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ABSTRACT
Most studies of online learning require accessing all the at-
tributes/features of training instances. Such a classical set-
ting is not always appropriate for real-world applications
when data instances are of high dimensionality or the access
to it is expensive to acquire the full set of attributes/features.
To address this limitation, we investigate the problem of
Online Feature Selection (OFS) in which the online learner
is only allowed to maintain a classifier involved a small and
fixed number of features. The key challenge of Online Fea-
ture Selection is how to make accurate prediction using a
small and fixed number of active features. This is in contrast
to the classical setup of online learning where all the features
are active and can be used for prediction. We address this
challenge by studying sparsity regularization and truncation
techniques. Specifically, we present an effective algorithm to
solve the problem, give the theoretical analysis, and evalu-
ate the empirical performance of the proposed algorithms for
online feature selection on several public datasets. We also
demonstrate the application of our online feature selection
technique to tackle real-world problems of big data mining,
which is significantly more scalable than some well-known
batch feature selection algorithms. The encouraging results
of our experiments validate the efficacy and efficiency of the
proposed techniques for large-scale applications.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
data mining; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Feature Selection, Online Learning, Classification
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Feature selection is an important topic in data mining and
machine learning and has been studied for many years in
literature [10, 19, 26, 31]. The objective of feature selection
is to select a subset of relevant features for building effective
prediction models. By removing irrelevant and redundant
features, feature selection can improve the performance of
prediction models by alleviating the effect of the curse of
dimensionality, enhancing the generalization performance,
speeding up the learning process, and improving the model
interpretability. Feature selection has found applications in
many domains, especially for the problems involved high
dimensional data.

Despite being studied extensively, most existing studies on
feature selection often assume the feature selection task is
conducted in an off-line learning fashion and all the features
of training instances are given a priori. Such assumptions
may not always hold for some real-world applications where
training examples may arrive in an online manner or it is ex-
pensive to collect the full information of training data. For
example, in an online spam email detection system, training
data usually arrive sequentially, making it difficult to de-
ploy a regular batch feature selection technique in a timely,
efficient, and scalable manner. Another example is feature
selection in bioinformatics, where acquiring the entire set of
features/attributes for every instance is expensive due to the
high cost of conducting wet lab experiments.

Unlike the existing studies on feature selection, in this pa-
per, we investigate the problem of Online Feature Selection

(OFS) that aims to solve the feature selection problem by an
online learning approach. The goal of online feature selec-
tion is to develop online classifiers that involve only a small
and fixed number of features. In order to mine big data in
real-world applications, we must be able to efficiently iden-
tify a fixed number of relevant features for building accurate
prediction models in the online learning process. In this pa-
per, we propose algorithms to solve the OFS task, analyze
the theoretical property, and validate their empirical per-
formance by extensive experiments. Finally, we apply our
technique to solve applications with large-scale data sets.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 presents the problem and
the proposed algorithms as well as the theoretical analysis.
Section 4 discusses our empirical studies and Section 5 con-
cludes this work.

2. RELATED WORK
Our work is closely related to the studies of online learning



and feature selection in machine learning and data mining.
Below we review some important related work in both areas.

For online learning studies, many techniques have been
proposed for solving different tasks in literature [30, 6, 39,
20, 41, 25]. The most well-known method is the Perceptron
algorithm [30, 16], which updates the model by adding a
new example with some constant weight into the current set
of support vectors when the incoming example is misclassi-
fied. Moreover, a lot of new online learning algorithms have
been developed recently, in which many of them usually fol-
low the criterion of maximum margin learning principle [17,
21, 6, 40, 34]. For example, the Passive-Aggressive algo-
rithm [6] proposes to update a classifier that is near to the
previous function while suffering less loss on the current in-
stance. The PA algorithm is limited in that it only exploits
the first order information, which has been addressed by the
recently proposed confidence weighted online learning algo-
rithms that exploit the second order information [14, 7, 8].
Despite the extensive investigation, most studies of online
learning exploit the full features. In contrast, we consider
an online learning problem where the number of active fea-
tures is fixed, a significantly more challenging problem than
the conventional setup of online learning.

Feature Selection (FS) has been actively studied. The goal
of FS is to select the most relevant features from the whole
feature space in order to improve the prediction performance
of the predictors.Various FS methods have been proposed.
Based on the selection criterion choice, these methods can
be roughly divided into three categories: Filter methods,
Wrapper methods, and Embedded methods approaches. Fil-
ter methods [38, 9, 1] relies on the characteristics of the
data such as correlation, distance and information, with-
out involving any learning algorithm; wrapper methods [22]
require one predetermined learning algorithm for evaluating
the performance of selected features set. Generally, wrapper
methods will search the features suitable for the predeter-
mined learning algorithm to improve the performance, but
will be more computationally expensive; while Embedded
methods [2, 5, 37] aim to integrate the feature selection pro-
cess into the model training process, which are faster than
the wrapper methods and still provide suitable feature sub-
set for the learning algorithm, but those resultant features
may be not suitable for other learning algorithms.

It is important to distinguish online feature selection, the
problem addressed in this work, from Online Feature Se-
lection or Streaming Feature Selection studied in [29, 18,
36]. In these works, features are assumed to arrive one at a
time while all the training instances are available before the
learning process starts. Their goal is to select a subset of
features and return an appropriate model at each time step
given the features observed so far. In contrast, we focus on
online learning where training instances arrive sequentially.

The proposed work is closely related to sparse online learn-
ing [15, 24], whose goal is to learn a sparse linear classifier.
Our work differs from these studies in that we impose a hard
constraint on the number of non-zero elements in classifier
w, while all the studies of sparse online learning only have
soft constraints on the sparsity of the classifier. Our work is
also related to budget online learning [3, 11, 27, 42] where
the number of support vectors is bounded by a predefined
number. A common strategy behind many budget online
learning algorithms is to remove the “oldest” support vector
when the maximum number of support vectors is reached.

This simple strategy however is not applicable to online fea-
ture selection. Finally, our work is closely related to the
online learning algorithm that aims to learn a classifier that
performs as well as the best subset of experts [35], which
is in contrast to most online learning work on prediction
with expert advice that only compares to the best expert in
the ensemble [4]. Unlike the work [35] where only positive
weights are assigned to individual experts, in this study, the
weights assigned to individual features can be both negative
and positive, making it more flexible.

3. ONLINE FEATURE SELECTION

3.1 Problem Setting
In this paper, we consider the problem of online feature se-

lection for binary classification. Let {(xt, yt)| t = 1, . . . , T}
be a sequence of input patterns received over the trials,
where each xt ∈ R

d is a vector of d dimension and yt ∈
{−1,+1}. In our study, we assume that d is a large number
and for computational efficiency we need to select a rela-
tively small number of features for linear classification. More
specifically, in each trial t, the learner presents a classifier
wt ∈ R

d that will be used to classify instance xt by a linear
function sgn(w⊤

t xt). Instead of using all the features for
classification, we require the classifier wt to have at most B
non-zero elements, i.e.,

‖wt‖0 ≤ B

where B > 0 is a predefined constant, and consequently at
most B features of xt will be used for classification. We refer
to this problem as online feature selection. Our goal is to
design an effective strategy for online feature selection that
is able to make a small number of mistakes. Throughout the
paper, we assume ‖xt‖2 ≤ 1, t = 1, . . . , T .

3.2 Algorithms
In this problem, we assume the learner is provided with

the full inputs of every training instance (i.e. x1, . . . ,xT )

3.2.1 A Simple Truncation Approach
A straightforward approach to online feature selection is

to modify the Perceptron algorithm by applying truncation.
Specifically, In the t-th trial, when being asked to make pre-
diction, we will truncate the classifier wt by setting every-
thing but the B largest (absolute value) elements in wt to
be zero. This truncated classifier, denoted by wB

t , is then
used to classify the received instance xt. Similar to the Per-
ceptron algorithm, when the instance is misclassified, we will
update the classifier by adding the vector ytxt where (xt, yt)
is the misclassified training example. Algorithm 1 shows the
steps of this approach.

Unfortunately, this simple approach does not work: it can
not guarantee a small number of mistakes. To see this, con-
sider the case where the input pattern x can only take two
possible patterns, either xa or xb. For xa, we set its first
B elements to be one and the remaining elements to be
zero. For xb, we set its first B elements to be zero and
the remaining elements to be ones. An instance x is as-
signed to the positive class (i.e., y = +1) when it is xa,
and assigned to the negative class (i.e., y = −1) when it
is xb. Let (x1, y1), . . . , (x2T , y2T ) be a sequence of 2T ex-
amples, with x2k+1 = xa, y2k+1 = 1, k = 0, . . . , T − 1 and



Algorithm 1 Modified Perceptron by Truncation for OFS

1: Input
• B: the number of selected features

2: Initialization
• w1 = 0

3: for t = 1, 2, . . . , T do
4: Receive xt

5: Make prediction sgn(x⊤
t wt)

6: Receive yt
7: if ytx

⊤
t wt ≤ 0 then

8: ŵt+1 = wt + ytxt

9: wt+1 = Truncate(ŵt+1, B)
10: else
11: wt+1 = wt

12: end if
13: end for

Algorithm 2 w = Truncate(ŵ, B)

1: if ‖ŵ‖0 > B then
2: w = ŵB where ŵB is ŵ with everything but the B

largest elements set to zero.
3: else
4: w = ŵ
5: end if

x2k = xb, y2k = −1, k = 1, . . . , T . It is clear that Algo-
rithm 1 will always make the mistake while a simple classi-
fier that uses only two attributes (i.e., the first feature and
the B + 1 feature) will make almost no mistakes.

3.2.2 A Sparse Projection Approach
One reason for the failure of Algorithm 1 is that although

it selects the B largest elements for prediction, it does not
guarantee that the numerical values for the unselected at-
tributes are sufficiently small, which could potentially lead
to many classification mistakes. We can avoid this problem
by exploring the sparsity property of L1 norm, given in the
following proposition from [13].

Proposition 1. For q > 1 and x ∈ R
d, we have

‖x− xm‖q ≤ ξq‖x‖1(m+ 1)1/q−1
,m = 1, . . . , d

where ξq is a constant depending only on q and xm stands

for the vector x with everything but the m largest elements

set to 0.

This proposition indicates that when a vector x lies in a
L1 ball, most of its numerical values are concentrated in
its largest elements, and therefore removing the smallest el-
ements will result in a very small change to the original
vector measured by the Lq norm. Thus, we will enforce the
classifier to be restricted to a L1 ball, i.e.,

∆R = {w ∈ R
d : ‖w‖1 ≤ R} (1)

Based on this idea, we present a new approach in Al-
gorithm 3 for Online Feature Selection (OFS). The online
learner maintains a linear classifier wt that has at most B

non-zero elements. When a training instance (xt, yt) is mis-
classified, the classifier is updated by online gradient descent
and then projected; since after projection, the norm of the
classifier could be bound, which is inspired by the Pegasos
algorithm [32]. If the resulting classifier ŵt+1 has more than

B non-zero elements, we will simply keep the B elements in
ŵt+1 with the largest absolute weights.

Algorithm 3 OFS via Sparse Projection. (OFS)

1: Input
• λ: regularization parameter
• η: step size
• B: the number of selected features

2: Initialization
• w1 = 0

3: for t = 1, 2, . . . , T do
4: Receive xt

5: Make prediction sgn(w⊤
t xt)

6: Receive yt
7: if ytw

⊤
t xt ≤ 1 then

8: w̃t+1 = (1− λη)wt + ηytxt

9: ŵt+1 = min{1,
1

√

λ

‖w̃t+1‖2 }w̃t+1

10: wt+1 = Truncate(ŵt+1, B)
11: else
12: wt+1 = (1− λη)wt

13: end if
14: end for

The following theorem gives the mistake bound of Algo-
rithm 3.

Theorem 1. Let ℓ(z) be a convex loss function decreas-

ing in z, with |ℓ′(1)| ≥ G and ℓ(0) = 1. After running Algo-

rithm 3 over a sequence of training examples (x1, y1), . . . , (xT , yT )
with ‖xt‖2 ≤ 1 and xt ∈ R

d, t ∈ [T ], we have the follow-

ing the bound for the number of mistakes M made by Algo-

rithm 3

M ≤ 1

Ω

{
min

w∈∆√

d/λ

‖w‖22 + 2
T∑

t=1

ℓ(ytw
⊤xt)

}

Ω = 2η − η
2
G

2 − 4ξ2d√
B + 1λ

− ξ22d

λ(B + 1)

Proof. At trial t for any classifier w ∈ ∆√
d/λ

,

∆t = ‖w −wt‖22 − ‖w −wt+1‖22
= ‖w −wt‖22 − ‖w − ŵt+1 + ŵt+1 −wt+1‖22
= ‖w −wt‖22 − ‖w − ŵt+1‖22

−2〈w − ŵt+1, ŵt+1 −wt+1〉2 − ‖ŵt+1 −wt+1‖22
Denote w̃t+1 = (1 − λη)wt + ηytxt. Then according to
Generalized pythagorean inequality [4],

‖w − w̃t+1‖22 ≥ ‖w − ŵt+1‖22 + ‖ŵt+1 − w̃t+1‖22
As a result, we have

‖w −wt‖22 − ‖w − ŵt+1‖22 ≥ ‖w −wt‖22 − ‖w − w̃t+1‖22
≥ 2η〈∇ℓ(ytw

⊤
t xt),w −wt〉 − η

2‖∇t‖2

≥ 2η(ℓ(ytw
⊤
t xt)− ℓ(ytw

⊤xt))− η
2
G

2

When the number of non-zero elements in ŵt+1 is more than
B, we will generate wt+1 by only keeping the B largest

elements in ŵt+1. Since ‖ŵt+1‖2 ≤ 1√
λ
, then‖ŵt+1‖1 ≤

√
d√
λ
.

Using Proposition 1, we have

〈w − ŵt+1, ŵt+1 −wt+1〉2 ≤ ‖w − ŵt+1‖2‖ŵt+1 −wt+1‖2

≤ ‖w − ŵt+1‖1‖ŵt+1 −wt+1‖2 ≤ 2ξ2d√
B + 1λ



and

‖ŵt+1 −wt+1‖22 ≤ ξ22d

λ(B + 1)

We thus have

∆t ≥ 2η(ℓ(wt)− ℓ(w))− η2G2 −
4ξ2d√
B + 1λ

−
ξ22d

λ(B + 1)

We complete the proof by adding up the inequalities of all
trials and using the fact ℓ(ytw

⊤
t xt) ≥ 1 when ytw

⊤
t xt ≤

0.

4. EXPERIMENTAL RESULTS
In this section, we conduct an extensive set of experi-

ments to evaluate the performance of the proposed online
feature selection algorithms. We will evaluate the online pre-
dictive performance of the OFS task on several benchmark
datasets from UCI machine learning repository, and then
demonstrate the applications of the proposed online feature
selection technique for real-world applications by compar-
ing the proposed OFS technique with some well-known and
successful batch feature selection technique in literature [28].
Finally, we also examine the scalability of the proposed tech-
nique for mining large-scale data sets.

4.1 Experiment I: Evaluation of Online Learn-
ing Performance on UCI Data Sets

4.1.1 Experimental Testbed on UCI Datasets
To extensively examine the performance, we test the al-

gorithms on a number of public datasets from web machine
learning repositories. All of the datasets can be downloaded
either from LIBSVM website 1 or UCI machine learning
repository 2. Table 1 shows a list of six binary datasets
used in our experiments, which were chosen randomly.

Table 1: List of UCI machine learning datasets used
in our experiments.

Dataset Number Dimension

magic04 19020 10

svmguide3 1243 21

german 1000 24

splice 3175 60

spambase 4601 57

a8a 32561 123

4.1.2 Experimental Setup and Compared Algorithms
We compare the proposed OFS algorithm with two base-

lines: (i) the modified perceptron by simple truncation in
Algorithm 1, denoted as “PEtrun”, and (ii) a randomized
feature selection algorithm, which randomly selects a fixed
number of active features in an online learning task, denoted
“RAND” for short.

To make a fair comparison, all algorithms adopt the same
experimental settings. We set the number of selected fea-
tures as round(0.1 ∗ dimensionality) for every dataset, the

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2http://www.ics.uci.edu/~mlearn/MLRepository.html

regularization parameter λ to 0.01, and the learning rate η

to 0.2. All parameters were chosen by the same approach.
After that, all the experiments were conducted over 20 ran-
dom permutations for each dataset. All the experimental
results were reported by averaging over these 20 runs.

4.1.3 Evaluation of Online Predictive Performance
Table 8 summarizes the online predictive performance of

the compared algorithms with a fixed fraction of selected
features (10% of all dimensions) on the datasets.

Table 2: Evaluation of the average number of mis-
takes by three algorithms on the six datasets.

Algorithm svmguide3 german magic04

RAND 567.6 ± 17.3 472.4 ± 11.1 8689.8 ±58.9

PEtrun 512.2 ± 32.6 489.6 ± 29.8 8153.1 ±79.3

OFS 400.9 ± 66.8 432.8 ± 13.6 6023.4 ±1342.3

Algorithm splice spambase a8a

RAND 1517.0 ±25.7 1827.7 ±45.2 15610.7 ±78.8

PEtrun 1039.9 ±35.0 1294.8± 66.3 14086.8 ±300.4

OFS 735.4 ±68.3 913.1 ± 157.8 9424.4 ±2545.8

Several observations can be drawn from the results. First
of all, we found that among all the compared algorithms,
the RAND algorithm has the highest mistake rate for all
the cases. This shows that it is important to learn the ac-
tive features in an OFS task. Second, we found that the
simple “PEtrun” algorithm can outperform the RAND algo-
rithm considerably, which indicates the algorithm is effective
to choose informative features for online learning tasks. Fi-
nally, among the three algorithms, we found that the OFS
algorithm achieved the smallest mistake rate, which is sig-
nificantly smaller than the two algorithms. This shows that
the proposed algorithm is able to considerably boost the
performance of the simple “PEtrun” approach.

To further examine the online predictive performance, Fig-
ure 1 shows the details of online average mistake rates vary-
ing accord the entire OFS process on the three randomly
chosen datasets (similar observations can be found on the
other three datasets, we simply omit them due to space
limitation). Similar to the previous observations, we can
see that the proposed OFS algorithm consistently surpassed
the other two algorithms for all the situations. This again
verifies the efficacy of the proposed OFS algorithm.

Finally, Figure 2 further shows the details of the online
performance of the compared online feature selection algo-
rithms with varied fractions of selected features. The pro-
posed OFS algorithm outperform the other two baselines
for most cases. This encouraging result further verifies the
efficacy of the proposed technique.

4.2 Experiment II: Online vs. Batch Compar-
ison for Real-world Applications

In this experiment, we apply the proposed OFS technique
to tackle feature selection tasks of real-world applications in
computer vision and Bioinformatics.

4.2.1 Experimental Datasets and Setup
The first application is to solve feature selection for image

classification. We adopt the CIFAR-10 image dataset [23] 3,

3http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 1: Performance evaluation of online feature selection in the online learning process.
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Figure 2: Online Classification Accuracy with various fractions of selected features.



which consists of 10 classes of images, which were a subset
of the well-known 80-million images. In this experiment,
we randomly choose two classes “airplane” and “bird” to a
binary classification task. In our dataset, the CIFAR-10
dataset consists of a total of 3,992 images and each image is
represented by a 3073-dimensional feature vector.

Table 3: Evaluation of online mistake rates on
CIFAR-10. ρ is the fraction of selected features.

ρ RAND PEtrun OFS

0.01 0.471 ±0.006 0.367 ± 0.009 0.323 ± 0.020

0.02 0.466 ±0.006 0.340 ±0.006 0.309 ±0.017

0.04 0.466 ±0.006 0.321 ±0.006 0.288 ±0.012

0.08 0.464 ±0.008 0.306 ±0.003 0.267 ±0.008

0.16 0.461 ±0.006 0.295 ±0.004 0.252 ±0.004

0.32 0.455 ±0.009 0.291 ±0.005 0.238 ±0.003

0.64 0.436 ±0.008 0.288 ±0.005 0.226 ± 0.001

Table 4: Evaluation of online mistake rates on
“Colon”. ρ is the fraction of selected features.

ρ RAND PEtrun OFS

0.01 0.496 ±0.061 0.406 ±0.060 0.362 ± 0.068

0.02 0.485 ±0.075 0.391 ±0.048 0.325 ±0.053

0.04 0.512 ±0.050 0.366 ±0.045 0.337 ±0.066

0.08 0.496 ±0.056 0.361 ±0.046 0.334 ±0.053

0.16 0.506 ±0.075 0.375 ±0.052 0.341 ±0.055

0.32 0.508 ±0.060 0.372 ±0.035 0.347 ±0.055

0.64 0.457 ±0.046 0.391 ±0.040 0.350 ±0.059

The second application is to solve feature selection of mi-
croarray gene expression data in bioinformatics. We adopt
the Colon dataset, which is a microarray gene expression
data of tumor and normal colon tissues [33] 4. The dataset
has 62 samples and each sample contains 2000 gene features.

The parameter settings are the same as the previous sec-
tion. All the experiments were conducted over 20 random
permutations for each of the two datasets. All the results
were reported by averaging over these 20 runs.

4.2.2 Evaluation of Online Prediction Performance
The experimental result is shown in Table 3 and Table 4.

Note that the average mistake rates of the original online
algorithm with full set of features on CIFAR-10 and Colon
datasets are 0.2266±0.0030 and 0.3548±0.0541, respectively.

Several observation could be drawn. Firstly, in both datasets
our OFS algorithms performs significantly better than the
random feature selection method and the simple truncation
approach, which demonstrate the effectiveness of our algo-
rithms; Secondly, in CIFAR-10 dataset, our OFS algorithm
performs better as the fraction of features selected increase,
and obtain the same performance with OGD when the frac-
tion reach 64%, in Colon dataset, the performance, as the
fraction of features used increase, first improve then drop,
and achieves the best performance when selecting 2% of the
features, which is superior to using all the features, this may
be because there exists some noise features in Colon dataset
which may affect the performance.

4.2.3 Online vs. Batch Feature Selection Methods
All the above experiments are conducted in an online

learning setting. It will also be useful to compare the pro-

4http://genomics-pubs.princeton.edu/oncology/
affydata/index.html

posed algorithm against some existing batch feature selec-
tion method. To this purpose, we compare our OFS algo-
rithm with a state-of-the-art batch feature selection method:
minimum Redundancy Maximum Relevance Feature Selec-
tion (mRMR) [28, 12].

We divide the datasets equally into two parts: the first
part is used by running feature selection algorithms (OFS
and mRMR), and the second part is used to test the perfor-
mance of the feature selection algorithms. To examine the
efficacy of the selected features invariant to different classi-
fiers, we adopt two types of widely used classifiers: (i) Online
gradient descent (OGD) which is an online learning classi-
fier, and (ii) K-nearest neighbor classifier (KNN), which is
a batch learning classifier. In this experiment, we simply
fix K = 5 for the parameter K in the KNN classifier. We
evaluate the performance in terms of both the classification
error rates and the computational time efficiency of the two
different feature selection algorithms. The experimental re-
sults were shown in Table 5 and Table 6, respectively, and
the time efficiency comparison was shown in Figure 4.

From the experimental results, we can see that the pro-
posed OFS algorithm in general outperforms mRMR for
most cases in terms of classification efficacy for both dif-
ferent classifiers. In terms of time efficiency and scalability,
we observe that the OFS algorithm has a significant advan-
tage over the batch feature selection algorithm, especially
when the number of features to be selected is large. For
example, when choosing 32% of features on the CIFAR-10
dataset, the mRMR algorithm spent about 1045.83 seconds
for learning, while the proposed OFS algorithm took only
1.08 seconds, which is almost 1000 times faster.

4.3 Experiment III: Evaluation on Big Data
In this section, we evaluate the performance of the pro-

posed algorithms for mining big data sets, in which each
of these data sets contains at least 100,000 instances. The
statistics of these data sets are shown in table 7.

Table 7: List of big datasets used in our experiments.

Dataset Number Dimension

KDDCUP08 102294 117

ijcnn1 141691 22

codrna 271617 8

covtype 581012 54

Table 8 shows the experimental results of the average
numbers of mistakes and the time costs by three different
algorithms, in which the experiments were implemented in
matlab and run in a regular PC with a Dual-core CPU.
From the results, it is clear to see that the proposed OFS
algorithm significantly outperforms the other two baselines.
In addition, by examining the time costs, we found that all
the three online algorithms are very efficient, which generally
require only a few minutes in learning the feature selection
on these large-scale data sets.

5. CONCLUSIONS
In this paper, we investigated a new research problem of

Online Feature Selection (OFS), which aims to select a
fixed number of features for prediction by an online learning



Table 5: Evaluation of the classification error rates with different classifiers on Colon.
OGD classifier 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.464 ± 0.146 0.400 ± 0.055 0.361 ± 0.067 0.358 ± 0.075 0.387 ± 0.076 0.393 ± 0.083 0.380 ± 0.058

OFS 0.441 ± 0.088 0.409 ± 0.127 0.348 ± 0.062 0.306 ± 0.065 0.345 ± 0.057 0.341 ± 0.066 0.332 ± 0.050

KNN classifier 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.377 ± 0.066 0.341 ± 0.094 0.251 ± 0.042 0.280 ± 0.088 0.271 ± 0.055 0.319 ± 0.068 0.325 ± 0.110

OFS 0.345 ± 0.097 0.335 ± 0.107 0.212 ± 0.097 0.180 ± 0.120 0.222 ± 0.068 0.290 ± 0.068 0.287 ± 0.105

Table 6: Evaluation of the classification error rates with different classifiers on CIFAR-10.
OGD classifier 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.437 ± 0.018 0.428 ± 0.009 0.427 ± 0.012 0.424 ± 0.012 0.364 ± 0.012 0.359 ± 0.017 0.342 ± 0.013

OFS 0.341 ± 0.028 0.318 ± 0.021 0.309 ± 0.018 0.295 ± 0.015 0.270 ± 0.012 0.254 ± 0.010 0.241 ± 0.008

KNN classifier 0.005 0.01 0.02 0.04 0.08 0.16 0.32

mRMR 0.325 ± 0.009 0.327 ± 0.014 0.327 ± 0.015 0.323 ± 0.011 0.238 ± 0.006 0.264 ± 0.013 0.256 ± 0.010

OFS 0.293 ± 0.013 0.273 ± 0.012 0.269 ± 0.012 0.259 ± 0.014 0.257 ± 0.010 0.253 ± 0.017 0.255 ± 0.007

Table 8: Evaluation of the average number of mis-
takes by three algorithms on the big data sets and
their time costs (as shown inside the parentheses).

Algorithm KDDCUP08 ijcnn1

RAND 50718.4 ± 210.2(20.8s) 74778.4 ± 159.9(28.2s)

PEtrun 48714.4 ± 2654.8(16.8s) 62282.6 ± 188.7(21.3s)

OFS 31155.6 ± 2733.1(44.3s) 40512.8 ± 257.0(51.7s)

Algorithm codrna covtype

RAND 128709.0 ± 284.2(114.0s) 277394.5 ±127.0(349.5s)

PEtrun 119838.4 ±165.8(93.4s) 198661.6± 125.6(195.0s)

OFS 78685.8 ±42.8(183.4s) 148223.1 ± 193.0(601.5s)

fashion. We presented a novel OFS algorithm to solve the
learning task, and offered theoretical analysis on the mis-
take bound of the proposed OFS algorithm. We extensively
examined their empirical performance on both regular UCI
data datasets and large-scale datasets. We also compared
the proposed online feature selection technique with a regu-
lar state-of-the-art batch feature selection algorithm for solv-
ing real-world applications: image classification in computer
vision and microarray gene expression analysis in bioinfor-
matics. Encouraging results show the proposed algorithms
are fairly effective for feature selection tasks of online ap-
plications, and significantly more efficient and scalable than
some state-of-the-art batch feature selection technique.
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Figure 3: Performance evaluation of online feature selection on big data sets.
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Figure 4: Evaluation of time efficiency: online feature selection (OFS) v.s. batch feature selection (mRMR).
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