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Structured Learning from Heterogeneous
Behavior for Social Identity Linkage

Siyuan Liu, Shuhui Wang, and Feida Zhu

Abstract—Social identity linkage across different social media platforms is of critical importance to business intelligence by gaining

from social data a deeper understanding and more accurate profiling of users. In this paper, we propose a solution framework, HYDRA,

which consists of three key steps: (I) we model heterogeneous behavior by long-term topical distribution analysis and multi-resolution

temporal behavior matching against high noise and information missing, and the behavior similarity are described by multi-dimensional

similarity vector for each user pair; (II) we build structure consistency models to maximize the structure and behavior consistency on

users’ core social structure across different platforms, thus the task of identity linkage can be performed on groups of users, which is

beyond the individual level linkage in previous study; and (III) we propose a normalized-margin-based linkage function formulation,

and learn the linkage function by multi-objective optimization where both supervised pair-wise linkage function learning and structure

consistency maximization are conducted towards a unified Pareto optimal solution. The model is able to deal with drastic information

missing, and avoid the curse-of-dimensionality in handling high dimensional sparse representation. Extensive experiments on

10 million users across seven popular social networks platforms demonstrate that HYDRA correctly identifies real user linkage across

different platforms from massive noisy user behavior data records, and outperforms existing state-of-the-art approaches by at least

20 percent under different settings, and four times better in most settings.

Index Terms—Social identity linkage, structured Learning, heterogeneous behavior, multi-resolution temporal information matching

Ç

1 INTRODUCTION

THE ability of assuming multiple identities has long been
a dream for many people. Yet it is not until the late

advent of online social networks that this ambition of
millions has been made possible in cyber virtual world.
In fact, the recent proliferation of social network services
of all kinds has revolutionized our social life by provid-
ing everyone with the ease and fun of sharing various
information like never before (e.g., micro-blogs, images,
videos, reviews, location check-ins). Meanwhile, probably
the biggest and most intriguing question concerning all
businesses is how to leverage this big social data for bet-
ter business intelligence. In particular, people wonder
how to gain thorough understanding of each individual
user from the vast amount of online social data records.
Unfortunately, information of a user from the current
social scene is fragmented, inconsistent and disruptive.
The key to unleashing the true power of social media is
to link up all the data of the same user across different
social platforms, offering the following benefits to user
profiling.

Completeness. Single social networks service offers only a
partial view of a user from a particular perspective. Cross-
platform user linkage would enrich an otherwise-frag-
mented user profile to enable an all-around understanding
of a user’s interests and behavior patterns.

Consistency. For various reasons, information provided by
users on a social platform could be false, conflicting, missing
and deceptive. Cross-checking among multiple platforms
helps improve the consistency of user information.

Continuity. While social platforms come and go, the
underlying real persons remain, and simply migrate to
newer ones. User identity linkage makes it possible
to integrate useful user information from those platforms
that has over time become less popular, or even abandoned.

Towards automatic user identity linkage of the same nat-
ural person across different social media platforms, we
study to construct statistical learning method based on mas-
sive online user behavior data records. The research chal-
lenges can be addressed from the following aspects.

Unreliable attributes. How users register their names
online varies among different platforms. For example, a
user tends to add family name after “Adele” in English
communities, and users are likely to put a Chinese name or
bizarre characters before or after “Adele” for eccentricity in
Chinese communities. To make things worse, people do not
use their true names, women would not tell their true ages,
and males even pretend to be females. Statistical models
(e.g. SVM [1], [2], [3]) or rule based models [4], [5] con-
structed with mere username [1], [2] and attribute analysis
are far from being robust for accurate user linkage across
online social communities.

Data misalignment. User data on different social platforms
could be misaligned in various ways that makes it hard to
measure the behavior similarity among users.
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� Platform difference. User behavior may be divergent
and platform dependent. For example, users might
post their opinions about “life of youth” on Facebook
and their political views on Twitter. Our study on
five million users from five most popular Chinese
social platforms and five million users from two
most popular English social platforms reveals a 25 to
85 percent difference in user generated content
(UGC) between different platforms. Moreover, the
user behavior can be represented by various types of
media, e.g., locations, blogs, tweets, videos and
images, which we refer to as heterogeneous behavior in
this paper. The platform-dependent and heteroge-
neous behavior would lead to extremely low-quality
information matching.

� Behavior asynchrony. Even semantically similar actions
could often exhibit significant temporal variance. For
example, a user would post selected pictures from a
trip on Facebook in a certain time period. At a differ-
ent time, the same or different pictures from the trip
may be posted by the user again on Twitter.

� Data Imbalance. There has been a huge imbalance in
terms of data volume between a user’s primary
social account and the rest, while statistical learning
on such imbalanced data record has remained a long
standing problem in machine learning community.

Missing information. Due to privacy considerations, users may

deliberately hide certain pieces of information online. Our

study on real social media data indicates that at least 80 per-

cent of users are missing at least two profile attributes out of

the six most popular ones, and merely 5 percent of users have

all attributes filled up. Drastic information missing leads to

great difficulty for data distribution modeling on the behavior

feature space in the learning process.

The above mentioned issues pose two main challenges for
linkage function learning. First, reliable attribute and behav-
ior feature modeling of online users should be constructed to
measure the similarity among users from their heterogeneous
and noisy online behavior records. Second, the difficulties
brought by drastic information missing and insufficient link-
age information require new learning strategy which is able
to take advantage of structure information (i.e., the frequently
interacted friends of each user) to improve themodel general-
ity. Existing work have applied heuristic processing in the
profile information such as partial username overlapping and
solved the problem by a set of binary classificationmodels [1],
[2]. However, these methodsmaywork well only when infor-
mation is veracious the ground-truth labels are available.
Moreover, the heuristics they rely on are not always valid
among platforms of different languages and cultures, result-
ing in low recall and significant bias.

In this paper, we propose HYDRA, a framework for
cross-platform user identity linkage via heterogeneous
behavior modeling. Compared with the long studied record
linkage problem [5], [6], our technical breakthrough comes
from taking advantage of two important features unique to
social data: (I) user behavior trajectory along temporal dimen-
sion, and (II) user’s core social networks structure, which is the
part formed by those closet to the user, and is called “core
structure” for short. The intuition is that (I) both empirical
and social behavior studies (e.g., [7]) demonstrate that, over

a sufficiently long period of time, a user’s social behavior
exhibits a surprisingly high level of consistency across dif-
ferent platforms; and (II) a user’s core structures across dif-
ferent platforms share great similarity and offer a highly
discriminative characterization of the user.

Based on (I), we model the behavior similarity among
online users with multi-dimensional similarity vectors with
the following information: a) the relative importance of the
user attributes, which measures how likely two users refer
to one person when one of their attributes is identical; b) the
statistical divergence of topic distribution, describing the
potential inclination of users over a long period; c) the over-
all matching degree of the behavior trajectories, capturing
the identical actions between user accounts over a certain
period of time. Based on (II), we develop a linkage function
learning methodology by jointly optimizing the pair-wise
identity linkage with ground-truth linkage information
and seeking the social structure level behavior consistency
among users without ground-truth linkage information.
The key intuition is to propagate the linkage information
along the linked users and their social structures. Conse-
quently, the linkage function can be effectively learned even
with partial ground truth linkage information.

In summary, the key contributions are as follows.

1. Heterogeneous behavior model. We design a new het-
erogeneous behavior model to measure the user
behavior similarity from all aspects of a user’s social
data. It is able to robustly deal with missing informa-
tion and misaligned behavior by long-term behavior
distribution construction and a multi-resolution tem-
poral behavior matching paradigm.

2. Structure consistency. We propose a novel structure
modeling method to maximize the behavior consis-
tency on the users’ core structure instead of user
level behavior similarity. By propagating the linkage
information along the social structure of each indi-
vidual user, our model is capable of identifying user
linkage even when ground-truth labeled linkage
information is insufficient.

3. Multi-objective model learning. We solve the social
identity linkage (SIL) problem by multi-objective
optimization (MOO) framework [8], where both the
supervised learning on ground truth linkage infor-
mation and the cross-platform structure consistency
maximization are jointly performed towards a Pareto
optimality. Specifically, we modify the formulations
of kernel and linkage function, and develop a
normalized-margin-based approach to deal with
information missing in the similarity modeling. The-
oretical analysis shows that our model is a general-
ized semi-supervised learning framework.

4. Experiments on large-scale real data sets. We evaluate
HYDRA against the state-of-the-art on two real data
sets—I) five popular Chinese social networks plat-
forms and (II) two popular English social networks
platforms—a total of 10 million users on seven
social media platforms amounting to more than 10
tera-bytes data. Experimental results demonstrate
HYDRA outperforms existing algorithms in identify-
ing true user linkage across different platforms.
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2 RELATED WORK

User linkage across social media. User linkage was firstly for-
malized as connecting corresponding identities across
communities in [9] and a web-search-based approach
was proposed to address it. Previous research can be
categorized into three types: user-profile-based, user-
generated-content-based, user-behavior-model-based and
social-structure-based. User-profile-based methods collect
tagging information provided by users [10], [11] or user
profiles from several social networks and then represent
user profiles in vectors, of which each dimension corre-
sponds to a profile field [12], [13], [14]. Methods in this
category suffer from huge effort of user tagging, different
identifiable personal information types from site to site,
and privacy of user profile. User-generated-content-based
methods [1], on the other hand, collect personal identifi-
able information from public pages of user-generated
content. Yet these methods still make the assumption of
consistent usernames across social platforms, which is not
the case in large-scale social networks platforms. User-
behavior-model-based methods [2] analyze behavior pat-
terns and build feature models from usernames, language
and writing styles. Social-structure-based user linkage
conduct linkage analysis by using structure features in
social circles [15], [16], [17], [18]. For example, Korula and
Lattanzi [15] solve the reconciliation of user’s social net-
work by starting from nodes with high degrees. Koutra
et al. [17] formulates the user linkage problem by learning
an optimal permutation function between two graph
affinity matrices. Based on user’s social, spatial, temporal
and text information, Kong et al. [16] propose Multi-
Network Anchoring to find the links between users from
different platforms. Zhang et al. [18] propose to predict
heterogeneous links (social links and location links) inside
the target social network given a set of anchor links
among users from target network and source network.
Previous methods 1) seldom handle the missing informa-
tion in usernames, user-generated content, behaviors and
social structure; and 2) have not given interpretation why
there exists such missing information and how it impacts
the user linking result.

Authorship identification across documents. Authorship
identification is a task that identifies the authors of docu-
ments by their writing and language styles analyzed from
their corresponding documents. Previous studies on author-
ship identification can be categorized into two types:
content-based and behavior-model-based. Content-based-
methods identify content features across a large number of
documents [19], [20], [21]. Behavior-model-based methods
capture writing-style features [4], or build language models
[22] to identify content authorship. However, different from
document scenario, social media platforms are much more
complicated with multiple data media, graph/ social struc-
tures and missing information, which compromises most
authorship identification methods.

Entity resolution across records. User linkage is in one way
or another related to problems from other research commu-
nities including co-reference resolution in natural language
processing [23], entity matching [24], graph node classifica-
tion [25], record linkage in database [5], [6], and name

disambiguation in information retrieval [26], [27], which
can be generalized as entity resolution across records. Dif-
ferent from previous structure-based feature extraction
approach [25] and single feature based approaches [5], [6],
we consider a much more challenging setting where we
examine multiple features along time-line with missing and
misaligned information and multiple media environments
to link users across different platforms. Similarly, previous
work on user identification on single site and de-anonym-
ization in social networks have been surveyed in [1], [2],
which are not elaborated here.

3 PROBLEM DEFINITION AND OVERVIEW

Denote as P the set of all natural persons in real life. For
a social networks platform S, denote as CS the set of all
usernames each belonging to a distinct user and fS :
CS 7! P the injective function mapping each online user
of S to a natural person.

Definition 1 (Social Identity Linkage). Given two social net-
works platforms S and S0, the problem of Social Identity Link-
age is to find a function f to decide if any two users from S
and S0 respectively correspond to the same natural person, i.e.,
f : CS � CS0 7! f0; 1g such that for any pair of users ðui;
ui0 Þ 2 CS � CS0 , we have

fðui; ui0 Þ ¼ 1; if fSðuiÞ ¼ fS0 ðui0 Þ;
0; otherwise:

�
(1)

It is worth noting that the straightforward approach to
solve the problem by examining each pair of users would
entail a high computational cost. Given an SIL problem
instance of two social networks platforms S and S0 with N1

andN2 users respectively, the number of all possible functions
f by considering all the possible numbers ofmatched users is:

XminðN1;N2Þ

n¼1

N1!N2!

n!ðN1 � nÞ!n!ðN2 � nÞ!; (2)

where N! ¼QN
k¼1 k. When we consider SIL problem on

more platforms, the search space of pair-wise examination
grows exponentially with the number of different plat-
forms. Therefore, by only employing the user level pair-
wise linkage information, huge amount of ground-truth
linked pairs are required for training. From statistical link-
age function learning aspect, it means that we need to col-
lect statistically sufficient samples from the real data, to
guarantee the convergence to the globally optimal linkage
model. On the other hand, strong consistency is observed in
behavior pattern and inclination among the users in the
strongly interacted social friend groups [2], [7], [28], i.e., the
stronger the interaction among users, the more similar their
behavior and inclinations are. This observation endows us
with the possibility of alleviating the difficulty by seeking
the structure consistency of the candidate linked pairs gen-
erated by simple behavior matching across platforms. Fur-
thermore, by joint optimization of the pair-wise linkage
model and structure consistency, the linkage model can
reach its full potential as the ground-truth linkage informa-
tion can be reliably propagated along the user core social
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structure step by step, and finally a robust linkage model
can be firmly constructed.

By taking the above mentioned issues into consideration,
we propose HYDRA, a user linkage framework based on
multi-objective optimization. It is composed of three main
steps.

Step 1. Behavior similarity modeling.We calculate similarity
among pairs of users via heterogeneous behavior modeling.
Details are discussed in Section 4.

Step 2. Structure information modeling. We construct the
structure consistency graph on user pairs by considering
both the core network structure of the users and their
behavior similarities. Details are discussed in Section 5.

Step 3. Multi-objective optimization with missing information.
We construct multi-objective optimization which jointly
optimizes the prediction accuracy on the labeled user pairs
and structure consistency measurements across different
platforms. The model is further modified to deal with signif-
icant information missing. Details are discussed in Section 5.

We consider three kinds of data for model learning: (1)
labeled data, including ground-truth linked pairs and
pre-matched pairs, and the rest are (2) unlabeled pairs
with no linkage information. The pre-matched labeled
data is generated by our rule-based filtering, a much
more sophisticated set of measures than existing meth-
ods, including partial username overlapping [1], [2], user
attribute matching and user profile image matching by
face recognition techniques [29] by rule-based filtering.
By combining heterogeneous behavior modeling and user
core social networks structure, together with labeled
data, into a multi-objective optimization, our approach
conducts SIL on groups of users by taking full advantage
of the context and content from social media.

4 HETEROGENEOUS BEHAVIOR MODEL

The key challenges in modeling user behavior across differ-
ent social media platforms are (I) the heterogeneity of user
social data and (II) the temporal misalignment of user behavior
across platforms. The high heterogeneity of user social data
can be appreciated by the following categorization of all the
data about a user available on a typical social platform.

1) User attributes. Included here are all the traditional
structured data about a user, e.g., demographic
information, contact, etc. (Section 4.1).

2) User generated content. Included here are the unstruc-
tured data generated by users such as text (reviews,
micro-blogs, etc.), images, videos and so on. Model-
ing is primarily targeted at topic (Section 4.2) and
style (Section 4.3).

3) User behavior trajectory. User behavior trajectory
refers to all the social behavior of a user as exhibited
on the platforms along the time-line, e.g., befriend,
follow/unfollow, retweet, thumb-up/thumb-down,
etc. (Section 4.4).

4) User core social networks features. A user’s core social
networks are the social networks formed among
those who are the closet to the user, and the features
are the aggregation of the user’s core social networks
behavior (Section 4.5).

4.1 User Attribute Modeling

Textual attributes. The profile information is informative in
distinguishing different users. Common textual attributes
in a user profile include name, gender, age, nationality,
company, education, email account, etc. A simple matching
strategy can be built on such a set of information. However,
the relative importance of these attributes are not identical,
because attributes such as gender and common names like
“John” are not as discriminative as others such as email
address in identifying user linkage. Yet, the weights of the
attributes used in the matching can be learned from large
training set by probabilistic modeling.

Specifically, given a set of N labeled training user pairs
from different platforms, the relative importance of the
attributes can be estimated by data counting. For a specific
attribute ak, k ¼ 1; . . . ;MA, we estimate the relative impor-
tance score by the following equation:

mtðkÞ ¼ PDðkÞ
PDðkÞ þNDðkÞ ; mtðkÞ ¼ mtðkÞ þ "PMA

k0¼1
mtðk0Þ þMA"

; (3)

where PDðkÞ represents the number of user pairs matched
on ak in the positive labeled set PD, and NDðkÞ represents
the number of pairs matched on ak in the negative labeled
set ND. " denotes a small real number that avoids over-fit-
ting. MA denotes the number of attributes. If ak is missing
for user i or i0, it is denoted as a missing feature.

Given a user pair, an exact MA dimensional attribute
matching feature can be calculated. For example, if the user
pair ði; i0Þ is matched on first, econd, and fifth attributes,
where the corresponding weight of them are 0:1, 0:3, and
0:2, respectively, then the attribute feature of the user pair is
½0:1; 0:3; 0; 0; 0:2; . . .�. If any kth attribute of user i or i0 is
absent, we denote the kth feature as missing.

Visual attributes. Besides textual attributes, visual attrib-
utes such as face images used in the profile can also be used
to link users. However, as many users may not use their
true face images, or use those with poor illumination and
severe occlusion, such information could be very noisy. We
designed a matching scheme to safely compare two user
profile images. The work flow of face matching can be
referred to [30]. In particular, if faces have been detected
from both images, the pre-trained classifier is used to deter-
mine if the two faces correspond to the same person. As a
standard work flow in face identification, we use the face
detection approach, facial feature extraction and face classi-
fier in [29]. For a large scale image processing, we imple-
ment the face attribute matching in a distributed computing
environment, so that the matching of pairs of face images
can be performed in parallel.

4.2 User Topic Modeling

An important feature of social media platform is that over a
sufficiently long period of time, the UGC of a user collec-
tively gives a faithful reflection of the user’s topical interest.
Faking one’s interests all the time defeats the purpose of
using a social networks service. Therefore, we propose to
model a user’s topical interest by a long-term user topic
model. We first construct a latent topic model using Latent
Dirichlet Allocation by using the collected textual messages
after a textual preprocessing procedure, and the output of
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which is a probability distribution in the topic space. The
number of latent topics is set to 300 in our study.We then cal-
culate the multi-scale temporal topic distribution within a
given temporal range for a user using the multi-scale tempo-
ral division [30]. The intuition comes from the fact that if two
users refer to one person, their inclinations tend to be similar
in the whole temporal range. Moreover, their inclinations in
a shorter time period should also be similar. The more their
inclinations are locally matched in every shorter time period,
the more similar their inclinations will be in the global range.
Thus the users aremore likely to be the same person.

Specifically, as shown in Fig. 1, the time axis is divided into
multiple time intervals with different scales (we use one, two,
four, eight, 16 and 32 days in this paper, which guarantees
good performance). Based on the topic models, we obtain a
topic distribution vector for each time interval, which is the
average topic distribution for the user contents within this
time interval. All the topic distribution vectors within each
interval are accumulated into a single distribution, which
represents the topic distribution pattern within this time
interval. In Fig. 1, Ct denotes the number of time intervals
when the scale is selected to be 16. Correspondingly, the
number of time intervals will be 2Ct and 4Ct respectively for
eight days and four days. Based on this, the similarity of tem-
poral topic evolution of the specific scale between two users
can be calculated by averaging the similarity of each temporal
interval, where each similarity can be measured by the chi-
square kernel or histogram intersection kernel [30]. Finally,
all the similarities calculated using different time scales are
concatenated into a weighted similarity vector, where local
inclination matching will be endowed with a large impor-
tance than a global inclinationmatching.

The proposed long-term user topic models the behavior
similarity on pair-wise topic correlation from coarse-to-fine
resolutions. In this paper, we analyze the following distribu-
tion types using this proposed strategy:

Content genre distribution. The content genre measures the
relevance between the textual messages and several popular
topics on social media sites, e.g., sports/music/entertain-
ment/society/history/science/art/high-tech/commercial/
politics/geography / traveling / fashions / digital game/
industry/luxury/ violence, which are selected to cover the
most popular topic genres.

Sentiment pattern distribution. According to studies on
sentiment mining [31], [32], we can model the sentiment
pattern using a two dimensional space (arousal-valence)
[31] or roughly divide the emotion into several categories,
e.g., happy/ fear /sad /neutral. It can be done by extracting
the representative emotional key words in the textual con-
tent and learning a sentiment vocabulary. After that, each
textual message can be represented by a probabilistic distri-
bution on the sentiment vocabulary. We use the scheme in
this section to construct the multi-scale similarity on senti-
ment pattern between two users.

4.3 User Style Modeling

The language style of a user including personalized word-
ing and emotion adoption is usually well reflected in com-
ments, tweets and re-tweets (e.g. function words extraction
[1]), which is beneficial to distinguishing between different
users. To model a user’s characteristic style, we extract the
most unique words of each user by a simple term frequency
analysis on the whole database. Note that since the unique
words may also be mistaken input, we can select the
kðk ¼ 1; 3; 5Þ most unique ones after removing stop words
from the least-used terms of the whole user data repository.

For user pairs, we can simply measure Slea, their similar-
ity on the unique word pattern, by word matching (the
words should be uniformly converted, such as lower-case
and singular form):

Slea ¼ #matched words

k
: (4)

4.4 Multi-Resolution Behavior Modeling

User behavior trajectory is a unique feature of social media
data laying out a user’s behavior along the time line. In
this paper, we are mainly concerned with the following
patterns:

Location and mobile trajectory information. Social media
sites with location-based-service provide strong support
and incentive for recording and sharing user locations. Gen-
erally, over an extended period of time, two users with
mutually exclusive mobility patterns will not be the same
person in reality. On the other hand, similar trajectory pat-
terns across the platforms and no conflicting instances indi-
cate the mobility similarity in real world, as they would like
to provide check-in information on multiple social media
platforms. By analyzing the mobility similarity over an long
period, a sufficiently high similarity in mobile trajectory
implies that the two users share similar and even exactly
the same mobility behavior in real world. Therefore, the
high mobility similarity can be considered as an important
evidence in social identity linkage.

Multimedia content generation and sharing. Users may post
similar or duplicate multimedia content on the web. For
example, they may upload or share exactly the same image,
video and music. However, if a high level of synchrony has
been observed over an extended period of time between two
users from different platforms, it is reasonable to hypothe-
size that these two users correspond to the same person.

A natural solution is to construct a set of pattern-match-
ing sensors, one for each modality (location, visual, textual
and audio), and use them to collectively evaluate user

Fig. 1. Illustration of user topic modeling. First, the whole temporal range
of user behavior data is divided into a set of time intervals with prede-
fined values (e.g., 16 days, eight days and four days). Then, all the distri-
bution vectors within different time intervals are weighted and
concatenated into one topic distribution vector. After that, the corre-
sponding similarity of the topic distributions in each time interval and the
whole range can be constructed. At last, the overall similarity between
user i and i0 is calculated as the similarities of all the time intervals,
where a local matching is endowed with a larger weight than a global
matching [30].
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behavior similarity. However, as people are not always
using multiple social platforms simultaneously, a significant
amount of information could be missing in such a task. We
therefore propose a multi-resolution temporal behavior
model to perform pattern matching with the ubiquitous
presence of missing information.

As shown in Fig. 2, given two users i and i0, we first con-
struct a set of pattern-matching sensors with different tem-
poral searching ranges. If there are patterns (denoted by
pentagons) matched within the selected range of the pat-
tern-matching sensor, it gives a positive stimuli signal. After
we have collected all the stimuli signals along a certain
period, we calculate the lq-norm non-linear stimulation
function, which is a trade-off between average pooling and
max-pooling as:

Smr ¼ 1

Nmr

XNmr

k¼1

smrðkÞð Þq
 !1

q

; q � 1; (5)

where smrðkÞ denotes the score of kth pattern matching sen-
sor, Smr represents aggregated behavior similarity, and Nmr

represents the number of detected matched pattern. Next,
we fit a sigmoid function to transform Smr into a new stimu-

lated signal bSmr 2 ½0; 1�. We repeat such processing with
different pattern-matching sensors. Finally, a multi-dimen-
sional pattern-matching feature is formed between user i
and i0, whose dimension is equivalent to the number of pat-
tern-matching sensors.

Using lq-norm is a natural choice from the bio-inspired
stimulation. It has been found that the maximum stimula-
tion from a pooled signal set will play significant role for
perception. When q tends to be infinite, the signal selection
tends to better approximate the maximum stimulation (i.e.,
max-pooling). Since the pattern-matching would be per-
formed under different temporal scales, we can extract a
multi-resolution temporal matching pattern between two
users on the sparsely and asynchronously occurred pat-

terns. The sigmoid function bSmr ¼ 1
1þe��Smr

is a typical non-

linear transformation function, where the parameter � can

be tuned on the specific validation dataset. Another impor-
tant advantage of using lq-norm is that it can reduce the
number of dimensions in the behavior similarity construc-
tion by aggregating the sparsely matched patterns.

The pattern-matching sensors we construct in this paper
are:

Location matching sensor. A location matching sensor
calculates location adjacency by a Gaussian kernel on geo-
coordinates of user i and user i0 within the predefined
spatial range [30].

Near duplicate multimedia sensor. We construct a set of
domain-specific duplicate content analysis models to detect
the near duplicate multimedia content. We extract wavelet
feature and cepstrum feature on each audio file, and then
learn a support vector machine to decide if two audio files
are duplicate. A spatial consistency graph model [33] is con-
structed for near duplicate image sensor. For near duplicate
video detection, we apply [33] on each key video frame of
video shot and develop a simple heuristic rule set for quick
determination. Besides content analysis, the meta data (i.e.,
web address, time stamp and content providers) of each
multimedia document can be used to quickly judge if they
are duplicate.

The proposed framework can be further extended by
designing and incorporating more special purpose detectors
to capture the similarity from more content on online social
platforms in future study.

4.5 Core Social Networks Features

It has been observed that, over time, users tend to bring
their closest friends over to different social platforms they
frequently use. Therefore, the behavior of a user’s close
friends are also informative in identifying different accounts
of the same user. In [34], the average similarity of the neigh-
borhood data of two data items is more robust compared
with the original similarity since it calculates the similarity
of two convex hulls instead of two data points. Inspired by
[34], we model the behavior of a user’s social connections.
Given two users i and i0 from different platforms, the behav-
ior data of their top-kmost frequently interacting friends are
collected. For example, we denote their top-3 interacting
friends as i1, i2, i3, and i01, i02, i03, then the average behavior
similarity and the standard deviation of the social connec-
tions of user i and i0 can be calculated as:

S1
scði; i0Þ ¼

P3
p¼1

P3
q¼1 sðip; i

0
qÞ

9
;

S2
scði; i0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
p¼1

P3
q¼1

�
s
�
ip; i

0
q

�� S1
sc

�
i; i0
��2

9

s
;

(6)

where sðip; jqÞ denotes the similarity of any particular simi-
larity measure described in previous sections. If we have
10-dim similarity description between user i and i0, then a
similarity vector with 30-dim is generated, including both
the original similarity between i and i0 (10-dim), the average
neighborhood similarity (10-dim) and the standard devia-
tion of their social connection (10-dim). The average similar-
ity features and the standard deviation features measure
the inclination and the behavior consistency of the friend
groups, respectively.

Fig. 2. Multi-resolution temporal behavior modeling. A set of pattern-
matching sensors are designed. For two users, the sensors are used to
detect the corresponding type of matched behavior within certain tempo-
ral scales. When all the matched behaviors have been detected by sen-
sors, an lq norm pooling and nonlinear sigmoid mapping aggregate all
matched behavior signals into a multi-resolution similarity vector.
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5 MULTI-OBJECTIVE STRUCTURE LEARNING

Based on the heterogeneous behavior modeling from user
attributes, UGC and behavior trajectories as explained in
Section 4, we propose to learn the linkage function via a
multi-objective optimization framework.

Supervised learning. Some social media platforms allow
users to log in to different platforms with one account. For
example, we can use a Facebook account to log in to Twitter.
We collect such user-provided linkage information as the
ground-truth label information. We notice that the labeled
training pairs collected by our paradigm is much cleaner
(precision over 95 percent) than the approach in [1] (preci-
sion around 75 percent) where the labeled training pairs are
automatically generated based on the uniqueness (n-gram
probability) of user names. We also collect label information
by user attribute matching as the pre-linked label informa-
tion. By utilizing the collected label information, we mini-
mize the structured loss (SVM objective function) on the
labeled training data.

Structure consistency modeling. We optimize the linkage
function by maximizing both behavior similarity and social
structure consistency between platforms. By constructing a
positive semidefinite second-order structure consistency
matrix among candidate linked user pairs, our model is
able to consider the global structure between platforms to
identify the true linkages and filter out those false ones, as
illustrated in Fig. 3. Most importantly, it compensates for
the shortage of ground truth linkage information for user-
level supervised learning by propagating the linkage infor-
mation along the core social structure (i.e., friends with the
most frequent interactions) of each individual user.

Multi-objective optimization. We learn the linkage function
by jointly minimizing the two objective functions via a uni-
fied multi-objective optimization framework. We prove
that our model is a generalized semi-supervised learning
approach by leveraging both ground truth linkage informa-
tion and social structure.

5.1 Decision Model on Pairwise Similarity

Given a set Pl of Nl user pairs with ground-truth labels rep-
resented as: xii0 ; yii0ð Þf g, where xii0 denotes the D-dimen-
sional pair-wise similarity vector between user i and user i0

calculated by the above behavior modeling methods, and

yii0 2 f1;�1g denotes the label indicating whether the two
users correspond to the same natural person. We denote the
index set of user pairs with labels as Pl. The decision model
f to predict if a pair of users belong to the same natural per-
son is represented as:

fðxÞ ¼ wTxþ b; (7)

wherew and b are the model parameters that can be learned
by minimizing the following objective function:

FDðwÞ ¼ gL
2
jjwjj2 þ

X
�ii0

s:t: yii0 ðwTxii0 þ bÞ � 1� �ii0
(8)

where �ii0 denotes the slack variables that allow the model
for non-linearly separable cases and b denotes the bias
learned from the data. The optimization of objective func-
tion FD is the standard structured risk minimization of
binary classification.

5.2 Structure Consistency Modeling

The supervised learning relies heavily on a sufficient
amount of ground truth linkage information. On the other
hand, users’ social structure information is an important
complementary piece of information if its power in inferring
user linkage is fully unleashed, as illustrated by the example
in Fig. 3. If Alice, Bob andHenry are friends in real life, there
would most likely be a high level of interaction frequency
and behavior similarity among their corresponding
accounts on the same platform. Such a consistent structure
is indicated by the elliptic rings in Fig. 3. A main strongly-
connected cluster formed by correctly linked users (the
dashed red arrows in Fig. 3) would generate agreement
links (edges with positive weights) among one another.
These links are formed when the behavior of pairs of linked
users agree at the level of social structure (their frequently
interacting friends). Second, incorrect user linkage outside
the cluster or weakly connected to it do not form strongly
connected clusters due to the slim chance of establishing
agreement links coincidentally (the dashed green arrows in
Fig. 3). When the ground truth linkage between the
accounts of Alice and Henry is not available, we can still
reliably link their accounts across the platforms based on
the linked accounts of Bob together with the strong interac-
tion observed from their social structures. Such linkage pre-
diction can be further propagated to other frequently
interacting friends of Alice and Henry. Consequently, the
linkage can be regularized towards the consistency at social
structure level rather than individual user level.

To model the structure consistency, first, a set of candi-
date matched pairs are generated by measuring the behav-
ior similarity between users i and i0 from platform S and S0,
respectively, given two platforms S and S0 containing NS

and NS0 users. For each candidate matching a ¼ ði; i0Þ, there
is an associated affinity score that measures the similarity
between user i and user i0. For each pair of assignments
ða; bÞ, where a ¼ ði; i0Þ and b ¼ ðj; j0Þ, there is an affinity
score that measures how compatible the users ði; jÞ are with
the users ði0; j0Þ. Given a list of candidate user pairs Pl

S
Pu,

we store the affinities on every candidate a 2 Pl

S
Pu and

every pair of candidate a; b 2 Pl

S
Pu in M, such that

Fig. 3. Structure consistency maximization. Given two platforms, we
measure both behavior similarity and structure consistency among their
frequently communicating friends (elliptical rings), especially users with
ground truth linkage information (linked by black arrows). The arrows
within each platform indicate how the linkage information can be propa-
gated along the social structure of each user. Consequently, the true
linked user pairs (red dashed arrows) are correctly identified while the
falsely linked user pairs (green dashed arrows) are filtered out.
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(I) Mða; aÞ is the affinity score measuring the individual-
level similarity for candidate matching user pair a ¼ ði; i0Þ
based on the cross-platform behavior similarity. User pairs
that are unlikely to be linked due to significant discrepancy
in behavior patterns will be filtered out; (II) Mða; bÞ is the
affinity score measuring the similarity between user pairs
a ¼ ði0; j0Þ and b ¼ ði; jÞ based on the pairwise behavior sim-
ilarity as well as social structure consistency. Mða; bÞ ¼ 0 if
the inconsistency between ði; jÞ and ði0; j0Þ is too large. We
assumeMða; bÞ ¼ Mðb; aÞwithout loss of generality.

We represent the agreement cluster C� by an indicator
vector y, such that yðaÞ ¼ 1 if a 2 C� and zero otherwise.
The correspondent problem is reduced to find a cluster C�

of candidate user pairs ði; i0Þ that maximizes the structure

consistency FSðyÞ ¼
P

a;b2C� Mða; bÞ ¼ yTMy. We relax both

the mapping constraints and the integral constraints on y,
such that its elements can take real values in ½0; 1�. By the
Raleigh’s ratio theorem, the solution that maximizes the

inter-cluster score yTMy is the principal eigenvector of M.
By defining the relation between y and w as yðii0Þ ¼

wTxii0 , maximizing FSðyÞ is equivalent to the following
problem:

min
w

FSðwÞ ¼ wTXT D�Mð ÞXw

s:t: jjwjj2 � s;Dða; aÞ ¼
X
b

Mða; bÞ; (9)

where s is a predefined real positive number which is used
to prevent the norm ofw from being arbitrarily large.

For users from C social platforms, we can decompose the
problem into a set of one-to-one SIL problems with respect

to Mcc0 , where c � c0; c ¼ 1; . . . ; C � 1 and c0 ¼ 2; . . . ; C,
without much effort. Then, the objective function FSðwÞ can
be extended to an objective function vector FSðwÞ ¼
½Fcc0

S ðwÞ�. The structure consistency matrix Mcc0 is con-

structed as follows. First, for each candidate user pair
a ¼ ði; i0Þ, their behavior similarity is calculated by

Mcc0 ða; aÞ ¼ expð�jjxi�xi0 jj2
s2
1

Þ, where s1 denotes the bandwidth

to control the sensitivity on behavior similarity. Second, for
candidate user pair a ¼ ði; i0Þ and b ¼ ðj; j0Þ, their structure
consistency is calculated by:

Mcc0 ða; bÞ ¼ exp
��jjxi � xi0 jj2 þ jjxj � xj0 jj2

�
2s2

1

 !
	

1� ðdij � di0j0 Þ2
s2
2

 !
;

(10)

where s2 denotes the bandwidth to control the structure
sensitivity of user social relations. dij denotes the n-hop dis-
tance measuring the closeness of two users, which is for-
mally defined as the minimal number of friends (including
the user himself) that a user reaches the friend user. Specifi-
cally, we define kij as the number of intermediate users

from user i to j, and then their distance is dij ¼ ðkij þ 1Þ2.
It is not hard to prove that matrixMcc0 is positive-definite,

and consequently, matrix Qcc0 ¼ Dcc0 �Mcc0 is positive-
semidefinite by spectral graph theory. Details are omitted
due to space limit.

Our model is consistent with [35] that the majority of
user’s friends tend to provide useful information besides
the users themselves. Other works follow similar rules with
diversified assumptions on the data structure. For example,
in [15], the graph reconciliation is started on a set of nodes
with high degrees. In “Big-Align” model [17], the optimal
permutation is learned among the adjacency matrices of
two graphs. Our model is similar in spirit of the Big-Align
model because both use structural matching for linking
social identities. However, the adjacency information in our
model is constructed by joint modeling of behavior and
social circles, instead of only considering the follower/
followee information.

5.3 Multi-Objective Optimization

Based on the two above-mentioned objective functions (FS

and FD), given C social platforms and their users, we for-
mulate the SIL problem as a multi-objective optimization
problem [8]:

min
w

F ðwÞ ¼ ½FDðwÞ;FSðwÞ�
s:t: cii0 ðwTxii0 þ bÞ � 1� �ii0 ; i 2 S; i0 2 S0; jjwjj2 � s;

(11)

where F ðwÞ denotes a ðC � 1ÞC=2þ 1 dimensional objective
function vector.

A feasible solution does not typically exist that mini-
mizes all objective functions simultaneously in such a prob-
lem. Note that since a penalty on the squared norm ofw has

been included in FD, then constraint jjwjj2 � s can be omit-
ted. Therefore, we define a Utility function to aggregate all
the objective functions in form of generalized weighted
exponential sum as:

U ¼
XðC�1ÞC=2þ1

k¼1

wk FkðwÞ½ �p; 8k; FkðwÞ > 0; wk � 0; (12)

where the weight parameter wk is a preference parameter
encoding decision makers’ preference. By minimizing Util-
ity function U , we seek the Pareto optimal solutions [8],
which cannot be improved in any of the objectives without
degrading at least one of the other objectives.

Proposition 1. The solution of the weighted exponential sum
utility function U is sufficient and neccessary for Pareto
optimality.

Proof. See Athan and Papalambros [36] and Yu et al. [37]. tu
When p ¼ 1, the utility function is similar with tradi-

tional semi-supervised learning objective function with a
weighted combination of empirical loss, the penalty on w
and a graph Laplacian regularizer [38]. When p > 1, our
model is viewed as minimizing the distance function
between the solution point and Utopia points [36] in the
multi-dimensional objective function space.

Dual problem. By introducing a nonlinear mapping fð	Þ to
a higher (possibly infinite) dimensional Hilbert space H. w
and b define a linear regression in that space. According to
the Representer Theorem [39], the decision function w can
be expressed in the dual problem as the expansion over
labeled user pairs and unlabeled candidate user pairs w ¼
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P
ii02Pl

S
Pu

aii0fðxii0 Þ. Then, the decision function is given

by:

fðxtÞ ¼
X

ii02Pl
S

Pu

aii0Kðxii0 ; xtÞ þ b; (13)

where we use K to denote the kernel matrix formed by ker-

nel functions K xii0 ; xjj0
� � ¼ f xii0ð Þ;f xjj0

� �� �
. Take p ¼ 1 as

the illustrative example, by setting wð1Þ ¼ 1 and wðkÞ ¼
gM; k ¼ 2; . . . ; ðC � 1ÞC=2þ 1, we plug Eq. (13) into Eq. (12)
and introduce the Lagrangian multipliers, and obtain the fol-
lowing regularized Utility function to be minimized:

min
a;b

1

2
aT 2gLKþ 2gM

jPl

S
Puj2

KðD�MÞK
 !

a

(

�aTKJYbþ bT1

)
;

(14)

where b denotes an Nl-dimensional Lagrangian parameter
vector, J ¼ ½I;0� is an Nl � jPl

S
Puj with I as the Nl �Nl

identity matrix (the first Nl pairs are labeled) and Y ¼
diagfy1; . . . ; yNl

g. M denotes the cross-platform structure

consistency matrix:

M ¼
M12 0 . . . 0
0 . . . . . . . . .
. . . . . . Mcc0 0
0 . . . 0 . . .

2664
3775; (15)

where c < c0; c ¼ 1; . . . ; C � 1; c0 ¼ 2; . . . ; C. Similarly, D is
the diagonal matrix. We obtain the solution by taking deriv-
atives w.r.t. a:

a ¼ 2gLIþ 2
gM

jPl

S
Puj2

D�Mð ÞK
 !�1

JTYb�: (16)

Again, substituting Eq. (16) into the dual functional
Eq. (14), we obtain the following smooth quadratic pro-
gramming problem to be solved:

b�¼max
b

bT1� 1

2
bTQb

� �
;

s:t:
X
ii02Pl

bii0yii0 ¼ 0; 0 � bii0 �
1

jPlj ;
(17)

where:

Q ¼ YJK 2gLIþ 2
gM

jPl

S
Puj2

D�Mð Þ
 !�1

JTY: (18)

From the above derivation we can see that the SIL prob-
lem can be well cast into a standard convex programming
problem that can be easily solved by many off-the-shelf
optimization package. Despite that we only introduce the
model construction procedure when p ¼ 1, similar deriva-
tion can also be performed when p > 1. Consequently, the
resulted objective function is also convex due to the convex-
ity of the individual objective functions and the convexity of

the Utility function U . Besides, using higher values for p
increases the effectiveness of the method in providing the
complete Pareto optimal set [8], [36].

Dealing with information missing. When constructing the
pair-wise similarity among users, significant information
missing exists among real world web platforms due to: (A)
intrinsically heterogeneous information sources, (B) unpre-
dictable user login and logout, and (C) privacy concerns.
Previous approaches [1], [2] construct discriminate models
where the missing feature is automatically filled with zeros
based on the assumption that the values do exist but not
observed, which is actually not the case of the problem in
hand. In this paper, we suppose that the missed values can
not be observed, and they need not be filled with any value.
We revise the discriminative model fðxÞ by a normalized
margin as [40]:

fðxÞ ¼ wii0fðxii0 Þ þ b;w ¼
X

ii02Pl
S

Pu

aii0

sii0
fðxii0 Þ; (19)

where wii0 denotes the instance specific vector obtained by
taking the entries of w that are relevant to xii0 (fðxii0 Þ),
namely, those for which the sample xii0 (fðxii0 Þ) has valid

features. sii0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jjwii0 jj2
jjwjj2

r
is a normalized scalar that can be

estimated iteratively, where:

jjwjj2 ¼
X

ii02Pl
S

Pu

X
jj02Pl

S
Pu

aii0ajj0

sii0sjj0
fðxii0 Þ;fðxjj0 Þ
� �

;

jjwii0 jj2 ¼
X

ii02Pl
S

Pu

X
jj02Pl

S
Pu

aii0ajj0

sii0sjj0
fðxii0 Þ;fðxjj0 Þ
� �

Rii0
;

(20)

where 	; 	h iRii0
denotes the kernel calculation using only the

non-missing indices of user pair ii0. Consequently, the
objective dual problem in Eq. (17) is revised as:

Q ¼ YJKn 2gLIþ 2
gM

jPl

S
Puj2

D�Mð Þ
 !�1

JTY; (21)

where each element of Kn is calculated by polynomial
kernel:

Knðxii0 ; xjj0 Þ ¼
��
xii0 ; xjj0

�
R
þ 1
�d

sii0sjj0
(22)

with the inner product calculated over valid features�
xii0 ; xjj0

�
R
¼Pr:r2Rii0 \Rjj0

xii0 ðrÞxjj0 ðrÞ. It is straightforward

to see that Kn is a kernel, since user pairs with missing val-
ues can be filled with zeros. In summary, the details of the
model are described in Algorithm 1. The proposed model
is guaranteed to converge to a local optimal solution
within five iterations, according to experiments in this
paper and in [40].

Since the data size would be extremely large, we adopt
the distributed convex optimization method [41] to opti-
mize the objective function distributively on several servers
in parallel with a carefully designed model synchronization
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strategy. In summary, the sketch of the optimization process
is described in Algorithm 1.

Algorithm 1. The HYDRA Algorithm

Input: Data:X,Y, Parameters: gL, gM , p, sS , sD

Output: a, b
1: Select the candidate pair set Pu by comparing the pair-wise

similarity.
2: Construct structure consistency graphM.
3: Initialize s for all the labeled and unlabeled training pairs as:

s0ii0 ¼ 1�#absent feat=#feat dim.

4: while the stopping criterion is not reached do
5: Find bt by Eq. (17), and calculate at by Eq. (16).
6: Update st based onwðtÞ, using Eq. (20), t ¼ tþ 1.
7: end while

5.4 Model Analysis

Interaction of multiple objectives. We learn the linkage function
via optimizing two kinds of objective functions, i.e., the super-
vised learning using the reliably obtained ground truth, and
the structure consistency maximization by modeling the core
social networks behavior consistency. They are complemen-
tary to each other by jointly measuring the behavior similarity
of both individual and group levels. When the ground truth
information is insufficient (e.g., less than 10 percent of the
pairs assignedwith labels), themodel will bemore dependent
on the core social networks structure. The linked user pairs
will be served as some “anchor” pairs where the linkage infor-
mation can be propagated along the core social networks.
However, the learned model tends to be over-smooth (under-
fitting) by over-emphasizing the structure consistency. When
the ground truth information is sufficient (e.g., more than
80 percent of the training pairs assigned with labels), the
model can still be endowed with more generalization power
by the decision boundary smoothing towards better group
level behavior consistency. The lp-norm in the Utility function
determines the way how the two kinds of objective functions
interact with each other, where large p imposes more unique-
ness on the dominant objective function. Correspondingly,
model over-fitting is likely to take place. Therefore, a better
trade-off can be steadily achieved by appropriately tuning vk

and p on different behavior data record repositories from dif-
ferent communities.

Complexity. We briefly analyze the model complexity of

HYDRA. In Eq. (17), our model achieves an OðjPlj2Þ time
complexity, where Pl denotes the number of user pairs with
ground truth linkage information. In Eq. (18) and Eq. (21),

the time complexity is Oðs2jPl

S
Puj3Þ, where s indicates the

sparse level of the matrix M. In fact, M is extremely sparse
under real situations. For example, in our study, the sparse
level of M is only about ½0:0001; 0:001� on Chinese social
platforms. Therefore, the actual time consumption for
Eq. (18) and Eq. (21) will be far less than the linkage function
construction in Eq. (17).

6 EXPERIMENTAL EVALUATION

Real data.We use two publicly available large-scale real data
sets for our experiments. The first one, referred to as
“Chinese”, includes five popular social networks services

which were originated from China and have since gained
global popularity. (1) Sina Weibo: (www.weibo.com) A
hybrid of Twitter and Facebook with a user base of
500 million users and 47 million daily active users by
December 2012. (2) Tecent Weibo: (t.qq.com) Another twit-
ter-like micro-blogging service with 500 million users and
over 100 million daily active users. (3) Renren: (www.
renren.com) A social networks service dubbed as the Face-
book of China with 162 million registered users. (4) Dou-
ban: (www.douban.com) A social networks service for
people to share content on topics of movies, books, music,
and other off-line events in Chinese cities, with over
100 million monthly unique visitors. (5) Kaixin: (www.
kaixin001.com) A social networks service with 160 million
registered users. We use five million users in this data set,
each with accounts on every one of the five platforms. The
time span of this data set is from June 2012 to June 2013.
The second one, referred to as “English”, includes two
globally popular social networks: (1) Twitter (twitter.com);
and (2) Facebook (www.facebook.com). We use five million
users in this data set each with accounts on both Twitter
and Facebook. The time span of this data set is from June
2012 to June 2013. For the above social networks, we collect
user profiles (e.g. gender, city, and favorites), social content
(e.g. tweets, posts, and status), social connections (e.g.,
friendship, comments, and repost or retweet contents),
timeline information (e.g. time index for each behavior).
Our ground truth of the linkage of each user across all the
platforms are provided by a third-party data provider who
has access to each Chinese user’s national ID number, IP
address and home address used by the user to register all
accounts on different websites, all of which collectively
serve as the most reliable data to uniquely identify a natu-
ral person and link all the different accounts. Note that
users in the English data set are all Chinese users of our
choice. In the following experiment results, x-axis is all
decreasing ranked result (user is by degree, and commu-
nity is by size). The ratio between the labeled data to unla-
beled data is set to 1=5, but we have also tested other ratio
settings in our experiment.

Experiment environment. Our experiments and latency
observations are conducted on five standard servers
(Linux), with Intel (R) Xeon (R) Processor E7-4870 (30M
Cache, 2.40 GHz, 6.40 GT/s Intel (R) QPI, 10 cores), 64 GB
main memory and 10,000 RPM server-level hard disks.

Compared methods.We compare both ourmethodswith the
following state-of-the-art approaches and our own baselines.t

I) MOBIUS: a behavior-modeling approach to link
users across social media platforms [2].

II) Alias-Disamb: an unsupervised data-driven approach
based on username analysis to link users across plat-
forms [1].

III) SMaSh: a record linkage approach finding linkage
points over web data [5].

IV) SVM-B: binary prediction on user pairs using sup-
port vector machines on the proposed similarity cal-
culation schemes.

V) HYDRA-Z: a degenerate version of our model
HYDRAwhere all the missing features are filled with
zeros (Eq. (17)).
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VI) HYDRA-M: our model HYDRA with missing features
properly handled (Eq. (21) and Algorithm 1). With-
out specification, we call HYDRA-M as HYDRA.

Parameter settings. To achieve better performance of all the

approaches, a validation set with five million user pairs and

their ground truth labels have been used. For other compared

learning-based linkage function learning, the model parame-

ters are set to be the optimal value through the validation set.

All of them are implemented on the distributed computing

platforms as our approach. Specifically, for SVM-B, we also

use a distributed optimization to learn the linkage model.

For pair-wise similarity calculation in this paper, param-
eters (e.g., " for user profiling, q and � for multi-resolution
temporal similarity modeling) are tuned by a grid search
procedure to maximize the performance of a linear SVM on
validation set. The optimized multi-dimensional similarity
xii0 are used for model construction of (IV), (V) and (VI).

For both HYDRA-Z and HYDRA-M, we need to tune the
model parameters gL, gM , p, sS and sD. We construct the
models on the training data and conduct parameter tuning
on the validation set. In the following sections, we will illus-
trate the functional properties with respect to different
model parameter settings.

Evaluation metrics. In our experiments, we use precision
and recall to evaluate the effectiveness, and the total execu-
tion time (at different scales) to evaluate the efficiency. Pre-
cision is defined as the fraction of the user pairs in the
returned result that are correctly linked. Recall is defined as
the fraction of the actual linked user pairs that are contained
in the returned result. Parameters of all the kernels for
HYDRA are tuned according to the methods described in
the previous sections.

6.1 Effectiveness Evaluation

Performance w.r.t. Different gM and gL. We compare the per-
formance of our approaches with different settings of gM
and gL under p ¼ 1; 2; 3; 4, and show the performance
curves in Fig. 4. From Section 5 we see that gM and gL deter-
mine the relative importance of the problems in MOO
framework from the decision maker’s perspective, while p

determines how the learned model approximates the Utopia
solution, thus determining the intrinsic structure of the
Utility function. However, for real data, a decision maker’s
preference does not necessarily correspond to the best per-
formance, as can be seen from Fig. 4. The results tell us that
different settings of p lead to the choice of different optimal
setting of gM and gL.

The performances in Fig. 4 under different p indicate that
a reasonable setting of gL is in ½0:01; 1�. For gM , the optimal
setting of the normalized value gM

jPl
S

Puj2
may depends on

the average number of friends for each user on different
social platforms, where a reasonable setting should be in
½0:1; 10�.

Performance w.r.t. Different p. Fig. 6 shows our perfor-
mance with p varied from p ¼ 1 to p ¼ 10 and the optimal
setting of gM and gL. Although increasing p will help obtain
the complete Pareto optimal solution, it does not necessarily
correspond to the optimal solution of our SIL problem. In
fact, imposing larger p leads to heavier preference on objec-
tive functions with larger values, leading inevitably to
model over-fitting. We see from Fig. 6 that both precision
and recall reach optimum with an appropriate setting of p
(p ¼ 6 and p ¼ 5 for best precision and recall, respectively).

Performance w.r.t. different number of labeled pairs. Fixing
the level of structure information, we vary the number of
labeled user pairs from one million to five million users.
The experimental results are reported in Fig. 5. Note that,
although the performance of all five methods shows
improvement along with the increasing number of labeled
pairs, the improvement of HYDRA’s is the most significant
and exhibits noticeably greater acceleration compared to the
baseline methods. Another interesting observation is that
the performance on English platforms are better than Chi-
nese ones, which is also true for Fig. 7. Our interpretation of
it goes as follows. First, the complexity of the SIL problem
grows with the number of platforms involved—we used
five Chinese platforms and only two for English platforms.
Second, the social structure and behavior on Chinese plat-
forms are characterized with a higher complexity and
greater temporal dynamics than those on English platforms.
We use real data to illustrate this in Fig. 10 (comparing

Fig. 4. Performance curve with different settings of gM and gT under
different p.

Fig. 5. Performance w.r.t. #labeled pairs.
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Twitter and Sina Weibo as an example). In Fig. 10a, we plot
the diffusion speed for retweets. In comparison, Sina Weibo
has much more retweets and a higher diffusion speed for
retweet than Twitter, which means the information diffu-
sion in Sina Weibo is much faster than in Twitter. Combined
with Fig. 10b, the retweet distribution, we can tell that Sina
Weibo contains much richer and more dynamic information
than Twitter, presenting a much more challenging task for
the SIL problem. In Figs. 10c and 10d,1 we plot the follower
and followee distribution. Note that most users in Sina
Weibo have much more followers and followees than in
Twitter. Consequently, the much more complicated social
structure contributes to the greater challenge to the SIL
problem on Chinese platforms.

Performance w.r.t. different structure information levels.
Fixing the number of labeled user pairs, we vary the num-
bers of user pairs with no ground truth labels, and evaluate
the linkage precision. The results are illustrated in Fig. 7.
Compared against Fig. 5, we notice that the performance of
baseline methods with unlabeled data is much worse than
the performance with labeled data in Fig. 5. But our HYDRA
survives the unlabeled data setup and performs much bet-
ter than the baseline methods. In Figs. 5 and 7, HYDRA not
only performs much better (higher precision and recall)
than the baseline methods, but also shows better perfor-
mance along the increasing number of users.

Performance w.r.t. different number of social communities.We
evaluate how the structure information from other social
communities [28] could help enhance the model generaliza-
tion power. Specifically, given the top five largest overlap-
ping communities A, B, C, D, E with labeled training pairs
between A and B. To judge whether a user pair from
CA � CB corresponds to the same person, we incrementally
incorporate structure information of training pairs from
CA � CC , CA � CD, CA � CE , CB � CC , CB � CD and
CB � CE for model training, and report the results on the
test set of user pairs from CA � CB in Fig. 8. The interesting
observation is that the social community structure has
much greater impact on the results for Chinese platforms
than those for English. It may due to the more complicated
social community structure and social behaviors, as we
have illustrated in Fig. 10. But as we notice in Fig. 8, the
social community structure indeed helps HYDRA achieve
better results than baseline methods.

Performance w.r.t. Different Social Platforms. We study SIL
across culturally different social platforms, that is, between

Chinese platforms and English platforms. In this experi-
ment, we use the whole data set with all seven different
social networks. The results are reported in Fig. 9. Compared
with the previous results, there is an obvious performance
drop (affected by different writing styles in Chinese and
English, and social friends), but HYDRA performs even bet-
ter than the baseline methods, and has better performance
improvement with the increasing number of users. This
shows that heterogeneous behavior model demonstrates
better fitting to online social behaviors and social structure
modeling helps to capture more linkable information.

Based on effectiveness evaluation in different parameter
settings, different number of labeled data pairs, different
structure information levels and different number of social
communities, we conclude that HYDRA significantly out-
performs the baseline methods and displays good scalabil-
ity with the increasing amount of data, in no matter Chinese
platforms or English platforms, or together.

6.2 Efficiency Evaluation

We use the total execution time at different scales to evalu-
ate the efficiency. From the results reported in Fig. 11,

Fig. 6. The precision and recall curve w.r.t. different p.

Fig. 7. Performance w.r.t. #unlabeled pairs.

Fig. 8. Performance with #social communities.

1. Spikes in Fig. 10d are due to the default setup of Twitter and Sina
Weibo whereby (1) every Twitter new user are recommended with 10
followees by default (the left spike); and (2) For Twitter and SinaWeibo,
there are a 2,000-followee limit (the right spike).
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HYDRA consumes less time than the baseline methods
(except SVM-B and SMaSh) in the same scaling-up number
of users, for both Chinese and English platforms. Since
HYDRA solves a convex optimization problem where a
unique global optimal solution can be achieved. It is inter-
esting that the runtime cost of HYDRA increases at a slower
speed than the baseline methods. Along with the scaling-up
number of users, the runtime of HYDRA displays a converg-
ing tendency, which is a desirable feature for handling
large-scale data sets. The explanation for this favorable
characteristics lies in the the social structure we incorporate
into the HYDRA model—for such five-million-user social
networks, when we have accumulated around three million
users and their one-hop friends, the social structure is
almost well-constructed, and after that, the resulting utility
function contains a rather sparse structure consistency
matrix M which is easy to solve with many accelerating
techniques (e.g., accelerated coordinate descent method).
For Alias-Disamb [1], it automatically generates a large
number of training pairs by analyzing the uniqueness of the
usernames, where most of the generated label information
may be incorrect, resulting in an extremely large quadratic
programming problem and extremely slow convergence
rate. SVM-B corresponds to one of the objective functions in
our MOO learning framework, and it therefore consumes
less time for model construction. SMaSh employs a totally
different paradigm for record linkage. As a result, the prop-
erty of its efficiency behavior is quite different from other
discriminative-model-based approaches for SIL.

Our model possesses OðjPlj2Þ time complexity in learn-
ing the linkage function. However, when increasing the

number of users to million scales, the portion of inactive
users will be dominated. The behaviors of these users are
very random and sparse so that the behavior similarities are
almost zeroes among these users. For a linkage model learn-
ing, these inactive users will not become the “support
vector”, thus they will be reduced in the first several itera-
tion rounds. Therefore, increasing the number of inactive
users will not significantly increase the training time con-
sumption. In conclusion, HYDRA is capable of handling
large-scale data sets.

6.3 Sensitivity Evaluation

Sensitivity evaluation is to test HYDRA-M and HYDRA-Z
under varied missing information settings (from varied
number of users). According to the results in Fig. 12, for
both Chinese and English platforms, HYDRA-M outper-
forms HYDRA-Z although both achieve high precision and
recall. The results clearly demonstrate the superiority of
HYDRA-M (HYDRA) in handling missing information with-
out compromising performance.

6.4 Discussion

The data sizes in this paper are prohibitively large for a sin-
gle PC or server. Despite that we deal with trillions of data
records millions of users when optimizing the convex prob-
lem in Eq. (17), the problem still can be handled efficiently
by several servers by the following reasons.

First, the meaningful behavior patterns are extremely
sparse. For example, the percentage of the non-missing or
non-zero features on the data of English communities are
no more than 4 percent, and the percentage of available sim-
ilarities between users are no more than 2 percent. Even
some missing values can be filled by aggregating the core
social behavior similarities, the available similarities are still
no more than 3 percent. Similarly, the available similarities
are about 2 percent on the data of Chinese communities.
The structure consistency matrices M is even more sparse,
which is usually less than 1 percent non-zero elements for
both English and Chinese communities. Such data sparsity

Fig. 9. Performance on different social platforms.

Fig. 10. Comparison between Twitter and Sina Weibo.

Fig. 11. Efficiency evaluation.

Fig. 12. Performance with missing data.
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allows efficient data storage, and successfully execution of
our learning algorithm with five high-end servers.

Moreover, we learn the model by the distributed optimi-
zation method [41] which optimizes the linkage function in
parallel on several servers with a carefully designed syn-
chronization strategy. The core idea of the distributed opti-
mization is that the overall objective function can be
optimized towards the optimal solution via optimizing a
series of sub-problems on different part of data stored dis-
tributively on different servers. Meanwhile, our model
involves support vector representation, i.e., a and b, where
at least 90 percent of the dimensions in b are zeros on mil-
lion scale data. For each step of the model optimizing, we
perform a coefficient space shrinking process to actively
identifying the non-zero dimensions in b with a very simple
gradient thresholding technique. Consequently, the corre-
sponding entries with zeros in b in all the matrices (e.g., M
and K) can be excluded from the memory when optimizing

bt. Finally, we further enhances the efficiency of the model

learning by using bt as the warm start for optimizing btþ1.

7 CONCLUSION

In this paper, we link user accounts across different social net-
works platforms. To deal with the challenges, we propose a
framework, HYDRA, a multi-objective learning framework
incorporating heterogeneous behavior model and core social
networks structure. We evaluate HYDRA against the state-of-
the-art on two real data sets. Experimental results demon-
strate that HYDRA outperforms existing algorithms in identi-
fying true user linkage across different platforms.
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