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Should We Use the Sample? Analyzing Datasets Sampled
from Twitter’s Stream API

YAZHE WANG, Singapore Management University
JAMIE CALLAN, Carnegie Mellon University
BAIHUA ZHENG, Singapore Management University

Researchers have begun studying content obtained from microblogging services such as Twitter to address
a variety of technological, social, and commercial research questions. The large number of Twitter users and
even larger volume of tweets often make it impractical to collect and maintain a complete record of activity;
therefore, most research and some commercial software applications rely on samples, often relatively small
samples, of Twitter data. For the most part, sample sizes have been based on availability and practical
considerations. Relatively little attention has been paid to how well these samples represent the underlying
stream of Twitter data. To fill this gap, this article performs a comparative analysis on samples obtained from
two of Twitter’s streaming APIs with a more complete Twitter dataset to gain an in-depth understanding of
the nature of Twitter data samples and their potential for use in various data mining tasks.

Categories and Subject Descriptors: H.3.5 [Online Information Services]: Data Sharing

General Terms: Experimentation
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1. INTRODUCTION

Microblogging is an increasingly popular form of lightweight communication on the
Web. Twitter as a typical and quickly emerging Microblogging service has attracted
much attention. Millions of Twitter users around the world form a massive online
information network by initiating one-way “following” relationships to others. Twit-
ter users post brief text updates, which are commonly known as tweets, with at most
140-characters. The tweets posted by a user are immediately available to his direct
followers, and can be quickly disseminated through the network via retweeting. Dif-
ferent from traditional blog platforms, where users write long articles with low update
frequency, Twitter generates short and real-time messages in large volume daily. Some
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studies of the Twitter network reveal a variegated usage including daily chatter, con-
versation, information sharing, news reporting [Java et al. 2007], and a diverse topic
coverage such as arts, family and life, business, travel, sci-tech, health, education, style,
world, and sports [Zhao et al. 2011]. Many researchers have analyzed Twitter content
and made interesting observations with real business value. For example, Sakaki et al.
[2010], utilize Twitter to detect earthquakes; Bakshy et al. [2011] study different meth-
ods of identifying influential Twitter users, which may be useful for online marketing
and targeted advertising; and Bollen et al. [2011] analyze Twitter user sentiment to
predict the stock market.

One obstacle to using Twitter data is its huge size, as measured by the size of the user
base, the volume of tweets, and the velocity of updates. The number of registered user
profiles on Twitter reached half a billion in 2012 [Semiocast 2012], and collectively,
Twitter users now send over 400 million tweets every day [Bennett 2012]. These num-
bers keep growing rapidly. It is challenging for third-party researchers and developers
to collect and manage such a huge amount of data.

Twitter provides API functions to facilitate third-party users to access the data
(https://dev.twitter.com/docs/). There are two main types of Twitter APIs: the REST
API and the stream API. The REST API supports queries to Twitter user accounts and
tweets, and it usually has very strict limits on the query rate (e.g., 150 requests per
hour). Although the REST API provides flexible access to Twitter data from almost
every angle, the rate limits make it not suitable for collecting large amounts of Twitter
data and monitoring updates. On the other hand, the stream API provides almost real-
time access to Twitter’s global stream of public tweets. Once the connection is built,
tweet data are pushed into the client without any of the overheads incurred by pulling
data from the REST API. The stream API produces near real-time samples of Twitter’s
public tweets in large amounts. Owing to the advantages of the Twitter stream API,
it is used as the data source for many applications and mining tasks, for example,
topic modeling [Hong et al. 2012; Pozdnoukhov and Kaiser 2011], disease outbreak
surveillance [Sofean and Smith 2012], and popular trend detection [Mathioudakis and
Koudas 2010]. The convenience and immediacy of the stream API makes it a common
source of Twitter data for a variety of research tasks. However, prior research has not
addressed the issue of how well the sample data provided by the stream API represent
the original data, and if do not, toward which properties the sample data might be
biased.

In this work, we focus on characterizing the sample data from the Twitter stream
API, studying possible sampling bias, if any, and understanding the implications of the
findings to related applications. The Twitter stream API has different access priorities.
For example, according to Twitter, the default Spritzer access provides a 1% sample of
the complete public tweets, whereas Gardenhose access provides a larger 10% sample.
However, Twitter does not reveal how the samples are generated and does not even
guarantee that the sampling ratios are stable. These deficiencies make it difficult to
perform theoretical analysis of the sample data. Therefore, in this article, we conduct a
study based on experimentally analyzing the properties of sampled data and comparing
them with a baseline complete dataset.

Due to limited storage capacity and the API access rate restrictions, we could not
afford to collect the complete set of tweets generated by all the Twitter users (over
400 million tweets per day). Instead, we gather the “complete dataset” based on a
relatively small subset of Twitter users: the Singapore Twitter users. We use all the
tweets generated by these Singapore Twitter users during May of 2012 collected via the
Twitter REST API as the complete dataset. Meanwhile, we gather the tweets of these
users returned by the Twitter stream API at the same time period with two different
access priorities, respectively, as the sample datasets. We perform comparative analysis
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of the sample datasets with the complete dataset in terms of the basic tweet statistics,
the content representativeness, the user coverage, and the user interactions. We find
that the actual sampling ratios of the Spritzer sample and the Gardenhose sample
are around 0.95% and 9.6% respectively. The sampled Twitter data represent the
general user activity patterns and the tweet content of the complete dataset well even
with a sampling ratio as small as 0.95%. However, although the sample data provide
good coverage of interactions among active users, their coverage of infrequent users is
less complete due to their lower probability of appearing in a sample. Extending the
sampling period and increasing the sampling rate both help to improve the coverage
of the user base and the accuracy of the interaction based user popularity estimation.

The rest of the article is organized as follows. Section 2 reviews related work.
Section 3 describes the datasets used and the collection methods. Section 4 presents
the main analysis results. Section 5 concludes the article.

2. RELATED WORKS

The huge volume of user-generated content in modern online social networks presents
challenges to researchers for collecting and analyzing these data. A common practice
to deal with this problem is to generate and analyze a representative sample of the
complete dataset. There are two main issues for generating the sample: What is a
good sampling strategy, and what is a good sampling ratio. In the case of the Twitter
streaming API, the sample data are generated by some unknown strategies designed
by Twitter with approximately fixed sampling ratios. Therefore, our focus in this work
is on the unresolved question of whether the sample data generated by the Twitter
streaming API are good enough for various mining and analysis tasks.

Very recent work by Morstatter et al. [2013] studies the same problem; however,
there are important differences between their work and ours. The main difference is
that they use a sample dataset collected from the Twitter stream API that focuses
on a particular event: The Syria conflict from December 2011 to January 2012. We
analyze a dataset that is not event-specific to provide more general observations. Their
work also does not address the issue of sampling ratio, whereas we study two different
sampling ratios and discuss their effects on the quality of the data obtained. In terms
of methodology, Morstatter et al. measure the daily sampling ratio, whereas we also
study the retweet ratio and the user tweet frequency distribution to provide a more
comprehensive analysis. When studying the tweet content, they analyze the correlation
of the ranks of the top hashtags and compare the topic distribution of the sample data
with that of the complete data. We do not compare the topic distributions because
we consider topic alignment across unlabeled datasets to be difficult, subjective, and
unreliable. In this work, we study a rich set of terms in the tweet content including text
terms, hashtags, URLs, and URL domains, and discuss the similarity of the sample
data using these content terms to the complete data based on vocabulary coverage and
frequency correlations. We also perform a sentiment classification task to compare the
results obtained from the sample datasets and the complete dataset. In order to study
user relationships, their work focuses on the user retweet network, whereas we study
not only the user retweet relationships but also the mention relationships. Finally, their
work analyzes the geolocation distribution of the tweets. However, because our dataset
is based on Singapore Twitter users, the tweets are mainly located in Singapore; thus,
geolocation distribution adds no new information.

Several other works discuss different Twitter data sampling methods. For exam-
ple, Ghosh et al. [2013] study an expert generated tweet set and compare it with a
random Twitter sample. They find that each dataset has its own relative merits. The
expert tweets are significantly richer in information, more trustworthy, and capture
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breaking news marginally earlier. However, the random sample preserves certain im-
portant statistical properties of the entire dataset and captures more conversational
tweets. Choudhury et al. [2011] propose a diversity-based sampling approach to gener-
ate topic-centric tweet set. Our work does not study new sampling approaches, rather
it investigates the characteristics of the existing and widely used Twitter samples. We
focus on understanding whether the quality of the samples is good enough for various
mining and analysis tasks.

The topic of network sampling and the effect of the imperfect data on the common
network measurements have been widely studied. The earlier work of Granovetter
proposes a network sampling algorithm that allows estimation of the basic network
properties [Granovetter 1976]. Later, many common network sampling techniques are
studied such as snowball sampling, random-walk–based sampling, node sampling, and
link sampling [Lee et al. 2006; Yoon et al. 2006; Leskovec and Faloutsos 2006; Maiya
and Berger-Wolf 2011]. These works compare the structural properties of the sample
networks obtained by different methods with those of the original network and ad-
dress the sampling bias of different methods. There are also works that discuss the
effect of data errors and missing data on common network measures (e.g., central-
ity) [Kossinets 2003; Borgatti et al. 2006; Costenbader 2003]. Recently, William and
Samuel [2010] study the forest fire network sampling method with different seed user
selection strategies, and discuss their impact on the discovery of information diffusion
on Twitter. However, this prior research does not apply to our problem because we
study data that are sampled from the Twitter public tweet stream, not the Twitter
user network. The (unknown) sampling mechanisms used by Twitter to generate data
are presumably different from the network sampling methods discussed in this prior
research.

The rising popularity of Twitter has inspired research into its characteristics. Kwak
et al. [2010] conduct an exploratory analysis of the entire Twittersphere to study
the topological characteristics of the Twitter network and information diffusion on it.
Their results show a remarkable deviation from known characteristics of human social
networks. They find that the Twitter network has a non–power-law degree distribution,
short effective diameter, and low reciprocity, which establish Twitter’s role as a new
medium of information sharing. This study collects the entire Twitter network snapshot
in its early stage (i.e., 2009). With the rapid growth of Twitter population, it becomes
more and more difficult to handle the whole Twitter network, not to mention tracking
its frequent information update. Therefore, much research has been performed on
incomplete Twitter data. Java et al. [2007] analyze a Twitter subset with 76,000 users
and 1 million tweets and categorize the users based on their intentions on Twitter. Their
dataset is collected by periodically retrieving the most recent public tweet updates using
an old version of the Twitter stream API that is no longer supported by Twitter. Naaman
et al., study Twitter users’ activity based on a small set of sampled non-organizational
users, and classify them as “Meformers” and “Informers” according to whether they like
to post tweets that are self-related or general informational [Naaman et al. 2010]. Zhao
et al. [2011] characterize Twitter with topic modeling based on tweets collected from the
Twitter stream API. They classify tweets into different topic categories and study the
size distribution of these categories. Huberman et al. [2009] study the user activities
and interactions in Twitter and reveal that the usage of Twitter is driven by a hidden
network of connections underlaying the “declared” friend and follower relationships.
The dataset they use consists of over 300,000 Twitter users and their tweets; however,
the method of collection is not described. These works study Twitter datasets collected
in several different ways, but none of them provides a discussion of the strengths and
limitations of the data collection methods used and the representativeness of their
datasets.
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Krishnamurthy et al. [2008] perform descriptive analysis of the Twitter user base
and make the first attempt to compare results of two datasets crawled by different
techniques. The first dataset is collected by the snowball crawling of the Twitter net-
work using the Twitter REST API. It starts with a small set of seed users and expands
the user set by adding partial lists of the users being followed by the current users.
The second dataset is obtained by the Twitter public timeline API, which provides
continuously the 20 most recent tweet updates. The users associated with these tweets
are extracted. They find that the analysis results on the two datasets are similar in
terms of the user class, daily activity pattern, source interface usage, and geographic
distribution. The work presented in our paper also analyzes Twitter datasets collected
in different ways. However, it differs from the above work in three aspects. Firstly,
the datasets analyzed have different properties. Our work analyzes three datasets
based on the same set of Twitter users: (1) a complete Singapore user tweet dataset
collected by crawling the Twitter REST API and (2) two sample datasets obtained via
the Twitter stream API with different access priorities; our sample datasets are proper
subsets of the complete dataset. In contrast, Krishnamurthy et al. [2008] study two
datasets that may cover different sets of Twitter users. Second, the two studies have
different purposes. In this article, our focus is not on characterizing the Twitter user
base but on characterizing the Twitter stream API and understanding how well the
data collected from the stream API represents the complete Twitter data space. Finally,
due to the different study objectives, we perform analysis on different aspects of the
datasets, including not only the users but also the tweet statistics, contents, and user
interactions.

In addition to Twitter, several other popular social networks have been studied.
YouTube is studied to understand the characteristics of user generated contents [Cha
et al. 2007; Gill et al. 2007]. Kumar et al. [2006] analyze the structural properties of
the Flickr and Yahoo!360 networks including the path lengths, density, change over
time, and component structure. Mislove et al. [2007] verify the power-law, small-world,
and scale-free properties of many popular online social networks including Flickr,
YouTube, LiveJournal, and Orkut. Benevenuto et al. [2009] characterize the behaviors
of a set of 37,000 collected users on online social networks such as Orkut, MySpace, Hi5,
and LinkedIn. None of these works address the relationship between their analysis
results and the data collection methods. Ahn et al. [2007] compare the topological
characteristics and growth pattern of three large-scale online social networks: Cyworld,
MySpace, and Orkut. They evaluate the validity of the snowball sampling method,
which they use to crawl the networks. Their results reveal that with a sampling ratio
above a certain threshold, snowball sampling captures the scaling behavior of the
node degree distribution correctly, but it cannot estimate other metrics such as the
clustering coefficient distribution and the degree correlation. Our article is different
from that work because the sample datasets that we study are not obtained by the
snowball sampling of the Twitter social network but by an unknown sampling method
developed by Twitter on the public tweet stream.

3. DATA COLLECTION

In order to study sampling bias, we need the complete Twitter dataset to serve as the
baseline, with which the sample datasets can be compared. However, collecting the
complete Twitter stream is not practical for our study because of its cost. Instead of
considering the full set of more than 500 million Twitter users, we focus on the complete
set of Singapore Twitter users, which is a smaller group. We used all the tweets posted
by these Singapore Twitter users within a 1-month period as the complete dataset. We
also gathered all tweets by these Singapore users that appeared in the Spritzer and
Gardenhose Twitter streams during the same timespan to create two sample datasets.

ACM Transactions on the Web, Vol. 9, No. 3, Article 13, Publication date: June 2015.
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Table I. Description of the Datasets

Datasets Complete SampleGardenhose SampleSpritzer

API used for collection REST Stream (Gardenhose) Stream (Spritzer)
Time period May 2012
Num. of users 151,041
Num. of Tweets 13,468,661 1,297,304 128,647

The complete dataset was collected with the help of the social network mining re-
search group of Singapore Management University.1 To locate the Singapore Twitter
users, a set of 58 popular Singapore Twitter users were manually selected as seeds.
Initially, the user set only contained these seed users. The user set was then expanded
by exploring the follower and friend lists of users in the set. A follower or a friend of a
current user was added to the user set if either he specified his location to be “Singa-
pore” or he followed at least three of the known Singapore users. In this way, a set of
151,041 Singapore Twitter users in 2012 was identified, which we believe covered the
majority of the Singapore Twitter users.

After the set of users was constructed, the Twitter REST API was invoked to crawl
the tweets generated by these users for a 1-month period beginning on May 1, 2012 and
ending on May 31, 2012. The collected tweets formed the complete dataset, referred as
Complete.

We collected two sample datasets at the same time period via the Twitter stream
API using Spritzer and Gardenhose access priorities respectively. The Spritzer and
Gardenhose streams output samples of the entire public tweet stream with different
sampling ratios. According to Twitter, Spritzer provides an approximately 1% sample
of the complete public tweets, whereas Gardenhose generates a larger sample with the
sampling ratio around 10%. Twitter does not provide any description of the algorithms
that generate the samples nor does it guarantee the sampling ratios to be stable.
From the sampled tweets, we extracted the subsets that were posted by the identified
Singapore users. In this way, two samples of the complete dataset were obtained,
referred as SampleSpritzer and SampleGardenhose, respectively. Table I provides some basic
information about the datasets.

4. ANALYSIS OF RESULTS

In this section, we perform detailed comparative analysis of the collected sample and
complete datasets. Specifically, we compare them in terms of the tweet statistics, con-
tent representativeness, user coverage, and user interactions. Through the comparison,
we try to understand the nature of the sample datasets, for which properties the sam-
ple datasets are representative of the complete dataset, and for which properties the
sample datasets are not representative, and discuss the implications of our findings
for certain mining tasks.

4.1. Tweet Statistics

We first study the sampling ratio and the basic tweet statistics in this section. We
perform the analysis on the datasets collected over the 1-month time period and also
present results on daily bases.

We begin the analysis by examining the actual sampling ratios of the two sample
datasets from the Twitter stream API and present the average daily sampling ratios
and standard deviations in Table II. As shown in Table II(a), the Singapore users gen-
erate around a half million tweets a day, on average. The Spritzer and Gardenhose

1https://sites.google.com/site/socnetmine/.
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Table II. Average Daily Sampling Ratios

(a) Daily sampling ratios for tweets.
Daily Complete SampleGardenhose SampleSpritzer

statistic tweet# tweet# sampling ratio tweet# sampling ratio
Daily avg. 481,024 46,332 9.62% 4,634 0.96%
Std. dev. 67,446 6,637 0.15% 664 0.014%

(b) Daily sampling ratios for users.
Daily Complete SampleGardenhose SampleSpritzer

statistic user# user# sampling ratio user# sampling ratio
Daily avg. 35,316 15,769 44.55% 3,625 10.22%
Std. dev. 2,407 1,601 1.88% 484 0.85%

Table III. Daily Tweets and Retweets Ratios

Daily Complete SampleGardenhose SampleSpritzer

statistic tweet% retweet% tweet% retweet% tweet% retweet%
Daily avg. 84.41% 15.59% 84.24% 15.76% 84.21% 15.79%
Std. dev. 0.56% 0.56% 0.54% 0.54% 0.76% 0.76%

Fig. 1. Average hourly tweet count of the Singapore Twitter users of a 1-month period.

samples return around 0.96% and 9.6% of them, respectively. The actual tweet sam-
pling ratios are both slightly lower than what Twitter announced (i.e., 1% and 10%).
Table II(b) shows the sampling ratios on users each day. We find that, on average, there
are around 35,000 Singapore users who generate tweets each day, and the Spritzer and
Gardenhose samples capture around 10% and 45% of them, respectively. The sampling
ratio for users is much higher than it is for tweets, which is not surprising; each tweet
appears just once in the complete dataset, whereas a user may appear many times,
thus increasing the likelihood that he will also appear in a sample.

Next, we study whether the sample datasets preserve the general tweeting patterns
of the Twitter users. Table III lists the average proportions of the original tweets and
retweets generated by Twitter users each day. As observed from the table, among all
the tweets published daily, about 85% are original tweets and 15% are retweets. The
same ratio between original tweets and retweets is captured by both sample datasets.
Figure 1 further illustrates the average hourly tweet counts of the three datasets for all
the 31 studied days. We observe that the Singapore users tend to be more active at the
nighttime. The tweeting frequency increases rapidly after 17:00, and peaks at 22:00.
Then it drops quickly through midnight and hits the bottom at 4:00. Thereafter, as the
new day starts, the users gradually regain activity, and the tweeting frequency rises
slowly through the day. The sampled datasets both reflect the same hourly tweeting
frequency pattern of the users. The results indicate that both the small Spritzer sample
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Fig. 2. Average daily tweeting frequency distributions of the Singapore users of a 1 month period. γ is the
estimated power-law exponent. SEγ is the standard error of γ . R2 is the square error of the power-law fitting.

and the larger Gardenhose sample obtained via the Twitter stream API reflect the
general user tweeting patterns of the complete dataset accurately.

In addition, we analyze the tweet patterns based on individual users. We plot the
distributions of the user average daily tweeting frequency in Figure 2. The average
daily tweeting frequency distribution of the Singapore users approximates a power-law
distribution with the exponent of –1.3365. However, the user average daily tweeting
frequency distributions captured by the Spritzer and Gardenhose samples fit the power-
law distributions with the different exponents of –2.4544 and –1.8963, respectively.
Therefore, the sample data preserve the scaling pattern of the user tweeting frequency
distribution (i.e., power-law) but tend to overestimate the proportion of the users with
low tweeting frequency, and the overestimation is more serious in the sample with a
smaller sampling ratio (e.g., Spritzer).

4.2. Content Representativeness

Twitter data are also widely used for performing mining tasks such as event detection,
sentiment analysis, content summarization, and topic modeling. As many of these tasks
are built upon analyzing the tweet contents, it is important to understand if the tweet
contents in the sample datasets from the Twitter stream API accurately represent
those in the complete dataset.

For each dataset, we extracted the vocabularies of four common types of text repre-
sentation: text terms, hashtags, URLs, and URL domains. We performed lightweight
processing of the text terms by eliminating stopwords,2 punctuation, and non-English
terms. For each dataset and each method of representation (e.g., Spritzer URLs), we
record the frequency of the vocabulary item and its rank each day and for the entire
1-month timespan, as described in Table IV. We analyze the correspondence of the
vocabularies of the complete dataset and the sample datasets using four metrics as
described in Table V and display the results in Table VI.

We measure how well the vocabulary of a sample dataset covers the vocabulary of the
complete dataset using two metrics: size ratio metric and the collection term frequency
(CTF) metric. Each metric provides a different perspective on how well the sample
vocabulary covers the complete vocabulary.

The size ratio metric calculates the proportion of the unique terms in a vocabulary
of the complete dataset that are captured by a sample dataset. As observed from
Table VI(a), the Spritzer sample only covers around 6% of the text vocabulary, 2.5%
of the hashtag vocabulary, 1% of the URL vocabulary, and 3.7% of the URL domain
vocabulary in each day. The size ratios of the vocabularies of the Gardenhose sample

2We use a stopword dictionary with 429 distinct words (http://www.lextek.com/manuals/onix/stopwords1.
html).
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Table IV. Symbols for a Vocabulary

Symbol Description

V The vocabulary for all the text words/hashtags/URLs/URL domains appearing in the set
of tweets of the studied time period (e.g., 1 day or 1 month).

|V | The size of the vocabulary V ; It is the number of terms that exist in the vocabulary.

t A term in a vocabulary representing a text word/hashtag/URL/URL domain.

t. f V , f V t. f V is the frequency of t in vocabulary V ; It is the number of times that t appears in the
tweet set on which the vocabulary is built. f V is the average frequency of all the terms
in V .

t.rV , rV t.rV is the rank of t in vocabulary V ; It is the rank of the t in the vocabulary based on its
frequency. rV is the average value of all the term ranks in V .

Table V. Comparison Metrics for Vocabularies

Metric Description
Ssize The size ratio of a vocabulary of the sample tweet set (VS) and the corresponding vocabulary

of the complete tweet set (VC ). Ssize = |VS |
|VC |

Sctf The collection term frequency (CTF) ratio of a vocabulary of the sample tweet set (VS) and

the corresponding vocabulary of the complete tweet set (VC ).Sctf =
∑

t∈VS
t. f VC∑

t∈VC
t. f VC

Spcc The Pearson product-moment correlation coefficient of the term frequency values of a vocab-
ulary of the sample tweet set (VS) and the corresponding vocabulary of the complete tweet

set (VC ).Spcc =
∑

t∈VS∩VC
(t. f VS − f VS )(t. f VC − f VC )√∑

t∈VS∩VC
(t. f VS − f VS )2

√∑
t∈VS∩VC

(t. f VC − f VC )2

Sscc The Spearman’s rank correlation coefficient of the term rank values of a vocabulary of the
sample tweet set (VS) and the corresponding vocabulary of the complete tweet set (VC ).Sscc =∑

t∈VS∩VC
(t.rVS −rVS )(t.rVC −rVC )√∑

t∈VS∩VC
(t.rVS −rVS )2

√∑
t∈VS∩VC

(t.rVC −rVC )2

are much higher due to the higher sampling ratio (i.e., the Gardenhose sample covers
around 26% of the text vocabulary, 16% of the hashtag vocabulary, 9% of the URL
vocabulary, and 18% of the URL domain vocabulary in each day). In addition, we find
that the size ratio of the URL vocabulary almost equals the tweet sampling ratio, while
the size ratios of text terms, hashtags, and URL domains are much larger than the
tweet sampling ratio. This result is easily explained. Many of the URL terms occur
only once in the complete dataset; thus, the odds of seeing them in a sample depend
strongly on the sample size. In contrast, many individual text terms, hashtags, and
URL domains have higher occurrence frequencies, thus samples tend to cover more of
these vocabularies.

The size ratio metric indicates that the sample datasets cover only small proportions
of the vocabularies for different representations of the complete dataset. However, the
size ratio metric treats every term equally, and it is skewed by the many terms that
appear just a few times in the dataset. Based on our observation, the infrequent terms
are more likely to be typographical errors and/or user-created words, which may be
less important for studying Twitter contents.

In order to distinguish the frequent terms from the infrequent ones, we adopt another
vocabulary coverage metric, namely collection term frequency (CTF) ratio [Callan and
Connell 2001]. This metric also calculates the proportion of the terms in the complete
vocabulary that are covered by a sample vocabulary, but it weights each term with its
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Table VI. Content Representativeness Based on Four Types of Vocabularies Daily
and for all the Studied Days (i.e., 1 Month)

(a) Size ratio (Ssize)
Daily SampleGardenhose SampleSpritzer

statistic text hashtag URL URL domain text hashtag URL URL domain
Daily avg. 0.257 0.160 0.090 0.182 0.064 0.025 0.010 0.037
Std. dev. 0.021 0.019 0.013 0.023 0.002 0.002 0.001 0.003
All days 0.237 0.185 0.092 0.184 0.062 0.032 0.010 0.034

(b) CTF ratio (Sctf )
Daily SampleGardenhose SampleSpritzer

statistic text hashtag URL URL domain text hashtag URL URL domain
Daily avg. 0.915 0.622 0.121 0.915 0.750 0.371 0.034 0.837
Std. dev. 0.013 0.044 0.018 0.013 0.022 0.038 0.006 0.020

All days 0.977 0.791 0.144 0.960 0.939 0.603 0.054 0.926
(c) Pearson product-moment correlation coefficient (Spcc)

Daily SampleGardenhose SampleSpritzer

statistic text hashtag URL URL domain text hashtag URL URL domain
Daily avg. 0.997 0.9715 0.911 0.987 0.975 0.856 0.655 0.974
Std. dev. 0.002 0.021 0.045 0.005 0.005 0.040 0.195 0.013
All days 0.100 0.993 0.990 0.988 0.999 0.979 0.973 0.985

(d) Spearman’s rank correlation coefficient (Sscc)
Daily SampleGardenhose SampleSpritzer

statistic text hashtag URL URL domain text hashtag URL URL domain
Daily avg. 0.812 0.641 0.433 0.736 0.705 0.552 0.268 0.754
Std. dev. 0.009 0.016 0.022 0.018 0.013 0.044 0.050 0.036
All days 0.817 0.691 0.442 0.706 0.811 0.623 0.266 0.692

frequency of occurrence to give more credits to the frequent terms, which are believed
to be more important in the dataset. The closer the CTF ratio is to 1, the more a sample
contains the terms that are frequent, and thus presumably important, in the complete
dataset.3 The results of the CTF ratio are displayed in Table VI(b). Generally, we find
that the CTF ratio for every vocabulary is much higher than the corresponding size
ratio, and the Gardenhose sample has higher CTF ratios than the Spritzer sample due
to the higher sampling ratio.

Closer inspection reveals that different types of text representations behave
differently.

—For the daily text vocabularies, the CTF ratios were significantly high (e.g., they
were around 0.75 for the Spritzer sample, and they exceeded 0.9 for the Gardenhose
sample). Therefore, even small sample datasets capture the important text terms
very well.

—The CTF ratios for Spritzer samples were about 0.37 for the daily hashtag vocabular-
ies, whereas the Gardenhose CTF ratios were about 0.62. Sampling over a 1-month
timespan improves Spritzer coverage to 0.60 and Gardenhose coverage to 0.80. These
results suggest that one might want to be cautious about drawing conclusions from
daily variations in hashtag occurrences in a Spritzer stream, and even conclusions
based on a Gardenhose stream (10× larger) will miss significant amounts of hash-
tag activity. Observations based on a 1-month timespan are more reliable but will
necessarily miss a significant amount of hashtag activity.

3Note that stopwords are not included in this comparison. If stopwords were included, they would dominate
the weighting, and all methods would have a CTF ratio close to 1.
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—The CTF ratios for URLs are very low for both sample datasets, due primarily to the
fact that many of the URLs only occur once in the dataset. One may interpret this re-
sult as indicating that many tweeted URLs are unimportant and thus safely ignored;
or, it may mean that tweeting frequency is a less reliable method of determining the
importance of a tweeted URL. In any case, Spritzer and Gardenhose streams provide
only very approximate information about the distribution of URLs in the underlying
complete stream.

—Instead of using individual URLs, some researchers may be interested in only the
domains that produce URLs, for example, to identify information sources that are
popular with Twitter users. We find that the Spritzer sample has very high CTF
ratios (i.e., around 0.83) for URL domains, and the CTF ratios are even higher for
Gardenhose samples (i.e., about 0.92). Therefore, even though the sample datasets
do not provide enough information for studying the popularity of individual URLs,
they preserve the important URL domains very well.

In addition to analyzing the daily vocabularies, we also analyze the cumulative
vocabularies of the 1-month period. We find that the cumulative data obtained by
extending the sampling time period does not improve the raw vocabulary coverage, as
the size ratios are not significantly improved with the cumulative vocabularies. This
observation is consistent with Heaps’ Law, which predicts the continued growth of
the vocabulary as more texts are observed [Heaps 1978]. However, the long sampling
period helps to improve the coverage of the frequent terms, as indicated by the increase
in CTF ratios for the cumulative vocabularies.

The size ratio and CTF ratio metrics only evaluate the proportions of the (fre-
quent) terms that are captured by the sample datasets. They do not evaluate whether
the frequency information of the captured terms is well preserved by the sample
datasets. In other words, they do not evaluate whether the term frequency informa-
tion obtained from the sample datasets is correlated with the actual term frequen-
cies in the complete dataset. For mining tasks such as event detection, tweet content
summarization, and sentiment analysis, the term frequency information is crucial.
Therefore, in the following analysis, we use another two metrics to study the qual-
ity of the term frequency information in the sample datasets: the Pearson product-
moment correlation coefficient (PCC) and the Spearman’s rank correlation coefficient
(SCC).

The PCC metric measures the linear dependency of the term frequencies in a sample
vocabulary and the complete vocabulary. Its value is in the range of [−1, 1]. The value
is close to 1 if the term frequencies in the sample dataset and the complete dataset
are strongly correlated, the value is 0 when the term frequencies are uncorrelated,
and the value is –1 when the term frequencies are inversely correlated. SCC measures
the linear dependency of the frequency-based term rankings of a sample vocabulary
and the complete vocabulary. To calculate the SCC score, the terms in a vocabulary
are ranked by the decreasing order of their frequencies in the dataset. Rank ties are
handled by assigning a rank that equals to the average of their positions in the ranked
list. For example, if the top two terms both have the highest frequency in the ranked
list, that is, there is a tie between position 1 and position 2, the ranks assigned to these
two terms are both 1.5 = 1+2

2 . The SCC score is calculated based on the term rankings
with a similar function as the PCC metric (see Table V), and it has the same value
range.

The results of these two metrics are shown in Tables VI(c) and VI(d). We find that in
most of the cases, the PCC values are above 0.8 and 0.9 for the Spritzer and Gardenhose
vocabularies, respectively. Thus, the term frequencies of the sample datasets are lin-
early correlated with those of the complete dataset. In other words, the sample datasets
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Table VII. Features Derived for Sentiment Classification

Feature category Features
Sum of positive and negative scores for Adjectives.

Overall scores (6) Sum of positive and negative scores for Adverbs.
Sum of positive and negative scores for Verbs.

Score ratios to number of terms (6) Ratios of positive and negative scores to total number of terms
for each part of speech.

Positive to negative score ratios (3) Positive to negative scores ratio for each part of speech.
Negation (1) Percentage of negated terms in a tweet

accurately estimate the relative frequencies of the terms in every vocabulary. The re-
sults of the SCC metric are not as good as those of the PCC metric, but still are
reasonably high, except for the URL vocabularies. Therefore, the sample datasets pre-
dict the term rankings of text terms, hashtags, and URL domains to certain extent.
The degradation of the SCC performance is mainly caused by the ties in the term rank-
ing. The URL vocabularies have the most rank ties because many of the URLs only
appear once in the datasets and thus have the worst SCC performance. The improve-
ment of the PCC and SCC scores by extending the sampling time period is not very
obvious.

4.2.1. Sentiment Analysis. To demonstrate the usefulness of the sample data for analyz-
ing Twitter content, we perform a sentiment classification task on the sample datasets
and the complete dataset and then compare the results. Sentiment classification is an
opinion mining activity concerned with determining what is the overall sentiment ori-
entation of the opinions contained within a given document (e.g., tweet). The sentiment
orientation can be classified as positive or negative. We implement the binary classi-
fier described by Ohana and Tierney to analyze the sentiment orientation of tweets
[Ohana and Tierney 2009]. We extract sentiment features of tweets using SentiWord-
Net and then train a SVM classifier to assign sentiment labels to the tweets in each
dataset. SentiWordNet is a lexical database for opinion mining. Given a term and its
part-of-speech tag, SentiWordNet returns three sentiment scores ranging from 0 to
1—positivity, negativity, and objectivity—each indicating the term’s sentiment bias.
The sum of the three scores equals to 1. In our experiment, the GATE Twitter part-
of-speech tagger (https://gate.ac.uk/wiki/twitter-postagger.html) was used to perform
part-of-speech analysis on tweets. SentimentWordNet scores were then calculated for
terms found. Sentiment features were derived from the scores as described in Table VII.
A total of 16 features were generated.

We train a linear SVM classifier with a set of 1,224 manually classified tweets from
a separate dataset. The training data consist of 570 positive tweets and 654 negative
tweets. We apply the trained classifier to predict the sentiment orientation of the tweets
in our datasets.

First, we analyze Twitter’s daily overall sentiment polarity by counting the percent-
ages of tweets with positive and negative sentiment orientation respectively in each day.
In order to compare the difference of the sample datasets with the complete dataset, we
calculate the absolute difference of the positive tweet percentages of a sample dataset
and the complete dataset in each day.4 Figure 3 presents the percentage difference dis-
tributions of the Spritzer and Gardenhose samples over the studied 30 days. We observe
that for all the 30 days, the percentage differences of both datasets are fairly small (i.e.,

4The absolute difference of the negative tweet percentages is the same as that of the positive tweets
percentages.
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Fig. 3. The percentage difference of the positive (or negative) tweets daily. The x-axis is the binned difference.
The y-axis is the count of days in each bin. μ is the average difference of 30 days, and σ is the standard
deviation.

Fig. 4. The percentage difference of the positive (or negative) tweets in different hashtag groups with
different popularity. The x-axis is the binned difference. The y-axis is the percentage of hashtags in each
popularity group. μ is the average difference of all the hashtags in each popularity group, and σ is the
standard deviation

less than 1.8%), which indicates that both sample datasets can reflect Twitter’s daily
sentiment orientation very accurately. It is not surprising that the larger Gardenhose
sample shows better accuracy at predicting Twitter’s daily sentiment polarity. Its daily
percentage differences are all smaller than 0.6%.

Besides the overall sentiment polarity orientation, we also study Twitter’s sentiment
orientation toward certain hashtags. We group the hashtags that are captured by both
sample datasets based on their popularity in the complete dataset. We categorize the
hashtags that were used by more than 1,000 tweets as very popular, the hashtags that
were used by less than 1,000 but more than 500 tweets as moderately popular, and
the hashtags that were used by less than 500 tweets as less popular. We ignore the
hashtags that were used by less than 100 tweets because of their lack of popularity.
We infer Twitter’s sentiment orientation to a hashtag also by the percentages of the
positive and negative tweets containing this hashtag. We use the percentage difference
to evaluate the error of the sample datasets for predicting Twitter’s sentiment polarity
to each hashtag. Figure 4 shows the percentage difference distributions of the three
hashtag groups. We find that the Gardenhose sample relatively accurately reflects
sentiment orientation to the hashtags in the very popular and moderately popular
groups. In these two groups, the Gardenhose sample captures the sentiment orientation
for most of the hashtags (i.e., more than 90% and 80% of the hashtags respectively) with
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Table VIII. Average Number of Tweets Daily of the Captured and Missed Users

Daily SampleGardenhose SampleSpritzer

statistics captured users missed users captured users missed users
Daily avg. 23.99 4.20 48.45 10.13
Std. dev. 2.56 0.08 2.49 0.55

the percentage difference less than 8%. The performance of the Gardenhose sample
decreases greatly for the less popular hashtags. It can only guarantee small percentage
difference (e.g., less than 8%) for around 50% of the hashtags. Not surprisingly, the
performance of the smaller Spritzer sample is not as good as the Gardenhose sample.
It can only achieve less than 10% percentage difference for around 70% of the very
popular hashtags. For those not so popular hashtags, percentage differences for most
of them are not small.

To sum up, in this subsection, we find that both the Spritzer and Gardenhose samples
can be used to estimate Twitter’s overall sentiment orientation. However, for individual
hashtags, the Gardenhose sample can be used to estimate Twitter’s sentiment orien-
tation for very popular and moderately popular hashtags, while the Spritzer sample
may be only suitable for estimating Twitter’s sentiment for very popular hashtags.

4.3. User Coverage

According to the analysis in Section 4.1, the daily user sampling ratios of the Spritzer
dataset and the Gardenhose dataset are about 10% and 45%, respectively. Thus, more
than half of the users in the complete dataset who tweet each day are not captured by
the sample datasets. In the following analysis, we compare the properties of the users
captured by the sample datasets with those of the users that are missed. Here, the
missed users refer to the users who generate tweets and are included in the complete
dataset, but their tweeting behaviors are not captured by the sample datasets.

First, we calculate the average numbers of tweets generated daily by the captured
and missed users, respectively, and report the results in Table VIII. The results show
that the captured users tend to publish more tweets than the missed users. To be more
specific, users captured by the Spritzer sample publish more than 48 tweets daily, on
average, while the missed users generate only around 10 tweets daily. The average daily
tweeting frequencies of the captured users and the missed users in the Gardenhose
sample are around 24 and 4, respectively. These results imply that the samples gener-
ated by Twitter Stream API cover more information from the active users who tweet
frequently every day, and they may lose the voice of those less active users. The bias
is more significant with the sample dataset having a smaller sampling ratio (e.g.,
SampleSpritzer).

Although the user samples tend to cover active users, we expect that the cover of
low-frequency users can be improved by extending the sampling period. In other words,
with the extension of the sampling period, the chance of discovering inactive users will
increase. To verify how fast the sample user set grows as the sampling period increases,
we first identified the 37,124 Singapore users who published tweets on the first day of
the complete dataset as the baseline user set. Then, we monitored the Twitter stream
API to see when these users were observed. Once a user’s tweets were spotted, we added
that user to the sample user set. We performed this monitoring using both the Spritzer
stream and the Gardenhose stream for 60 days and maintained two sample user sets,
respectively. Figure 5 plots the sizes of these sample user sets over the 60 days.

The sample user set from the Gardenhose stream grew quickly for the initial 10 days,
eventually reaching about 87% of the baseline user set. After that, it converged slowly
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Fig. 5. Total number of users observed over time.

Fig. 6. Average daily tweeting frequency distribution of the missed users.

to the baseline user set. After 60 days of monitoring, 35,174 Singapore users were
discovered, which covered about 95% of the baseline user set. However, the set of users
found in the Spritzer stream converged much more slowly due to the low sampling ratio.
After 60 days, it only had captured 23,036 users, which covered 62% of the baseline
user set. We conclude that extending the sampling period helps to improve the user
coverage, and a period of 10 days is enough for discovering most of the baseline users
(i.e., more than 85% of them) using the Gardenhose stream.

After 60 days of monitoring, there were still some users that had not been seen
in the Spritzer and Gardenhose samples. We examined the daily tweeting frequency
distributions of these missed users. The results are displayed in Figure 6. More than
90% of the missed users in both datasets tweeted infrequently (i.e., generated no more
than 10 tweets a day). Therefore, it is not surprising that these users did not appear
in any sample.

The daily tweeting frequency distribution of users not found in the Gardenhose
sample is significantly skewed toward the extremely low frequency users (i.e., the
users who tweet less than once a day, on average) compared with those of the Spritzer
sample. This result confirms that the higher sampling rate increases the chance of
discovering low-activity users and that only the extremely inactive users are missed.

However, there is a group of users who are very active (i.e., post more than 100
tweets daily) but do not appear in any sample. Although this group is small (less
than 1% of the missed users), it is perhaps surprising that these users do not appear
in either of our samples. We manually checked the profiles and the tweets of these
users. Most of these users are organizational users or marketers who periodically tweet
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Table IX. The Proportions of the Reciprocal and Directed User Mention Interactions Extracted
from the Complete and Sample Datasets Daily and for all the Studied Days (i.e., 1 month)

Daily Complete SampleGardenhose SampleSpritzer

statistics reciprocal directed reciprocal directed reciprocal directed
Daily avg. 11.44% 88.56% 7.18% 92.82% 4.10% 95.90%
Std. dev. 0.34% 0.34% 0.51% 0.51% 0.47% 0.47%
All days 10.67% 89.33% 9.25% 90.75% 5.73% 94.27%

URLs linking to external websites or product promotions. We believe that these users’
tweets are intentionally excluded from the sample stream, perhaps because Twitter
has identified them as robots, spammers, or other undesirable information producers.
This group of missing users may not be a problem for most researchers, because it is
a tiny group, and because the information that they provide may not represent “real”
user content. However, they might be important to researchers who study robot and
spammer behavior.

4.4. User Interactions

Another type of valuable information embedded in the Twitter data is the interactions
between users. There are two main types of interactions between Twitter users: men-
tion interactions and retweet interactions. A Twitter user mentions another user by
inserting “@username” into the body of his tweet. Mentions are usually used to signify
quotes from other users’ posts or to send direct messages to the users that are men-
tioned. A Twitter user retweets another user’s tweet by clicking the “Retweet” button
under that tweet. A retweet is a reposting of someone else’s tweet.

Mention and retweet interactions can be directed or reciprocal. Usually, a directed
interaction indicates an “informational relationship” between users because the infor-
mation only flows one way from a user to another, while a reciprocal interaction indi-
cates a “friendship relationship” because there is communication between users. In the
rest of the article, we use the term “interaction” and “relationship” interchangeably.

Mention and retweet information can be obtained from tweet metadata. They are
commonly used for the tasks such as understanding users’ roles in Twitter, identifying
key players, and modeling information diffusion. In this section, we extract the mention
and retweet relationships among the Singapore Twitter users from the complete and
sample datasets, respectively, and study the representativeness of the sample datasets
on these relationships. We first analyze the mention relationships. The same analysis
is performed on the retweet relationships as well.

We first examine whether the sample datasets represent the proportions of the re-
ciprocal and directed mention relationships in the complete dataset. Table IX provides
the results. Among all the Singapore Twitter users, about 11.4% of the mention rela-
tionships captured daily in the complete dataset are reciprocal, and 88.5% of them are
directed. However, in the Spritzer sample, 4% of the mention relationships captured are
reciprocal, and 96% of them are directed; while in the Gardenhose sample, the propor-
tions of the reciprocal and directed relationships are around 7% and 93%, respectively.
These observations tell us that the sample datasets tend to underestimate the amount
of the reciprocal relationships, and the underestimation of the Spritzer sample is more
serious than that of the Gardenhose sample. Again, we find that extending the sam-
pling period improves the estimation of the proportions of the reciprocal and directed
relationships. The Gardenhose sample for a 1-month period has similar proportions of
these relationships with the complete dataset.

Next, we study how many of the relationships in the complete dataset are cap-
tured by the sample datasets. We calculate the recall of the reciprocal, directed, and all
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Table X. The Recall of the User Mention Interactions Daily and for all the Studied Days (i.e., 1 month)

(a) Recall on all users
Daily SampleGardenhose SampleSpritzer

statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.181 0.109 0.173 0.021 0.007 0.020
Std. dev. 0.013 0.021 0.014 0.001 0.001 0.001
All days 0.244 0.208 0.240 0.040 0.020 0.038

(b) Recall on captured users
Daily SampleGardenhose SampleSpritzer

statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.213 0.143 0.206 0.064 0.053 0.063
Std. dev. 0.014 0.026 0.016 0.004 0.008 0.004
All days 0.283 0.263 0.281 0.095 0.086 0.095

relationships, and list the results in Table X(a). As observed from the table, the Spritzer
dataset and the Gardenhose dataset recover around 2% and 17% of all the daily inter-
actions among all the Singapore Twitter users, respectively. Given the tweet sampling
ratios of the two datasets (i.e., less than 1% and 10%), these Recall values are reason-
able. However, many applications that utilize the user interaction information need a
complete view of the user relationships, for example, to analyze the properties of the
user network, and study network based information diffusion. For these applications,
the sample datasets do not provide sufficient information.

Even though the recall of the mention relationships is increased by extending the
sampling period to 1 month, it is still far from complete; that is, in the best case,
the Gardenhose sample captures only 24% of all the interactions of the Singapore
Twitter users based on the 1-month period of sampling. To get the nearly complete user
relationships, much longer sampling time may be needed. However, the relationships
among the Twitter users are relatively dynamic. The information extracted from the
historical data may lose effectiveness. We also notice that the Recall of the reciprocal
relationships is generally smaller than the Recall of the directed relationships, which
indicates that reciprocal relationships are harder to capture from sample data.

The analysis described in Section 4.3 found that a sample dataset only covers a
proportion of the active users every day. To make our analysis more fair, we also
calculate the Recall of the interactions between these captured users; those results are
displayed in Table X(b). As observed, if we only focus on the captured users, the Recall
values of all the daily interactions of the Spritzer dataset and the Gardenhose dataset
increase to around 6% and 20%, respectively. By extending the sampling period to
1 month, the two datasets capture around 9.5% and 28% of all the mention interactions
between the captured users respectively. Since much of the interaction information
between users is missing from the sample data, researchers cannot construct a user
mention network from the sample data that has properties similar to the user network
constructed from the complete dataset.

In the final set of analysis, we study the intensity of the users being mentioned.
This piece of information is important for studying users’ role and locating key players
in Twitter. Usually, the popular users that are mentioned many times by many users
are more important than the less frequently mentioned users in the Twitter space. To
perform the analysis, we first extracted the frequencies of the users being mentioned
in the complete and the sample datasets respectively, and produced rankings of the
users based on these frequencies. Then the CTF ratio, PCC score, and SCC score
were calculated based on the extracted information to evaluate the effectiveness of
the sample datasets at preserving the user popularity information. The results are
presented in Table XI.
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Table XI. Estimation of User Popularity Based on the Frequency of Being Mentioned
Using the Data Daily and for All the Studied Days (i.e., 1 month)

Daily SampleGardenhose SampleSpritzer

statistic Sctf SPCC SSCC Sctf SPCC SSCC

Daily avg. 0.544 0.938 0.547 0.168 0.808 0.321
Std. dev. 0.048 0.025 0.021 0.014 0.040 0.018
All days 0.906 0.994 0.825 0.576 0.973 0.553

Fig. 7. Distribution of the frequency of users being mentioned based on the tweets of the 1-month period. γ

is the estimated power-law exponent. SEγ is the standard error of γ . R2 is the square error of the power-law
fitting.

One day of the 1% Spritzer sample contains tweets that mention the users who are
responsible for about 16% of the mentions in a day of the complete dataset (Table XI).
One day of the 10% Gardenhose sample contains tweets that mention the users who
are responsible for about 55% of the mentions in the complete dataset. The PCC scores
based on the daily samples are very high, that is, 0.8 and 0.93 for the Spritzer and
Gardenhose samples, respectively, which indicates that the mention frequency of users
in the sample datasets is strongly correlated with the mention frequency in the com-
plete dataset. If a user is mentioned in the sample data, the frequency information is
relatively reliable. However, many of the users mentioned frequently in the complete
dataset are not observed in a 1-day sample.

Extending the sampling period to 1 month greatly improves the results. The CTF
ratios are greatly improved, especially for the Gardenhose sample (i.e., over 0.9). We
also find that the PCC score and the SCC score based on the extended sampling
period increase to 0.99 and 0.82, respectively, for the Gardenhose sample. Therefore,
by extending the sampling period, the Gardenhose sample successfully captures most
of the popular users and accurately predicts the users’ relative popularities in terms of
the frequency of being mentioned. Even though the CTF ratio of the Spritzer sample is
also improved to 0.57 by extending the sampling period, it is still at the risk of missing
many important users. Therefore, it is preferable to use the Gardenhose sample with
extended sampling period for studying the users’ role of popularity.

We also analyzed the user popularity distribution based on the frequency of being
mentioned using the data of 1-month period. The results are displayed in Figure 7.
We find that the user popularity distribution in the complete dataset approximates a
power-law distribution with the exponent of –1.5977. The user popularity distributions
of the sample datasets preserve the power-law property but with smaller exponents;
thus, they overestimate the proportions of the less popular users. Again, we find that the
user popularity distribution in the Gardenhose sample is more similar to the original
distribution comparing with that in the Spritzer sample.

We performed exactly the same analysis on the retweet interactions. Despite varia-
tions in the numbers and details, the results show similar trends as the results based
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on the mention interactions. All the observations made with the mention interactions
in this section apply to the retweet interactions. The detailed results are provided in
the Appendix.

5. CONCLUSIONS

This article provides a descriptive study of Twitter data samples obtained from the
Twitter stream API with two different access priorities (i.e., Spritzer and Gardenhose).
These two data streams are data sources for a variety of research and commercial
activities. By comparing the sample data with the corresponding complete dataset
from different perspectives, we explore the nature of the sample data, its biases, and
how well it represents the complete data stream. Our results provide insights about the
sample data obtained from the Twitter stream API and provide incentives for people
to use or not to use them for their research.

We find that the Twitter stream API with the Spritzer and Gardenhose access prior-
ities provides samples of the entire public tweets with actual sampling ratios around
0.95% and 9.6%, respectively. The sample datasets truthfully reflect the daily and
hourly activity patterns of the Twitter users in the complete dataset. Moreover, the
sample datasets capture the approximate power-law property of the user tweeting
frequency distribution in the complete dataset but with smaller exponents. In other
words, the sample datasets preserve the same scaling behavior of the user tweeting
frequency distribution with the complete dataset, but tend to overestimate the propor-
tions of low-frequency users. The overestimation is more serious when the sampling
ratio is small. These observations indicate that the sample datasets, even with very
small sampling ratios such as the Spritzer stream (i.e., 0.95%), are good for studying
Twitter user activity patterns in general. However, researchers should be careful about
the overestimation of the low-frequency users when trying to analyze users based on
their activity levels (i.e., tweeting frequencies), and if possible, use a larger sample
(e.g., Gardenhose) to reduce the estimation error.

Even with a very small sampling ratio (i.e., 0.95%), the sample datasets are able
to capture certain important tweet contents (e.g., text terms and URL domains) and
preserve the relative importance (i.e., frequency of appearance) of the content terms.
Our work supports the viability of using sample datasets for research that analyzes
tweet contents for tasks such as event detection, sentiment analysis, and tweet sum-
marization. For some other types of content (e.g., hashtags), the small Spritzer sample
is not adequate to preserve accurate information, and a larger Gardenhose sample is
needed. However, for the content entities like URLs, of which the appearances in the
tweets are temporal (e.g., only appears once or a few times), the importance of the
terms is not reinforced by the recurrence. In this case, the sample datasets may only
capture small portions of the data and may miss lots of crucial information.

In terms of the coverage of users, the sample datasets provide good coverage of active
users but lower coverage of low-frequency users, as one might expect. We find that
extending the sampling period or increasing the sampling ratio both help to improve
the user coverage. By carefully examining the users that are difficult to sample, we find
that the majority of them are extremely inactive with very low average daily tweeting
frequency (e.g., post less than 1 tweet a day). A small proportion of unsampled users
are highly active, but probably spammers that Twitter deliberatly excludes. For the
tasks of studying the general Twitter user base, these two types of users are the least
interesting because the extremely low-activity users hardly contribute anything to
Twitter, and the spammers most likely only generate noise information. Therefore, the
Twitter stream API can be used for collecting representative Twitter users.

Finally, we find that due to the low sampling ratios on tweets, the sample datasets
cover only small proportions of the user interactions (i.e., mentions and retweets)
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embedded in the tweets. For example, in the best case, the Gardenhose sample captures
around 28% and 34% of the mention and retweet relationships between the captured
users in a 1-month sample of data. The sample datasets do not provide a complete
view of the user interaction network, thus are unsuitable for tasks that study the user
network properties and information diffusion. However, for the tasks which study the
users’ popularities based on their frequencies of being mentioned or retweeted, the
Gardenhose sample for a 1-month period provides relatively accurate information.

In general, the Twitter data samples obtained via the Twitter stream API preserve
enough information for the research or applications conducted based on the general
tweet or content statistics, such as user activity pattern characterization, event de-
tection, sentiment analysis, and tweet summarization. They may also be useful for
analyzing the Twitter user base and users’ popularity. However, they do not provide
the complete view of the user interaction network for tasks such as user network
analysis and information diffusion modeling.

Although our results provide new information about the quality of Twitter data
streams, they are limited by the scope of the datasets, which were collected based on a
set of Singapore Twitter users. Even though our work focuses on general patterns and
metrics that are not population specific, analysis of a different user population might
lead to different conclusions. We believe that our observations about the Spritzer and
Gardenhose samples will apply to other populations; however, this remains an open
question.

We notice that the Spritze and Gardenhose samples have many characteristics that
are similar to what people could expect from random samples (e.g., user activity pattern,
retweet ratio, and tweeting frequency distribution). However, we could not conclude
that these samples are truly random samples because we have observed that the public
tweets from certain active users are excluded from the samples presumably due to their
suspected spam behavior. We think it is an interesting problem for the future works
to compare the Twitter Spritzer and Gardenhose samples with some truly random
samples.

We also note that the sample datasets obtained from the Twitter Stream API are
sampled sets of tweets. Although we can extract the user IDs and interaction infor-
mation from tweet data, tweets do not contain the “follower” and “friend” relationship
information declared by users, which is important metadata. It is an interesting open
question whether these relationships can be inferred from tweets and the user inter-
action information that is available in sample data streams.

APPENDIX

This appendix provides the detailed results from analyzing retweet interactions in
terms of the proportions of reciprocal and directed interactions, the Recall of interac-
tions, and user popularity. Observations can be made from these data that are similar
to observations made in Section 4.4 when studying user mention interactions.

Table XII. The Proportions of the Reciprocal and Directed User Retweet Interactions Extracted
from the Complete and Sample Datasets Daily and for All the Studied Days (i.e., 1 month)

Daily Complete SampleGardenhose SampleSpritzer

statistic reciprocal directed reciprocal directed reciprocal directed
Daily avg. 16.71% 83.29% 6.57% 93.42% 1.42% 98.58%
Std. dev. 0.46% 0.46% 0.99% 0.99% 0.41% 0.41%
All days 18.28% 81.72% 8.17% 88.75% 4.32% 95.68%
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Table XIII. The Recall of User Retweet Interactions Daily and for All the Studied Days (i.e., 1 month)

(a) Recall on all users
Daily SampleGardenhose SampleSpritzer

statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.229 0.081 0.204 0.028 0.002 0.023
Std. dev. 0.021 0.021 0.021 0.001 0.001 0.001
All days 0.332 0.188 0.306 0.059 0.012 0.050

(b) Recall on captured users
Daily SampleGardenhose SampleSpritzer

statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.271 0.110 0.247 0.088 0.025 0.084
Std. dev. 0.023 0.026 0.023 0.005 0.009 0.006
All days 0.381 0.204 0.342 0.138 0.061 0.131

Table XIV. Estimation of User Popularity Based on the Frequency of Being
Retweeted Using the Data Daily and for All the Studied Days (i.e., 1 month)

Daily SampleGardenhose SampleSpritzer

statistic Sctf SPCC SSCC Sctf SPCC SSCC

Daily avg. 0.458 0.679 0.489 0.086 0.248 0.193
Std. dev. 0.049 0.038 0.022 0.005 0.072 0.033
All days 0.879 0.942 0.799 0.453 0.703 0.484

Fig. 8. Distribution of the frequency of users being retweeted based on the tweets of the 1-month period. γ

is the estimated power-law exponent. SEγ is the standard error of γ . R2 is the square error of the power-law
fitting.
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