBib When the
attribute is not important to the discussion, only SFBi is
used.

. Selection after retrieval: This is the selection on attributes
which are not part of the index. Whether an instance
satisfies the restriction predicates on the attribute can only
be determined after the instance has been retrieved. We
denote the selectivity factor after retrieval of object Oi
based on attribute Aj as SFAC.

Estimation of selectivity factors before retrieval for sources and
selectivity factors after retrieval has been studied by various
researchers. The System R optimizer [SAC791 used simple
statistics, such as the minimum and maximum values in a given
attribute, to estimate selectivity factors of attributes. This
scheme produces good selectivity estimates only if the attribute
values are uniformly distributed. Equi-depth histograms have
been proposed as an alternative for estimating selectivity of
attributes whose values are n t uniformly distributed [ShC84,
MuD88]. In our current p rot2 type, we use a simple scheme that
is similar to System R to minimize overhead. With this scheme,
the selectivity factor before retrieval, SFQ for an intermediate
Oi accessed directly via pointers from ObJect classes 0,, O,, ..,
and 0, is defined as:

SFuij = fi SFA,,
k =I

Selectivity factors are used to estimate the number of object
instances to be retrieved, and the number of instances that will
be returned. Assuming restriction predicates on different
attributes are independent (indeed this condition is satisfied
since redundant predicates are removed), the selectivity factor
before/after retrieval of an object class Oi, SFBJSFAi, is the
product of the selectivity factors before/after retrieval of the
attributes in that class. From now on we shall refer only to
selectivity factors of object classes. Hence

Di = SFBi X NCARD(Oi)
Pi = SFAi X NCARD(Oi)

4.2 Determination of Access Path

We now present the algorithm for access path determination.
This has been demonstrated to be a hard combinatorial problem
[SwG88] and algorithms like simulated annealing and
techniques based on local search have been developed [Pas821
to solve it. In our current implementation, only those access
paths with one source am considered. This reduces the access
path determination problem to the problem of finding the
reachability between any two nodes. Hence the algorithm is of
polynomial complexity. Our justification for using this
simplified approach is, since our selectivity factors are only
estimates of the actual values, it is futile to attempt very detailed
computations as the errors from estimating the selectivity
factors would get magnified.

Any object class in the query can be used as the source in the
access path. We define a selectivity matrix Y which contains
selectivity factor on the object id in each object class as follows.
For a query involving m object classes,

y = (Wij), 1 <ijIm

I1 ifi=j

J.fij = 1 SFAi if Q and Oj am connected by an arc

l0 otherwise

When evaluating a query, the selection on object classes
accessed previously might reduce the number of instances in
the current object class that need to be retrieved. Assuming an
access path of O,, .., Om. The selectivity factors on O,, .., 0,

1 need to be propagated to Oi. Hence we define Y2”, n 11 as

9” = (vijzn)

where

The selectivity matrix Y” can be interpreted as follows. If we
start from Oi and access intermediates via object ids, the
selectivity factor before retrieval of an object class Oj linked by

at most n relationships to Oi is yijn. Hence for a query

involving m object classes, we need to compute Ytt, n 2 m-l to
know the selectivity factor before retrieval of any object class
given an arbitrary source. The number of matrix muhiplications
is thus p = rlog2m-11, and the total number of primary

operations needed is m3 x rr0g2d1.

Having computed the selectivity matrix Yp, we compute the
cost matrix Q, as follows.

@ = (4tij)

where

l$ij = SCaJlCOSt(i, WijP, . ..>

Every bij E @ gives US the minimum cost of retrieving object
class Oj If we use Oi as the source. Hence we choose as source
Oi such that the total cost of retrieving all the object classes is
the lowest.

COSl+~ = mitt g $ij

IS&m j=l

4Qj E @

We use as access path the one from which we derive the lowest
retrieval cost using the chosen source. Figure 2.2 shows a
possible access pttth with engine as the source.

The most expensive part of our access path selection algorithm
is the computation of the selectivity matrix. Hence the time

5

complexity of the algorithm is o(m310gZm), where m is the
number of object classes in the query. An access path chosen
by our algorithm is essentially a tree with the source as root.
We prefer such paths because they do not contain sync& so
each branch of the tree can be retrieved in parallel without
having to wait for another branch at a sync.

5. QEP Generation

After the access path has been determined, the QEP can be
generated from the query using QEP generation rules. We
define predicate A(j) such that A(i) evaluates to true if all the
attributes involved in join predicate j have already been
retrieved, otherwise A(j) is false. In addition, we define
function F as follows:

. F(p) returns the set of object classes referenced by p,
where p is a restriction predicate, i.e. join predicate or
selection predicate.

. F(a) returns the set of object classes that contain attribute
a.

The query is first converted to algebraic form using the
following rule to ease the generation process.

(SELECT el e2 e3 e4 e5) +
(REQUIRE el (LINK (to) () e2 e3 e4 e5
resultClass))

Note that a dummy source, rV has been introduced into the
term LINK. This is to facilitate generation of QEP and will be
removed at the end of the process. resulfCZuss will contain the
results of the query and is initialized to au empty class.

Example 5.L The algebraic form for the query “get the
names of those drivers whose license classifications equal the
classifications of the vehicles they are driving, and whose
vehicles have engine capacity greater than 1OOOcc”.

(SELECT ((driver.name, supervisor.name) }
(driver.licenseClass = vehicle.class,
supervisor.licenseClass = vehicle.class)
(enginecapacity > 1fKKl)
(drives, engcomp)
(driver, supervisor, vehicle, engine))

F
L
J
S
R
T

i-2

Sf

jf

is transformed to

(REQUIRE ((driver.name, supervisor.name))
(LINK (to, I I

(driver.licenseClass = vehicleclass,
supervisor.licenseClass := vehicle.class)
(engine.capacity > 1000)
(drives, engcomp)
(driver, supervisor, vehicle, engine)
resultClass))

The generation of QEPs can be divided into three steps. In the
first step, the optimizer transforms the query to reflect the
access path chosen. The notations for the QEP generation rules
used in this step are listed in Table 5.1.

. When the sink in the access path has been reached, Rule
5.1 terminates the step by replacing the LINK operation
with a null list.

Rule 5.1: (LINK F L J S R T resultClass) +-Cl

where Cl = (F = L).

. The following two rules generate a SCAN operation for
the first object class in the access path, and the selection
predicates on this object class are moved into the SCAN
operation. The object class that is linked to this first
object class will in turn be the fit among the remaining
classes. The difference between the two rules is the
treatment of join predicates that involve the first object
class. If a join predicate also involves another object class
which has yet to be retrieved, Rule -5.2 keeps it with the
LINK operation; otherwise Rule 5.3 is used to move it
into the SCAN operation.

Rule 5.2: (LINK (t,) L Ju(jf)Su(sf)Ru(r)
C2A Itot@(

w(~
1
) resultclass +

((SCAN tf () () (sf) resultclass)

(LINK (t,) L Ju(jf r E tt-r) S R T
resultClass))

Rule 5.3: (LINK (t,) L Ju(jf) Su(sf) Ru(r)
C2 A A(js

w(~
1
) resultClass +

((SCAN tf () (jt) (sf) resultclass)

Table 5.1: Notations for QEP Generation Rules

asetofsources,F=()or(td
a set of sinks, L = () or (tt)
a list of join predicates
a list of selection predicates
a list of relationships
a list of object classes
a set of values retrieved from attribute r in the previous SCAN
the selection predicates on object class tf
the join predicates that refer to object class tf

6

(LINK (tl) L Ju(r E $r) S R T resultclass))

where c2 = (r links t,and tl)

. The next two rules generate a SCAN operation for the
first object class in the access path and divides the
remaining object classes (together with their selection
predicates and relationships) into sub-blocks that are
evaluated in parallel. Each of these sub-blocks contains
an object class that is linked to the fast object class, and
which will in turn be the first in the sub-block. The
difference between Rule 5.4 and Rule 55 is the treatment
of join predicates that involve the first object class, and is
similar to the difference between Rule 5.2 and Rule 5.3.

(LINK &,I (t,,+ll Jnu& r,, 6 f&,) SnRn
Tn resultClass))

(LINK h+, 1 L J,+,%) %+, Rn+l Tn+l
resultClass))

Rule 5.7: (LINK (tf) L Ju(jf) Su(sf) Ru(rl,..,rn)

Tu (t , ,. .,t”,t,+,) resultC1ass +
C4 A AI&)

((SCAN tf () (j,) (sf) resultClass)
(FORK

(LINK ($1 (fn+l) Jluir, E $-r,) S, R, T,
resultClass)

Rule 5.4: (LINK (t,) L Ju(jf) Su(sfJ Ru(rt,..,r,)
c3/? Ilot@(

Tu(t _ ,) resultclass +
7. 7

((SC& t,Y{ I I) {sf) resultclass)
(FORK

(LINK (t,) 1, J,u{jf r1 E tfrl) St R, T,
resultClass)

. .

(LINK It,) L JnuCif rn E $-.r,) Sn R,, T,
resultClass))) \

Rule 5.5: (LINK ($1 L Ju(jf] Su(sf) Ru(rl,..,rn)
C3 A A(if)

Tu(t __ t) resultclass +
1’ ‘n

((SCAN ti’() (j,) (sf) resultclass)
(FORK

(LINK (t,) L Jlu(rt E tfrl} St R, T,
rest&Class)

(LINK (t,) L J,u{r, E tfrn} Sn Rn T,
resultClass)))

where C3 = (tii, j E Ji, t E TiU(t;) for some t E r(i))

A tiil s E Si, T(S) = t where t E TiU(ti))

^(I: Ji=J)I\(L Si=S)h(~Ri=R)*(~Ti=T)
i+l i=l i=l i=l

A (iil ri links tr and ti))

. The last two rules are similar to Rule 5.4 and Rule 5.5,
except there is a sync at the end of the parallel sub-
blocks.

Rule 5.6: (LINK (tl) L Ju(jf) Su[sf] Ru{rt,..,m)

W+,t,,,t,,+J
resultclass -+c4A not@(ir))

((SCAN I,. {] () (sf) resultclass)
(FORK

(LINK It, I ttn+l) J,u& r1 E ffrll S, RI
T, resultChss)

(LINK ($1 It,,,,) J,,Mr,,E $.‘,,I SnR,,Tn
resultClass))
CLINK 4t+l) L Jn*l %+I %I+1 T*+l
resultcl:lass))

n+l

where C4 = ((iyt j E Ji, t E TiU(ti) for SOITS t E J?(j))
II+1

A (iyl s E Si, T(S) = t where t E TiU(6))
n+l n+l n+l n+l

A(U Ji=J)r\(U Si=S)A(U Ri=R)A(U Ti=T)
i+l i=l i=l i=l

A (itI ri links tp and b))

In the second step of QEP generation, each attribute specified in
REQUIRE is moved into the SCAN operations for the object
classes that contain the attribute, and finally the term REQUIRE
is removed.

(REQUIRE () (.. ..)) + (.. ..)

(REQUIRE (..a..) (..(SCAN t (.. ..) J S

resultclass)..)) +c5
(REQUIRE (.. ..) (..(SCAN t (..a..) J S

resultclass)..))

where C5 = (t E T(a)).

Example 5.2: For the query in Example 5.1, if the access
path in Figure 3.2 is chosen, the corresponding QEP would be

((SCAN engine [) () (capacity > 1000] resultClass)
(SCAN vehicle () (engcomp E
resultClass.engine.engComp) () resultclass)
(FORK

(SCAN driver [name)
{licenseClass = vehicle.class, drives E

resultClass.vehicle.drives)
() resultClass)

(SCAN supervisor (name)
(licenseClass = vehicle.class, drives E

resultClass.vehicle.drives)
() resultClass)))

7

Table 6.1 Database Sizes

Strictly speaking, attributes (including those that represent
relationships) in an object class that are involved in selection or
join predicates should appear in the attribute list of the
corresponding SCAN operation, so that they will be in
resultClass for evaluation of the predicates. Furthermore, if
such attributes am not among those required in the final results,
they should be dropped from resultCluss immediately after the
relevant predicates have been evaluated. However, we leave out
such attributes to simplify the presentation of our QEP
generation rules and examples.

While determining the access path, the optimizer had to decide
on the cheapest method scani to retrieve each object class i. In
the last step, this is reflected in the QEP by changing each
SCAN operation to scani .

6. Implementation and Empirical Analysis

Our prototype query optimizer was implemented on a SUN-
3/160 workstation. As different parts of our object-oriented
database system (OODB) are currently being developed, the
effectiveness of our optimizer was evaluated as follows. A
sample database whose schema is shown in Figure 2.1 was
built. All possible paths in this schema were identified, where a
path consists of a series of interconnecting object classes and
relationships, and no object class or relationship appears more
than once, A “sensible” query was formulated for each such
path and thus a set of queries was generated. From this set of
queries, 40 test queries were randomly chosen and sent to the
optimizer. After optimization, each pair of original and
optimized query was sent to a DBMS to be executed. A
relational DBMS, Oracle 5.0 running on an IBM RT, was used
to simulate the cost ratios of the optimized and original queries.
Although relational DBMS and OODB might use different
access mechanisms, we believe an improvement in execution
efficiency in the relational context would most likely indicate a
similar improvement in OODB context.

In our experiments, each object class had an average of 3
semantic constraints attached to it. The database was populated
with randomly generated data, the amount of which was varied
to test the performance of the optimizer under different database
sizes. Here we present the performance under four database
instances, each of increasing size. Some statistics of the
database instances are given in Table 6.1.

Table 6.2 shows the ratio of the cost of optimized query
(including query transformation time) and the cost of original
query for each pair of queries and each database instance. For
DB 1, the smallest database we used, performance worsened for
40% of the queries, and the extra overheads were limited to
about 10%. Only 34% of the queries executed faster after
optimization, out of which 20% were significant
improvements. This result is expected because when the
database is small, execution times of the original queries are
low (in our experiment most of them took 1 to 2 seconds).
Unless the outputs can be obtained without going to the
database, the overheads of optimization usually more than
offset the little savings derived. As the database grew in size,
semantic optimization became much more effective. For DB4,
the largest database we used, 67% of the queries executed
faster after optimization. Furthermore, some queries (27%)
which originally either took hours to exec:ute or could not be
executed at all (because the system ran out of resources) were
able to be executed significantly faster after optimization.

We conclude, as one may expect, that it is probably not worth
doing semantic optimization when the database is small or
when the query execution cost is expected to be low, i.e. the
semantic optimizer should be disabled. (in fact it has a
monitoring mechanism which would cause it to disable itself
automatically). However when the database is large or when
the query execution cost is expected to be high, the usefulness
of the semantic optimizer is apparent.

Since the optimizer does not exhaustively check all the possible
access paths, the QEPs generated might not always be optimal.
However, our search strategy gives us access paths that are
optimal or near-optimal in most cases. We evaluated 100
different queries with average selectivity factors equal to 0.25,
0.5, and 0.75 in turn and calculated the ratio of the cost of the
optimal access path to the cost of the best one-source access
path. The results are shown in Table 6.3. We observe that, for
70% of the queries, we were only able to reduce the execution
costs by at most another 20% if we had continued to search for
the optimal paths instead of stopping after getting the best one-
source paths. These potential savings did not justify the extra
computation and space overheads involved, especially when the
query execution costs were relatively low. Hence in our
current implementation we feel it suffices to consider only one-
source paths. However, if a stop criterion for the searching of
the optimal path can be determined, then search space is worth
enlarged by considering multiple source access paths.

Table 6.2: Ratio of Optimized Cost and Original Cost

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110%
DBl _ 20 _ _ _ _ _ _ 7 7 26 40
DB2 _ 20 27 7 13 33
DB3 13 13 7 r I r 7 7 13 40 _ _
DB4 27 13 _ _ 7 _ _ 7 13 - 33

8

Table 6.3: Optimality of One-Source Paths

Cost of optimal path
Cost of best l-source path 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentage of queries 6% 6% 9% 9% - 24% 3% 43%

7. Conclusion

This paper reports the design and implementation of a query
processor for our OODBMS. In this work, we clearly describe
the process of translating a declarative query that possibly
involves many classes and relationships into a sequence of
method invocations that can be evaluated directly by the
OODBMS. Each method invocation activates a method that
retrieves objects in the class which the method belongs to.
Several issues peculiar to the query optimization in OODBMS
were discussed, in particular, the optimization of using
pointers maintained in the objects to answer the query. In order
to support new data types and new methods, the program
transformation approach is adopted to generate the QEP. Some
simulation studies have been carried out on this prototype query
processor. The initial result shows that the optimizer is
effective.

Our current work in this area is to enhance the access path
determination algorithm to incorporate joins, instead of doing
only pointer-chasing. Recall that in this work, if class B
precedes class A in the chosen access path, objects in B can be
retrieved only via pointers from A. Under certain
circumstances, it might be cheaper to retrieve all the objects in
A and then perform the join operation between these objects
and the retrieved objects from B. Of course, incorporating joins
complicates the algorithm considerably but we feel it is a
possibility worth exploring.

Acknowledgements

We would like to thank Desai Narasimhalu and TokWang Ling
for helping to improve an earlier version of this paper, and
anonymous referees for useful comments.

References

[Ba*87]

[BGWIl]

[CFh484]

[CMG86]

[Fre86]

J. Banerjee, et al., Data Model Issues in Object
Oriented Applications, ACM Transactions on
Office Information System, Vol. 5, No. 1, Mar
1987.

P.A. Bernstein, N. Goodman, E. Wong, et al,
Query Processing in a System for Distributed
Database, ACM Trans. on Database Systems,
6(4):602-625, Dee 1981.

U.S. Chakravarthy, D.H. Fishman, J. Minker,
Semantic Query Optimization in Expert Systems
and Database Systems, Proc. of 1st Int. Workshop
on Expert Database Systems, Ott 1984.

U.S. Chakravarthy, J. Minker, J. Grant, Semantic
Query Optimization: Additional Constraints and
Control Strategies, Proc. of the 1st Int. Conf. on
Expert Database Systems, Apr 1986.

J.C. Freytag, Rule-Based Translation of Relational
Queries into Iterative Programs, Proc. of the ACM
SIGMOD 1986 Annual Conference.

[Fre87]

[GrD87]

IH~803

[Hue801

[Kin811

[Kor88]

&NO891

[~861

[MUD881

[Osb88]

[Pas821

[PLO901

[SAC791

J.C. Freytag, A Rule-Based View of Query
Optimization, Proc. of the ACM SIGMOD 1987
Annual Conference.

G. Graefe, D. Dewitt, The EXODUS Optimizer
Generator, Proc. of the ACM SIGMOD 1987
Annual Conference.

M.M. Hammer, S.B. Zdonik, Knowledge Based
Query Processing, Proc. of the 6th Int. Conf. on
Very Large Data Bases, Sep 1980.

G. Huet, Confluent Reductions: Abstract
Properties and Applications of Term Rewriting
Systems, Journal of the ACM 27,4 (Ott 1980) pp.
797-821.

J.J. King, QUIST: A System for Semantic Query
Optimization in Relational Databases, Proc. of the
yt8;nt. Conf. on Very Large Data Bases, Sep

H.F. Korth, Optimization of Object-Retrieval
Queries, Proc. of the 2nd Int. Workshop on
Object-Oriented Database Systems, Sep 1988.
H. Lu et al On the Design of a Multimedia Object-
Oriented Database System, Working Paper,
Institute of Systems Science, National University
of Singapore, Dee 1989.

J. hbo, J. Minker, A Metaprogramming Approach
to Semantically Optimize Queries in Deductive
Databases, Proc. of the 2nd Int. Conf. on Expert
Database Systems, Apr 1988.

C.V. Malley, A Knowledge-Based Approach to
Query Optimization, Proc. of the 1st Int. Conf. on
Expert Database Systems, Apr 1986.

M. Muralikrishna, D. Dewitt, Equi-Depth
Histograms For Estimating Selectivity Factors For
Multi-Dimensional Queries, Proc. of the ACM
SIGMOD 1988 Annual Conference.

S.L. Osborn, Identity, Equality and Query
Optimization, Proc. of the 2nd Int. Workshop on
Object-Oriented Database Systems, Sep 1988.

C.H. Papadimitriou, K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity,
Prentice-Hall, 1982.

H. Pang, H. Lu, B. Ooi, An Efficient Semantic
Query Optimization Algorithm, JEEE Int. Data
Engineering Conf., Japan, 1991 (to appear).

P.G. Selinger, M.M. Asaahan, D.D. Chamberlin,
R.A. Lorie, T.G. Price, Access Path Selection in a
Relational Database Management System, Proc. of
the ACM SIGMOD 1979 Annual Conference.

[ShC84]

[Sh087]

[Sie881

[SwG88]

[Zdo891

G.P. Shapiro, C. Connell, Accurate Estimation of
the Number of Tuples Satisfying a Condition,
Proc. of the ACM SIGMOD 1984 Annual
Conference.

S.T. Shenoy, Z.M. Ozsoyoglu, A System for
Semantic Query Optimization, Proc. of the ACM
SIGMOD 1987 Annual Conference.

M.D. Siegel, Automatic Rule Derivation for
Semantic Query Optimization, Proc. of the 2nd Int.
Conf. on Expert Database Systems, Apr 1988.

A. Swami, A. Gupta, Optimization of Large Join
Queries, Proc. of the ACM SIGMOD 1988 Annual
Conference.

S.B. Zclonik, Query Optimization in. Object-
Oriented Databases, IEEE Proc. of the 22nd
Annual Hawaii Int. Conf. on System Sciences,
1989 (Vol II).

Appendix

In this Appendix, we show how we derive the QEP in Example
5.2 from the query in Example 5.1, using the access path in
Figure 3.2.

(REQU&EI (($~jname, supervisor.name))
0

(drivcr.licenseClass = vehicle.class,
supervisor.licenseClass = vehicle.class)
(englnc.capacity > 1000)
(drlvcs, cngComp)
(driver, supervisor, vehicle, engine)
resultclass))

1 by Rule 5.2
(REQUIRE ((dtiver.name, supervisor.natne])

((SCAN to () () () resultClass)
0-M bszine~ iI

(driver.licenseClass = vehicle.class,
supervisor.licenseClass = vebicle.class)
(enginecapacity 5 1000)
(drives, engComp)
(driver, supervisor, vehicle)
resullClass)))

1 by Rule 5.2
(REQUIRE ((drivername, supervisor.name))

((SCAN to () () () resultClass)
(SCAN engine () () (engine.capacity > 1000)

resultClass)
@JNK (vchiclc) ()

[drlver.liccnseClass = VehiCkCk3SS,
supervisor.licenseClass = vehicle.class,
engComp E resultClass.engine.engComp)

tiives)
[driver, supervisor)
resultclass)))

-1 by Rule 5.5

(REQUIRE ((driver.name, supervisor.name))
((SCAN to () () (1 resultClass)
(SCAN engine () () (engine.capacity > 1000)

tesultClass)
(SCAN vehicle () (engcomp E
resultClass.engine.engComp) ()

rcsultClass)
(FORK

(LINK (driver) ()
(driver.licenseClass -= vehicle.class,
drives E nxultClass.vehicle.drives) {)
() () resultClass)

(LINK (supervisor) ()
{ supervisor.licenseClass = vehicle.class,
drives E resultClass.vehicle.drives) (1
(I t 1 =~t(J=m))

1 by Rule 5.3
(REQUlRE ({driver.name, supervisor.name))

((SCAN to () () () resultClass)
(SCAN engine () () (enghxzcapacity > 1000)

resullclass)
(SCAN vehicle () (engcomp E

resultCiass.cngine.engComp) ()
tcsultClass)

(FORK
((SCAN driver I) . .

(driver.li&rseClass := vehicle.class.
drives E resultClass.vehlcle.drlves) ()
rcsultclass)

(LINK () (] () () () () resultClass))
((SCAN supervisor ()

(supervisor.licenseClass = vehicle.class,
drives E nesultClass.vehicle.drives] ()
resultClass)

(LINK () () (} () () () resultClass)))))
3. by Rule 5.1

(REQUIRE ((driver.name, supervisor.name))
((SCAN t () () () resultClass)
(SCAN e&inc () () (engkcapacity > 1000)
resultClass)
(SCAN vehicle () (engcomp E
resultClass.cngine.engComp) ()

rcsultclass)
(FORK

(SCAN driver ()
(driver.licenseClass = vehicle.class,
drives E resultClass.vehicle.drives) ()
resultclass)

(SCAN supervisor ()
(supervisor.licenseClass = vehicle.class,
drives E m.sultClassvebicle.drives) ()
resultclass))))

1 project attributes, remove dummy scan

((SCAN engine () {) (capacity > 1ooO) resuhCla&
(SCAN vehicle () (engComp l
resultClass.enginc.engComp) {) resultClass)
@OF=

(SCAN driver (name)
(licenseClass = vehicle.class:, drives E
rcsultClass.vehicle.drives) (}

rcsultClass)
(SCAN supervisor (name)

(1icenscClass = vehicle.class, drives E
rcsultClass.vehicle.drives) ()

lwlltclass)))

10

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-1992

	Query Optimization in OODB
	Hwee Hwa PANG
	Hongjun LU
	Beng Chin OOI
	Citation

	Query Processing in OODB

