
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2015

Beyond Support and Confidence: Exploring
Interestingness Measures for Rule-based
Specification Mining
Bui Tien Duy LE
Singapore Management University, btdle.2012@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1109/SANER.2015.7081843

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LE, Bui Tien Duy and David LO. Beyond Support and Confidence: Exploring Interestingness Measures for Rule-based Specification
Mining. (2015). 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER): March 2-6,
Montréal: Proceedings. 331-340. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2862

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SANER.2015.7081843
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Beyond Support and Confidence: Exploring
Interestingness Measures for Rule-Based

Specification Mining
Tien-Duy B. Le and David Lo

School of Information Systems
Singapore Management University, Singapore

{btdle.2012,davidlo}@smu.edu.sg

Abstract—Numerous rule-based specification mining ap-
proaches have been proposed in the literature. Many of these
approaches analyze a set of execution traces to discover interest-
ing usage rules, e.g., whenever lock() is invoked, eventually
unlock() is invoked. These techniques often generate and
enumerate a set of candidate rules and compute some inter-
estingness scores. Rules whose interestingness scores are above
a certain threshold would then be output. In past studies, two
measures, namely support and confidence, which are well-known
measures, are often used to compute these scores. However, aside
from these two, many other interestingness measures have been
proposed. It is thus unclear if support and confidence are the best
interestingness measures for specification mining. In this work,
we perform an empirical study that investigates the utility of
38 interestingness measures in recovering correct specifications
of classes from Java libraries. We used a ground truth dataset
consisting of 683 rules and recorded execution traces that are
produced when we run the DaCapo test suite. We apply 38
different interestingness measures to identify correct rules from a
pool of candidate rules. Our study highlights that many measures
are on par to support and confidence. Some of the measures
are even better than support or confidence and at least one
of the measures is statistically significantly better than the two
measures. We also find that compositions of several measures with
support statistically significantly outperform the composition of
support and confidence. Our findings highlight the need to look
beyond standard support and confidence to find interesting rules.

I. INTRODUCTION

Specification mining, a term first coined by Ammons
et al., refers to “a machine learning approach to discov-
ering formal specifications of the protocol the code must
obey when interacting with an application program inter-
face” [2]. One popular specification-mining family is rule-
based specification mining algorithms that express a protocol
as a set of rules, e.g., “whenever IoAcquireRemoveLock
is called, IoReleaseRemoveLock must eventually be
called”, “whenever File.read() is called, File.open()
must have been called before”, etc. Dwyer et al. refer to these
rules as response and precedence patterns, and many of the
properties for model checking are instances of these rules [8].
These rules have also been used to characterize many of the
protocols that Windows drivers need to adhere [1]. Since these
rules specify temporal orderings of events (i.e., method calls),
they are often referred to as temporal rules [37], [21], [19],

[18]. In this work, we focus on rule-based specification mining
algorithms that extract rules from a set of execution traces.

Many existing rule-based specification mining algorithms
work by traversing a search space of candidate rules and
evaluating the likelihood of each rule to be true based on
some interestingness measures [37], [29], [19], [21], [33].
Two measures namely support, which measures the number
of times a candidate rule is satisfied in the execution traces,
and confidence, which measures how likely the post-condition
of a rule is followed, when its pre-condition occurred in an
execution trace are often used [37], [29], [19], [21]. Support
and confidence have also been used in many other software
engineering studies not limited to the identification of temporal
rules, e.g., [16], [17].

Although support and confidence have often been used as
interestingness measures for rule-based specification mining,
the fact is the number of false positives (i.e., wrongly inferred
specifications) remains high. Thummalapenta et al. report that
the number of false positives of the inferred specifications can
go as high as 65% [33]. In fact, support and confidence are
often not able to differentiate between correct specifications
from false positives. For many cases, false positives share
the same support and confidence scores as correct specifi-
cations. Interestingly, the data mining and machine learning
community has proposed many other interestingness measures,
aside from support and confidence, to differentiate between
interesting domain concepts, expressed as rules, which are
supported by a dataset, from spurious rules [12]. Some of
these measures, e.g., odds ratio, are better accepted, in various
other communities, e.g., in medicine, as compared to support
and confidence [5], [23], [24], [31], [14]. It is possible that
some of these measures are better than support or confidence
in identifying correct rules. Unfortunately, so far, there have
not been any studies that investigate which of the measures
are better than others for specification mining. Thus, there is
a need to discover if some of these interestingness measures
also perform better than support and confidence for rule-based
specification mining.

In this work, we aim to address the above mentioned
opportunity and need, by performing an empirical study on the
utility of these measures for rule-based specification mining.
We would like to study whether any of these measures can

ppyeo
Typewritten Text
Published in 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER): March 2-6, Montréal: Proceedings. https://doi.org/10.1109/SANER.2015.7081843

perform as well or even better than the standard support and
confidence measures. We plug each of the 38 interestingness
measures to a simple rule-based specification mining tool
and investigate the effectiveness of each measure. To perform
the study, we implement a rule-based specification mining
tool, that extracts rules whose pre- and post-conditions are
only composed of one event (i.e., method call) (e.g., the
three examples that are presented earlier). Our algorithm
generalizes past specification mining algorithms, in particular
the algorithm by Yang et al. [37], to support different kinds of
interestingness measures. Our tool enumerates the search space
of all rules whose pre- and post-conditions are composed of
a single event and for each evaluate its score based on each
of the 38 interestingness measures. Using a measure, we get
a ranked list of rules based on their assigned scores. We then
evaluate the effectiveness of each of the measures based on its
ability to rank correct rules earlier in the list. We use correct
rules at N (CR@N) to measure effectiveness.

Our empirical study finds that there are 7 measures that
are better than confidence, and 11 measures that are bet-
ter than support. We also perform statistical tests to see
if the differences are significant. Our tests find that odds
ratio is statistically significantly better than both confidence
and support. We also combine support with various interest-
ingness measures and find that the composition of support
and confidence are outperformed by other compositions. The
composition of support and odds ratio performs the best
and statistically significantly outperforms the composition of
support and confidence for a number of settings.

The contributions of this work are as follows:
1) Our work is the first work that investigates the effective-

ness of various interestingness measures for rule-based
specification mining.

2) We highlight that support and confidence are not the
best among 38 interestingness measures. There are more
effective interesting measures, which improves CR@N
scores of support and confidence by up to 23.08% and
18.52%, respectively. We have performed statistical tests
and highlight that odds ratio is a statistically significantly
better measure as compared to support and confidence.

3) We combine support with various interestingness mea-
sures including confidence. We find that confidence is
outperformed by odds ratio and leverage when combined
with support.

The structure of the remainder of this paper is as follows.
In Section II, we briefly introduce background information
on rule-based specification mining and existing interestingness
measures. In Section III, we describe our empirical study
methodology. We describe our experiment results in Sec-
tion IV. We discuss related work in Section V. We finally
conclude and mention future work in Section VI.

II. BACKGROUND

Temporal Rules. A temporal rule has the form of A → B,
where A and B are two series of events. A and B are

TABLE I
INTERESTINGNESS MEASURES - PART I

ID Interestingness Measure Formula
M1 Support P (AB)

M2 Confidence/Precision P (B | A)

M3 Coverage P (A)

M4 Prevalence P (B)

M5 Recall P (A | B)

M6 Specificity P (¬B | ¬A)

M7 Accuracy P (AB) + P (¬A¬B)

M8 Lift/Interest P (AB)
P (A)P (B)

M9 Leverage P (B | A)− P (A)P (B)

M10
Added Value/ Change
of Support P (B | A)− P (B)

M11 Relative Risk P (B|A)
P (B|¬A)

M12 Jaccard P (AB)
P (A)+P (B)−P (AB)

M13 Certainty Factor P (B|A)−P (B)
1−P (B)

M14 Odds Ratio P (AB)P (¬A¬B)
P (A¬B)P (¬BA)

M15 Yule’s Q P (AB)P (¬A¬B)−P (A¬B)P (¬AB)
P (AB)P (¬A¬B)+P (A¬B)P (¬AB)

M16 Yule’s Y
√

P (AB)P (¬A¬B)−
√

P (A¬B)P (¬AB)√
P (AB)P (¬A¬B)+

√
P (A¬B)P (¬AB)

M17 Klosgen

√
P (AB)×

max(P (B | A)− P (B), P (A | B)− P (A))

M18 Conviction P (A)P (¬B)
P (A¬B)

referred to as pre-condition and post-condition of the rule,
respectively. Temporal rules are used to specify the ordering
of events, where in our setting, each event corresponds to
a method invocation. For example, whenever a lock() is
called, eventually an unlock() is called (Resource Locking
Protocol) [19]. Temporal rules can express various constraints
on how an API should be used. However, it is costly to
manually extract temporal rules from software programs.
Therefore, many temporal rule mining techniques have been
proposed, e.g., [37], [19]. These studies often use Support, and
Confidence as measures to filter uninteresting temporal rules.
In our paper, we are interested in two-event temporal rules,
i.e., rules whose pre-condition and post-condition consist of
one event each. We leave three-or-more-event temporal rules
for a future work.

Aside from standard temporal rules which are forward-
eventually rules, we are also interested in backward-eventually
rules, c.f., [21]. These two classes correspond to the re-
sponse and precedence patterns of Dwyer et al. [8]. Forward-
eventually rules have a form of A → B, and its meaning is
that any occurrence of A has to be eventually followed by an
occurrence of B. For example, the rule openfile→ closefile
means that any invocation of openfile must be followed by
closefile eventually. On the other hand, backward-eventually
rules have form of B ← A, and its meaning is that any

Fig. 1. Study Workflow

occurrence of A has to be preceded by an occurrence of B.
For example, the rule init← foo means init must be called
before foo. For a backward-eventually rule B ← A, A is the
pre-condition of the rule and B is the post-condition of the
rule. In this work, our mining algorithm extracts both forward-
eventually and backward-eventually rules.

Interestingness Measures. Past rule-based specification min-
ing works, e.g., [37], [16], [19], [21], [20], [9], often use or
adapt Support and Confidence measures from the data mining
community to differentiate interesting from uninteresting rules.
Aside from these two, there are other measures of interest-
ingness that have been proposed in the statistics, machine
learning, and data mining communities.

Recently, Geng et al. [12] write a comprehensive survey
on interestingness measures and they tabulate many measures
including Support and Confidence. Tables I and II show the
formulas of 38 measures. These measures are defined based
on probabilities and the output of each of these measures
corresponds to the interestingness of a rule consisting of two
parts A and B, where A is the pre-condition and B is the post-
condition of the rule [12]. In Tables I and II, P (A) denotes the
probability of the pre-condition A to happen, P (B) denotes
the probability of the post-condition B to happen, and so on.
The other symbols follow standard probability notations. For
example, support is defined as the probability of A and B
to happen together (i.e., the proportion of instances where
the pre-condition A is followed by the post-condition B).
Confidence is defined as the probability of B given A (i.e., the
proportion of instances where the post-condition B happens
among instances where the pre-condition A happens).

III. STUDY APPROACH

Figure 1 shows a workflow of our study. Our workflow
takes as input JDK source code, a program benchmark, a
list of interestingness measures, and a set of ground truth
specifications. The purpose of our study is to find the best
interestingness measures for specification mining. To achieve

TABLE II
INTERESTINGNESS MEASURES - PART II

ID Interestingness Measure Formula

M19

Interestingness
Weighting

(
P (AB)

P (A)P (B)
)k − 1)× P (AB)m

Dependency (We assume k = 2 and m = 2)

M20 Collective Strength

P (AB)+P (¬B|¬A)
P (A)P (B)+P (¬A)P (¬B)

×
1−P (A)P (B)−P (¬A)P (¬B)

1−P (AB)−P (¬B|¬A)

M21 Laplace Correction N(AB)+1
N(A)+2

M22 Gini Index
P (A)× (P (B | A)2 + P (¬B | A)2)+

P (¬A)× (P (B | ¬A)2 + P (¬B | ¬A)2)
−P (B)2 − P (¬B)2

M23
Goodman and
Kruskal

∑
i
maxj P (AiBj)+

∑
j
maxi P (AiBj)

2−maxi P (Ai)−maxj P (Bj)

− maxi P (Ai)+maxj P (Bj)

2−maxi P (Ai)−maxj P (Bj)

M24
Normalized Mutual
Information

∑
i

∑
j
P (AiBj)×log2

P (AiBj)

P (Ai)P (Bj)

(−
∑

i
P (Ai) log2 P (Ai))

M25 J-Measure P (AB) log
P (B|A)
P (B)

+P (A¬B) log
P (¬B|A)
P (¬B)

M26 One-Way Support P (B | A) log2
P (AB)

P (A)P (B)

M27 Two-Way Support P (AB) log2
P (AB)

P (A)P (B)

M28
Two-Way
Support Variation

P (AB) log2
P (AB)

P (A)P (B)

+P (A¬B) log2
P (A¬B)

P (A)P (¬B)

+P (¬AB) log2
P (¬AB)

P (¬A)P (B)

+P (¬A¬B) log2
P (¬A¬B)

P (¬A)P (¬B)

M29
φ − Coefficient (Linear
Correlation Coefficient)

P (AB)−P (A)P (B)√
P (A)P (B)P (¬A)P (¬B)

M30 Piatetsky-Shapiro P (AB)− P (A)P (B)

M31 Cosine P (AB)√
P (A)P (B)

M32 Loevinger 1− P (A)P (¬B)
P (A¬B)

M33 Information Gain log
P (AB)

P (A)P (B)

M34 Sebag-Schoenauer P (AB)
P (A¬B)

M35 Least Contradiction P (AB)−P (A¬B)
P (B)

M36 Odd Multiplier P (AB)P (¬B)
P (B)P (A¬B)

M37
Example and Counterexample
Rate

1− P (A¬B)
P (AB)

M38 Zhang P (AB)−P (A)P (B)
max(P (AB)P (¬B),P (B)P (A¬B))

that goal, we first instrument the source code of a number
of classes in the Java SDK library, and re-compile the SDK
library with the instrumented source code (Step 1). Next, we
run the input program benchmark to collect execution traces of
instrumented classes (Step 2). These execution traces are then
used as input to our mining algorithm (Step 3). The output
of the algorithm is a set of temporal rules for each target
class, and for each rule, the algorithm computes 38 interest-
ingness scores returned by the interestingness measures listed
in Tables I & II. In evaluation step, for each interestingness

measure and each target class, we sort the rules based on their
interestingness scores, and we compare the resultant ranked list
of temporal rules with the ground truth specifications (Step 4).
The purpose of this step is to estimate the effectiveness of each
interestingness measure using a suitable evaluation metric. In
the following sections, we discuss in detail each step in our
workflow.

A. Steps 1 & 2: Instrumentation Technique and Execution

Our instrumentation technique inserts new statements to
source code of target classes. These statements are placed
at entry points of public non-static methods. Every time an
instrumented method is invoked, these statements generate an
event and log it in a text file which stores the execution trace
corresponding to the class containing the method. Each logged
event in the text file contains the following information: the
method name, the location of the method in the source code,
and the identifier of the thread that executes the method.

Table III shows a list of target Java classes and interfaces
that we want to instrument. For interfaces and abstract classes,
we instrument their sub-classes. After getting the traces, we
break the execution traces into smaller traces based on the
thread ID of each event. Hence, each of our final execution
traces contains method calls from the same thread. We apply
our instrumentation technique on the Java 6 implementation of
the target classes. For each class, we collect execution traces
by running the 14 Java programs in the DaCapo benchmark [4]
(9.12-bach release).1 These 14 Java programs include popular
medium-to-large-size programs such as: Eclipse, ANTLR,
HSQLDB, etc.

B. Step 3: Mining Algorithm

We implement a mining algorithm that generalizes past
specification mining algorithms, in particular the algorithm by
Yang et al. [37], to support different kinds of interestingness
measures. Our algorithm utilizes the concept of sliding win-
dows (c.f., [11]) to estimate various probabilities and these
probabilities are then used to compute the scores of the 38
interestingness measures shown in Tables I & II. Figure 2 and
Figure 3 are the pseudocode for mining forward-eventually
rules.

The algorithm in Figure 2 takes as input a program element
C which can be an interface, abstract, or concrete class, a set
of execution traces of C containing invocations of methods
defined in C, and a sliding window size W . The output of our
algorithm is a set of forward-eventually temporal rules with
38 interestingness scores computed using the interestingness
measures listed in Tables I & II. Lines #1 to #10 generate
the set of all possible two-event temporal rules, which are all
combinations of two different methods in C. From lines #11
to #25, it processes each of the input traces, one at a time. For
each trace, it traverses the trace and maintains a sliding win-
dow (Window) of size W . At each step, it slides Window one
event forward and updates sliding window counts listed in Ta-
ble IV. We create procedure UpdateSlidingWindowCounts

1http://www.dacapobench.org/

TABLE III
LIST OF INSTRUMENTED JAVA CLASSES & INTERFACES. THE SECOND

COLUMN STANDS FOR THE NUMBER OF INSTRUMENTED CLASSES
CORRESPONDING TO THE CLASS (CONCRETE OR ABSTRACT) OR

INTERFACE SPECIFIED IN THE FIRST COLUMN. THE THIRD COLUMN
INDICATES THE NUMBER OF INSTRUMENTED METHODS. THE LAST

COLUMN SPECIFIES THE NUMBER OF GROUND TRUTH TEMPORAL RULES
FOR EACH CLASS OR INTERFACE.

Class Name Instrumented # Ground
Classes # Methods Truths

java.net.DatagramSocket 1 31 58
java.net.MulticastSocket 2 22 30
java.net.Socket 1 43 83
java.net.URL 1 21 15
java.util.ArrayDeque 2 35 32
java.util.ArrayList 2 24 19
java.util.Collection 32 257 11
java.util.Deque 5 135 32
java.util.EnumMap 2 13 12
java.util.EnumSet 4 31 11
java.util.Formatter 1 11 12
java.util.HashMap 1 15 12
java.util.HashSet 3 14 11
java.util.Hashtable 1 18 15
java.util.IdentityHashMap 1 14 12
java.util.LinkedHashMap 2 19 12
java.util.LinkedHashSet 4 17 11
java.util.LinkedList 4 44 38
java.util.List 7 121 35
java.util.Map 13 161 12
java.util.NavigableMap 4 97 33
java.util.NavigableSet 3 69 25
java.util.PriorityQueue 3 20 16
java.util.Queue 15 157 15
java.util.Set 9 78 11
java.util.SortedMap 4 50 18
java.util.SortedSet 4 42 17
java.util.StringTokenizer 1 9 5
java.util.TreeMap 2 38 33
java.util.TreeSet 3 30 25
java.util.WeakHashMap 1 15 12
Total 138 1651 683

TABLE IV
NOTATIONS FOR SLIDING WINDOW COUNT

Notation Description
Nw(A) Number of sliding windows where A exists
Nw(¬A) Number of sliding windows where A does not exist
Nw(B) Number of sliding windows where B exists
Nw(¬B) Number of sliding windows where B does not exist
Nw(AB) Number of sliding windows where A is followed by

B
Nw(A¬B) Number of sliding windows where A exists, but B

does not exists + Number of sliding windows where
both A and B exist, but A is not followed by B

Nw(¬AB) Number of sliding windows where A does not exist,
but B exists

Nw(¬A¬B) Number of sliding windows where A does not exist,
and B does not exist

Nw Total number of sliding windows

to perform this task (Lines #18 and #23). Next, lines #26 to
#35 calculate probability values, which are estimated from the
sliding window counts. These probabilities can then be used
to compute the 38 interestingness scores. Line #33 stores the
scores which are computed using the interestingness measures.
Finally, line #36 returns the set of temporal rules along with
their interestingness scores.

The procedure in Figure 3 describes how we update the slid-
ing window counts. UpdateSlidingWindowCounts takes as
input the set of temporal rules R and the sliding window Q.
When the procedure is called, it processes the input set of
temporal rules, one at a time, and updates the appropriate
sliding window counts. For the sake of brevity, at line #2 it
assigns the pre-condition event and post-condition event of

Input: C: Target interface, abstract or concrete class
S: Set of execution traces of C
W : Sliding window size

Output: Temporal rules with interestingness scores
1 R={} // Set of all possible two-event rules
// Initialize R

2 foreach public non-static method m1 of C do
3 foreach public non-static method m2 of C do
4 if m1 6= m2 then

// r is a new two-event rule
5 r = new rule
6 r.pre← m1; r.post← m2

7 R← R ∪ {r}
8 end
9 end

10 end
11 foreach trace T ∈ S do
12 Window={} // sliding window
13 l← min(W, length(T))
14 for i← 1 to l do
15 Ti = ith event in T
16 Append event Ti to the end of Window // enqueue
17 end

// Update sliding window counts
18 UpdateSlidingWindowCounts(R,Window)
19 for i← l + 1 to length(T) do
20 Remove event at the beginning of Window // dequeue
21 Ti = ith event in T
22 Append event Ti to the end of Window // enqueue

// Update sliding window counts
23 UpdateSlidingWindowCounts(R,Window)
24 end
25 end
26 foreach rule r ∈ R do
27 A← r.pre;B ← r.post

28 r.P (A)←
r.Nw(A)

r.Nw
; r.P (¬A)←

r.Nw(¬A)

r.Nw

29 r.P (B)←
r.Nw(B)

r.Nw
; r.P (¬B)←

r.Nw(¬B)

r.Nw

30 r.P (AB)←
r.Nw(AB)

r.Nw
; r.P (¬AB)←

r.Nw(¬AB)

r.Nw

31 r.P (A¬B)←
r.Nw(A¬B)

r.Nw
; r.P (¬A¬B)←

r.Nw(¬A¬B)

r.Nw
32 for i← 1 to 38 do

// r.mi stores an interestingness score
computed using Mi in Tables I & II

33 r.mi ←Mi(r)
34 end
35 end
36 return R

Fig. 2. Mining Algorithm

rule r to variable A and B, respectively. From lines #3 to
#7, it checks if the pre-condition event exists in the sliding
window Q, and increases the appropriate count by one (Lines
#4 and #6). Similarly, lines #8 to #12 perform the same
operations for post-condition event. Lines #13 to #23 take
into account five cases to update four counts. These counts
are Nw(AB), Nw(¬AB), Nw(A¬B), and Nw(¬A¬B) in
Table IV. We consider two cases for Nw(A¬B) that is when
pre-condition event exists, but post-condition event does not
exist, and pre-condition event is not followed by post-condition
event. Finally, we increase the value of Nw by one at line #24,
which stores the total number of sliding windows which have
been processed so far.

Our mining algorithm is also capable of mining backward-
eventually rules. To mine backward-eventually rules, we just
have to reverse the order of events in each input execution trace

Input: R: Set of temporal rules
Q: Sliding window

1 foreach rule r ∈ R do
2 A← r.pre;B ← r.post
3 if A ∈ Q then
4 r.Nw(A)← r.Nw(A) + 1 // Update Nw(A)
5 else
6 r.Nw(¬A)← r.Nw(¬A) + 1 // Update Nw(¬A)
7 end
8 if B ∈ Q then
9 r.Nw(B)← r.Nw(B) + 1 // Update Nw(B)

10 else
11 r.Nw(¬B)← r.Nw(¬B) + 1 // Update Nw(¬B)
12 end
13 if A /∈ Q and B /∈ Q then

// A and B do not exist in Q
14 r.Nw(¬A¬B)← r.Nw(¬A¬B) + 1
15 else if A /∈ Q and B ∈ Q then

// A does not exist, but B exists in Q
16 r.Nw(¬AB)← r.Nw(¬AB) + 1
17 else if A ∈ Q and B /∈ Q then

// A exists, but B does exist in Q
18 r.Nw(A¬B)← r.Nw(A¬B) + 1
19 else if ∃1 ≤ i < j ≤W : Q[i] = A ∧Q[j] = B then

// A is followed by B in Q
20 r.Nw(AB)← r.Nw(AB) + 1
21 else

// A is not followed by B in Q
22 r.Nw(A¬B)← r.Nw(A¬B) + 1
23 end
24 r.Nw ← r.Nw + 1
25 end

Fig. 3. Procedure UpdateSlidingWindowCounts

before applying our algorithm, c.f. [18]. For each target class
or interface, we apply the mining algorithm twice to mine
forward-eventually and backward-eventually rules. Then, we
combine the two sets of rules into one for each target class or
interface. These combined sets are then input to the evaluation
step (step 4).

C. Step 4: Evaluation

In this sub-section, we first describe how we get the ground
truth specifications. Next, we describe the metric that we use
to evaluate the effectiveness of the 38 interestingness measures
for rule-based specification mining.

1) Ground Truth Specifications: Our ground truth speci-
fications are the set of two-event temporal rules including
forward-eventually and backward-eventually rules (see Section
II). Pradel et al. have formally documented specifications of
32 classes and interfaces in the Java library [27].2 However,
these specifications are in the format of finite state machines
where the transitions are labeled with method names. Thus,
we need to extract temporal rules from these state machines.

To find ground truth rules, we generate all possible 2-
event rules, enumerate each of them, and check if each rule
is satisfied by the corresponding Pradel et al.’s finite state
machine. To perform these checks, we use the model checker
SPIN [15]3. If the model checker returns “yes” for a rule,
that rule is added to the set of ground truth rules. We find
that one of the 32 classes whose specification is manually
documented by Pradel et al. satisfies no temporal rules – i.e.,

2http://mp.binaervarianz.de/icsm2010/index.html
3http://spinroot.com/spin/whatispin.html

there is no temporal constraint that governs the ordering in
which the methods defined in the class need to be called. We
have manually checked this case and find that it is indeed
the case that the methods in the class can be used without
any constraints. We omit this class and thus end up with 31
classes.

Ground truth rules are of the following formats:
〈a〉 → 〈b〉 (forward-eventually rules) or 〈a〉 ← 〈b〉
(backward-eventually rules), where a and b correspond
to method calls. For example, java.net.Socket.connect →
java.net.Socket.close is forward-eventually rule, which means
that when java.net.Socket.connect is called, eventually
java.net.Socket.close must be called. Another example is
java.util.List.〈init〉 ← java.util.List.add, which is a backward-
eventually rule. This rule means that the constructor of
java.util.List has to be called before the invocation of
java.util.List.add. Overall, we extract 683 ground truth tem-
poral rules from 31 Java SDK library’s classes and interfaces
(see Table III, last column).

2) Evaluation Metric: We use the interestingness measure
scores to rank the candidate rules. A more effective inter-
estingness measure will rank correct rules (i.e., rules that
are included in the ground truth) higher in the ranked list
of rules. To find the most effective interestingness measures,
we use correct rules at N (CR@N), which is defined as the
number of correct rules that are identified among the first N
sorted candidate rules returned by an interesting measure, as an
evaluation metric. In other software engineering studies (e.g.,
bug triaging and bug localization), this metric has also been
referred to as accuracy@N (e.g., [32]) and Hit@N (e.g., [34]).

IV. EXPERIMENTS & ANALYSIS

In this section, we first describe the set of research questions
that we are interested in. Next we describe our experiment
results which answer these research questions.

A. Research Questions

To evaluate the interestingness measures, we analyze the
following research questions:

Research Question 1 How effective are the interestingness
measures for rule-based specification mining? There are many
interestingness measures proposed in the literature, however
only two of them have been used for specification mining.
Are the other 36 measures equally effective for specification
mining? To answer this question, we measure the CR@N
scores of the 38 measures.

To get the CR@N scores, we follow the workflow
presented in Section III. After collecting execution traces,
we apply the mining algorithm presented in Section III-B
with sliding window size (i.e., W) set to 5, for each of the
31 classes. The output is a set of rules for each class with
their interestingness scores. For each of the 31 classes, we
then compute CR@N (N=35) scores following the details
presented in Section III-C. We take the summation of these
CR@N scores, denoted as ΣCR@N , as proxies of an

interestingness measure’s effectiveness.

Research Question 2 Which interestingness measures are, if
any, significantly better than others?

In the previous research question, we have computed
CR@N scores as proxies of the measures’ effectiveness. Some
measures have higher CR@N scores than others. However, are
the differences significant? Can any of the 36 interestingness
measures significantly outperform support and confidence? To
answer this research question we perform a series of statistical
tests.

To check whether CR@N scores of one measure is
significantly different than CR@N scores of another measure,
we perform Wilcoxon signed-rank test, which is a well-
known non-parametric statistical test [36]. Since we perform
Wilcoxon signed-rank test multiple times (i.e., up to 703
times), to avoid getting a statistically significant result
by chance (i.e., multiple hypothesis problem), we utilize
an alpha correction approach. In particular, we perform
Benjamini–Hochberg procedure [3] to correct the multiple
hypothesis testing problem. Benjamini–Hochberg procedure
is “a more powerful” [22] and more recently proposed
method than the Bonferroni correction method [7], to
deal with multiple hypothesis testing problem. We utilize
the implementation of Wilcoxon signed-rank test in R
statistical package (version 3.0.2)4 and the implementation
of Benjamini–Hochberg procedure in the multtest package
(version 2.22) of Bioconductor project5. For this research
question, we use the same sliding window size of 5, and
top-N first candidate rules of 35 (i.e., W=5, N=35) where we
discover statistical evidences of the effectiveness of Support
and Confidence compared to other interestingness measures.

Research Question 3 What is the effect of varying the
value of N in CR@N formula on the effectiveness of the
interestingness measures?

In previous research question, we evaluate the effectiveness
of interesting measures by considering number of correct
rules in the first 35 candidate rules. In this research question,
we inspect the value of N ∈ {5, 10, . . . , 100}. For each
N , we calculate the ΣCR@N score corresponding to each
interestingness measure, and estimate the rankings of the
38 measures based on their ΣCR@N scores. Measures
with higher ΣCR@N scores are assigned lower ranks (i.e.,
measure with the highest ΣCR@N score is ranked first),
and measures with identical ΣCR@N scores are assigned to
the same rank. Subsequently, for each measure we compute
its average rank over the set of 20 values of N (i.e.,
N ∈ {5, 10, . . . , 100}). Interestingness measures are then
sorted in descending order of their average ranks. We analyze
the sorted list of interestingness measures to inspect the effect
of N in CR@N formula on their effectiveness.

Research Question 4 What is the effect of combining an
interestingness measure with another interestingness measure?

4http://www.r-project.org/
5http://www.bioconductor.org/packages/release/bioc/html/multtest.html

TABLE V
LIST OF INTERESTINGNESS MEASURES SORTED IN DESCENDING ORDER

OF THEIR ΣCR@35 SCORES. “R” = RANKS.
R ID Interestingness Measure ΣCR@35
1 M14 Odds Ratio 96
2 M9 Leverage 87
3 M22 Gini Index 85

4
M13 Certainty Factor 84
M18 Conviction 84
M25 J-Measure 84

7 M34 Sebag-Schoenauer 82

8

M10 Added Value/Change of Support 81
M2 Confidence/Precision 81
M37 Example and Counterexample Rate 81
M28 Two-Way Support Variation 81

12
M21 Laplace Correction 78
M26 One-Way Support 78
M1 Support 78

15 M12 Jaccard 76
16 M35 Least Contradiction 75
17 M24 Normalized Mutual Information 73
18 M31 Cosine 69

19 M17 Klosgen 68
M32 Loevinger 68

21 M27 Two-Way Support 65
22 M30 Piatetsky-Shapiro 63

23 M36 Odd Multiplier 62
M29 φ− Coefficient (Linear Correlation Coefficient) 62

25 M38 Zhang 61
26 M19 Interestingness Weighting Dependency 59

27 M33 Information Gain 53
M8 Lift/Interest 53

29 M5 Recall 50

30 M15 Yule’s Q 46
M16 Yule’s Y 46

32 M3 Coverage 45
33 M11 Relative Risk 42
34 M4 Prevalence 35
35 M20 Collective Strength 25
36 M7 Accuracy 24
37 M6 Specificity 21
38 M23 Goodman and Kruskal 20

Previous research questions evaluate the effectiveness of
each interestingness measure in isolation. However, previous
studies in temporal rule mining, e.g., [19], often combine Sup-
port and Confidence together to evaluate candidate temporal
rules. In this research question, we inspect the case when Sup-
port is combined with another interestingness measure in addi-
tion to Confidence. We select the best interestingness measure
identified in research question 3 and combine it with Support.
To combine an interestingness measure m with Support, we
first select top-N1 candidate rules returned by Support. Then,
we re-rank these N1 rules based on scores calculated by the
interestingness measure m. Finally, we compute CR@N2 of
the newly created ranked list to evaluate the effectiveness
of the combination between Support and m. We consider
N1 ∈ {100, 150, 200} which are large enough to capture most
of the correct rules, and N2 ∈ {10, 20, 30, 40, 50}.

B. Empirical Analysis

In this subsection, we present our experiment results which
answer the proposed research questions.

1) RQ1: Effectiveness of the Measures: Table V shows the
ΣCR@35 scores of the 38 interestingness measures. In the
table, we sort the measures based on their ΣCR@35. If two
measures share the same ΣCR@35 score, they are assigned
the same rank. From the table, we find that Odds Ratio (M14)
outperforms the other measures and it achieves the highest
ΣCR@35 score of 96. The second highest ΣCR@35 score is

achieved by Leverage (i.e., 87). Goodman and Kruskal has the
lowest ΣCR@35 score (i.e., 20).

Most importantly, we find that the two widely used in-
terestingness measures in many specification mining works
(i.e. Support and Confidence) are ranked 12th (ΣCR@35=78)
and 8th (ΣCR@35=81) in Table V, respectively. Comparing
the ΣCR@35 scores, Odds Ratio outperforms Support and
Confidence by 23.08% and 18.52%, respectively. Aside from
Confidence and Odds Ratio, 9 other measures outperform
Support by 3.85% to 11.54%. Aside from Odds Ratio, 6 other
measures outperform Confidence by 1.23% to 7.41%. These
results indicate that other interestingness measures, in addition
to Confidence and Support, can be utilized for specification
mining.

Odds Ratio and Leverage are the two best interestingness
measures and both of them outperform Support and Confi-
dence. Support and Confidence are biased towards events that
appear many times. If two events are unrelated but appear
many times, it is highly likely that these events randomly
occur in a window in a particular order many times. This
will result in the pair of events to achieve high Support and
Confidence scores albeit they are unrelated. Odds Ratio deals
with this weakness, by considering not only then number of
times the two events happens together (i.e., P (AB)) but also
the number of times an event happens and the other does not
(i.e., P (A¬B)) and the number of times both events do not
happen together (i.e., P (¬A¬B)). Leverage deals with this
weakness, by subtracting confidence (i.e., P (B | A)) with the
likelihood of two events to co-occur together by chance (i.e.,
P (A)P (B)).

2) RQ2: Significantly Better Measures: To answer this
research question, we perform a Wilcoxon signed-rank test at
a significance level of 0.05 for every interestingness measure
pair. The input to the Wilcoxon signed-rank test is two vectors
of CR@35 scores corresponding to the two measures in the
pair. Since we have 38 interestingness measures, we have to
run Wilcoxon signed-rank test 38×37

2 = 703 times. Neverthe-
less, conducting multiple hypothesis tests might trigger the
multiple comparison problem [30], [6]. Therefore, we apply
Benjamini–Hochberg procedure to adjust p-values output by
multiple Wilcoxon signed-rank tests [3]. For any pair, if the
adjusted p-value is less than 0.05, we conclude that the two
measures are significantly different in terms of their CR@35
scores. In total, we are able to identify 378 pairs whose
members are significantly different from each other. We refer
to such pairs as significant pairs.

To represent the results of our statistical tests compactly,
we create a partial order where each node is a measure and
each edge from node Mi to node Mj denotes that measure
Mi statistically significantly outperforms Mj (i.e., the p-
value output by Wilcoxon signed-rank test and adjusted by
Benjamini–Hochberg procedure is less than 0.05 as well as the
CR@35 score of Mi is greater than that of Mj). To simplify
the graph, we do not draw edges that can be inferred by
transitivity (i.e., we omit an edge from Mi to Mk if there
is an edge from Mi to Mj and there is another edge from Mj

Confidence/
Precision (M2)

G2

G1

G3 G4

G5Odds Ratio
(M14)

Support
(M1)

Two-Way
Support

Variation (M28)

Loevinger

Fig. 4. Partial order depicting the relationships among the top-30 interesting
measures. G1, G2, G3, G4, and G5 are groups of interestingness measures.
Table VI lists out members of each group.

TABLE VI
MEMBERS OF INTERESTINGNESS MEASURE GROUPS IN FIGURE 4
Group Members

G1
Information Gain (M33), Interestingness Weighting
Dependency (M19), Lift/Interest (M8), Recall (M5),
Yule’s Q (M15), Yule’s Y (M16)

G2

Cosine (M31), Klosgen (M17), Laplace Correction
(M21), Least Contradiction (M35), Odd Multiplier
(M36), φ−Coefficient (Linear Correlation Coefficient)
(M29), Piatetsky-Shapiro (M30), Two-Way Support
(M27), Zhang (M38)

G3
Example and Counterexample Rate (M37), Jaccard
(M12), Normalized Mutual Information (M24), Sebag-
Schoenauer (M34)

G4
Added Value/Change of Support (M10), Gini Index
(M22), J-Measure (M25), Leverage (M9), One-Way
Support (M26)

G5 Certainty Factor (M13), Conviction (M18)

to Mk.).
Figure 4 shows the partial order depicting the relationships

among the top-30 interestingness measures. In the graph, Odds
Ratio is one of a few measures whose in-degrees are zeros.
Among the represented measures, Odds Ratio, which has the
highest ΣCR@35 score, has significantly higher ΣCR@35
scores than 21 out of the top-30 measures including Confi-
dence and Support. This implies Odds Ratio is a good measure
for specification mining.

Measures in the equivalence classes share the same set
of measures that they statistically significantly outperform
and the same set of measures that statistically significantly
outperform them. The fact that some formulas are in the same
equivalence class may indicate semantic similarities among
them, especially if their CR@N scores are very similar. To
check this hypothesis, we look at similarities among formulas,
and find that formulas that are very similar to one another
(e.g., Yule’s Q and Yule’s Y, and Lift/Interest and Information
Gain) are in the same class and have very similar CR@N
scores. However, it is not necessarily the case that all pairs
of formulas in the same equivalence class are semantically
similar. Since they can be in the same class simply because
they perform almost equally well for the specification mining
tasks investigated in this work.

TABLE VII
LIST OF INTERESTINGNESS MEASURES SORTED IN ASCENDING ORDER OF

THEIR AVERAGE RANKS.
R ID Interestingness Measure Average Rank
1 M14 Odds Ratio 3.20
2 M9 Leverage 5.25
3 M2 Confidence/Precision 5.35

4 M37 Example and Counterexample Rate 5.50
M34 Sebag-Schoenauer 5.50

6 M21 Laplace Correction 6.85
7 M22 Gini Index 8.90
8 M1 Support 9.25
9 M12 Jaccard 12.60

10 M25 J-Measure 12.95
11 M35 Least Contradiction 13.10
12 M28 Two-Way Support Variation 13.25
13 M31 Cosine 14.30
14 M32 Loevinger 15.75

15 M13 Certainty Factor 16.10
M18 Conviction 16.10

17 M4 Prevalence 16.15
18 M26 One-Way Support 17.00
19 M10 Added Value/Change of Support 17.25
20 M24 Normalized Mutual Information 17.50
21 M27 Two-Way Support 18.85
22 M36 Odd Multiplier 20.90
23 M38 Zhang 21.00
24 M30 Piatetsky-Shapiro 21.65

25 M33 Information Gain 22.90
M8 Lift/Interest 22.90

27 M17 Klosgen 23.10
28 M19 Interestingness Weighting Dependency 23.80
29 M29 φ− Coefficient (Linear Correlation Coefficient) 24.50

30 M15 Yule’s Q 27.30
M16 Yule’s Y 27.30

32 M11 Relative Risk 29.55
33 M5 Recall 29.70
34 M3 Coverage 32.35
35 M20 Collective Strength 34.75
36 M7 Accuracy 35.30
37 M23 Goodman and Kruskal 35.95
38 M6 Specificity 37.00

3) RQ3: Effect of Cut-Point N : In this research question,
we inspect the effect of cut-point N by varying its value
from 5 to 100 with a step of 5 (i.e., N ∈ {5, 10, . . . , 100}).
We sort the interestingness measures based on their average
ranks over the set of 20 values of N . Table VII shows
the list of interestingness measures in ascending order of
their average ranks. From the table, Odds Ratio has the best
average rank of 3.20. Confidence (M2) achieves the third best
average rank of 5.25, whereas Support (M1) is at position
#8 (average rank of 9.25). Aside from Odds Ratio, Leverage
also outperforms Confidence. There are 5 other interestingness
measures aside from Odds Ratio and Confidence that outper-
form Support. Furthermore, using Wilcoxon signed-ranked test
and Benjamin–Hochberg procedure (at significance level of
0.05), we discover that Odds Ratio and Leverage statistically
significantly outperform Support.

4) RQ4: Effectiveness of Combined Measures: Table VIII
shows the evaluation results of comparing the combination
of M1 (Support) and M2 (Confidence), and the combinations
of M1 (Support) and Mi where Mi ∈ { M14 (Odds Ratio),
M9 (Leverage), M37 (Example and Counterexample Rate),
M34 (Sebag-Schoenauer)}. These four measures achieve the
best average ranks shown in Table VII. From Table VIII,
we find that Support and Odds Ratio together can identify
more correct rules than Support and Confidence in most cases

TABLE VIII
ΣCR@N2 SCORES OF THE COMBINATION BETWEEN Support (M1) AND
OTHER INTERESTINGNESS MEASURES INCLUDING Confidence (M2) AND

Odds Ratio (M14). “*” INDICATES THAT THE DIFFERENCE BETWEEN
Confidence, AND THE CORRESPONDING INTERESTINGNESS MEASURE,

WHEN COMBINED WITH Support IS STATISTICALLY SIGNIFICANT
(SIGNIFICANCE LEVEL = 0.05).

N1 N2
Support (M1) combines with

M2 M14 M9 M37 M34

100 10 20 31 26 20 20
100 20 45 56 46 43 43
100 30 63 82 68 63 63
100 40 92 104 91 92 92
100 50 108 114 106 108 108
150 10 25 37 29 25 25
150 20 49 62 53 47 47
150 30 71 81 71 71 71
150 40 95 95 96 95 96
150 50 109 118 112 109 109
200 10 24 37* 29 24 24
200 20 49 62 52 47 47
200 30 69 82* 73 69 69
200 40 93 100 92 93 94
200 50 107 114 114 107 107

(i.e., 14 out of 15 cases). For the remaining one case (i.e.,
N1 = 150 ∧ N2 = 40), they identify the same number of
correct rules. From the table, the combination of Example
& Counterexample Rate (M37), and Sebag-Schoenauer (M34)
with Support are comparable where their ΣCR@N scores are
identical in 13 out of 15 cases. We also perform Wilcoxon
signed rank test (at significance level of 0.05) and apply
Benjamini–Hochberg procedure to adjust p-values for multiple
hypothesis testing. We discover that Support and Odds Ratio
statistically significantly outperforms Support and Confidence
for the following settings: (N1 = 200 ∧ N2 = 10), (N1 =
200 ∧N2 = 30).
C. Threats to Validity

We have a few threats to validity that we need to ac-
knowledge. Threats to internal validity relate to errors in our
experiments. We have rechecked our experiments. Still there
could be errors that we did not notice. Threats to external
validity relate to the generalizability of our findings. We
have investigated 38 different measures and used 683 ground
truth specifications to evaluate them. We have also mined
specifications from the execution traces of 14 medium-large
projects from the DaCapo benchmark that capture how these
14 projects make use of java.util and java.net API classes.
Although the size of these API classes are small, the size of
the client applications that we run is rather large. The client
applications, which include Eclipse, Jython, Lucene, Tomcat,
and Xalan, are all medium-large projects. Admittedly, we
have only investigated the benefit of the various effectiveness
measures on inferring specifications for 31 Java SDK classes
using one specification mining algorithm. Also, admittedly, all
the 14 programs that we investigate in this work are written
in Java. In the future, we plan to reduce these threats further
by considering more ground truth specifications from more
APIs, more traces collected from more programs written in
various programming languages, and additional specification

mining algorithms. Threats to construct validity refer to the
suitability of our evaluation metric. We have used correct rules
at N (CR@N), Wilcoxon signed-rank test, and Benjamini–
Hochberg procedure. Since a better interestingness measure
should assign higher scores to correct than wrong rules,
CR@N that measures the number of correct rules in the top-
N rules with the highest scores is a suitable evaluation metric.
CR@N , which is also referred to as accuracy@N (e.g., [32])
or Hit@N (e.g., [34]), has been used as an evaluation metric in
many past software engineering studies that also produce a list
of results for developer inspection [32], [28], [34]. Wilcoxon
signed-rank test is a standard test proposed by the statistics
community and it has also been used in many past software
engineering studies [13]. Benjamini–Hochberg procedure is an
alpha-correction method used to deal with multiple hypothesis
testing problem [3].

V. RELATED WORK

Rule-Based Specification Mining. There is a number of stud-
ies that propose various techniques to extract rules from code
or execution traces. Li et al. extract rules from source code
methods by employing association rule mining technique [16].
They convert a method into a transaction, which is a set of
items where an item is a method invocation that appears in the
method body. These transactions are then input to association
rule mining which uses support and confidence to filter rules
that are deemed uninteresting. Yang et al. extract two-event
rules from execution traces containing logs of methods that are
called when an instrumented program is run [37]. To find these
two-event rules they consider the search space of all candidate
two-event rules and evaluate the interestingness of each of the
rules using the notion of satisfaction rate which is analogous
to confidence. They break a long trace into partitions and
compute the satisfaction rate of a rule by counting the number
of partitions where the rule holds divided by the total number
of partitions. Lo et al. extend Yang et al.’s work by mining
temporal rules of arbitrary lengths [19]. To make the approach
scales, they propose new search space pruning strategies to cut
the sub-search spaces containing uninteresting rules en-masse.
They also consider the notions of confidence and support to
measure the interestingness of rules.

Recently, a number of more advanced techniques have been
proposed to mine more complex rules. Lo et al. mine rules
enriched with quantification [21]. With quantification, users
can mine rules that specify data flow constraints between two
method invocations, e.g., the output of one method invocation
is the xth input of another method invocation. Lo et al. also
mine rules following the semantics of Live Sequence Charts
(LSCs) which are enriched with Daikon-style constraints to
serve as guards [20]. For all of the above studies, support and
confidence have been used as the interestingness measures.

Usages of Interestingness Measures. Many past studies
have demonstrated the utility of many of the interestingness
measures investigated in this study. Odds ratio is often used
in biomedical studies [5], [23]. It is often used to indicate the
odds of a particular event to occur (e.g., a health outcome)

after a particular medical treatment has been given or an
exposure to a particular substance [24], [31], [14]. Relative
risk has also been used in biomedical studies. For example,
Yusuf et al. have used relative risk to measure the effect of
taking a number of supplements (e.g., folic acid, B6, and
B12) on the risk of major cardiovascular events [38]. Fawcet
and Provost have used certainty factor to identify frauds by
analyzing user behavioral changes [10]. Yule’s Q and Yule’s
Y have often been used in social science [35], [25]. Weede uses
Yule’s Q to investigate the association between democracy
and war involvement [35]. Page and Shapiro use Yule’s Y to
investigate the association between public opinion and policy
in the United States [25]. Normalized mutual information has
been used in various image processing studies [26]. There
are many other studies that have used various interestingness
measures for various purposes. Due to page limitation, we do
not discuss them here.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate the effectiveness of 38 in-
terestingness measures for rule-based specification mining.
Only two of them, namely support and confidence, have been
used in past specification mining studies. Our study finds
that support and confidence are not the best measures among
the 38 interestingness measures; in terms of correct rules at
N (CR@N) scores, there are other interestingness measures
that outperform support and confidence by up to 23.08%
and 18.52%, respectively. We also find that odds ratio and
leverage outperform confidence when each of them is paired
with support. Each of the mined rules can be used as input
to a model checker or a lightweight verification tool to find
bugs, c.f., [33]. If many rules are false positives, there would
be many false positive warnings. On the other hand, more true
positive rules can translate to more real bugs being identified.
In this paper, we have shown that aside from support and
confidence, other interestingness measures like odds ratio can
be used to increase the number of true positives and reduce
the number of false positives when only the top N rules are
used for further analysis.

As future work, we plan to incorporate odds ratio to more
advanced rule-based specification mining solutions, e.g., those
that can mine rules with guards [20], etc. We also plan
to expand our empirical study to include specifications of
classes from other libraries and execution traces extracted from
additional client programs. Furthermore, each interestingness
measure captures different aspects of the interestingness of a
rule. Past studies have only used two interestingness measures
together (e.g., support and confidence). In a future work, we
plan to combine many more measures to form a composite
measure that can better differentiate correct from spurious
rules (i.e., false positives).

REFERENCES

[1] “Rules for WDM drivers,” http://msdn.microsoft.com/en-us/library/
windows/hardware/ff551714(v=vs.85).aspx (Last accessed: 20/01/2014).

[2] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” in
POPL, 2002.

[3] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 289–300, 1995.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
dacapo benchmarks: java benchmarking development and analysis,” in
OOPSLA, 2006, pp. 169–190.

[5] J. Cornfield, “A method for estimating comparative rates from clinical
data. applications to cancer of the lung, breast, and cervix,” Journal of
the National Cancer Institute, vol. 11, pp. 1269–1275, 1951.

[6] S. Dudoit, J. P. Shaffer, and J. C. Boldrick, “Multiple hypothesis testing
in microarray experiments,” Statistical Science, pp. 71–103, 2003.

[7] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE, 1999, pp. 411–420.

[9] D. Fahland, D. Lo, and S. Maoz, “Mining branching-time scenarios,” in
ASE, 2013.

[10] T. Fawcett and F. Provost, “Adaptive fraud detection,” Data mining and
knowledge discovery, vol. 1, no. 3, pp. 291–316, 1997.

[11] M. Gabel and Z. Su, “Online inference and enforcement of temporal
properties,” in ICSE, 2010, pp. 15–24.

[12] L. Geng and H. J. Hamilton, “Interestingness measures for data mining:
A survey,” ACM Comput. Surv., vol. 38, no. 3, Sep. 2006.

[13] M. Gethers, B. Dit, H. H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in ICSE, 2012, pp. 430–440.

[14] J. Henning, D. U. Pfeiffer et al., “Risk factors and characteristics of h5n1
highly pathogenic avian influenza (hpai) post-vaccination outbreaks,”
Veterinary research, 2009.

[15] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2003.

[16] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” in
ESEC/SIGSOFT FSE, 2005.

[17] V. B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” in FSE, 2005.

[18] D. Lo, S. Khoo, and C. Liu, “Mining past-time temporal rules from
execution traces,” in WODA, 2008, pp. 50–56.

[19] D. Lo, S.-C. Khoo, and C. Liu, “Mining temporal rules for software
maintenance,” Journal of Software Maintenance, vol. 20, no. 4, 2008.

[20] D. Lo and S. Maoz, “Scenario-based and value-based specification
mining: better together,” Autom. Softw. Eng., vol. 19, no. 4, 2012.

[21] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani, “Mining
quantified temporal rules: Formalism, algorithms, and evaluation,” Sci.
Comput. Program., 2012.

[22] J. H. McDonald, Handbook of Biological Statistics, 2009, vol. 2.
[23] M. L. McHugh, “The odds ratio: calculation, usage, and interpretation,”

Biochemia Medica, vol. 19, no. 2, pp. 120–126, 2009.
[24] C. Mutegi, H. Ngugi, S. Hendriks, and R. Jones, “Prevalence and factors

associated with aflatoxin contamination of peanuts from western kenya,”
International journal of food microbiology, vol. 130, no. 1, 2009.

[25] B. I. Page and R. Y. Shapiro, “Effects of public opinion on policy,” The
American Political Science Review, pp. 175–190, 1983.

[26] J. P. Pluim, J. A. Maintz, and M. A. Viergever, “Mutual-information-
based registration of medical images: a survey,” IEEE Transactions on
Medical Imaging.

[27] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evaluation
of specification miners based on finite state machines,” in ICSM, 2010.

[28] S. Rao and A. C. Kak, “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models,”
in MSR, 2011.

[29] H. Safyallah and K. Sartipi, “Dynamic analysis of software systems
using execution pattern mining,” in ICPC, 2006, pp. 84–88.

[30] J. P. Shaffer, “Multiple hypothesis testing,” Annual review of psychology,
1995.

[31] M. J. Stampfer, “Welding occupations and mortality from parkinson’s
disease and other neurodegenerative diseases among united states men,
1985–1999,” Journal of occupational and environmental hygiene, 2009.

[32] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in SIGSOFT FSE, 2011.

[33] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in ICSE, 2009, pp. 496–506.

[34] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in ICPC, 2014.

[35] E. Weede, “Some simple calculations on democracy and war involve-
ment,” Journal of Peace Research, pp. 377–383, 1992.

[36] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[37] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining temporal api rules from imperfect traces,” in ICSE, May 2006.

[38] S. Yusuf, P. Sleight, J. Pogue, J. Bosch, R. Davies, and G. Dagenais,
“Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on
cardiovascular events in high-risk patients. the heart outcomes prevention
evaluation study investigators.” The New England journal of medicine,
vol. 342, no. 3, pp. 145–153, 2000.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff551714(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff551714(v=vs.85).aspx

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2015

	Beyond Support and Confidence: Exploring Interestingness Measures for Rule-based Specification Mining
	Bui Tien Duy LE
	David LO
	Citation

	tmp.1521009913.pdf.C_Mi9

