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Online Feature Selection and Its Applications
Jialei Wang, Peilin Zhao, Steven C.H. Hoi, and Rong Jin

Abstract —Feature selection is an important technique for data mining. Despite its importance, most studies of feature selection
are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient
and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing
all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when
data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we
investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved
only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction for an
instance using a small number of active features. This is in contrast to the classical setup of online learning where all the features can
be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically,
this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access
all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is
allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give
their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public
datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray
gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the
proposed techniques.

Keywords —Feature Selection; Online Learning; Large-scale Data Mining; Classification;

✦

1 INTRODUCTION

Feature selection is an important topic in data mining
and machine learning, and has been extensively studied
for many years in literature [10], [19], [28], [37], [44]. For
classification, the objective of feature selection is to select
a subset of relevant features for building effective pre-
diction models. By removing irrelevant and redundant
features, feature selection can improve the performance
of prediction models by alleviating the effect of the
curse of dimensionality, enhancing the generalization
performance, speeding up the learning process, and
improving the model interpretability. Feature selection
has found applications in many domains, especially for
the problems involved high dimensional data.

Despite being studied extensively, most existing stud-
ies of feature selection are restricted to batch learning,
which assumes the feature selection task is conducted in
an off-line/batch learning fashion and all the features of
training instances are given a priori. Such assumptions
may not always hold for real-world applications in
which training examples arrive in a sequential manner or
it is expensive to collect the full information of training
data. For example, in an online spam email detection
system, training data usually arrive sequentially, making

• Steven CH Hoi is the corresponding author. J. Wang, P. Zhao and S.C.H.
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it difficult to deploy a regular batch feature selection
technique in a timely, efficient, and scalable manner.
Another example is feature selection in bioinformatics,
where acquiring the entire set of features/attributes for
every training instance is expensive due to the high cost
in conducting wet lab experiments.

Unlike the existing feature selection studies, we study
the problem of Online Feature Selection (OFS), aiming to
resolve the feature selection problem in an online fash-
ion by effectively exploring online learning techniques.
Specifically, the goal of online feature selection is to
develop online classifiers that involve only a small and
fixed number of features for classification. Online feature
selection is particularly important and necessary when
a real-world application has to deal with sequential
training data of high dimensionality, such as online
spam classification tasks, where traditional batch feature
selection approaches can not be applied directly.

In this paper, we address two different types of online
feature selection tasks: (i) OFS by learning with full
inputs, and (ii) OFS by learning with partial inputs. For
the first task, we assume that the learner can access all
the features of training instances, and our goal is to
efficiently identify a fixed number of relevant features
for accurate prediction. In the second task, we consider
a more challenging scenario where the learner is allowed
to access a fixed small number of features for each train-
ing instance to identify the subset of relevant features.
To make this problem attractable, we allow the learner
to decide which subset of features to acquire for each
training instance.

The major contributions of this paper include: (i) we
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propose novel algorithms to solve both of the above
OFS tasks; (ii) we analyze their theoretical properties of
the proposed algorithms; (iii) we validate their empirical
performance by conducting an extensive set of experi-
ments; (iv) finally, we apply our technique to solve real-
world problems in text classification, computer vision
and bioinformatics. We note that a short version of this
work had been appeared in the KDD-2012 Workshop on
the Big Data Mining topic (BigMine-2012) [23]. The rest
of this paper is organized as follows. Section 2 reviews
related work. Section 3 presents the problem and the
proposed algorithms as well as their theoretical analysis.
Section 4 discusses our empirical studies and Section 5
concludes this work.

2 RELATED WORK

Our work is closely related to the studies of online
learning and feature selection in literature. Below we
review important related works in both areas.

One classical online learning method is the well-
known Perceptron algorithm [35], [16]. Recently, a large
number of online learning algorithms have been pro-
posed [22], [6], [49], [21], [39], in which many of them
follow the criterion of maximum margin principle [17],
[24], [6], [49]. For example, the Passive-Aggressive al-
gorithm [6] proposes to update a classifier when the
incoming training example is either misclassified or fall
into the range of classification margin. The PA algorithm
is limited in that it only exploits the first order infor-
mation during the updating. This limitation has been
addressed by the recently proposed confidence weighted
online learning algorithms that exploit the second order
information [14], [7], [8]. Despite the extensive investiga-
tion, most studies of online learning requires the access
to all the features of training instances. In contrast, we
consider an online learning problem where the learner
is only allowed to access a small and fixed number of
features, a significantly more challenging problem than
the conventional setup of online learning.

Feature Selection (FS) has been studied extensively
in the literatures of data mining and machine learn-
ing [10], [19]. The existing FS algorithms generally can be
grouped into three categories: supervised, unsupervised,
and semi-supervised FS. Supervised FS selects features
according to labeled training data. Based on different
selection criterions and methodologies, the existing su-
pervised FS methods can be further divided into three
groups: Filter methods, Wrapper methods, and Embedded
methods approaches. Filter methods [46], [9], [1] choose
important features by measuring the correlation between
individual features and output class labels, without in-
volving any learning algorithm; wrapper methods [25]
rely on a predetermined learning algorithm to decide a
subset of important features. Although wrapper meth-
ods generally tend to outperform filter methods, they
are usually more computationally expensive than the
filter methods. Embedded methods [2], [5], [42], [54]

aim to integrate the feature selection process into the
model training process. They are usually faster than the
wrapper methods and able to provide suitable feature
subset for the learning algorithm. When there is no
label information available, unsupervised feature selection
attempts to select the important features which preserve
the original data similarity or manifold structures. Some
representative works include Laplacian Score [20], Spec-
tral Feature Selection [53], and the recently proposed ℓ2,1-
Norm Regularized Discriminative Feature Selection [45].
Feature selection has found many applications [19], in-
cluding bioinformatics, text analysis and image annota-
tion [29]. Finally, recent years also witness some semi-
supervised feature selection methods that exploit both
labeled and unlabeled data information [52], [34], [43].
Our OFS technique generally belongs to supervised FS.

We note that it is important to distinguish Online Fea-
ture Selection addressed in this work from the previous
studies of online streaming feature selection in [33], [18],
[41]. In those works, features are assumed to arrive one
at a time while all the training instances are assumed
to be available before the learning process starts, and
their goal is to select a subset of features and train an
appropriate model at each time step given the features
observed so far. This differs significantly from our online
learning setting where training instances arrive sequen-
tially, a more natural scenario in real-world applications.

Our work is closely related to sparse online learn-
ing [15], [27], whose goal is to learn a sparse linear
classifier from a sequence of high-dimensional training
examples. Our work however differs from these studies
in that we are motivated to explicitly address the feature
selection issue and thus impose a hard constraint on
the number of non-zero elements in classifier w, while
most of the previous studies of sparse online learning
do not aim to explicitly address feature selection, and
usually enforce only soft constraints on the sparsity of
the classifier. Despite the difference between two kinds of
problems and methodologies, we will show empirically
in our experiments that our proposed Online Feature Se-
lection algorithm performs better than the cutting-edge
sparse online learning algorithms for online classification
tasks when the same sparsity level is enforced for the
two algorithms.

Finally, we would like to distinguish our work from
budget online learning [3], [11], [31], [48], [51] which
aims to learn a kernel-based classifier with a bounded
number of support vectors. A common strategy behind
many budget online learning algorithms is to remove
the “oldest” support vector when the maximum num-
ber of support vectors is reached, which however is
not applicable to online feature selection. Our work is
different from some existing online learning work for
online dimension reduction, such as the online PCA
algorithm [40]. Unlike online feature selection that is a
supervised learning, online dimensionality reduction is
completely unsupervised and requires the access to the
full features.
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3 ONLINE FEATURE SELECTION

3.1 Problem Setting
In this paper, we consider the problem of online fea-
ture selection for binary classification. Let {(xt, yt)| t =
1, . . . , T } be a sequence of input patterns received over
the trials, where each xt ∈ R

d is a vector of d dimension
and yt ∈ {−1,+1}. In our study, we assume that d is a
large number and for computational efficiency we need
to select a relatively small number of features for linear
classification. More specifically, in each trial t, the learner
presents a classifier wt ∈ R

d that will be used to classify
instance xt by a linear function sgn(w⊤

t xt). Instead of
using all the features for classification, we require the
classifier wt to have at most B non-zero elements, i.e.,

‖wt‖0 ≤ B

where B > 0 is a predefined constant, and consequently
at most B features of xt will be used for classification. We
refer to this problem as Online Feature Selection (OFS).
Our goal is to design an effective strategy for OFS that
can make a small number of mistakes. Throughout the
paper, we assume ‖xt‖2 ≤ 1, t = 1, . . . , T .

3.2 OFS: Learning with Full Input
In this task, we assume the learner is provided with
full inputs of every training instance (i.e. x1, . . . ,xT ). To
motivate our algorithm, we first present a simple but
noneffective algorithm that simply truncates the features
with small weights. The failure of this simple algorithm
motivates us to develop effective algorithms for OFS.

3.2.1 A Simple Truncation Approach
A straightforward approach to online feature selection
is to modify the Perceptron algorithm by applying trun-
cation. Specifically, In the t-th trial, when being asked
to make prediction, we will truncate the classifier wt by
setting everything but the B largest (absolute value) ele-
ments in wt to be zero. This truncated classifier, denoted
by w

B
t , is then used to classify the received instance xt.

Similar to the Perceptron algorithm, when the instance
is misclassified, we will update the classifier by adding
the vector ytxt where (xt, yt) is the misclassified training
example. Algorithm 1 shows the steps of this approach.

Unfortunately, this simple approach does not work: it
cannot guarantee a small number of mistakes. To see this,
consider the case where the input pattern x can only take
two possible patterns, either xa or xb. For xa, we set its
first B elements to be 1 and the remaining elements to
be 0. For xb, we set its first B elements to be 0 and the
remaining elements to be 1. An instance x is assigned
to the positive class (i.e., y = +1) when it is xa, and
assigned to the negative class (i.e., y = −1) when it is xb.
Let (x1, y1), . . . , (x2T , y2T ) be a sequence of 2T examples,
with x2k+1 = xa, y2k+1 = 1, k = 0, . . . , T − 1 and x2k =
xb, y2k = −1, k = 1, . . . , T . It is clear that Algorithm 1 will
always make a mistake while a simple classifier that uses
only two attributes (i.e., the first feature and the (B+1)-
th feature) will make almost no mistakes.

Algorithm 1 Modified Perceptron by Truncation for OFS

1: Input
• B: the number of selected features

2: Initialization
• w1 = 0

3: for t = 1, 2, . . . , T do
4: Receive xt

5: Make prediction sgn(x⊤
t wt)

6: Receive yt
7: if ytx

⊤
t wt ≤ 0 then

8: ŵt+1 = wt + ytxt

9: wt+1 = Truncate(ŵt+1, B)
10: else
11: wt+1 = wt

12: end if
13: end for

Algorithm 2 w = Truncate(ŵ, B)

1: if ‖ŵ‖0 > B then
2: w = ŵ

B where ŵ
B is ŵ with everything but the

B largest elements set to zero.
3: else
4: w = ŵ

5: end if

3.2.2 A Sparse Projection Approach

One reason for the failure of Algorithm 1 is that although
it selects the B largest elements for prediction, it does not
guarantee that the numerical values for the unselected
attributes are sufficiently small, which could potentially
lead to many classification mistakes. We can avoid this
problem by exploring the sparsity property of L1 norm,
given in the following proposition from [13].

Proposition 1: For q > 1 and x ∈ R
d, we have

‖x− x
m‖q ≤ ξq‖x‖1(m+ 1)1/q−1,m = 1, . . . , d

where ξq is a constant depending only on q and x
m

stands for the vector x with everything but the m largest
elements set to 0.
Proposition 1 indicates that when a vector x lives in a
L1 ball, most of its numerical values are concentrated in
its largest elements, and therefore removing the smallest
elements will result in a small change to the original
vector measured by the Lq norm. Thus, we will restrict
the classifier to be restricted to a L1 ball, i.e.,

∆R = {w ∈ R
d : ‖w‖1 ≤ R} (1)

Based on this idea, we present a new approach for
Online Feature Selection (OFS), as shown in Algorithm 3.
The online learner maintains a linear classifier wt that
has at most B non-zero elements. When a training
instance (xt, yt) is misclassified, the classifier is first
updated by online gradient descent and then projected
to a L2 ball to ensure that the norm of the classifier is
bounded. If the resulting classifier ŵt+1 has more than
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B non-zero elements, we will simply keep the B ele-
ments in ŵt+1 with the largest absolute weights. Finally,
Theorem 1 gives the mistake bound of Algorithm 3.

Algorithm 3 OFS via Sparse Projection. (OFS)

1: Input
• λ: regularization parameter
• η: step size
• B: the number of selected features

2: Initialization
• w1 = 0

3: for t = 1, 2, . . . , T do
4: Receive xt

5: Make prediction sgn(w⊤
t xt)

6: Receive yt
7: if ytw

⊤
t xt ≤ 1 then

8: w̃t+1 = (1− λη)wt + ηytxt

9: ŵt+1 = min{1,
1

√

λ

‖w̃t+1‖2
}w̃t+1

10: wt+1 = Truncate(ŵt+1, B)
11: else
12: wt+1 = (1− λη)wt

13: end if
14: end for

Theorem 1: Let ℓ(z) be a convex loss function decreas-
ing in z, with |ℓ′(1)| ≥ G and ℓ(0) = 1. After run-
ning Algorithm 3 over a sequence of training examples
(x1, y1), . . . , (xT , yT ) with ‖xt‖2 ≤ 1 and xt ∈ R

d, t ∈ [T ],
we have the following bound for the number of mistakes
M made by Algorithm 3

M ≤ 1

Ω

{
min

w∈∆√

d/λ

‖w‖22 + 2

T∑

t=1

ℓ(ytw
⊤
xt)

}

Ω = 2η − η2G2 − 4ξ2d√
B + 1λ

− ξ22d

λ(B + 1)

The detailed proof can be found in our online supple-
mental file http://OFS.stevenhoi.org/OFS proofs.pdf.

3.3 OFS: Learning with Partial Inputs

In the above discussion, although the classifier w only
consists of B non-zero elements, it requires the full
knowledge of the instances, namely, every attribute in
xt has to be measured and computed. We can further
constrain the problem of online feature selection by
requiring no more than B attributes of xt when soliciting
input patterns. We note that this may be important for
a number of applications when the attributes of objects
are expensive to acquire [36], [4]. Evidently, we can not
just acquire the B attributes that have non-zero values in
the classifier wt. This is because in this way, the classifier
will never be able to change the subset of attributes with
non-zero elements, and it is easy to generate a sequence
of training examples that lead to a poor classification
performance for this approach.

To address this challenge, we propose an ε-greedy
online feature selection approach with partial input in-
formation by employing a classical technique for making

tradeoff between exploration and exploitation [30]. In
this approach, we will spend ε of trials for exploration by
randomly choosing B attributes from all d attributes, and
the remaining 1−ε trials on exploitation by choosing the
B attributes for which classifier wt has non-zero values.
Algorithm 4 shows the detailed steps of the proposed
OFSP algorithm. Finally, Theorem 2 gives the mistake
bound of Algorithm 4.

Algorithm 4 Learning with Partial Inputs. (OFSP )

1: Input
• R: maximum L2 norm
• B: the number of selected features
• ǫ: the exploration-exploitation tradeoff
• η: step size

2: Initialization
• w1 = 0

3: for t = 1, 2, . . . , T do
4: Sample Zt from a Bernoulli distribution with prob-

ability ǫ.
5: if Zt = 1 then
6: Randomly choose B attributes Ct from [d]
7: else
8: Choose the attributes that have non-zero values

in wt, i.e., Ct = {i : [wt]i 6= 0}
9: end if

10: Receive x̃t by only requiring the attributes in Ct
11: Make prediction sgn(w⊤

t x̃t)
12: Receive yt
13: if ytw

⊤
t x̃t ≤ 1 then

14: Compute x̂t as

[x̂t]i =
[x̃t]i

B
d ǫ+ I([wt]i 6= 0)(1− ǫ)

, i = 1, . . . , d

15: w̃t+1 = wt + ytηx̂t

16: ŵt+1 = min{1, R
‖w̃t+1‖2

}w̃t+1

17: wt+1 = Truncate(ŵt+1, B)
18: else
19: wt+1 = wt

20: end if
21: end for

Theorem 2: After running Algorithm 4 over a sequence
of training examples (x1, y1), . . . , (xT , yT ) with ‖xt‖2 ≤
1, t ∈ [T ], we have the following bound for the number
of mistakes M made by Algorithm 4

M ≤
{ 1
2η ‖w‖22 +

∑T
t=1 ℓ(ytw

⊤
xt)}

[ ǫ
CB

d

+ (1− ǫ)]− ηd
2Bǫ −

2ξ2
√
dR2

η
√
B+1

− ξ2
2

√
dR2

2η(B+1)

where CB
d is the number of B-combinations

from a given set of d elements. The detailed
proof can be found in our online supplemental
file http://OFS.stevenhoi.org/OFS proofs.pdf.

http://OFS.stevenhoi.org/OFS_proofs.pdf
http://OFS.stevenhoi.org/OFS_proofs.pdf
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4 EXPERIMENTAL RESULTS

In this section, we conduct an extensive set of exper-
iments to evaluate the performance of the proposed
online feature selection algorithms. We will first evaluate
the online predictive performance of the two OFS tasks
on several benchmark datasets from UCI machine learn-
ing repository. We will then demonstrate the applications
of the proposed online feature selection technique for
two real-world applications by comparing the proposed
OFS techniques with state-of-the-art batch feature selec-
tion techniques in literature [32]. We will also compare
the proposed technique with regular the existing online
learning technique [15]. Finally, all the source code and
data sets used in this paper can be downloaded from
our project website http://OFS.stevenhoi.org/.

4.1 Experiment I: OFS with Full Input Information

In this subsection, we will introduce the empirical results
of the proposed Online Feature Selection algorithms in
full information setting.

4.1.1 Experimental Testbed on UCI and Text Classifica-
tion Datasets

We test the proposed algorithms on a number of publicly
available benchmarking datasets. All of the datasets can
be downloaded either from LIBSVM website 1 or UCI
machine learning repository 2. Besides the UCI data sets,
we also adopt two high-dimensional real text classifica-
tion datasets based on the bag-of-words representation:
(i) the Reuters Corpus Volume 1 (RCV1) 3; (ii) 20 News-
groups datasets 4, we extract the “comp” versus “sci”
and “rec” versus “sci” to form two binary classification
tasks. Table 1 shows the statistics of the datasets used in
our following experiments.

TABLE 1
List of UCI and Text Classification datasets in our

experiments.

Dataset # Samples # Dimensions

magic04 19020 10

svmguide3 1243 21

german 1000 24

splice 3175 60

spambase 4601 57

a8a 32561 123

RCV1 4086 29992

20Newsgroup(“rec”vs“sci”) 8928 26214

20Newsgroup(“comp”vs“sci”) 9840 26214

1. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
2. http://www.ics.uci.edu/∼mlearn/MLRepository.html
3. http://datahub.io/dataset/rcv1
4. http://qwone.com/∼jason/20Newsgroups/

4.1.2 Experimental Setup and Baseline Algorithms

We compare the proposed OFS algorithm against the
following two baselines:

• the modified perceptron by the simple truncation
step shown in Algorithm 1, denoted as “PEtrun”
for short;

• a randomized feature selection algorithm, which
randomly selects a fixed number of active features
in an online learning task, denoted as “RAND” for
short.

To make a fair comparison, all algorithms adopt the
same experimental settings. We set the number of se-
lected features as round(0.1 ∗ dimensionality) for every
dataset, the regularization parameter λ to 0.01, and the
learning rate η to 0.2. The same parameters are used by
all the baseline algorithms. After that, all the experiments
were conducted over 20 times, each with a random
permutation of a dataset. All the experimental results
were reported by averaging over these 20 runs.

4.1.3 Evaluation of Online Predictive Performance

Table 2 summarizes the online predictive performance of
the compared algorithms with a fixed fraction of selected
features (10% of all dimensions) on the datasets.

TABLE 2
Evaluation of the average number of mistakes by three

algorithms on the six datasets.

Algorithm svmguide3 german magic04

RAND 567.6 ± 17.3 472.4 ± 11.1 8689.8 ±58.9
PEtrun 512.2 ± 32.6 489.6 ± 29.8 8153.1 ±79.3
OFS 400.9 ± 66.8 432.8 ± 13.6 6023.4 ±1342.3

Algorithm splice spambase a8a

RAND 1517.0 ±25.7 1827.7 ±45.2 15610.7 ±78.8
PEtrun 1039.9 ±35.0 1294.8± 66.3 14086.8 ±300.4
OFS 735.4 ±68.3 913.1 ± 157.8 9424.4 ±2545.8

Algorithm RCV1 “rec” vs “sci” “comp” vs “sci”

RAND 1818.9 ±41.8 4379.6 ±44.0 4697.2 ±44.8
PEtrun 314.3 ±19.8 1343.1± 43.8 1886.7 ±60.1
OFS 117.2 ±13.8 943.81 ± 59.5 1725.5 ±60.8

Several observations can be drawn from the results.
First of all, we found that among all the compared
algorithms, the RAND algorithm has the highest mistake
rate for all the cases. This shows that it is important
to learn the active features in an OFS task. Second, we
found that the simple “PEtrun” algorithm can outper-
form the RAND algorithm considerably, which further
indicates the the importance of selecting informative fea-
tures for online learning tasks. Finally, among the three
algorithms, we found that the OFS algorithm achieved
the smallest mistake rate, which is significantly smaller
than the two algorithms. This shows that the proposed
algorithm is able to considerably boost the performance
of the simple “PEtrun” approach.

http://OFS.stevenhoi.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://datahub.io/dataset/rcv1
http://qwone.com/~jason/20Newsgroups/
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Fig. 1. Performance evaluation of online feature selection in the online learning process.

To further examine the online predictive performance,
Figure 1 shows how the mistake rates is varied over
iterations accord the entire OFS process on the three
randomly chosen datasets (similar observations can be
found on the other three datasets, we simply omit them
due to space limitation). Similar to the previous obser-
vations, we can see that the proposed OFS algorithm
consistently surpassed the other two algorithms for all
the situations. Besides, we also found that the more the
training instances received, the more significant the gain
achieved by the proposed OFS algorithm over the other
baselines. This again verifies the efficacy of the proposed
OFS algorithm and its promising potential for large-scale
data mining tasks.

Finally, Figure 2 further shows the details of the online
performance of the compared online feature selection
algorithms with varied fractions of selected features.
The proposed OFS algorithm outperform the other two
baselines for most cases. This encouraging result further
verifies the efficacy of the proposed technique.

4.2 Experiment II: Comparison with Sparse Online
Learning

We also compare OFS with the sparse online learning
method, i.e., the Forward Backward Splitting (FOBOS)
algorithm [15]. Although we mentioned that there is
a distinct difference between these two family of al-
gorithms in the related work section, it is interesting
and useful to compare them directly in online learning
settings. To make a fair comparison, we set the learning
rate η to 0.2 for both algorithms, and vary the regular-
ization parameter in FOBOS in order to obtain different
levels of sparsity; we then apply OFS to select the exact
number of features as FOBOS does, and compare the
online classification performances of the two algorithms
under the different levels of sparsity.

The experimental results are summarized in Figure 3.
From the results, it is clear to see that when the sparsity
level is 0 (all the features are selected, for some text
datasets, which adopt the bag-of-words representation,
the features are already somewhat sparse), FOBOS and
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Fig. 2. Online Classification Accuracy with various fractions of selected features.

OFS perform almost identically, which indicates the two
methods have very similar predictive performance for
online learning(On newsgroup datasets OFS performs
even worse than FOBOS when use all features, but
when we select only a small faction of the features,
OFS performs much better). When the sparsity level
increases, we observe that the proposed OFS algorithm
significantly outperforms FOBOS. The FOBOS algorithm
adopts the ℓ1 norm regularization based approach, in
which the optimization task of FOBOS leads to the soft-
thresholding operations in order to achieve the sparse
solutions. In contrast, OFS have two important advan-
tages: (i) OFS can select the exact number of features
specified by users, while FOBOS has to carefully tune the
regularization parameter in order to achieve the desired
sparsity level; (ii) The soft-thresholding operations may
achieve different sparsity levels at different iterations
during the online learning process, while OFS is able

to guarantee the sparsity level of the learner keeps un-
changed during the entire online learning process. This
promising observation shows that the proposed OFS
algorithm is able to identify and exploit more effective
features for online learning tasks.

4.3 Experiment III: OFS with Partial Input

We now evaluate the empirical performance of the
proposed Online Feature Selection (OFS) algorithm by
learning with partial input.

4.3.1 Experimental Setup and Compared Algorithms

We compare the OFSP algorithm with three other base-
line algorithms of learning with partial input:

• modified perceptron by using the truncation step,
referred to as “RAND”, which randomly selects a
fixed number of active features for the input and
for learning the weight vector;
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Fig. 3. Comparison of Sparse Online Learning and Online Feature Selection under Varied Levels of Sparsity.

• another modified perceptron, referred to as
“PErand”, which randomly selects a fixed number
of active features for the inputs but treats the top
largest elements in the weight vector as active
dimensions; and

• a modified OFS algorithm, referred to as OFSrand,
which randomly selects the active features as the
inputs for the OFS algorithm.

We test all the algorithms on all of the datasets
listed in the Table 1. To make a fair comparison, all
algorithms adopt the same experimental setup on all
the datasets. We set the number of selected features as
round(0.1∗Dimensionality) for every dataset. R is set to
10 for OFSP and OFSrand algorithms. Furthermore, we
set ǫ = 0.2 and η = 0.2 for OFSP . All the experiments
were conducted over 20 random permutations for each
dataset. All the results were reported by averaging over
these 20 runs.

4.3.2 Performance Evaluation

Table 3 summarizes the online prediction performance
of the compared algorithms on the six datasets.

Several observations can be drawn from the results.
First, we found that the RAND algorithm suffered the
highest mistake rate for all cases. This again shows that
it is important to learn the active features for the inputs
and the weight vector. Second, OFSrand made signifi-
cantly more mistakes than OFSP for all the datasets,
which validates the importance and efficacy of exploring
the knowledge of the active features. Finally, we found
that the proposed OFSP algorithms achieved the small-
est mistake rates. This shows that the proposed OFSP

technique is effective for learning the most informative
features under the partial input situation.

To further examine the online predictive performance,
Figure 4 shows the details of online average mistake
rates for the entire OFS process on the six datasets,
respectively. Similar to the previous observations, we
can see that the proposed OFSP algorithm consistently
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Fig. 4. Performance evaluation of online feature selection with partial input.

outperformed the other algorithms for all the situations.
This again validates the effectiveness of the proposed
technique.

4.4 Experiment IV: Applications to Image
Classification and Bioinformatics Tasks

In this section, we apply the proposed OFS technique to
tackle feature selection tasks of real-world applications
in computer vision and Bioinformatics.

4.4.1 Experimental Datasets and Setup
The first application is to solve feature selection problem
for image classification. We adopt the CIFAR-10 image
dataset [26] 5 in our experiment. It consists of 10 classes
of images, which as a subset of the well-known 80-
million images. In this experiment, we randomly choose
two classes “airplane” and “bird” to form a binary
classification task. In our dataset, the CIFAR-10 dataset

5. http://www.cs.toronto.edu/∼kriz/cifar.html

consists of 3,992 images, where each image is repre-
sented by a 3073-dimensional feature vector.

The second application is to solve feature selection
task for microarray gene expression data in bioinformat-
ics. We adopt the Colon dataset, which is a microarray
gene expression data of tumor and normal colon tis-
sues [38] 6. This dataset consists of 62 samples and each
sample contains 2000 gene features.

The parameter settings are the same as the previ-
ous section. All the experiments are conducted over 20
random permutations. All the results are reported by
averaging over these 20 runs.

4.4.2 Evaluation of Online Prediction Performance
The experimental results are shown in Table 4 and
Table 5. Note that the average mistake rates of online
gradient descent with full input dimension on CIFAR-10
and Colon datasets are 0.226± 0.003 and 0.354± 0.054,
respectively.

6. http://genomics-pubs.princeton.edu/oncology

http://www.cs.toronto.edu/~kriz/cifar.html
http://genomics-pubs.princeton.edu/oncology
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TABLE 6
Evaluation of the classification error rates with two different classifiers (OGD vs. KNN) on “Colon”.

OGD 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.464 ± 0.146 0.400 ± 0.055 0.361 ± 0.067 0.358 ± 0.075 0.387 ± 0.076 0.393 ± 0.083 0.380 ± 0.058
OFS 0.441 ± 0.088 0.409 ± 0.127 0.348 ± 0.062 0.306 ± 0.065 0.345 ± 0.057 0.341 ± 0.066 0.332 ± 0.050

KNN 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.377 ± 0.066 0.341 ± 0.094 0.251 ± 0.042 0.280 ± 0.088 0.271 ± 0.055 0.319 ± 0.068 0.325 ± 0.110
OFS 0.345 ± 0.097 0.335 ± 0.107 0.212 ± 0.097 0.180 ± 0.120 0.222 ± 0.068 0.290 ± 0.068 0.287 ± 0.105

TABLE 7
Evaluation of the classification error rates with two different classifiers (OGD vs. KNN) on “CIFAR-10”.

OGD 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.437 ± 0.018 0.428 ± 0.009 0.427 ± 0.012 0.424 ± 0.012 0.364 ± 0.012 0.359 ± 0.017 0.342 ± 0.013
OFS 0.341 ± 0.028 0.318 ± 0.021 0.309 ± 0.018 0.295 ± 0.015 0.270 ± 0.012 0.254 ± 0.010 0.241 ± 0.008

KNN 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.325 ± 0.009 0.327 ± 0.014 0.327 ± 0.015 0.323 ± 0.011 0.238 ± 0.006 0.264 ± 0.013 0.256 ± 0.010
OFS 0.293 ± 0.013 0.273 ± 0.012 0.269 ± 0.012 0.259 ± 0.014 0.257 ± 0.010 0.253 ± 0.017 0.255 ± 0.007

TABLE 3
Evaluation of the average number of mistakes by

learning with partial input on the datasets.

Algorithm svmguide3 german magic04

RAND 1229.7± 5.2 991.0± 3.4 18908.3± 11.8
PEtrun 1112.3 ± 11.4 918.3 ± 7.8 17939.6± 45.2
OFSrand 1112.3 ± 16.9 924.0±8.4 17948.7± 37.3
OFSP 701.5± 42.5 589.3 ±33.9 10274.2±172.1

Algorithm splice spambase a8a

RAND 3066.9 ± 8.1 4408.8± 12.8 30089.1± 43.0
PEtrun 2361.7± 29.1 3275.4± 40.4 21431.8± 653.6
OFSrand 2361.3 ± 26.9 3278.6± 31.2 21575.3± 728.3
OFSP 1418.1± 70.5 1954.2± 78.7 16931.0 ± 164.6

Algorithm RCV1 “rec” vs “sci” “comp” vs “sci”

RAND 4074.6 ±4.0 8889.3 ±8.5 9795.6 ±2.5
PEtrun 1293.0 ±3.0 3134.0± 85.5 3694.0 ±67.8
OFSrand 1280.6 ± 8.5 3176.3± 46.3 3586.6± 26.8
OFSP 853.0± 21.1 2325.3± 62.0 2639.3 ± 45.5

TABLE 4
Evaluation of online mistake rates on CIFAR-10. ρ is the

fraction of selected features.
ρ RAND PEtrun OFS

0.01 0.471 ±0.006 0.367 ± 0.009 0.323 ± 0.020
0.02 0.466 ±0.006 0.340 ±0.006 0.309 ±0.017
0.04 0.466 ±0.006 0.321 ±0.006 0.288 ±0.012
0.08 0.464 ±0.008 0.306 ±0.003 0.267 ±0.008
0.16 0.461 ±0.006 0.295 ±0.004 0.252 ±0.004
0.32 0.455 ±0.009 0.291 ±0.005 0.238 ±0.003
0.64 0.436 ±0.008 0.288 ±0.005 0.226 ± 0.001

Several observations could be drawn. First, our OFS
algorithm performs significantly better than the RAND
and the PEtrun approaches on both datasets, which
demonstrates the effectiveness of our algorithms; Sec-
ond, on CIFAR-10, We observed a significant improve-

TABLE 5
Evaluation of online mistake rates on “Colon”. ρ is the

fraction of selected features.
ρ RAND PEtrun OFS

0.01 0.496 ±0.061 0.406 ±0.060 0.362 ± 0.068
0.02 0.485 ±0.075 0.391 ±0.048 0.325 ±0.053
0.04 0.512 ±0.050 0.366 ±0.045 0.337 ±0.066
0.08 0.496 ±0.056 0.361 ±0.046 0.334 ±0.053
0.16 0.506 ±0.075 0.375 ±0.052 0.341 ±0.055
0.32 0.508 ±0.060 0.372 ±0.035 0.347 ±0.055
0.64 0.457 ±0.046 0.391 ±0.040 0.350 ±0.059

ment in the performance of the proposed OFS algo-
rithm, as the fraction of selected features is increased.
It achieves the same performance as OGD when the
fraction reaches 64%; on Colon, as the fraction of fea-
tures increases, we first observed an improvement in
the performance, and a decline afterwards. The best
performance is achieved when 2% of the features are
selected. We attribute the decline in the prediction to the
potentially large number of noisy features, which is also
acknowledged by the other studies [32].

4.4.3 Online vs. Batch Feature Selection Methods

All the above experiments are conducted in an online
learning setting. In this experiment, we compare our OFS
algorithm with a state-of-the-art batch feature selection
method: minimum Redundancy Maximum Relevance
Feature Selection (mRMR) [32], [12].

We divide the datasets into two equal size: the first
part is used to select features by running FS algorithms
(OFS and mRMR), and the second part is used to test the
performance of selected features. To examine the efficacy
of the selected features invariant to different classifiers,
we adopt two types of widely used classifiers: (i) Online
gradient descent (OGD) which is an online learning
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Fig. 5. Evaluation of time efficiency: online feature selection (OFS) v.s. batch feature selection (mRMR).

classifier, and (ii) K-nearest neighbor classifier (KNN),
which is a batch learning classifier. In this experiment,
we simply fix K = 5 for the parameter K in the
KNN classifier. We evaluate the performance in terms of
both the classification error rates and the computational
time efficiency of the two different feature selection
algorithms. Table 6 and Table 7 show the classification
errors of both data with respect to the percentage of
selected features, and Figure 5 shows the time efficiency
evaluation.

From Table 6 and Table 7, we can see that the proposed
OFS algorithm outperforms mRMR for most cases in
terms of classification accuracy. We also noticed that for
both feature selection methods, the classification error
decreases at first as the percentage of selected features
increases; the classification error however increases as
the percentage of selected features goes beyond 4% or
8%. This phenomenon can be explained by the fact that
many of the input features are irrelevant or redundant.
In terms of computational efficiency as shown in Figure
5, we observe that the OFS algorithm has a significant
advantage over the batch feature selection algorithm,
especially when the number of features to be selected
is large. For example, when choosing 32% of features
on the CIFAR-10 dataset, the mRMR algorithm spends
about 1045.83 seconds for learning, while the proposed
OFS algorithm takes only 1.08 seconds, which is almost
1000 times faster than the mRMR algorithm.

4.5 Experiment V: Evaluation on Large-scale Data
In this section, we evaluate the performance of the
proposed OFS algorithms on large data sets that contain
at least 100,000 instances. The statistics of these data
sets are shown in Table 8. All the experiments were
implemented in Matlab and run on a regular PC.

Table 9 shows the experimental results of the average
numbers of mistakes achieved by three different algo-
rithms. From the results, it is clear that the proposed

TABLE 8
The list of large datasets used in our experiments.

Dataset Number Dimension

KDDCUP08 102294 117
ijcnn1 141691 22
codrna 271617 8
covtype 581012 54
KDDCUP99 1131571 127

TABLE 9
Evaluation of the average number of mistakes by three

algorithms on the big data sets.

Algorithm KDDCUP08 ijcnn1

RAND 50718.4 ± 210.2 74778.4 ± 159.9

PEtrun 48714.4 ± 2654.8 62282.6 ± 188.7

OFS 31155.6 ± 2733.1 40512.8 ± 257.0

Algorithm codrna covtype

RAND 128709.0 ± 284.2 277394.5 ±127.0

PEtrun 119838.4 ±165.8 198661.6± 125.6

OFS 78685.8 ±42.8 148223.1 ± 193.0

Algorithm KDDCUP99 N.A

RAND 53614.6 ± 3567.9 N.A

PEtrun 213.0 ±10.5 N.A

OFS 98.3 ±4.6 N.A

OFS algorithm significantly outperforms the other two
baselines. Figure 6 shows how online predictive perfor-
mance of different algorithms varies over the iteration.
We can observe that the advantage of the proposed
OFS algorithm with more and more training examples
received.

Figure 7 shows the running time of various fractions
of selected features of the proposed algorithms. We first
observe that all the three online algorithms are very effi-
cient, requiring only a few minutes in solving the online
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Fig. 6. Performance evaluation of online feature selection in the entire online learning process on three big datasets.
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Fig. 7. Time cost under various fractions of selected features of online feature selection in big datasets.

feature selection tasks for all the large-scale data sets. It
is interesting to observe that the runtime of the proposed
OFS algorithm generally decreases as the number of
selected features increases, which seems to be counter-
intuitive as we tend to observe a longer running time
with increasing number of selected features. (see Figure
5). This is primarily because the main time consuming
part of the proposed OFS algorithm lies in the online
updating part; when the number of selected features
increases, the learner becomes more accurate and thus
requires less number of updates. This also explain why
the proposed OFS algorithm can even run faster than the
other baselines on some data sets. All these encouraging
results again validate the efficacy and potential of the
proposed OFS method for mining large-scale data sets
in the era of big data.

5 CONCLUSIONS

This paper investigated a new research problem, Online
Feature Selection (OFS), which aims to select a small
and fixed number of features for binary classification in
an online learning fashion. In particular, we addressed
two kinds of OFS tasks in two different settings: (i)
OFS by learning with full inputs of all the dimen-
sions/attributes, and (ii) OFS by learning with partial
inputs of the attributes. We presented a family of novel
OFS algorithms to solve each of the OFS tasks, and
offered theoretical analysis on the mistake bounds of
the proposed OFS algorithms. We extensively examined
their empirical performance and applied the proposed
techniques to solve two real-world applications: image
classification in computer vision and microarray gene
expression analysis in bioinformatics. The encouraging
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results show the proposed algorithms are fairly effec-
tive for feature selection tasks of online applications,
and significantly more efficient and scalable than some
state-of-the-art batch feature selection technique. Future
work could extend our framework to other settings, e.g.,
online multi-class classification and regression problems,
or to help tackle other emerging online learning tasks,
such as online transfer learning [47] or online AUC
maximization [50].
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