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a b s t r a c t

User-generated images (UGIs) are currently proliferating within social networks. These
images contain multi-dimensional data, including the image itself, text and the social links
of the owner. UGIs can be utilized for self-presentation, news dissemination and other pur-
poses, and the quality of the image should be able to reveal these social functionalities.
However, it is challenging to predict UGI quality utilizing existing models, such as image
quality assessment, recommender systems or others, because these models have difficul-
ties processing multi-dimensional data simultaneously. To address this problem, we pro-
pose a multi-dimensional image quality prediction model for UGIs in social networks. In
this model, we build two sub-models for presentation measurement and distortion mea-
surement. The text (i.e., tags and comments), social links and UGIs are processed by these
two models separately, and the results of the models are pooled to obtain a final quality
score. Both subjective and objective experiments are then arranged for ground truth data
and performance assessment, respectively. Participants are asked to make judgments
about 55 UGIs randomly selected from social networks, and the ground truth dataset is
based on these subjective experiments. The objective experiments are performed to verify
the performance of our model. The results indicate that the Pearson correlation parameter
between the predicted score and the ground truth data is 0.5779, which suggests that the
proposed model can be implemented to predict image quality in practical environments.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

User-generated content in social networks, especially the images or photos uploaded by end-users (i.e., user-generated
images (UGI)), provides new opportunities for web publishing and media production [8,10,18,32,56]. These UGIs are re-
editable, accessible and affordable for ordinary people in social interactions on the web. Actually, UGIs are special multime-
dia that provide multi-dimensional data, including the image itself as well as the comments, tags and social circles of the
owner. These multi-dimensional data provide abundant information to viewers about the UGI and the image provider.
Due to their convenience, billions of UGIs are uploaded and published on the web. For example, Facebook currently contains
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100 billion image uploads from end-users, while Flickr stores 60 billion images and experiences a 20% annual increase [8,46].
These images can be utilized for self-presentation, news dissemination and other purposes, and the image quality should
reveal the quality of its social functionalities. However, the prediction of UGI quality utilizing existing models, such as image
quality assessment, recommender systems or others, is challenging because these models face difficulties in processing
multi-dimensional data simultaneously. Moreover, social functionality is not included in the scope of these models
[20,45]. Previously, only clinical methods were available for image preference measurements under controlled test environ-
ments, and these methods utilized carefully selected images rather than UGIs [23,30,63]. Therefore, the proliferation of UGIs
requires a new approach to image quality prediction, which has considerable potential applications in image retrieval, rec-
ommendation systems and other fields [16,17,25,26,50,51,55].

Image quality prediction of a UGI is challenging because the uploaded image itself plays a multi-purpose role in social
activities. Traditional images, those captured by cameras, record and reveal the real world as precisely as possible without
social functionality. However, the main purpose of a UGI is social functionality. UGIs exist because the creators wish to pres-
ent themselves to others in a virtual world [52]. Usually, such presentations are conducted through self-presence and self-
disclosure [11,12,53]. Therefore, although the images captured by a camera record the real world, images re-edited by the
provider reveal an aspect of his mind before publishing. Furthermore, UGIs are usually accompanied by text (i.e., descrip-
tions, tags or title of the UGI) written by the provider for to better reveal his opinions and mind. To this end, the quality
of the UGI should reveal the quality of self-presence to the user’s social circle or the general public.

The special purpose of UGIs creates two challenges for image quality prediction of this type of image.

� Evaluation of personalized presentation. As mentioned above, the main purpose of a UGI is self-presentation in the virtual
world. It is a challenge for researchers to find a relationship between quantified results generated by quality prediction of
UGIs to the degree of self-presentation of the user.
� Measurement of unknown distortion. In addition to self-presentation, the intrinsic image quality also plays an important

role in UGI quality. Traditional image quality assessment focuses on the measurement of distortions because the images
are treated as visual signals. In these measurements, distortions are usually known, such as Gaussian noises and blurring
effects. However, the UGI is edited by the provider. Therefore, unknown distortions may also be present with traditional
distortions; therefore, traditional distortion measurement methods are unsuitable.

Existing methods may relate to the quality prediction of a UGI, such as data quality evaluation, item recommender sys-
tems and multiview machine learning. In data quality evaluation, the data are collected by users intentionally and consist of
propositions that reflect reality. The collected data are necessary and useful for people’s daily work, but the rapidly expand-
ing volume of data can confuse consumers and hamper work efficiency. In this case, data quality is evaluated by its fitness for
use by data consumers [6,36,42,47,59]. The purpose of data quality research is to optimize work flow and improve work effi-
ciency. From this perspective, the purpose of data quality assessment is similar to UGI quality prediction. When UGIs are
treated as data, the images can be evaluated utilizing the methods of data quality evaluation. However, traditional data qual-
ity evaluation focuses on economic data with inter-connections rather than images. Traditional evaluation is also problem-
atic when using item recommender systems to assess the quality of UGIs. An item recommender system seeks to predict the
rating or preference of a user for items (such as music, books, or movies) or social elements (e.g., people or groups) they had
not yet considered employing a model incorporating the characteristics of an item (content-based approaches) or the user’s
social environment [2,7,24,48,49]. Actually, the recommender system is a retrieval system utilizing a user’s profile. That pro-
file, including favorite goods, selection habits, location and other useful information, can be compiled utilizing the historical
purchase data of the registered user. Methods for modeling and analyzing this historical data are preference-based filtering
methods, which include content-based recommendation, collaborative recommendation, and hybrid approaches
[2,28,29,31]. Although UGIs can also be treated as social items, obtaining the potential viewer’s profile, which is the core
input of the recommender system, is difficult. Semi-supervised multiview machine learning methods have also been pro-
posed to solve recent complex problems such as labeled and unlabeled joint feature processing [5,15,39–41,43,62]. Intui-
tively, the features of one domain are divided into different but compatible and uncorrelated views in multiview learning
problems. The data are compatible if all examples are labeled identically by the target concepts of each view. At the same
time, the descriptions of any given label are independent between two views. In these methods, non-negative matrix factor-
ization is widely used for dimension reduction, and the learned results are similar in each view
[14,19,21,22,33,35,38,57,58,61]. In our work, UGIs contains different types of data, including the image content, user com-
ments, and even social links. All of these data can reveal UGI quality and can be treated as uncorrelated views. However, we
cannot describe a UGI as high quality if it has little signal distortion but many negative comments. In other words, the clas-
sification of UGIs is a pooling process of the independent views of the data rather than a single view. Therefore, new methods
should be developed to evaluate the quality of UGIs.

We propose a multi-dimensional image preference prediction model to evaluate the quality of UGIs on social networks.
We claim that UGI quality is measurable, and the quality measurement is composed of presentation and distortion measure-
ments. In this scheme, we build two sub-models for presentation measurement and distortion measurement. The text (i.e.,
tags and comments), social links and the UGI are processed by these two sub-models separately. Presentation measurement
is used to evaluate the degree of self-presentation, which is the main purpose of UGIs in social networks. Distortion measure-
ment is used to predict the perceptual quality of these images. Finally, these outcomes are pooled to obtain a final quality
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score. Therefore, our method processes the images, texts and social links as multi-dimensional data to obtain quality eval-
uations. We build a UGI quality database to provide benchmark data for model performance assessment. The UGIs are ran-
domly selected from social networks, and participants are asked to provide ratings for these images. Then, objective scores of
predicted quality are compared to the benchmarks, and the proposed model can be evaluated utilizing the database.

The rest of this paper is organized as follows. Section 2 provides a detailed discussion of our model. The subjective and
objective experiments are discussed in Section 3. Section 4 concludes.

2. The proposed multi-dimensional quality assessment model

The proposed model of quality prediction considers all of the obtainable UGI data together to address the aforementioned
challenges. The data of UGIs are a multi-dimensional, including the image, text (i.e., title, description and comments), and
social circles of the image provider. Different types of data can be processed separately. For example, the image is charac-
terized by pixel intensity, tags and comments by syntax and semantics, and social circles are described by nodes and links.
The comments of the UGI and the social links of the provider are useful to understanding the interaction and feedback from
the provider’s social circles and can be used to evaluate the degree of presentation in the UGI. The pixel intensity of a UGI is
usually compressed by JPEG encoder and the signal distortion is measurable in a no-reference manner. Therefore, the multi-
dimensional data can be processed separately, and we describe the framework of the proposed model presented in Fig. 1.

As shown in Fig. 1, there are two sub-models within the framework. In the first sub-model, the multi-dimensional data
are input into a multi-dimensional processing unit, where the texts and social links are used for presentation measurement.
The pixel intensity of the UGI is simultaneously recorded for distortion measurement. The different types of data are used for
the corresponding measurement methods yield a normalized score within the range [0,10]. These normalized scores are
then pooled to obtain a final quality score. Therefore, our model can be described by the following equation:

1ðx;lÞ ¼ f ð�ðxÞ;wðlÞÞ ð1Þ

where x is the number of comments, l is the UGI, �ð�Þ is the presentation measurement, wð�Þ is the distortion measurement,
and f ð�Þ is the pooling function. The details of each function will be discussed in the following subsections.

2.1. Presentation measurement

In our model, presentation measurement is based on text sentiment analysis from viewer comments and probability anal-
ysis of social links. As mentioned above, UGIs aim for self-presentation and reveal a user’s mind or ideas. Sometimes, descrip-
tions (i.e., tags) of the UGI are provided with the image. However, the comments from the UGI viewers are more valuable for
evaluating the quality of UGIs because the comments reveal the viewers’ attitudes. The quality of a UGI will be lower if fewer
positive comments are given, regardless of how beautifully the image is edited or the description is written. These comments
come from viewers that linked to the UGI provider. Therefore, the image quality will be higher if it receives more comments.
However, whether a viewer prefers to post his comments is a stochastic event. We first use a random graph model to analyze
the stochastic event. Then, we analyze the words in the comments to determine whether they have a positive sentiment.

2.1.1. Analysis of social links
We describe a graph model G ¼ ðV ; EÞ with vertex set V and edge set E, where jV j ¼ N þ 1 and jEj ¼ M denote the number

of vertices and edges, respectively, to analyze the social links. In this model, the users are denoted by the vertices and the
relationships between users are described by the edges. Specifically, we define a social link in a network as the single direc-
tion edge e! from one user to another. In other words, we join two vertices ðv i;v jÞ by e! if v j is a fan of v i. These two users are
called friends if they are both linked as a fan to their counterpart. Fig. 2 illustrates the conversion of the social links in

Fig. 1. The framework of the multi-dimensional image quality prediction model for UGIs in social networks.
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networks into a graph model. In this figure, the three selected users each have a different number of fans. For example, the
man in red has seven fans, the man in black has five, and the lady in black has four. We use a vertex to denote a person and
use a directional edge to denote the relationship of fan to obtain Fig. 2. The vertex that represents the man in red yields seven
directional edges to all of other vertices, which describes his social links in the whole social network. Other vertices and
edges provide similar meanings. If only one UGI provider v i is selected, the graph model Gi for v i is a single-directional graph,
where all edges 8e 2 E are with tail on v i.

Based on the graph model G, we assign probabilities to edges to describe the stochastic event of comment posting. When
a user v i posts an image (i.e., a UGI) on his webpage, all his fans V � fv ig can visit and comment on this UGI. Suppose that any
viewer v jðv j 2 V � fv igÞ posting his comment to a UGI is not dependent on other viewers. In other words, it is a mutually
independent event for different fans to comment on a UGI. Furthermore, we suppose that one viewer provides one comment,
and duplicated comments are treated as a single comment. Therefore, we can utilize a bi-nominal distribution function to
model our assumptions.

Let p be the probability that one fan provides one comments to one UGI; the probability that this user receives k com-
ments from k fans is

Pk ¼
N � 1

k

� �
pkð1� pÞN�1�k ð2Þ

where N is the number of vertices in V � fv ig.
Let x 2 Iþ be a positive integer and x 6 N be possibility that this user receives at most x comments:

EðxÞ ¼
Xx

k¼0

Pk

�����
x6N�1

¼ ðN � 1� xÞ
N � 1

x

� �Z 1�p

0
yN�x�2ð1� yÞxdy ð3Þ

The function EðxÞ in Eq. (3) is a monotonically decreasing function for both variables x and p with lower bound when
x!1. The monotonic behavior of EðxÞ indicates the low probability that one UGI receives more comments when the num-
ber of users in the social network is fixed, regardless of how the fans favorite this image (i.e., described by p). However, a UGI
must be of high quality if x is larger because more fans post their comments to this image, which is very difficult to achieve.

2.1.2. Analysis on viewer comments
The comments from viewer usually express the attitudes or moods of the image viewer, which may include love, like,

happy, noncommittal, dislike, disgust, etc. These sentiments can be used to describe the quality of UGIs.
The question in comments based presentation measurement is how to convert the words in a comment to a value

describing the quality of an image. There is a considerable gap between natural words and scale values. Fortunately, these
comments can be processed utilizing sentiment analysis or opinion mining methods. Sentiment analysis or opinion mining
refers to the application of natural language processing, computational linguistics, and text analytics to identifying and
extracting subjective information from source materials [37]. Utilizing word sentiment analysis, the comment based quality
of the UGI is measurable.

Comment-based quality measurement required a determined number of mood types. Traditionally, there are only three
moods, including positive, noncommittal and negative (in some cases, noncommittal is excluded) [3,9,37]. To evaluate the
sentiments of user comments, we first propose a 5-point scale of mood. Comments are classified into different scale levels by
different score values. Some of the key words for comments are listed in Table 1 [37]. The key words of a mood level are the
typical words that represent a group of mood words. Examples corresponding to the key words in Table 1 are provided in
Table 2. This table indicates that a score can be obtained for a comment if one mood word is detected in this comment.

Fig. 2. Social links in networks and the corresponding graph model describing the relationships.

604 Y. Yang et al. / Information Sciences 281 (2014) 601–610



Suppose that there are x P 1 comments posted by UGI viewers. The quality score S can be evaluated by the comment
based score in terms of average score utilizing the following equation:

S ¼
0 x ¼ 0

1
5x

Xx

i¼1

ci x P 1

8><
>: ð4Þ

where ci is the comment based score for the i�th comment.
From the discussion in Section 2.1.1, we know that it is very difficult to obtain more comments x when the total number

of fans N is fixed. However, it is also very difficult to obtain a higher score S in x comments. Therefore, we use sðSÞ ¼ 1� S to
denote the difficulty of obtaining a high score S.

2.1.3. Analysis of accessibility
Accessibility describes whether this image can be accessed by viewers. For some UGIs, the owner holds the copyright and

sometimes limits the accessibility to the public. The UGI is meaningless to a viewer if it is inaccessible. Therefore, accessi-
bility is a binary parameter in our model, which can be described by the following equation:

u ¼
1 obtainable

0 otherwise

�
ð5Þ

2.1.4. Model of presentation measurement
We summarize the above discussions as follows:

� The social circle of a UGI provider can be modeled by a graph model Gi. Based on Gi, the event of a UGI viewer offering his
comment is a stochastic event, and the probability that v i receives at most x comments is EðxÞ. The possibility EðxÞ is a
monotonically decreasing function, which indicates that it is difficult to receive more comments. Therefore, an image
may be of higher quality if it receives more comments.
� Comments from viewers can reveal his/her attitude towards the UGI, and the natural words in a comment can be quan-

tified utilizing semantic analysis. It is difficult to receive more positive comments, especially when it is difficult to receive
more comments. Therefore, we use sðSÞ to measure the difficulty of receiving a higher score S.
� Only an accessible UGI is meaningful to viewers; therefore, the accessibility is measured by u and it is included in our

model.

We pool the Eqs. (3)–(5) and build the presentation measurement model �ðxÞ as follows:

�ðxÞ ¼ �r �u � sðSÞ � EðxÞ logðsðSÞ � EðxÞÞ ð6Þ

where r is a model parameter.

Table 1
The look-up table [37] for 5-point score and mood.

Score Description Mood Mood keywords

5 Best Positive Surprise, best, extra-, ultra-
4 Better Positive Much, very
3 Good Positive Happy, good, alive, love, interested, positive, strong
2 Fair Noncommittal Open
1 Bad Negative Anger, disgust, fear, sadness

Table 2
Selected mood words for different sentiments.

Mood keywords Words

Open Understanding, confident, reliable, easy, free, sympathetic
Happy Great, gay, joyous, lucky, fortunate, delighted, overjoyed, gleeful
Alive Playful, courageous, energetic, liberated, optimistic, provocative
Good Calm, peaceful, at ease, comfortable, pleased, encouraged, clever
Love Loving, considerate, affectionate, sensitive, tender, devoted
Interested Concerned, affected, fascinated, intrigued, absorbed, inquisitive
Positive Eager, keen, intent, anxious, inspired, determined, excited
Angry Irritated, enraged, hostile, insulting, sore, annoyed, upset, hateful
Depressed Lousy, disappointed, discouraged, ashamed, powerless, diminished
Sad Tearful, sorrowful, pained, grief, anguish, desolate, desperate
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2.2. Distortion measurement

The intrinsic quality of a UGI measures the perceived image degradation. In most cases, a reference image is needed for
quality evaluation and the image is usually an original with perfect quality. However, there is no reference image for a UGI. A
UGI is usually captured by the end-user, simply edited, compressed and then published. The degradation of a UGI may result
from two aspects. The first aspect is image compression (e.g., quantization losses by JPEG format encoding), and the second is
manual re-editing by users. In re-generating the original image, aesthetics and emotions may be involved in re-editing. In
this case, it is very difficult to effectively evaluate this type of art [4,13,27,44]. The degradation caused by compression is
a type of impairment of signals. No-reference image quality prediction method is an effective approach to predict the per-
ceived quality of these images.

We adopt the no-reference image quality prediction model in [60] in our scheme because this model is suitable for JPEG
compressed images and is verified utilizing a LIVE image database [54]. Let l denote the UGI and lði; jÞ is the pixel intensity
on position ði; jÞ in l, the blind image quality Wð�Þ is described by the following equation:

wðlÞ ¼ aþ bBðlÞc1 AðlÞc2 ZðlÞc3 ð7Þ

where a; b; c1; c2 and c3 are model parameters, and

Bð�Þ ¼ Bhð�Þ þ Bvð�Þ
2

; A ¼ Ahð�Þ þ Avð�Þ
2

; Z ¼ Zhð�Þ þ Zvð�Þ
2

ð8Þ

where

B� ¼
1

wð h=8b c � 1Þ
Xw

i¼1

Xh=8�1b c

j¼1

jl�ði;8jÞj

A� ¼
1
7

8
wðh� 1Þ

Xw

i¼1

Xh�1

j¼1

jl�ði; jÞj � B�

" #

Z� ¼
1

wðh� 2Þ
Xw

i¼1

Xh�2

j¼1

z�ði; jÞ

ð9Þ

where � can be one of h and v, indicating horizontal and vertical pixels, w and h is the width and height of l, respectively.

2.3. The multi-dimensional preference assessment model

The above discussions suggest that the quality of a UGI is composed of two parts, presentation and distortion measure-
ments. The evaluation of presentation reveals how viewers will favorite the UGI. The distortion measurement indicates the
degree to which the UGI preserves the original signals. We describe the model in Eq. (1) utilizing following equation:

1ðx;lÞ ¼ f ð�ðxÞ;wðlÞÞ ¼ x�ðxÞ þ ð1�xÞwðlÞ ð10Þ

where x 2 ½0;1� is a parameter.

3. Experiments and discussions

3.1. Experiment arrangements

We download UGIs and their corresponding comments from Flickr utilizing keywords such as cat, street, dog, sea and car.
The test images are randomly selected from the search results, and the total number is 55. Fig. 3 provides some of the test
images. Both subjective and objective experiments were conducted. In subjective experiments, participants are invited to
offer their subjective score on quality to each of the test images. The results of the subjective experiments are then used
as benchmarks for later comparisons and verifications of the objective experiments.

3.2. Subjective experiments

The subjective experiments followed the strict procedure described in [1], including participant selection, environment
and display settings. There are 10 participants (two females and eight males) involved in the subjective experiments who
range in age from 21 to 32 with different academic and professional backgrounds. Participants were not involved in similar
subjective experiments in the past three months. The single stimulus continuous quality evaluation test method described in
[1,34] is applied in our subjective experiments. Each participant is asked to rate their preferences towards a UGI. Although
the test procedure for each participant is exactly the same, all of the tests are performed independently to avoid interference.
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After the subjective experiments, 550 raw subjective scores were collected. However, these raw data from participants
cannot be used as ground truth data directly because noise be present. We further process the raw data to eliminate the
noise following an algorithm to improve the confidence of the subjective score.

Suppose that there are P participants and U test UGIs in the subjective experiments, and the subjective score sij is provided
by i-th participant towards j-th UGI. Therefore, we process sij by Algorithm 1.

Algorithm 1. Process on subjective scores.

Step 1. Calculate the average aj for each UGI:

aj ¼
1
P

XP

i¼1

sij ð11Þ

where j ¼ 1;2; . . . ;U.
Step 2. Calculate the standard deviation dj for each UGI.

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
P � 1

XP

i¼1
ðsij � ajÞ2

r
ð12Þ

where j ¼ 1;2; . . . ;U.
Step 3. Mark sij as an outlier if sij R ½aj � dj; aj þ dj�, where j ¼ 1;2; . . . ;U.
Step 4. The i-th participant is marked as outlier if he owns more than 30% outlier sij, where i ¼ 1;2; . . . ; P. New

participant set is determined after all outliers are marked out, and the scores of P� participants are left.
Step 5. Calculate the ground truth score a�j for each UGI:

a�j ¼
1
P�
XP�
i¼1

sij ð13Þ

where j ¼ 1;2; . . . ;U.

After being processed by Algorithm 1, one participant was identified as an outlier, and all of his submitted scores were
eliminated from dataset. Therefore, the final ground truth is calculated based on 495 raw scores obtained from the remaining
nine participants.

3.3. Objective experiments

We also use our proposed scheme to measure the objective quality score of the 55 UGIs. These results are compared to the
benchmark data obtained to verify the accuracy of quality prediction. The correlation between the predicted score and
benchmark data can be used to reveal the performance of our proposed scheme. As seen in Eqs. (10) and (2), the model
parameter x and the probability p is not yet determined. Therefore, discussion of these two parameters is needed. As
revealed by the symmetric property of the bi-nominal distribution, the cases are equivalent for the probability p that
Pkjp¼a ¼ Pkjp¼1�a, where 0 6 a 6 1. Therefore, we need to verify the case for 0 6 p 6 0:5.

These results are summarized in Fig. 4 and Table 3, where different settings for x and p are selected. The Pearson param-
eter is widely used to measure the correlation between two datasets, and higher values of the Pearson parameter indicate
stronger correlations. Table 3 provides the Pearson parameters for different x and p. First, we ignore the value of x and let p
vary from 0.1 to 0.5. The Pearson parameter always peaks when p ¼ 0:1 regardless the value of x. This result suggests that
people seldom comment on a UGI in social networks. In this case, the UGI should receive a higher quality score if it receives
many positive comments. Then, we fix p to 0.1 and vary the value of x from 0.9 to 0.4. The value of x is the weight for
presentation and distortion measurement. We find that the Pearson parameter peaks when x ¼ 0:6, which indicates that
presentation measurement contributes more to the image quality score. This phenomenon relies on the fact that a UGI is
published for self-presentation and thought exchange, and these functionalities have exceeded the traditional usage of
images. In addition to the results presented in Table 3, Fig. 4 also indicates the correlations between the predicted quality
score and benchmark data when x ¼ 0:6 and p ¼ 0:1. The scatter points are concentrated linearly with some outliers, a
pattern that indicates that the prediction effectiveness of our model is high.
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Fig. 3. Examples of test UGIs drawn from the Flickr website.

Fig. 4. Correlations between predicted preference scores and benchmark data with x ¼ 0:6 and p ¼ 0:1.
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4. Conclusions

In this paper, we propose a multi-dimensional image quality prediction model for user-generated images in social net-
works. The model processes the multi-dimensional data from images, texts and social networks utilizing both presentation
measurement and distortion measurement. We build a database of images and subjective quality scores, and this database
can be used as the benchmark for objective experiments. The experimental results indicate that more weight can be given to
presentation measurement (i.e., x ¼ 0:6) while distortion measurement can be assigned a smaller weight. This result indi-
cates that social functionality is more important than the quality of the image in predicting the quality of user-generated
images. Moreover, the Pearson correlation parameter between the predicted score and the ground truth data is 0.5779,
which indicates that our model can be utilized to predict image quality in practical environments.
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