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ABSTRACT
The recent boom of weblogs and social media has attached
increasing importance to the identification of suspicious users
with unusual behavior, such as spammers or fraudulent re-
viewers. A typical spamming strategy is to employ multiple
dummy accounts to collectively promote a target, be it a
URL or a product. Consequently, these suspicious accounts
exhibit certain coherent anomalous behavior identifiable as
a collection. In this paper, we propose the concept of Co-
herent Anomaly Collection (CAC) to capture this kind of
collections, and put forward an efficient algorithm to simul-
taneously find the top-K disjoint CACs together with their
anomalous behavior patterns. Compared with existing ap-
proaches, our new algorithm can find disjoint anomaly col-
lections with coherent extreme behavior without having to
specify either their number or sizes. Results on real Twit-
ter data show that our approach discovers meaningful and
informative hashtag spammer groups of various sizes which
are hard to detect by clustering-based methods.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining

General Terms
Algorithms, Design, Experimentation

Keywords
Anomaly/Outlier Detection, Anomaly Collection/Cluster

1. INTRODUCTION
The recent boom of weblogs and social media has pro-

vided an unprecedented degree of freedom for ordinary users
to generate content online. At the same time, the open-
ness of the platforms leaves them highly susceptible to user
abuse, and, even worse, the sheer volume of the generated
data makes it infeasible to manually inspect their veracity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

To find trustworthy information in these data, it is increas-
ingly important to automatically identify suspicious users
with unusual behavior, which are in many cases spammers or
fraudulent reviewers. In real life, in order to draw attention
amid this information swamp, spammers rarely operate with
just a single account. Instead, they typically employ multi-
ple dummy accounts to collectively promote certain targets,
such as a URL or a product. For example, in Twitter, a
group of users may collaboratively spam on popular hash-
tags to promote their websites or businesses. Their strategy
is to post a large number of tweets containing both their ad-
vertisement content and the popular hashtags, so that other
users querying any of these hashtags would see their spam-
ming tweets. These activities are classified as spamming ac-
cording to Twitter’s rules1. Figure 1 shows three collections
of real spammers in Twitter detected by our approach.

These observations show that the key to detecting suspi-
cious collaborative accounts is to identify their shared anoma-
lous behavior patterns. We call such a user group a Coherent
Anomaly Collection(CAC), and propose an information the-
ory based definition to characterize it.

Few existing studies have focused on collective anomaly
detection [2], [4], [7], [5], and [8]. Furthermore, their frame-
works are not appropriate for collective anomalies of extreme
behaviors. The concept of an anomaly collection with ex-
treme behavior was introduced in [3], which proposed algo-
rithms to find top-K anomaly collections no greater than a
user-specified size. However, in that work the anomaly col-
lections are not optimized for the coherence in their unusual
behavior, resulting in multiple spammer groups clustered in
the same collection. Furthermore, the top-K anomaly col-
lections heavily overlap one another and are size-bounded
by user-specified constraints, offering limited information on
the true anomaly collections in a data set. In this paper,
we propose to simultaneously find top-K disjoint coherent
anomaly collections together with their anomalous behav-
ior patterns, without having to specify either the number or
sizes of the target collections.

Our contributions are summarized as follows:

• We propose for the first time the concept of coherent
anomaly collection and the problem of detecting top-K
disjoint coherent anomaly collections.

• We introduce a heuristic algorithm based on the prop-
erties of p-values to efficiently sample candidate col-
lections with potentially high anomaly scores, which

1http://support.twitter.com/articles/18311-the-twitter-
rules
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e15e11e13 e14 e7 e9 e10 e5 e4 e6 e8 .........f3: # philippines

e15e11 e13e14 e12 e7 e9 e10 e4 e6 e2 e3 e1 .........f2: # hongkong

e3 e1 e2 .........f1: # london

e7 e9 e10 e5 e6 e4 e8 .........f4: # mongolia

Figure 1: Three collections of real Twitter users ranked in descending order (left to right) by the us-
age frequency of four hashtags (labeled as f1 to f4). S1 = {e1, e2, e3} = {blackberrypros, randomwire-
less, greenerblogs}, S2 = {e4, e5, . . . , e10}= {LiveSEXsheLOve, LOVEsexyFREE, PornLOveCamFree, SexFull-
FreeCam, SEXsheylaPOrn, SHEYLLAsexPORN, LOVEsexCamFRee4} and S3 = {e11, e12, . . . , e15} = {SexFree-
Live1, ChinaSexPOrnFRE, SEXYloveCAMFree, TokioSEXfreeLiv, FullSEXpornFREE}.

are then subject to our proposed coherence check us-
ing the idea of matrix encoding cost from information
theory.

• We apply our algorithm on Twitter data to detect
hashtag spammer collections. The results show that
we are able to discover meaningful and informative
spammer collections which are otherwise hard to find
by existing approaches.

The rest of the paper is organized as follows. We formu-
late our problem in Section 2. The algorithm is presented
in Section 3, and Section 4 reports on experiments. We con-
clude in Section 5.

2. COHERENT ANOMALY COLLECTION
To define a coherent anomaly collection, we show how to

measure the anomalousness for a given collection in Section
2.1 and its coherence in Section 2.2, followed by the problem
definition.

2.1 Measuring Anomalousness
As shown in [3], capturing a collection of anomalies re-

quires a measure of the anomalousness of multiple entities
as a collection. We adopt the definitions in [3] to measure
the anomalousness of a collection in the following exposition.
The advantage of this definition is that it is defined directly
at the collection level, which is different from measuring in-
dividually on entity level followed by aggregating over the
whole collection.

Denote the entity universe as E, and the feature universe
as F . When E is ranked by a feature of F , extremity index
r (1 ≤ r < |E|/2) is defined to indicate the top r positions in
the ranking. Given a set of entities S ⊂ E, a feature f ∈ F
and r, the extreme subset of S denoted as Ef (S, r) is the
set of entities in S which appear in top-r positions w.r.t.
feature f . For a given r, the extremity of S is quantified by
the cardinality of Ef (S, r), denoted as i. It turns out that i is
a random variable following the hypergeometric distribution.
This is because if a set S is randomly picked from |E| ranked
entities, the number of entities in S that appear in top r
positions follows the hypergeometric distribution. Thus the
probability of observing i entities of S appearing in top r

positions is prob(i, |E|, r, |S|) =
(r

i)·(
|E|−r
|S|−i)

(|E||S|)
.

The p-value of S w.r.t. extremity index r and feature f ,
denoted as pf (S, r), is the probability of observing at least i
entities of a random collection S appearing in top r positions

w.r.t. f . Thus, pf (S, r) =
∑min(r,|S|)

j=i prob(i, |E|, r, |S|).
By definition, S has different p-values, each corresponding

to a different r. For any given r and f , the smaller the p-

value of S, the more anomalous or extremely ranked S is.
Therefore, among all the choices of r, pick the one which
gives the smallest p-value that S could possibly have as the
representative extremity index of S, denoted as r̂f (S).
Correspondingly, the representative p-value of S w.r.t. f
is denoted as p̂f (S), i.e., p̂f (S) = pf (S, r̂f (S)).

Formally, an anomaly collection is defined as follows.

Definition 1. Given an entity universe E and an en-
tity set S, S ⊂ E, a set of independent features F and
a threshold α, S is an Anomaly Collection (AC) w.r.t.
F if (I) ∃F S ⊆ F such that ∀f ∈ F S , p̂f (S) ≤ α; (II)
1 < |S| < |E|/2; (III) |F S | > 1.

The condition 1 < |S| < |E|/2 is imposed, as an anomaly
collection should contain more than one entity and yet re-
main the minority of the population. The condition |F S | > 1
requires that S is significant in at least two statistical tests.
F S is called the significant features of S. The definition
also requires a set of independent features F . The indepen-
dency of any two features is defined by statistics including
Kendall Tau rank correlation coefficient [6].

As the representative p-value measures how anomalous
an AC is for a single feature, the anomaly score of an
AC S for F , denoted as Ω(S, F ), is defined as the prod-
uct of the representative p-values for significant features.
As the resulting score is usually small, take the log form
Ω(S, F ) = −∑

f∈F S log p̂f (S). The more features on which
S is significant and the more extremely ranked S is w.r.t.
each of them, the larger anomaly score S has.

2.2 Measuring Coherence
By definition, the anomaly score of an entity collection

is determined by the subset of its members which are most
extremely ranked w.r.t. some features. It is possible that
different subsets of members are extremely ranked w.r.t. dif-
ferent feature subsets. However, for many applications, we
are most interested in ACs whose members are extremely
ranked w.r.t the same set of features. For instance, in our
Twitter example in Figure 1, we prefer to identify S1, S2

and S3 as three different ACs instead of consider them as a
single AC.

To capture this important notion of coherence in our prob-
lem definition, we formally define “coherence” by first rep-
resenting an AC in a matrix form and using the matrix en-
coding cost from information theory in [1] to evaluate the
coherence of the AC.

For a given AC S and its significant feature set F S , we de-
note E(S, F S) as the members of S that appear in the posi-
tions indicated by the representative extremity index of any
significant feature, i.e., E(S, F S) =

⋃
f∈F S Ef (S, r̂f (S)).

To tell how coherent an AC is, we represent it by a |F S |
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by |E(S, F S)| matrix. Specifically, given an AC S, its sig-
nificant feature set F S and its extreme subset E(S, F S),
with fa,(a = 1, ..., |F S |) being the a-th feature in F S and
eb,(b = 1, ..., |E(S, F S)|) being the b-th entity in E(S, F S),
the extreme matrix is M(S) = [mab], where

mab =

{
1, if eb ∈ Efa(S, r̂fa(S));
0, otherwise.

According to [1], any matrix can be encoded as one or
multiple row and column clusters. The encoding cost is the
sum of the code cost and description cost, where the first
cost is for encoding each row and column cluster and the
second cost is for describing the grouping information. If
a matrix is highly homogeneous, e.g., containing all 1s or
all 0s like M(S1), its encoding cost as one cluster is low.
If a matrix is not homogeneous, e.g., containing multiple
homogeneous clusters like M(S1 ∪S2), we should be able to
find a minimum cost to encode this matrix by first encoding
each homogeneous cluster within and then describing the
grouping information of these clusters. Moreover, this cost
is expected to be much lower than the cost of encoding the
original matrix as one single cluster.

Definition 2. [CAC] Given an entity universe E and
an entity set S, S ⊂ E, a set of independent features F
and a threshold α, S is a Coherent Anomaly Collection
(CAC) if (I) S is an anomaly collection; (II) the cost of en-
coding M(S) as one cluster is lower than the minimum cost
of encoding M(S) as multiple homogeneous clusters; (III)
the number of 1s in its extreme matrix must be greater than
half of the size of its extreme matrix.

We formally define our problem of detecting top-K dis-
joint CACs as follows.

Definition 3. [TOPK CAC] Given K, the entity uni-
verse E, a set F of independent features and the ranking
of E on F , let S∗ = (S1, S2, . . . , SN ) be the sequence of
coherent anomaly collections ranked in descending order by
their anomaly scores. The problem of TOPK CAC is to
find the length-K disjoint subsequence Ŝ of S∗ where Ŝ =
(Sr̂1 , Sr̂2 , . . . , Sr̂K ) such that (I) Sr̂i

⋂
Sr̂j = ∅ and 1 ≤ r̂i <

r̂j ≤ N , for 1 ≤ i < j ≤ K; and (II) for any other length-K
disjoint subsequence S′ of S∗ where S′ = (Sr′1 , Sr′2 , . . . , Sr′

K
)

such that Sr′i

⋂
Sr′j = ∅ and 1 ≤ r′i < r′j ≤ N , for 1 ≤ i <

j ≤ K, there exists an index j, 1 ≤ j ≤ K such that r̂i ≤ r′i,
for all 1 ≤ i ≤ j.

3. ALGORITHM
We describe our algorithm for the TOPK CAC problem in

this section. Conceptually, we first find the top-1 CAC and
then find the next most anomalous CACs that do not overlap
with any of the previously detected CACs, and so on so
forth. The algorithm would mine the most anomalous CAC
with the constraint of being disjoint with a set of entities C,
C ⊂ E. We call this C the constraint set.

The high complexity of these exact algorithms leads us
to propose heuristics to solve the TOPK CAC problem by
sampling the candidate collections that are potentially more
anomalous. We propose to sample candidates from small
size to larger sizes. This is because, (I)anomalies are mi-
norities and anomaly collections are in general of small sizes;
(II)collections of larger sizes although may have larger anomaly
scores but are less likely to be coherent. Before showing the

first heuristic regarding sampling candidates of small size to
large, we first define first-maximal CAC with constraint
C as follows.

Given E and C, let (S2, . . . , S|E|/2−1) be the sequence of
top-1 CACs of size from 2 to |E|/2−1, s.t. Si∩C = ∅, ∀2 ≤
i < |E|/2 − 1, the first-maximal CAC with constraint
C is the Si, 2 ≤ i < |E|/2 − 1 such that (I) Ω(Sj , F ) ≤
Ω(Sj+1, F ), for all 1 < j < i; (II) Ω(Si, F ) > Ω(Si+1, F ).

Intuitively, first-maximal CAC with constraint C is the
CAC that does not overlap with C and are more anomalous
than all collections that are of smaller sizes. With this, our
first heuristic is as follows.

Heuristic 1. [first-maximal property of Top-K CACs]

Let Ŝ = (S1, S2, . . . , SK) be the top-K CACs. ∀i, 1 ≤ i ≤ K,
Si is the first-maximal CAC with constraint

⋃
1≤j<i Sj.

Algorithm 1 CACD H, Heuristically detecting top-K dis-
joint CACs
Input: E, F , K
Output: heuristic top-K CACs: Ŝ

1: Ŝ ← ∅; C ← ∅
2: repeat
3: n ← 2
4: S ← topCAC size(E, F, n, C)
5: while S 6= null AND n < |E|/2 do
6: S′ ← topCAC size(E, F, n + 1, C)
7: if S′ 6= null AND Ω(S, F ) < Ω(S′, F ) then
8: S ← S′

9: else
10: break
11: if S 6= null then
12: add S to Ŝ
13: add all entities in S to C
14: until S == null OR |Ŝ| > K

15: return Ŝ

In step 4 and step 6 of Algorithm 1, we need to find the
top-1 CAC of a given size n. However, the number of CACs
of size n is |E|n in the worst case. We therefore propose the
second heuristic regarding the importance of local extremity.

Heuristic 2. [Importance of Local Extremity] Given
E and F , let S be the top-1 CAC w.r.t. F . There exists a
feature f ∈ F and a small integer threshold θ such that S is
among the top-θ CACs w.r.t. f .

3.1 Ordering of P-values
Recall that given an entity set S and a significant fea-

ture f , the anomaly score of S w.r.t. f depends on the
representative p-value of S w.r.t. f . If we can order the
representative p-values of all possible collections of size n,
and then find the set of collections corresponding to each of
these p-values, we will be able to derive the collections with
larger anomaly score w.r.t. f . In other words, the order-
ing of collections by anomaly score can be derived from the
ordering of p-values.

As stated in Section 2, given any collection S of size n,
the p-value of S is determined by the extremity index r and
i which is the number of entities in S that appear in top-r
positions. Hence any p-value can be represented as p(i, r, n).

For all collections of size n, we could derive their represen-
tative p-values by enumerating all possible (i, r, n) combina-
tions with the constraints 1 ≤ r < |E|/2, 1 ≤ i ≤ min(r, n).
However, the total number of (i, r, n) combinations is large.
Furthermore, we are more interested in those with the small
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p-values, as they indicate more anomalous collections. We
therefore make use of the intrinsic partial orderings among
p(i, r, n) values for deriving the next smallest p-value with-
out enumerating all p-values. We define the p-value fron-
tier of p(i, r, n) as the set of p-values that are the immediate
smaller p-values according to each partial order. The partial
orders lead to the following Lemmas for deriving the next
smallest p(i, r, n) value.

Lemma 1. The anchor of column-n, i.e., p(n, n, n), is the
smallest p-value of all.

Lemma 2. Given any p(i, r, n) value, the next smallest p-
value lies in the p-value frontier of p(i, r, n) or the frontiers
of the p-values that are no greater than p(i, r, n).

3.2 Collection Sampling
Now the question is how to derive the set of collections

whose representative p-value is of a given p(i, r, n). For a
given p(i, r, n), multiple collections may have p(i, r, n) as
their representative p-value. In fact, the number of col-
lections having the same representative p-value w.r.t. any

feature can be as many as
(

r
i

) ˙(|E|−r
n−i

)
. As a result, given a

representative p-value, each feature has many correspond-
ing collections. We therefore want to sample only a subset
of these collections that have larger anomaly score not only
w.r.t. a single feature, but also w.r.t. the whole feature set
F .

Our idea is to select individual entities that are more
anomalous w.r.t. F and construct the collections from them.
Naturally, an individual entity e is more anomalous if its
singular anomaly score, i.e., Ω({e}, F ) is larger. We
hence take the heuristic that those collections whose ele-
ments have larger sum of singular anomaly scores have larger
anomaly scores. In other words, we approximate Ω(S, F ) by
Σe∈SΩ({e}, F ).

Next, we need a way of pinpointing individual entities in
the entity list corresponding to each feature. Intuitively, we
need n pointers, each points to an individual entity. We
denote the list of rankings indicated by the n pointers as
π. For a given feature f , π uniquely indicates one size-n
collection. We denote Ef (π) as the set of entities associated
with π for f . Next, we form a collection from the first entity
on each candidate entity list. We then find the collection
that has the next largest sum of singular anomaly score.

Putting the ideas together, we have Algorithm 2 to heuris-
tically compute the top-1 CAC of a given size n. It needs
two additional parameters. The first parameter θc is used
for selecting collections for a given p-value. Specifically, for
p(i, r, n), we repeatedly pop a collection across multiple fea-
tures and evaluate whether it is larger than the current top-1
CAC. If the top-1 CAC remains unchanged after θc number
of times, we stop the collection selection process for p(i, r, n).
As the algorithm searches progressively larger p-values from
the small to large, the second parameter θp served as a ceil-
ing on the number of p-values that have contributed no col-
lections as the current top-1 CAC. The intuition is that if θp

number of p-values have not contribute any collection for the
top-1 CAC, the unseen p-values which are even smaller are
unlikely to be able to contribute collections. θc and θp can
be decided empirically. Larger θc and θp settings imply go-
ing through more candidate collections, which necessitates
a longer execution time. The setting of θc and θp will be
studied in the experiments section.

Algorithm 2 Compute topCAC size(E, F, n, C) in algo-
rithm 1 by sampling anomalous collections of size n

Input: E, F , collection size n, constraint set C, θc and θp

Output: the top-1 CAC of size n: S

1: Let pt ← (n, n, n) { pt keeps the current p-value (i, r, n) tuple}
2: Let Ψ ← frontier p(pt) { frontier p() computes the frontier of

the p(i, r, n) indicated by pt}
3: y ← 0
4: repeat
5: x ← 0
6: for each f ∈ F do
7: initialize S(f) as the collection having the largest sum

of singular anomaly score for feature f and disjoint with
C.

8: Γ(f) ← frontier i(S(f), C) {Γ(f) keeps the pointer
frontier for feature f ; frontier i(S(f), C) returns the
pointer frontier of collection S(f) and the collections are
disjoint with C}

9: while (x < θc) AND ∃f ∈ F s.t. S(f) 6= ∅ do
10: f ← argmaxf∈F Ω(S(f), F )
11: if Ω(S(f), F ) > Ω(S, F ) AND S(f) is coherent then
12: S ← S(f)
13: else
14: x++
15: S(f) ← pop(Γ(f)) {pop() pops out the collection with

the largest anomaly score in Γ(f)}
16: Γ(f) ← Γ(f) ∪ frontier i(S(f), C)
17: if S is never updated for this pt then
18: y++
19: pt ← pop(Ψ) {pop() returns the (i, r, n) tuple with the

smallest p-value in the frontiers Ψ}
20: Ψ ← Ψ ∪ frontier p(pt)
21: until y > θp

22: return S

4. EXPERIMENTS
In this section, we present experimental studies of our

approach on a Twitter dataset. We showcase the detected
coherent spammer groups and compare our approach against
an existing co-clustering algorithm.

4.1 Twitter Data.
Data Setting.
Our Twitter data2 is composed of all the tweets published
between September 8th 2011 and November 15th 2011, con-
taining any of the 9 hashtags related to Singapore including
#sg, #singapore and #sosingaporean. Altogether, there are
231,803 tweets from 21,666 users. With a total of 11,901
hashtags, a hashtag is used by 4.58 users on average. Ranked
by the number of users, the top 5 percent of these hashtags
are considered popular. We remove the rest of the hash-
tags along with the ones that we used to collect the data.
We also remove all the retweets, as hashtags in retweets do
not indicate that the retweeting user is spamming on the
hashtags. In addition, we filter away users who use only a
hashtag only once, since they are unlikely to be spamming
on hashtags. After the preprocessing, we are left with 1899
users with 587 popular hashtags, which is considered as in-
dependent features. For each hashtag, we rank all the users
in descending order by usage frequency. If a user never men-
tions a particular hashtag, the corresponding feature value
is zero. For each feature, rankings of users with identical
feature values are randomized.

Our Results.
In this experiment, we empirically set θc=100 and θp=20
for our algorithm CACD H. Larger parameter values such as

2http://research.larc.smu.edu.sg/palanteer/index tracker.php
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Figure 2: Top-10 CACs corresponding 63 users and 39 significant features (i.e., hashtags).

θc=500 and θp=50 have also been tried and give the same
results with longer running time. We set K to a large value,
so that CACD H stops when it finds all disjoint CACs.

As a result, CACD H produces 36 disjoint CACs. It is clear
that members of a CAC collaborate in the same spamming
campaign, as their tweets are often identical, with no real
content other than a large number of hashtags appended
with short URLs pointing to some website(s).

All members in the top-10 CACs are visualized in Figure
2 by parallel coordinates. Each member is represented by
a line connecting the ranks of the user’s usage of all the 39
significant features( i.e., hashtags). Members of the same
CAC are given the same color. It is visually telling that
all the 10 CACs are both extreme and coherent in their us-
age patterns of the hashtags. Moreover, our algorithm can
identify subtle differences in the extreme behavior of CACs
which seemingly belong to the same group. For example,
the top-1st and top-2nd groups of “pornographic” spammers
are in fact slightly different in their spamming patterns: (I)
Besides the 8 hashtags in common, the top-1st group spams
on #mongolia and #nepal while the top-2nd group spams on
#brunei and #vietnam; (II) the top-2nd CAC, despite hav-
ing fewer members, uses most of the hashtags more heavily
than the top-1st CAC.

Comparison with Co-Clustering.
As our method can simultaneously detect anomaly collec-
tions and their corresponding significant features, one may
suspect that similar results can be obtained by modeling the
problem as a co-clustering task by clustering rows (features)
and columns (users) of a matrix at the same time. We thus
compare with the results of a co-clustering-based algorithm
in [1]. This algorithm is chosen as it does not need the num-
ber of clusters as input and is denoted as Co-clustering.

To apply the co-clustering algorithm, we need to first de-
rive the input matrix. The direct way of representing the
input matrix on this Twitter data is to give a value of 1 to a
cell if the corresponding user has used this hashtag, and give
a value of 0 otherwise. Consequently, we have a 587 (number
of features) by 1899 (number of users) matrix to feed into
the co-clustering algorithm [1]. In the result, the matrix is
co-clustered into 8 feature groups and 10 user groups, the
largest user group being of size 467 and the smallest of size
2. Of all the 10 user groups, none of them are coherent and
only 5 of them can be considered as anomaly collections.
We manually go through the 5 anomaly collections and find
that they are anomalous only because they contain subsets
of members that are ranked at extreme positions on a small
number of features. This is not surprising as co-clustering
aims to group users using similar sets of hashtags, not neces-

sarily those who heavily use these hashtags. While identified
behavior are shared, they are not necessarily anomalous.

Even if we take only the union of users ranked in the top
positions of each feature, the co-clustering algorithm would
not output some extremely ranked collections as expected.
We choose the top-31 positions of each feature so that the
input matrix contains information of all users in our top-
10 CACs. Yet, out of the 10 user collections identified by
co-clustering, none of them are both anomalous and coher-
ent. The most anomalous collection returned are of size
124, which contains some of the pornographic spammers,
and many other users that are not even sharing the same
significant features with the pornographic spammers. The
poor performance of the co-clustering is due to its treating
every feature the same when trying to simultaneously group
users and features. In contrast, our approach is able to iden-
tify the significant features along with the anomalous users.

5. CONCLUSIONS
In this paper, we propose the problem of detecting top-K

disjoint Coherent Anomaly Collections (CAC). We present
an algorithm to identify CACs that does not need the col-
lection number or collection size to be specified beforehand.
Our algorithm is tested on a Twitter.com dataset to de-
tect hashtag spammer collections. The experiment results
demonstrate that our approach successfully finds suspicious
spammer groups which are not easily identifiable with other
approaches.
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