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A public key trace and revoke scheme combines the functionality of broadcast encryption 
with the capability of traitor tracing. In Asiacrypt 2003, Kim, Hwang and Lee proposed a 
public key trace and revoke scheme (referred to as KHL scheme), and gave the security 
proof to support that their scheme is z-resilient against adaptive chosen-ciphertext attacks, 
in which the adversary is allowed to adaptively issue decryption queries as well as 
adaptively corrupt up to z users. In the passed ten years, KHL scheme has been believed 
as one of the most efficient public key trace and revoke schemes with z-resilience against 
adaptive chosen-ciphertext attacks under the well-studied DDH assumption. However, in this 
paper, by giving a concrete attack, we indicate that KHL scheme is actually not secure 
against adaptive chosen-ciphertexts, even without corruption of any user. We then identify 
the flaws in the security proof for KHL-scheme, and discuss the consequences of the attack.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A broadcast encryption system [1,2] allows the sender to encrypt a message for a dynamically changing set S of au-
thorized users. Any user in S can use his private key to decrypt the broadcast, while users outside of S cannot obtain any 
information about the contents of the broadcast. Broadcast encryption has found many practical applications, such as pay-
TV, satellite-based commerce, and distribution of copyrighted materials, etc. In the past two decades, broadcast encryption 
has attracted great interests, and many broadcast encryption schemes have been proposed, e.g. [3–8].

The risk for broadcast encryption here is that users may collude and produce a pirate decoder, which is not registered 
with the authority but can decrypt the broadcast. Traitor tracing schemes, introduced in [9], enable the authority to trace 
users who collude to produce the pirate decoder.

Trace and revoke systems [10,11] provide the functionalities of both broadcast encryption and traitor tracing. When 
pirate decoding happens, a traitor-tracing algorithm [12,13] is able to identify at least one user who has colluded to build 
the pirate decoder. After the traitors are traced, or some users’ private keys are compromised, the system will revoke them 
by excluding them from the receiving set. Some trace and revoke systems concentrate on the centralized setting, where 
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only the trusted center (i.e., the entity who generates all the secret keys) can send messages to the receivers. In contrast, in 
public key setting, the center also generates a fixed public key which allows any entity to play the role of the sender.

In PKC 2003, Dodis and Fazio [14] proposed the first public key trace and revoke scheme (referred to as DF scheme) 
with z-resilience against adaptive chosen-ciphertext attacks (CCA2), where the adversary is allowed to corrupt up to z users 
and adaptively issue decryption queries. In Asiacrypt 2003, based on DF scheme, Kim, Hwang and Lee proposed an efficient 
public key trace and revoke scheme, and gave a security proof to claim that their scheme is z-resilient against CCA2 attacks, 
under the decisional Diffie–Hellman (DDH) assumption. In some sense, KHL-scheme can be viewed as a simplified version 
of DF scheme, and enjoys much better efficiency advantages over DF scheme. In the passed ten years, KHL scheme has been 
viewed as one of the most efficient public key trace and revoke schemes with CCA2 security under the well-studied DDH 
assumption.

In this paper, we shall make a careful observation on KHL scheme. By giving a concrete attack, we indicate that KHL-
scheme is actually not CCA2 secure even without corruption of any user. We then identify the flaws in the security proof of 
KHL-scheme, and discuss the consequences of the attack.

2. Framework of broadcast encryption

In [15], Kim et al. merely concentrated on the construction of public key broadcast encryption scheme, and mentioned 
that, by slightly modifying standard tracing algorithm from previous schemes (e.g., [16]), their scheme can be a fully func-
tional trace and revoke scheme. Thus, in this section, we shall also only review the framework for broadcast encryption.

2.1. Definition of broadcast encryption

In a public key broadcast encryption scheme BE, a session key s is encrypted and broadcasted with the symmetric en-
cryption of the “actual” message. Generally, the encryption of s is called the enabling block. A public key broadcast encryption 
scheme consists of four poly-time algorithms (KeyGen, Reg, Enc, Dec), where:

KeyGen(1κ , z): The key generation algorithm, is a probabilistic algorithm used by the center to set up all the parameters 
of the scheme. Taking as input a security parameter 1κ and a revocation threshold z (i.e., the maximum number 
of users that can be revoked), this algorithm returns the public key PK and the master secret key SKBE .

Reg(SKBE, i): The registration algorithm, is a probabilistic algorithm used by the center to generate the secret key needed 
to construct a new decoder each time a new user subscribes to the system. This algorithm takes as input the 
master key SKBE and a (new) index i associated with the user, returns the user’s secret key SKi .

Enc(PK,R, s): The encryption algorithm, is a probabilistic algorithm used to encapsulate a given session key K . This algo-
rithm takes as input the public key PK, the session key s and a set R of revoked users (with |R| ≤ z), and returns 
the enabling block T .

Dec(SKi, T ): The decryption algorithm, is a deterministic algorithm that takes as input the secret key SKi of user i and the 
enabling block T , and returns the session key s that was encapsulated within T if i was a legitimate user when T
was constructed, or the special symbol ⊥.

2.2. Security model

We review the adaptive chosen-ciphertext security model for broadcast encryption as defined in [14,15]. Concretely, the 
adaptive chosen-ciphertext Security is defined using the following game between an attacker A and a challenger (both given 
the security parameter 1λ and the revocation threshold z as input)):

Stage 1: The challenger runs (PK, SKBE) ← KeyGen(1κ , z) and gives the public key PK to adversary A.
Stage 2: Adversary A adaptively makes a series of queries to the User Corruption Oracle CorSKBE (·) and Decryption Oracle

DSKBE (·, ·). The user corruption oracle receives as input the index i of the user to be corrupted, computes SKi ←
Reg(SKBE, i) and returns the user secret key SKi to adversary A. Note that this user corruption oracle can be 
called adaptively for at most z times during the whole game. Let us say that at the end of this stage the set R
of at most z users is corrupted. The decryption oracle, taking as input a pair 〈i, T 〉 (where i is the index of some 
users and T is an enabling block), returns the result of Dec(SKi, T ), where SKi is user i’s secret key.

Stage 3: The adversary submits two session keys s0 and s1. The challenger picks a random σ ∈ {0, 1}, computes T ∗ ←
Enc(PK, R, sσ ), and responds with the target enabling block T ∗ .

Stage 4: The adversary continues to issue decryption oracle queries, subject only to the restriction that a submitted enabling 
block T is not identical to T ∗ (and, of course, up to z users can be corrupted).

Stage 5: The adversary outputs a guess σ ∗ ∈ {0, 1}.

We define the advantage of A in attacking scheme BE as AdvCCA2
A,BE =

∣∣∣Pr[σ ∗ = σ ] − 1
2

∣∣∣.
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Definition 1. We say that a public key broadcast scheme BE is z-resilient against CCA2 attacks, if for all probabilistic, 
polynomial time adversary A, his advantage AdvCCA2

A,BE is negligible in λ.

3. Cryptanalysis of KHL scheme

As in DF scheme, Lagrange interpolation (in the exponent) plays an important role in the construction of KHL scheme. 
We shall first review some necessary facts about Lagrange interpolation. Then we shall review KHL scheme, and present a 
chosen-ciphertext attack against KHL scheme.

3.1. Lagrange interpolation

Let f (x) = ∑z
t=0 at xt be a z-degree polynomial over Zq . Then given z + 1 pairwise distinct points {(xt , f (xt))}t=0,1,···,z , 

one can reconstruct this polynomial f (x) as

f (x) =
z∑

t=0

( f (xt) · λt(x)),

where λt(x) = ∏
0≤k 	=t≤z

xk−x
xk−xt

.
We define the Lagrange interpolation operator as

LI [x0, · · · , xz; f (x0), · · · , f (xz)] (x) =
z∑

t=0

( f (xt) · λt(x)).

Next, we consider a cyclic multiplicative group G with prime order q and a generator g . Let Ft = g f (xt ) , 0 ≤ t ≤ z, where 
xt ∈ Zq . Then we define the Lagrange interpolation operator in the exponent as

ExpLI [x0, · · · , xz; F0, · · · , F z] (x) = gLI[x0,···,xz; f (x0),···, f (xz)](x)

=
z∏

t=0

g f (xt )·λt (x) =
z∏

t=0

F λt (x)
t .

Note that the following equality holds:

ExpLI
[
x0, · · · , xt; f (x0)

r, · · · , f (xt)
r] (x) = (

ExpLI [x0, · · · , xt; f (x0), · · · , f (xt)] (x)
)r

.

3.2. Review of KHL scheme

KHL scheme is specified by the following algorithms:

KeyGen(1κ , z): Given the security parameter 1λ , this key generation algorithm first chooses two random generators 
g1, g2 ←r G, where G is a group with prime order q (here q is a large prime such that p = 2q + 1 is also a large 
prime). Next, it chooses x1, x2, y1, y2 ←r Zq and z-degree polynomials X1(ξ), X2(ξ), Y1(ξ), Y2(ξ) over Zq such 
that X1(0) = x1, X2(0) = x2, Y1(0) = y1, Y2(0) = y2. It also chooses two z-degree polynomials Z1(ξ), Z2(ξ) over 
Zq , and computes c = gx1

1 gx2
2 , d = g y1

1 g y2
2 . Next, for t = 0, · · · , z, it computes ht = g Z1(t)

1 g Z2(t)
2 , x1,t = g X1(t)

1 , x2,t =
g X2(t)

2 , y1,t = gY1(t)
1 , y2,t = gY2(t)

2 . Finally, it chooses a hash function H from a family F of collision resistant hash 
functions, and outputs (PK, SKBE), where PK = (p, q, g1, g2, c, d, x1,0, · · · , x1,z, x2,0, · · · , x2,z, y1,0, · · · , y1,z, y2,0, · · · ,
y2,z, h0, · · · , hz) and SKBE = (X1, X2, Y1, Y2, Z1, Z2).

Reg(SKBE, i): Each time a new user i > z decides to subscribe to the system, the center provides him with a decoder box 
containing the secret key SKi = (i, X1(i), X2(i), Y1(i), Y2(i), Z1(i), Z2(i)).

Encrypt(PK,R, s): On input the public key PK, a set R = { j1, · · · , jz} of z revoked users, and the session key s, this algo-
rithm proceeds as follows:
1. Pick r1 ←r Zq , and compute u1 = gr1

1 , u2 = gr1
2 .

2. For t = 0, · · · , z, compute Ht = hr1
t .

3. For t = 1, · · · , z, compute H jt = ExpLI(0, · · · , z; H0, · · · , Hz)( jt).
4. Compute S = s · H0, α = H(S, u1, u2) and C = (cdα)r1 .
5. For t = 0, · · · , z, compute Ct = (

(x1,t x2,t)(y1,t y2,t)
α
)r1 .

6. For t = 1, · · · , z, compute C jt = ExpLI(0, · · · , z; C0, · · · , Cz)( jt) and F jt = H jt
C

C jt
.

7. Finally, output T = (
S, u1, u2, C, ( j1, F j1 ), · · · , ( jz, F jz )

)
.

Note that as mentioned in [15], F jt can be viewed as g Q ( jt )
1 where Q (ξ) is a z-degree polynomial over Zq .
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Dec(SKi,CT): On input the secret key SKi of user i and the enabling block T , this decryption algorithm first parses T =(
S, u1, u2, C, ( j1, F j1 ), · · · , ( jt , F jt )

)
, and then executes the following steps:

1. Compute α = H(S, u1, u2).
2. Compute Ci = u X1(i)+Y1(i)α

1 u X2(i)+Y2(i)α
2 .

3. Compute Hi = u Z1(i)
1 u Z2(i)

2
4. Compute Fi = Hi

C
Ci

.

5. Finally, output s ← S
ExpLI(i, j1,···, jz;Fi ,F j1 ,···,F jz )(0)

.

Remark 1. As explained in [15], KHL scheme can be viewed as an improved version derived from the CCA2 secure Dodis–
Fazio scheme (denoted by DF-CCA2 scheme) [14]. In DF-CCA2 scheme, a one-time message authentication code (MAC) is 
additionally used to check the validity of the ciphertext (i.e., enabling block). To shorten the ciphertext size, KHL scheme 
does not use MACs to explicitly check the validity of the ciphertext. As explained [15], KHL scheme borrows the idea of the 
modified Cramer–Shoup scheme in [17–19], i.e., the decrypting algorithm will output the original plaintext if the ciphertext 
is valid, and otherwise a random value independent of the original plaintext. However, as we shall indicate in the next 
subsection, if the ciphertext in KHL scheme is deliberately modified, the output of the decryption algorithm is not a random 
value independent of the original plaintext. The insecurity of KHL scheme exactly lies in this fact.

3.3. Attack

Before presenting our concrete attack, we here explain some necessary facts about the Lagrange interpolation operator 
in the exponent. As mentioned before, z + 1 pairwise distinct points {( jt , F jt )}z

t=0 determines a z-degree polynomial f (x), 
and the Lagrange interpolation operator in the exponent is

ExpLI
[

j0, · · · , jz; F j0 , · · · , F jz

]
(x) =

z∏
t=0

g f ( jt )·λt (x) =
z∏

t=0

F λt (x)
jt

.

For another z + 1 pairwise distinct points {( j0, F j0 ), ( j1, F ′
j1
), · · · , ( jz, F jz )} which is almost identical to {( jt , F jt )}z

t=0
except that F ′

j1
= F j1 L where L ∈ G, it also determines a z-degree polynomial f ′(x) in Zq , and the Lagrange interpolation 

operator in the exponent is

ExpLI
[

j0, j1, · · · , jz; F j0 , F ′
j1
, · · · , F jz

]
(x)

=
z∏

t=0

g f ′( jt )·λt (x) = F ′
j1

λ1(x)
z∏

t=0,t 	=1

F λt (x)
jt

= (F j1 L)λ1(x)
z∏

t=0,t 	=1

F λt (x)
jt

= Lλ1(x)
z∏

t=0

F λt (x)
jt

= Lλ1(x)ExpLI
[

j0, · · · , jz; F j0 , · · · , F jz

]
(x).

Thus, in particular, we have that

ExpLI
[

j0, j1, · · · , jz; F j0 , F ′
j1
, · · · , F jz

]
(0)

= Lλ1(0)ExpLI
[

j0, · · · , jz; F j0 , · · · , F jz

]
(0),

where λ1(0) = ∏
0≤k 	=1≤z

jk
jk− j1

, which can be computed from { jt}z
t=0.

Now, we present the attack against the CCA2 security of KHL scheme: Given the target enabling block T ∗ =
Enc(PK, R, sσ ) = (

S, u1, u2, C, ( j1, F j1 ), ( j2, F j2 ), · · · , ( jz, F jz )
)
, adversary A’s goal is to correctly guess the bit σ . Note that 

the encapsulated session key sσ equals to S
ExpLI(i, j1,···, jz;Fi ,F j1 ,···,F jz )(0)

, where Fi = Hi
C
Ci

= Hi
C

u
X1(i)+Y1(i)α
1 u

X2(i)+Y2(i)α
2

is domi-

nated by ciphertext components (C, u1, u2). Adversary A picks L ∈G \ {1G}, where 1G is the identity element of G, defines 
F ′

j1
= F j1 L, and then issues a decryption oracle query on 〈i, T ′〉 where T ′ = (

S, u1, u2, C, ( j1, F ′
j1
), ( j2, F j2 ), · · · , ( jz, F jz )

)
. 

Note that since T ′ 	= T ∗ , it is legal for adversary A to issue this query. Thus according to KHL scheme, adversary A is then 
given a session key s′ = S

ExpLI(i, j1, j2,···, jz;Fi ,F ′
j1

,F j2 ,···,F jz )(0)
.

Note that, T ′ has the same components (C, u1, u2) with the target enabling block T ∗ , and hence the value Fi computed 
from T ′ is the same as that computed from T ∗ . Thus we have
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s′ = S

ExpLI(i, j1, j2, · · · , jz; Fi, F ′
j1
, F j2 , · · · , F jz )(0)

= S

Lλ1(0)ExpLI(i, j1, j2, · · · , jz; Fi, F j1 , F j2 , · · · , F jz )(0)

= 1

Lλ1(0)

S

ExpLI(i, j1, j2, · · · , jz; Fi, F j1 , F j2 , · · · , F jz )(0)

= 1

Lλ1(0)
sσ .

Then adversary A can obtain the original session key by computing sσ = Lλ1(0)s′ . With sσ , adversary A can easily decide 
the bit σ , and hence can break the CCA2 security of KHL scheme.

Remark 2. Actually, given the target enabling block T ∗ , one could even easily build a different enabling block (by alter-
ing two F j ’s only) so that the underlying session key remains the same. For example, given T ∗ = (

S, u1, u2, C, ( j1, F j1 ),

( j2, F j2 ), · · · , ( jz, F jz )
)
, we can easily see that the new enabling block T̂ = (

S, u1, u2, C, ( j2, F j2 ), ( j1, F j1 ), · · · , ( jz, F jz )
)

encrypts the same session key sσ . Thus the adversary can easily break the CCA2 security of KHL scheme by issuing a 
decryption oracle query on 〈i, T̂ 〉.

4. Discussion and conclusion

Note that, in our attack against KHL scheme, the attacker does not need to corrupt any user, which means that KHL 
scheme is not CCA2 secure even without corruption of any user.

In order to prove the adaptive CCA2 security, the work in [15] proposed six games, G0, · · · , G5, where G0 corresponds to 
the definitional game for adaptive CCA2 security, and Ti denotes the event that σ = σ ∗ in Gi . The proof strategy is, roughly 
speaking, to show that the views of the attacker in any two neighboring games Gi and Gi+1, 0 ≤ i ≤ 4, are indistinguishable 
(i.e., |Pr[Ti+1] − Pr[Ti]| is negligible), while in the last game the attacker only gets negligible advantage. However, our attack 
indicates that the security proofs in [15] must be flawed. Below we shall identify the flaws in the security proofs.

KHL scheme is based on both Cramer–Shoup encryption and Lagrange-Interpolation, i.e., (S, u1, u2, C) in the enabling 
block corresponds to the Cramer–Shoup encryption and 

(
( j1, F j1 ), · · · , ( jz, F jz )

)
corresponds to the elements of Lagrange-

Interpolation. For efficiency reasons, KHL scheme does not use MAC to bind the elements of Lagrange Interpolation. As a 
consequence, as indicated in our attack, altering some of these elements does not change the status of the enabling block 
(valid/invalid), and thus KHL scheme cannot ensure the CCA2 security. The main problem in the security proofs of KHL 
scheme is that, they never consider the situation where one submits an enabling block with the same Cramer–Shoup part 
as the target enabling block but with different values for the F j ’s. This leads to that, in the security proofs, some neighboring 
games Gi and Gi+1 are not indistinguishable as claimed.

Let’s take games G1 and G2 as an example. Roughly speaking, game G1 is a purely conceptual re-formulation of G0 (note 
that, in game G1, u1 = gr1

1 and u2 = gr1
2 , where r1 is taken uniformly at random from Zq). The only difference between 

G2 and G1 is that the value u2 in G2 is now set to be gr2
2 , where r2 is taken uniformly at random from Zq \ {r1}. It is 

claimed in [15], under the DDH assumption, G2 is indistinguishable from G1. Unfortunately, this is not true. To indicate 
the distinguishability between G1 and G2, let’s take our concrete attack as an example. In game G1, by modifying F j1

to F ′
j1

= F j1 L and submitting 〈i, T ′〉 with T ′ = (
S, u1, u2, C, ( j1, F ′

j1
), ( j2, F j2 ), · · · , ( jz, F jz )

)
to the decryption oracle, the 

adversary can derive sσ from the response s′ = 1
Lλ1(0) sσ . However, in game G2, by submitting 〈i, T ′〉 to the decryption oracle, 

it can be verified that the response would be s′ = 1

Lλ1(0) g
(r2−r1)(Z2(i)−X2(i)−Y2(i))λ0(0)

2

sσ . Since g(r2−r1)
2 is unknown to the adversary, 

from the response s′ it is impossible for the adversary to derive sσ . Therefore, G2 is not indistinguishable from G1 under 
the DDH assumption.

In addition, we note that G2 and G3 are not indistinguishable (i.e., |Pr[T3] − Pr[T2]| is not negligible). The difference 
between G3 and G2 is that, when the adversary submits a ciphertext such that u2 	= uw

1 , the decryption oracle outputs ⊥
to reject this ciphertext. In [15], it defines R3 to be the event that the adversary submits some decryption queries which 
are rejected in G3 but passed in G2, and claimed that |Pr[T3] − Pr[T2]| = Pr[R3] is negligible. However, recall that in KHL 
scheme (also in G2), the decryption oracle does not explicitly reject ciphertexts, and hence any ciphertext would pass in G2. 
Thus R3 is in fact the event that the adversary submits some decryption queries that are rejected in G3. Obviously, Pr[R3] is 
non-negligible, since the adversary can arbitrarily submit ciphertexts with u2 	= uw

1 which will be rejected in G3. Therefore, 
|Pr[T3] − Pr[T2]| is not negligible.

We note that our attack may be prevented by using the techniques employed in DF scheme [14], where an additional 
MAC-key k is encrypted (together with the session-key s) and is also used to authenticate the ciphertext. However, this 
approach greatly impairs the efficiency of KHL scheme, rendering the resulting scheme no more efficient than DF scheme. 
Furthermore, abandoning the one-time MAC employed in DF scheme was claimed to be one of the main technical contribu-
tions in [15]. It seems to be rather difficult to fix KHL scheme to satisfy CCA2 security without loss of efficiency.
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