
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2015

Software puzzle: A countermeasure to resource-
inflated denial-of-service attacks
Yongdong Wu

Zhigang Zhao

Bao Feng

Huijie Robert DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/TIFS.2014.2366293

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
Wu, Yongdong; Zhao, Zhigang; Feng, Bao; and DENG, Huijie Robert. Software puzzle: A countermeasure to resource-inflated denial-
of-service attacks. (2015). IEEE Transactions on Information Forensics and Security. 10, (1), 168-177. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2539

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TIFS.2014.2366293
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

168 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

Software Puzzle: A Countermeasure to
Resource-Inflated Denial-of-Service Attacks

Yongdong Wu, Zhigang Zhao, Feng Bao, and Robert H. Deng

Abstract— Denial-of-service (DoS) and distributed DoS (DDoS)
are among the major threats to cyber-security, and client puzzle,
which demands a client to perform computationally expensive
operations before being granted services from a server, is a
well-known countermeasure to them. However, an attacker can
inflate its capability of DoS/DDoS attacks with fast puzzle-
solving software and/or built-in graphics processing unit (GPU)
hardware to significantly weaken the effectiveness of client
puzzles. In this paper, we study how to prevent DoS/DDoS
attackers from inflating their puzzle-solving capabilities. To this
end, we introduce a new client puzzle referred to as software
puzzle. Unlike the existing client puzzle schemes, which publish
their puzzle algorithms in advance, a puzzle algorithm in the
present software puzzle scheme is randomly generated only after
a client request is received at the server side and the algorithm
is generated such that: 1) an attacker is unable to prepare an
implementation to solve the puzzle in advance and 2) the attacker
needs considerable effort in translating a central processing unit
puzzle software to its functionally equivalent GPU version such
that the translation cannot be done in real time. Moreover,
we show how to implement software puzzle in the generic
server-browser model.

Index Terms— Software puzzle, code obfuscation,
GPU programming, distributed denial of service (DDoS).

I. INTRODUCTION

DENIAL of Service (DoS) attacks and Distributed
DoS (DDoS) attacks attempt to deplete an online ser-

vice’s resources such as network bandwidth, memory and
computation power by overwhelming the service with bogus
requests.1 For example, a malicious client sends a large
number of garbage requests to an HTTPS bank server. As the
server has to spend a lot of CPU time in completing SSL
handshakes, it may not have sufficient resources left to handle
service requests from its customers, resulting in lost businesses

Manuscript received July 8, 2014; revised September 9, 2014 and
October 24, 2014; accepted October 27, 2014. Date of publication
October 30, 2014; date of current version December 17, 2014. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. C.-C. Jay Kuo.

Y. Wu and Z. Zhao are with the Department of Infocomm Security, Institute
for Infocomm Research, Agency for Science, Technology and Research,
Singapore 138632 (e-mail: wydong@i2r.a-star.edu.sg; zzhao@i2r.a-star.
edu.sg).

F. Bao is with the Shield Laboratory, Central Research Institute, Huawei
International Pte. Ltd., Singapore 486035 (e-mail: bao.feng@huawei.com).

R. H. Deng is with the School of Information Systems, Singapore
Management University, Singapore 188065 (e-mail: robertdeng@smu.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2014.2366293
1Note that the DoS attack is different from the “normal” congestion case

where a server receives the overwhelming number of requests in peak hours,
e.g., some booking systems often crash in the period of festival eve due to
sudden increase of ticket purchase requests. The later is usually predictable,
but the former is not.

and reputation. DoS and DDoS attacks are not only theoretical,
but also realistic, e.g., Pushdo SSL DDoS Attacks [1].

DoS and DDoS are effective if attackers spend much less
resources than the victim server or are much more powerful
than normal users. In the example above, the attacker spends
negligible effort in producing a request, but the server has to
spend much more computational effort in HTTPS handshake
(e.g., for RSA decryption). In this case, conventional crypto-
graphic tools do not enhance the availability of the services;
in fact, they may degrade service quality due to expensive
cryptographic operations.

The seriousness of the DoS/DDoS problem and their
increased frequency has led to the advent of numerous defense
mechanisms [2]. In this paper, we are particularly interested in
the countermeasures to DoS/DDoS attacks on server compu-
tation power. Let γ denote the ratio of resource consumption
by a client and a server. Obviously, a countermeasure to
DoS and DDoS is to increase the ratio γ , i.e., increase the
computational cost of the client or decrease that of the server.
Client puzzle [3] is a well-known approach to increase the
cost of clients as it forces the clients to carry out heavy oper-
ations before being granted services. Generally, a client puzzle
scheme consists of three steps: puzzle generation,2 puzzle
solving by the client and puzzle verification by the server.

Hash-reversal is an important client puzzle scheme which
increases a client cost by forcing the client to crack a one-way
hash instance. Technically, in the puzzle generation step, given
a public puzzle function P derived from one-way functions
such as SHA-1 or block cipher AES, a server randomly
chooses a puzzle challenge x , and sends x to the client.
In the puzzle-solving and verification steps, the client returns
a puzzle response (x, y), and if the server confirms x = P(y),
the client is able to obtain the service from the server. In this
hash-reversal puzzle scheme, a client has to spend a certain
amount of time tc in solving the puzzle (i.e., finding the
puzzle solution y), and the server has to spend time ts in
generating the puzzle challenge x and verifying the puzzle
solution y. Since the server is able to choose the challenge
such that tc � ts for normal users, i.e., γ � 1, an attacker
can not start DoS attack efficiently by solving many puzzles.
Alternatively, the attacker can merely reply to the server with
an arbitrary number ỹ so as to exhaust the server’s time for
verification. In this case, although γ < 1 such that defense
effect of client puzzle is weakened, the server time ts is still

2There are two methods to generate client puzzles. One is that the server
fully generates the puzzle, while another is the server gives the client
partial input, and asks the client to solve for both puzzle input and output.
In this paper, we focus on the first one only.

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Information Forensics and Security, 2015 January, Volume 10, Issue 1, Pages 168-177
https://doi.org/10.1109/TIFS.2014.2366293

WU et al.: SOFTWARE PUZZLE: COUNTERMEASURE TO RESOURCE-INFLATED DoS ATTACKS 169

much smaller than the service preparation time (e.g., RSA
decryption) or service time (e.g., database process) as the
returned answer will be rejected at a high probability. There-
fore, in either case, a client puzzle can significantly reduce
the impact of DoS attack because it enables a server to spend
much less time in handling the bulk of malicious requests.
Of course, optimizing the puzzle verification mechanism is
very important and doing so will undoubtedly improve the
server’s performance [4].

The existing client puzzle schemes assume that the mali-
cious client solves the puzzle using legacy CPU resource
only. However, this assumption is not always true. Presently,
the many-core GPU (Graphic Processing Unit) component is
almost a standard configuration in modern desktop computers
(e.g., ATI FirePro V3750 in Dell T3500), laptop computers
(e.g., nVidia Quadro FX 880M in Lenovo Thinkpad W510),
and even smartphones (e.g., PowerVR SGX540 in Samsung
I9008 GalaxyT M S). Therefore, an attacker can easily uti-
lize the “free” GPUs or integrated CPU-GPU to inflate his
computational capacity [5]. This renders the existing client
puzzle schemes ineffective due to the significantly decreased
computational cost ratio γ . For example, an attacker may
amortize one puzzle-solving task to hundreds of GPU cores
if the client puzzle function is parallelizable (e.g., the hash-
reversal puzzle), or the attacker may simultaneously send to
the server many requests and ask every GPU core to solve
one received puzzle challenge independently if the puzzle
function is non-parallelizable (e.g. modular square root puz-
zle [7] and Time-lock puzzle [8]). This parallelism strategy
can dramatically reduce the total puzzle-solving time, and
hence increase the attack efficiency. Green et al. [6] examined
various GPU-inflated DoS attacks, and showed that attackers
can use GPUs to inflate their ability to solve typical reversal
based puzzles by a factor of more than 600. Moreover, in
order to defeat GPU-inflated DoS attack to client puzzles,
they proposed to track the individual client behavior through
client’s IP address [9]. Nonetheless, if IP tracking is effective
to thwart the GPU inflation, IP filtering can be used to defense
against DoS attacks directly without utilizing client puzzles.
In other words, their defense against GPU-inflated DoS attacks
may not be attractive in practice.

As the present browsers such as Microsoft Internet Explorer
and Firefox do not explicitly support client puzzle schemes,
Kaiser and Feng [11] developed a web-based client puzzle
scheme which focuses on transparency and backwards compat-
ibility for incremental deployment. The scheme dynamically
embeds client-specific challenges in webpages, transparently
delivers server challenges and client responses. However, this
scheme is vulnerable to DoS attackers who can implement
the puzzle function in real-time. Technically, an attacker can
rewrite the puzzle function P(·) with a native language such
as C/C++ such that the cost of an attacker is much smaller
than that the server expects.3 Even worse, a GPU-inflated
DoS attacker can realize the fast software implementation on
the many-core GPU hardware and run the software in all the

3In our experiments, a native code is about 20 times faster than a
Java bytecode for the same function.

GPU cores simultaneously such that it is easy to defeat the
web-based client puzzle scheme.

Obviously, if a puzzle is designed based on client’s GPU
capability, the GPU-inflation DoS does not work at all. How-
ever, we do not recommend to do so because it is troublesome
for massive deployment due to (1) not all the clients have
GPU-enabled devices; and (2) an extra real-time environment
shall be installed in order to run GPU kernel.

By exploiting the architectural difference between CPU
and GPU, this paper presents a new type of client puzzle,
called software puzzle, to defend against GPU-inflated DoS
and DDoS attacks. Unlike the existing client puzzle schemes
which publish a puzzle function in advance, the software
puzzle scheme dynamically generates the puzzle function P(·)
in the form of a software core C upon receiving a client’s
request. Specifically, by extending DCG technology which
produces machine instructions at runtime [10], the proposed
scheme randomly chooses a set of basic functions, assembles
them together into the puzzle core C, constructs a software
puzzle C0x with the puzzle core C and a random challenge x .
If the server aims to defeat high-level attackers who are able
to reverse-engineer software, it will obfuscate C0x into an
enhanced software puzzle. After receiving the software puzzle
sent from the server, a client tries to solve the software puzzle
on the host CPU, and replies to the server, as the conventional
client puzzle scheme does. However, a malicious client may
attempt to offload the puzzle-solving task into its GPU. In this
case, the malicious client has to translate the CPU software
puzzle into its functionally equivalent GPU version because
GPU and CPU have totally different instruction sets designed
for different applications. Note that this translation can not be
done in advance since the software puzzle is formed dynami-
cally and randomly. As rewriting/translating a software puzzle
is time-consuming, which may take even more time than
solving the puzzle on the host CPU directly, software puzzle
thwarts the GPU-inflated DoS attacks. To demonstrate the
applicability of software puzzle, we use Applet to implement
software puzzles such that the software puzzle implementation
has the same merits as [11] in terms of easy deployment, but
overcomes its security weaknesses.

The reminder of this paper is organized as follows.
Section II provides an overview of GPU and its difference
with CPU. Section III introduces the software puzzle, the
countermeasure to GPU-inflated DoS attacks, and Section IV
addresses the packing mechanism of software puzzle so that
the puzzle can be solved at the client with an appropriate
permission. Section V analyzes the security of software puzzle.
Section VI evaluates the performance of software puzzle.
Section VII draws conclusions and addresses the future work.
Finally, an appendix gives an example of randomly generated
software puzzle, and its resistance to the hacking attack.

A. Notations

For ease of reference, important notations used throughout
the paper are listed below.
x : A challenge chosen by server.
m: A message collected from environment.

170 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

y: A solution to the puzzle challenge x .
(x̃, ỹ): A puzzle response returned from client.
P(·): Puzzle algorithm such that x = P(y, m).
C: Puzzle core which is the software implementation of P(·).
C0x : Puzzle which embeds the information of x into C.
C1x : Obfuscated C0x .

II. GPU INTRODUCTION

Modern GPUs have many processing cores that can be used
for general-purpose computing as well as graphics processing.
Additionally, nVidia and AMD, the major GPU vendors, pro-
vide convenient programming libraries to use their GPUs for
intensive computation applications. Without loss of generality,
nVidia GPU will be used to present our techniques in the
following. For self-contained, this Section briefly introduces
nVidia GPU [12], its application on the basic GPU-inflated
DoS attacks, and its difference from CPU which will be
exploited to defeat against the GPU-inflated DoS attack.

A. nVidia GPU Overview

In the nVidia architecture, a GPU has many Streaming
Multiprocessors (SMs) consisting of many identical processing
cores. For example, the nVidia GeForce GTX 680 consists
of 1,536 cores. A GPU processor has fast but small shared
memory. Besides, it has access to the host’s global memory
which is large but slow.

CUDA, the major programming language4 for nVidia GPU,
extends ANSI-standard C99 language by allowing a program-
mer to define C functions, or kernels. For instance, the client
puzzle function P(·) can be implemented as a GPU kernel.
At any one time, a GPU device is dedicated to a single
application which may include multiple kernels. When a kernel
is loaded into GPU and invoked, it is executed by multiple
identical threads in parallel for maximum efficiency.

B. Difference Between CPU and GPU

Unlike modern CPUs,5 which are designed to efficiently
optimize the execution of single-thread programs using com-
plex out-of-order execution strategies, a modern GPU executes
massively data-parallel programs in almost predictable way.
Hence, GPU does not explicitly support branch instructions.

Although both CPU software and GPU software can be
implemented using the same high-level language such as C,
their low-level instruction sets are totally different.
Particularly, some instruction operations are not supported in
GPU software. For example, self-modifying code, widely
used in software protection, modifies the software itself on
the fly so as to raise the bar of hacking. As all the GPU cores
share the same kernel, if one thread modifies the kernel, the
final software output is hard to predict on account of the
independence of threads.

4Another GPU programming language is OpenCL C, the dominant open
general-purpose GPU computing language (www.khronos.org/opencl/), which
can be used too.

5There are multiple-core CPUs in the market. However, in comparison with
GPU, the number of cores in a multiple-core CPU is too small. Hence, we
omit multiple-core CPU in this paper without loss of generality.

Fig. 1. GPU-inflated DoS attack against data puzzle.

A CPU processor is usually much slower than a
GPU processor as a whole, but one CPU core is much faster
than one GPU core. In addition, one CPU dominates its
resources such as memory and cache, but all GPU cores share
resources including the registers and caches. If a GPU kernel
were to ask many shared resource, the number of cores used in
the application would be much smaller than the available cores
such that the potential of GPU would not be fully utilized.
In this case, GPU may be slower than CPU. This paper will
exploit the above difference between CPU and GPU to prevent
GPU from being used to accelerate the puzzle-solving process.

III. SOFTWARE PUZZLE

We classify client puzzles into two types. If a puz-
zle function P , as all the existing client puzzle schemes
(see [13], [14]), is fixed and disclosed in advance, the puzzle
is called a data puzzle; otherwise, it is referred to as a software
puzzle. Data puzzle aims to enforce the client’s computation
delay of the inverse function P−1(x) for a random input x ;
while software puzzle aims to deter an adversary from under-
standing/translating the implementation of a random puzzle
function P(·). That is to say, unlike a data puzzle challenge
which includes a challenge data only, a software puzzle chal-
lenge includes a dynamically generated software C(·) which
including a data puzzle function as a component. Although a
software puzzle scheme does not publish the puzzle function
in advance, it also follows the Kerckhoffs’s Principle [15]
because an adversary knows the algorithm for constructing
software puzzles, and is able to “reverse-engineer” the soft-
ware puzzle C1x to know the puzzle function P(·) several
minutes later after receiving the software puzzle.

A. Basic GPU-Inflated DoS Attack

In order to elaborate software puzzle, we recap its rival
GPU-inflated DoS attack in advance. When a client wants
to obtain a service, she sends a request to the server. After
receiving the client request, the server responds with a puzzle
challenge x . If the client is genuine, she will find the puzzle
solution y directly on the host CPU, and send the response
(x, y) to the server. However, as shown in Fig. 1, by using the
similar mechanism in accelerating calculation with GPU [16],
a malicious user who controls the host will send the challenge
x to GPU and exploit the GPU resource to accelerate the
puzzle-solving process.

B. Framework of Software Puzzle

In order to defeat the GPU-inflated DoS attack described in
Subsection III-A, we extend data puzzle to software puzzle as
shown in Fig. 2. At the server, the software puzzle scheme has

WU et al.: SOFTWARE PUZZLE: COUNTERMEASURE TO RESOURCE-INFLATED DoS ATTACKS 171

Fig. 2. Diagram of software puzzle generated with secret key and nonce sn.

a code block warehouse W storing various software instruction
blocks. Besides, it includes two modules: generating the puzzle
C0x by randomly assemblying code blocks extracted from the
warehouse; and obfuscating the puzzle C0x for high security
puzzle C1x .

C. Code Block Warehouse Construction

The code block warehouse W stores compiled instruction
blocks {bi }, e.g., in Java bytecode, or C binary code. The
purpose to store compiled codes rather than source codes is to
save server’s time; otherwise, the server has to take extra time
to compile source codes into compiled codes in the process
of software puzzle generation. The intuitive requirements for
each block are

• In order to assemble the code blocks together (see
Subsection III-D), each block has well-defined input
parameters and output parameters such that the output
from one block can be used as the input of the following
blocks.

• The size of each code block is decided by the security
parameter κ . Given that the size of software puzzle is
constant, if the block size is smaller, there are more blocks
on average such that more puzzles can be constructed.
Thus smaller block size implies higher security level
because an attacker has to spend more effort to figure
out a puzzle in question. The shortcoming of small block
size is that the server has to spend more time in extracting
the basic blocks and assembling the extracted blocks into
software puzzle.

Preferably, the warehouse stores both Java bytecode and the
corresponding C binary code. Because the former is applicable
to different OS platforms but slow, it is suitable to deliver the
software puzzle to the client in the format of Java bytecode.
In contrast, the later is fast and is used by the server for
generating the stored pair (x, y). As a result, this Java-C
hybrid scheme ensures that the server has advantage over
the client/adversary in terms of resource consumption, as
well as the support of cross-platform deployment. In general,
code blocks can be classified into two categories: CPU-only
instruction block and data puzzle algorithm block.

1) CPU-Only Instruction Block: Unlike CPU, GPU is
designed for the predictable graphic processing such as matrix
operations, not generic logic processing. As branching oper-
ations (e.g., try-catch-finally, goto) are inherently
non-predictable and are non-parallelable, executing them in
GPU is slow such that the major merit of GPU can not be
exploited by the attacker; Secondly, some hardware-related
operations such as reading hardware input and surfing network,

TABLE I

EXAMPLE CPU-ONLY INSTRUCTIONS

can not be performed on GPU; Thirdly, the state-of-the-art
GPUs do not support dynamic thread generation; Fourthly, the
high-speed shared memory is shared by all the GPU thread
blocks together such that the size of fast accessible memory
available to each thread is small. Therefore, if the puzzle kernel
demands large shared memory, the GPU parallelism potential
will be restricted seriously, or the threads have to access the
global memory at a much slower speed.

Therefore, we can exploit the instructions which are differ-
ent between GPU and CPU as components to design software
puzzle. Table I lists some of these instructions.

2) Data Puzzle Algorithm Block: Similar to the blocks
in data puzzle, algorithm blocks perform the mathematical
operations only. For example, in an AES round, ShiftRows
code block outputs a transformed message matrix (or state),
which can be used as input of any other operation such as
MixColumn code block without incurring parameter mismatch
errors.

D. Software Puzzle Generation

In order to construct a software puzzle, the server has
to execute three modules: puzzle core generation, puzzle
challenge generation, software puzzle encrypting/obfuscating,
as shown in Fig. 2.

1) Puzzle Core Generation: From the code block ware-
house, the server first chooses n code blocks based on hash
functions and a secret, e.g., the j th instruction block bi j ,
where i j = H1(y, j), and y = H2(key, sn), with one-way
functions H1(·) and H2(·), key is the server’s secret, and sn
is a nonce or timestamp. All the chosen blocks are assembled
into a puzzle core, denoted as C(·) = (bi1 ; bi2 ; · · · ; bin).
As an illustrative example, Table III in the appendix shows an
example puzzle core C generated from AES operation blocks
stored in warehouse S.

2) Puzzle Challenge Generation: Given some auxiliary
input messages such as IP addresses, and in-line constants,
the server calculates a message m from public data such as
their IP addresses, port numbers and cookies, and produces a
challenge x = C(y, m), smiliar to encrypting plaintext m with
key y to produce ciphertext x .

As the attacker does not know the puzzle core C(·)
(or equivalently the puzzle function P(·)) in advance, it can
not exploit GPU to solve the puzzle C0x in real time using the
basic GPU-inflated DoS attack addressed in Subsection III-A.
Nonetheless, if the puzzle is merely constructed as above,

172 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

it is possible for an attacker to generate the GPU kernel by
mapping the CPU instructions in C0x to the GPU instructions
one by one, i.e., to automatically translate the CPU software
puzzle C0x into its functionally equivalent GPU version.

3) Code Protection: Intuitively, code obfuscation is able to
thwart the above translation threat to some extent. Though
there are no generic obfuscation techniques which can prevent
a patient and advanced hacker from understanding a program
in theory [17], results in [18] show that obfuscation does
increase the cost of reverse-engineering. Thus, although code
obfuscation may be not satisfactory in long-term software
defense against hacking, it is suitable for fortifying software
puzzles which demand a protection period of several seconds
only.

A software puzzle consists of instructus, and each instruc-
tion has a form (opCode, [operands]), where opCode indi-
cates which operation (e.g., addition, shift, jump) is, while
the operands, varying with opCode, are the parameters
(e.g., target address of jump instruction) to complete the oper-
ations. As a popular obfuscation technology, code encryption
technology treats software code as data string and encrypts
both operand and opCode. Concretely, given the code C0x ,
the server generates an encrypted puzzle C1x = E(y, C0x),
where E(·) is a cipher such as AES, and y is used as the
encryption key. In practice, there are many commercial code
obfuscation tool for C/C++ software such as VMprotect
(http://vmpsoft.com/) which can be used to protect the soft-
ware puzzle from hacking.

In all, there are two-layer encryptions. The outer layer is
used to encrypt the software puzzle C0x , and the inner layer
uses the puzzle software to encrypt the challenge as data
puzzle does. Therefore, after receiving C1x , the client has to
try ỹ. If and only if ỹ = y, the original software puzzle C0x

can be recovered and further used to solve the challenge.

IV. SOFTWARE PUZZLE PACKING

Once a software puzzle C1x is created at the server side
and compiled into the Java class file C1x .class, it will be
delivered to the client who requests for services over an
insecure channel such as Internet, and run at the client’s side.
Applet is a suitable delivery means because it can be run in
browsers on many platforms such as Windows, Unix, Mac and
Linux [19], despite not applicable to some mobile browsers
without jailbreaking the operating system such as iOS [20].

Usually, an Applet is embedded into an HTML page which
is embedded with an archive including the software puzzle
class C1x .class and a Java class init.class for activating the
puzzle software C1x .class

1: <APPLET CODE=‘‘ini t .class’’
ARCHIVE = ‘‘ini t .class, C1x .class’’
WIDTH=‘‘200’’ HEIGHT=‘‘40’’>

2: </APPLET>

However, not all Applets can be run at the client’s browser
with the default access policy such that the design for software
puzzle varies with the browser’s configurations at the client
side. In the following, we describe two options for packing
software puzzle based on the configuration at the client side.

Fig. 3. init.class structure for reloading puzzle class on JVM. If a correct
solution y is found, C̃0x .class shall be the same as the original puzzle
C0x .class, where z = x ⊕ y is calculated in advanced and hard-coded into
at the server side.

Fig. 4. init.class structure for activating puzzle class on dedicated sandbox.

A. Class Reloading in Java Sandbox

The instructions in C1x .class can not be directly executed
at client’s JVM because the software puzzle instructions have
to be decryped and then replaced with the decrypted one on
the fly. However, a Java class can not call the new instructions
generated by itself. Nonetheless, it is legal in JVM to replace
an entire class by reloading a new/recovered version. To this
end, the server will generate another class file ini t .class as
in Fig. 3 for managing the puzzle class C1x .class. At the
client side, ini t .class is used to decrypt C1x .class into a
temporary class C̃0x .class and reload the class C̃0x .class
for one solution trial.

B. JNI in Dedicated Sandbox

Java Native Interface (JNI) provides Java programs easy
access to native shared libraries with native language such
as C/C++. In comparison with the reloadable method in
Subsection IV-A, the software puzzle implemented with
native codes can achieve better obfuscation performance.
However, JNI programming requires a dedicated execution
client platform.

As the dedicated sandbox is able to run the puzzle directly,
without re-loading the class, the structure of ini t .class can
be simplified as Fig. 4, where the puzzle software can be
executed directly after it is loaded. In comparison with Fig. 3,
this scheme loads C1x .class only once and does not load the
decrypted C̃0x .class. Its weakness is that a dedicated client

WU et al.: SOFTWARE PUZZLE: COUNTERMEASURE TO RESOURCE-INFLATED DoS ATTACKS 173

platform mechanism (see [21]) shall be deployed for safely
and efficiently sandboxing software.

V. SECURITY ANALYSIS

Software puzzle aims to prevent GPU from being used in the
puzzle-solving process based on different instruction sets and
real-time environments between GPU and CPU. Conversely,
an adversary may attempt to deface the software puzzle
scheme by simulating the host on GPU (Subsection V-A),
cracking puzzle algorithm (Subsection V-B), re-producing
GPU-version puzzle (Subsections V-C ∼ V-E), or abusing the
access priority in puzzle-solving (Subsection V-F).

A. Employing Host Simulator on GPU

If an attacker is able to run a CPU simulator over GPU
environment, the software puzzle can be executed on GPU
directly. However, this simulator-based attack may be imprac-
tical in accelerating the puzzle-solving process because

• “VM software must emulate the entire hardware envi-
ronment. · · · , problems can arise if the properties of
hardware resources are significantly different in the host
and the guest” [22]. To our best knowledge, there is
no host simulator on GPU at present. Indeed, it is not
trivial to develop a full-functional CPU simulator on
GPU because the CPU environment including Operating
System, and all the imported Java libraries (and their
imported libraries and so on) must be simulated. If only
a portion of simulator functions is implemented, the
GPU kernel may have to communicate with the host
for the non-simulated functions. In this case, the
GPU-inflation function is reduced significantly because
it can not run in a parallel way and the GPU-CPU
communication channel is much slower than its internal
memory access;

• A software running over a simulator is much slower than
over its guest environment directly because there are more
processing steps to execute the software instructions.

B. Cracking Data Puzzle Algorithm

According to Fig. 3 or Fig. 4, an adversary obtains the
puzzle solution (x̃, ỹ) to the software puzzle C1x , such that
x = x̃ = C̃0x (ỹ, m̃), where number x is hard-coded in the
software puzzle and m̃ is derived on the fly. Since the software
puzzle is encrypted with the standard cipher, an adversary has
to recover the puzzle software by brute force. Moreover, for
the inner-layer encryption, as C(·) is an encryption function,
theoretically, an adversary can not find a valid solution (x̃, ỹ)
in a better way than brute force given that y is over a small
interval. Hence, the practical strategy of the attacker is to
accelerate the brute force process by exploiting the parallel
computation capability of GPU cores.

Remark: Even the code blocks (e.g., AES round transforma-
tions) are cryptographic primitives, their combination may be
not as secure as the original ones for the basic software puzzle.
But in software puzzle, this problem can be easily overcome,
as shown in the Table II, by randomly adding some round

TABLE II

INSTRUCTION SUBSET FOR BRANCHING

transformations into the existing AES code. As the new added
transformation will increase the diffusion effect, the AES
variants have at least the same security level as standard AES.6

C. Replaying Data Puzzle

When a software puzzle is built upon a data puzzle, the
number of software puzzles is required to be very large such
that an attacker is unable to re-construct the GPU-version
software puzzles in advance and re-use them. Indeed, this
requirement can be easily satisfied. For instance, even though
a service provider merely adds one AES round transformations
between two AES transformations in the standard 10 rounds,
the number of AES variants is up to 49×4+3 = 278. Moreover,
a software can have many polymorphic codes such that the
number of software puzzles is even larger.

Unfortunately, a smart adversary may collect all the code
blocks in the warehouse W, and rebulid the GPU version
code block warehouse Wgpu in advance. Once a new software
puzzle is delivered to the adversary, he will reconstruct the
GPU-version puzzle by matching the puzzle code blocks
against the software puzzle. In this case, the adversary is able
to increase the attack performance. However, as the server
encrypts the puzzle software C0x into C1x , the adversary has
to recover C0x by brute force, and hence can not successfully
re-construct the GPU-version puzzle by matching code
patterns.

D. Deobfuscating Software Code

In order to rewrite the GPU kernel, an attacker may
determine the instruction flow on the fly by debugging the
software puzzle. Generally, dynamic translation can accel-
erate the attacking speed, but it is not very helpful to the
GPU-inflated DoS attacker because

• Dynamic translation is usually a human-machine inter-
active process. If human interference is required, the
DoS attack is very ineffective;

6The iteration in the key expansion process shall be adapted to meet the
required number of AddRoundKey transformation.

174 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

• In order to carry on the dynamic translation, the attacker
needs a simulation environment for “debugging” the
software puzzle. In the translation process, the decryption
key ỹ has to be tested by brute force. Because it is
impossible to decide whether a tested key is right based
on the recovered opCode value due to the instruction
permutation in Subsection III-D.3, the attacker has to run
the puzzle C̃0x for every key test to make the decision.

– If the simulation environment is run on CPU host,
the host can not generate the GPU kernel until the
solution is found. Therefore, this translation time is
longer than the time used to directly solve software
puzzle by CPU host. In other words, the GPU is
useless for accelerating puzzle-solving in this case.

– If the simulator is run on GPU, the attacker has to
face the troubles stated in Subsection V-A besides
the trouble existing in the above CPU simulation
environment.

Once the translated code has one error, the attacker fails to
recover the software puzzle C0x to find the correct response
such that he can not launch DoS attack. Therefore, it is not
easy for an attacker to develop a GPU kernel for solving the
original software puzzle by deobfuscating/analyzing software
puzzle.

E. Exploiting Instruction Compliance

Code obfuscation can provide practical security or ad-hoc
security by increasing the attacker’s effort. In order to offer
a therotical security, cryptographic protection method shall
be used. Nonetheless, the method can not be employed in
a straightforward way. According to Java syntax [23], all the
opCode values are within the interval [00, 0C9] (Hexadecimal)
in the Java instructions. Additionally, for some instruction
codes opCode, their oprands have additional interval restric-
tions. If the adversary tries to decrypt the software with a trial
key ỹ and finds a non-compliant instruction in terms of opCode
or opCode-oprand combination, the adversary can discard that
trial value ỹ immediately such that the puzzle-solving process
is accelerated dramatically.

To overcome this instruction compliance weakness, the
server can adopt the cipher over finite domain [24]. Specifi-
cally, the server divides the instruction set into subsets. In each
subset, all the opCodes are of the same length, and their
operands are in the same interval. Then, the server permutes
the instructions over the subset only in the code encryption
process or code self-modifying process. For example, Table II
is an instruction subset for branching,7 where each instruction
has one opCode and two bytes for target address. If the
index of the instruction opCode is permuted, a valid and
encrypted instruction is obtained. Generally, given an ordered
t-entry instruction subset O = {o0, o1, · · · , ot−1} according
to opCode values, to encrypt the i th instruction opCode oi ,
the server calculates i ′ = i + s j mod t with a key sequence
element s j , and replaces the instruction oi with oi ′ . At the
client side, the decryption step is i = i ′ − s̃ j mod t and

7Besides the subset for branch instructions, single-byte Java instructions can
be used to form another subset which has 145 elements.

hence the decrypted instruction is always valid no matter what
the key is. Therefore, the adversary fails to accelerate puzzle-
solving by exploiting the instruction compliance.

F. Abusing Access Priority

All the client puzzle schemes assume that there is no
secure channel between the client and the server until puzzle
verification completion. Otherwise, the client puzzle scheme
is redundant. Thus, an attacker can intercept all the traffic
between the client and the server, and start man-in-the-middle
attack, say, sending malicious software puzzles to the client
browser so as to launch attacks to the clients. However, an
access policy should be defined so as to enable the software
puzzle to call some special class generation functions. Hence,
the attacker may have extra right to create new classes to make
troubles to the clients.

Luckily, this “flaw” does not really incur any new threat to
the client host. As any new class created from the attacker has
the same priority as the original one, i.e., the same as normal
class except class generation permission, it can not access any
other extra resources in the host platform. Nonetheless, this
class generation permission enables the attacker to deplete the
memory resource of the local host by creating infinite number
of classes. But this memory DoS attack to local host also
exists in the “legal” Applet which requests for a large amount
of memory. Hence, the adversary is unable to incur new threat
to the host by abusing the extra priority.

VI. EXPERIMENTAL EVALUATION

In the experiment, an Apache-Tomcat Server 7.0.30 is
started to response to client requests on Dell Precision T3600
(Intel Xeon CPU E5-1607, 3.0GHZ, RAM 8GB) installed with
Ubuntu 14.04.1 LTS 64 bit. When a client sends a request to
the server, a servlet will create the software puzzle. Microsoft
Internet Explorer, installed with Java VM 1.7.0_67, is run over
Dell T3600.

We built an experimental server (servlet) which includes
a codeblock warehouse for CPU-only instructions and AES
round operations (see Subsection III-C), a module for puz-
zle generation and a module for instruction-compliant code
encryption (see Subsection V-E). Besides, we also developed
an applet for the software puzzle package delivery (see
appendix for an example puzzle).

A. Experiment Results

SSL/TLS protocol is the most popular on-line transaction
protocol, and an SSL/TLS server performs an expensive
RSA decryption operation for each client connection request,
thus it is vulnerable to DoS attack. Our objective is to protect
SSL/TLS server with software puzzle against computational
DoS attacks, particularly GPU-inflated DoS attack. As a
complete SSL/TLS protocol include many rounds, we use
RSA decryption step to evaluate the defense effectiveness in
terms of the server’s time cost for simplicity.8

8In fact, RSA decryption time is only a portion of server response time in
SSL/TLS protocol. As a conservative estimation method, only RSA decryption
time is used in evaluating the performance of software puzzle in this Section.

WU et al.: SOFTWARE PUZZLE: COUNTERMEASURE TO RESOURCE-INFLATED DoS ATTACKS 175

Assume the time to perform one RSA decryption be t0, and
the time to generate and verify one software puzzle be ts (Note
that t0 > ts , otherwise, software puzzle is useless). Suppose
the number of attacker’s requests be na , and the number of
genuine client requests be nc, the server’s computational time
required for replying all the requests is τ1 = (na + nc) × t0 if
there is no software puzzle; otherwise, τ2 = (na + nc) × ts +
nc × t0 given that the adversary does not return valid solutions
to the puzzles. Thus, software puzzle defense is effective if

τ1 ≥ τ2, i.e., na ≥ ts
t0 − ts

nc. (1)

That is, when the number of malicious requests na is greater
than ts

t0−ts
nc, the genuine clients spend less time in waiting for

the services. Hence, a good strategy is to initiate the software
puzzle defense if the number of requests is beyond a threshold,
otherwise, no defense is required because quality of service is
satisfactory for all clients. To demonstrate the effectiveness of
software puzzle, let’s compare the cost of the participants.

1) Server Cost: If the server-client system adopts software
puzzle, the CPU time spent in the server is

• time t1 for preparing the initial puzzle C0x ;
• time t2 for converting C0x into software puzzle C1x ;
• time t3 for puzzle package generation;
• time t4 for verifying the client answer.

Thus the server time ts = t1 + t2 + t3 + t4 ≈ t1 + t2 + t3, where
the approximation holds because the puzzle verification time
t4 is very small. In our experiments, t1 = 1.7μs, t2 = 1.5μs
and t3 = 1.2μs on average, or ts ≈ t1 + t2 + t3 = 4.4μs in
total. On the other hand, it will take the server t0 = 1476μs for
performing one RSA2048 decryption with OpenSSL package
1.0.1f. Therefore ts � t0. It means that the software puzzle
is a practical defense. More precisely, according to Eq.(1),
if na ≥ tsnc

t0−ts
= 4.4nc

1476−4.4 = 0.003nc, the software puzzle
defense is effective. For example, suppose an SSL server
receives nc = 600 and na = 20, 000 requests per second, since
τ2 = (20000+600)×4.4+600×1476 = 976, 240μs < 1s, all
the genuine clients (i.e., 600 clients) can be served if software
puzzle is used, otherwise, only 1000

t0
× nc

nc+na
≈ 19 genuine

clients on average (or 3.3% of total genuine clients) can be
served per second. Fig. 5 illustrates that the software puzzle
can increase the service quality significantly in terms of the
percentage of served customers.

In the countermeasure, the server has to send the software
puzzle package (i.e., webpage including the Applet) to the
client. The package is merely 120, 000 bits on average, hence,
the server is able to serve 12 × 109/120000 = 105 users
assuming the network bandwidth is 12Gbps. Indeed, the servce
capacity can be increased if the puzzle core is constructed
from random and lightweight function. Thus, the bandwidth
DoS attack threat is small. In other words, the present scheme
can increase the defense capability against time-DoS attack,
without sacrificing the defense capability against space-DoS
attack.

In order to verify the response (x̃, ỹ), the server has to
store the corresponding (x, y) into the storage S, which is
about 128 + 16 = 144 bits, or 18 bytes. In order to remove a
long-time open request so as to prevent memory exhaustion,

Fig. 5. Service capability comparison of server with/without software puzzle
for RSA2048/RSA4096, assume that the request rate of the attacker is 20 times
of that of honest clients.

each result is kept for some time only, e.g., 1 minute. Thus,
given that there are 15,000 request per second, the storage for
the server is merely 18 × 15, 000 × 60 = 1.62 × 107 bytes, or
about 16M bytes, which is very small for a server.

2) Client Cost: In order to be served by the server, a
client has to solve the software puzzle by trial and error. For
each trial, the client has to run the software puzzle. In the
experiments, the client takes 2 seconds to try only 2,000 keys
for finding the solution y because a newly loaded class has to
run the loadClass(), getMethod() and invoke() which
are very slow in the present JVM. To enable bigger search
space, the new class is reconstructed with a batch of trial
solutions so as to amortize the re-loading time, e.g., when the
new class includes puzzle code for 36 trials, the client is able to
test 11,918 keys within 2 seconds, while the communication
cost is merely increased 30% with jar package. To increase
the space further for high security, JNI programming
(See Subsection IV-B) can be employed.

3) Attacker Cost: The attacker has two choices to solve the
software puzzle. One is to solve the puzzle as a normal client
does. Obviously, the attacker has no advantage over the normal
client in this case. In other words, the software puzzle achieves
its goal.

A second choice is that the attacker’s host simulates the
software puzzle and converts the software puzzle into the
GPU version. In this case, GPU can quickly solve the puzzle
in parallel, but the conversion process takes almost the same
time as the first choice. This gives the attacker no incentive to
perform the conversion.

B. Reverse-Engineering Result

Given an encrypted bytecode, the output of the well-known
disassembler jad 1.5.8g (http://www.varaneckas.com/jad/) is
almost orthogonal to the original bytecode (except the multi-
byte instruction such as loadCalss) although every output
instructions are valid. Thus, we can confirm that it is not easy
to dis-assemble the protected bytecodes, in particular to those
bytecodes which are created craftily. Naturally, it is even hard
to translate one Java bytecode to a GPU kernel.

176 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

VII. CONCLUSIONS AND FUTURE WORK

In this paper, software puzzle scheme is proposed
for defeating GPU-inflated DoS attack. It adopts soft-
ware protection technologies to ensure challenge data con-
fidentiality and code security for an appropriate time
period, e.g., 1-2 seconds. Hence, it has different security
requirement from the conventional cipher which demands
long-term confidentiality only, and code protection which
focuses on long-term robustness against reverse-engineering
only.

Since the software puzzle may be built upon a data puzzle,
it can be integrated with any existing server-side data puz-
zle scheme, and easily deployed as the present client puzzle
schemes do.

Although this paper focuses on GPU-inflation attack,
its idea can be extended to thwart DoS attackers which
exploit other inflation resources such as Cloud Computing.
For example, suppose the server inserts some anti-debugging
codes for detecting Cloud platform into software puz-
zle, when the puzzle is running, the software puzzle
will reject to carry on the puzzle-solving processing on
Cloud environment such that the Cloud-inflated DoS attack
fails.

In the present software puzzle, the server has to spend
time in constructing the puzzle. In other words, the present
puzzle is generated at the server side. An open problem is
how to construct the client-side software puzzle so as to
save the server time for better defense performance. Another
work is how to evaluate the effect of code de-obfuscation,
which is related to the technology advance of code
obfuscation.

APPENDIX

This appendix introduces an example software puzzle, and
its webpage design so as to have a concrete view on the
software puzzle.In order to run the software puzzle, the client
must install JVM, otherwise, the response is browser-
dependent.

A. Example Software Puzzle

Based on the puzzle generation process elaborated in Sub-
section III-D, the example software puzzle core includes two
modules (see example in Table II). One module is method
Msg_generator() for constructing message m with
CPU-only instructions.

Another module is to construct the data puzzle from algo-
rithm code blocks and CPU-only code blocks. For example,
if the AES round operations are used as algorithm code blocks,
the server can randomly add more AES round operations
(e.g., step 1a in module 2 of Table III), or even insert new
operations (e.g., step 3a in module 2 of Table III) into an
AES round.

B. Webpage

To deliver the software puzzle, the webpage is embedded
with an archive including files for init.class and C1x .class.

TABLE III

EXAMPLE PUZZLE CORE P(·)

The C1x .class comprises the encrypted Java class for the
software puzzle in Table II with code protection elaborated
in Subsection III-D.3, while the class init.class is similar
to Fig. 4. An example webpage is as follows.

1: <HTML>
2: <BODY>
3: <H1>Software puzzle</H1>
4: <APPLET CODE=‘‘ini t .class’’

ARCHIVE = ‘‘ini t .class, C1x .class’’
WIDTH = ‘‘200’’ HEIGHT=‘‘40’’>

5: Software puzzle is running · · ·
6: </APPLET>
7: </BODY>
8: </HTML>

C. Permission Grant

As the reloadable method has to access local host resource,
it violates the default policy of Java VM, thus an authoriza-
tion from the user is required. Specifically, as the example
software puzzle needs to create and load a new class, the
user shall assign class creation permission for the puzzle,
otherwise, the new class can not be executed in JVM.
To this end, the authorization file diskname:\users\
username\.java.policy (for Windows 7) should be
modified with tool policytool.exe by the user as

grant CODEBASE “www.server.com” {
permission java.lang.RuntimePermission

“createClassLoader”;
}

so as to enable the software puzzle sent from
www.server.com to create a new loadable Java class
C̃0x .class in Fig. 3.

WU et al.: SOFTWARE PUZZLE: COUNTERMEASURE TO RESOURCE-INFLATED DoS ATTACKS 177

REFERENCES

[1] J. Larimer. (Oct. 28, 2014). Pushdo SSL DDoS Attacks. [Online].
Available: http://www.iss.net/threats/pushdoSSLDDoS.html

[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mecha-
nisms: Classification and state-of-the-art,” Comput. Netw., vol. 44, no. 5,
pp. 643–666, 2004.

[3] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermea-
sure against connection depletion attacks,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 1999, pp. 151–165.

[4] T. J. McNevin, J.-M. Park, and R. Marchany, “pTCP: A client puzzle
protocol for defending against resource exhaustion denial of service
attacks,” Virginia Tech Univ., Dept. Elect. Comput. Eng., Blacksburg,
VA, USA, Tech. Rep. TR-ECE-04-10, Oct. 2004.

[5] R. Shankesi, O. Fatemieh, and C. A. Gunter, “Resource inflation threats
to denial of service countermeasures,” Dept. Comput. Sci., UIUC,
Champaign, IL, USA, Tech. Rep., Oct. 2010. [Online]. Available:
http://hdl.handle.net/2142/17372

[6] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and C. A. Gunter,
“Reconstructing Hash Reversal based Proof of Work Schemes,” in Proc.
4th USENIX Workshop Large-Scale Exploits Emergent Threats, 2011.

[7] Y. I. Jerschow and M. Mauve, “Non-parallelizable and non-interactive
client puzzles from modular square roots,” in Proc. Int. Conf. Availabil-
ity, Rel. Secur., Aug. 2011, pp. 135–142.

[8] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” Dept. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, Tech.
Rep. MIT/LCS/TR-684, Feb. 1996. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5709

[9] W.-C. Feng and E. Kaiser, “The case for public work,” in Proc. IEEE
Global Internet Symp., May 2007, pp. 43–48.

[10] D. Keppel, S. J. Eggers, and R. R. Henry, “A case for runtime code
generation,” Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA,
USA, Tech. Rep. CSE-91-11-04, 1991.

[11] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating DoS with trans-
parent proof-of-work,” in Proc. ACM CoNEXT Conf., 2007, p. 74.

[12] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C Programming Guide,
Version 4.2. [Online]. Available: http://developer.download.nvidia.com/

[13] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks
using congestion puzzles,” in Proc. 11th ACM Conf. Comput. Commun.
Secur., 2004, pp. 257–267.

[14] M. Jakobsson and A. Juels, “Proofs of work and bread pudding proto-
cols,” in Proc. IFIP TC6/TC11 Joint Working Conf. Secure Inf. Netw.,
Commun. Multimedia Secur., 1999, pp. 258–272.

[15] D. Kahn, The Codebreakers: The Story of Secret Writing, 2nd ed.
New York, NY, USA: Scribners, 1996, p. 235.

[16] K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration of AES encryp-
tion on CUDA GPU,” Int. J. Netw. Comput., vol. 2, no. 1, pp. 131–145,
2012.

[17] B. Barak et al., “On the (Im)possibility of obfuscating programs,” in
Advances in Cryptology (Lecture Notes in Computer Science), vol. 2139.
Berlin, Germany: Springer-Verlag, 2001, pp. 1–18.

[18] H.-Y. Tsai, Y.-L. Huang, and D. Wagner, “A graph approach to
quantitative analysis of control-flow obfuscating transformations,”
IEEE Trans. Inf. Forensics Security, vol. 4, no. 2, pp. 257–267,
Jun. 2009.

[19] S. Wang. (Sep. 18, 2011). How to Create an Applet & C++.
[Online]. Available: http://www.ehow.com/how_12074039_create-
Applet-c.html#ixzz24Lsk0OJQ

[20] J. Bailey. (Oct. 28, 2014). How to Install Java on an iPhone,
eHow Contributor. [Online]. Available: http://www.ehow.com/
how_5659673_install-java-iphone.html#ixzz24jIAyKiM

[21] J. Ansel et al., “Language-independent sandboxing of just-in-time
compilation and self-modifying code,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement., 2011, pp. 355–366.

[22] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms for
Systems and Processes. San Mateo, CA, USA: Morgan Kaufmann, 2005,
p. 19.

[23] T. Lindholm and F. Yellin, The Java Virtual Machine Speci-
fication, 2nd ed. Reading, MA, USA: Addison-Wesley, 1999,
ch. 9. [Online]. Available: http://docs.oracle.com/javase/specs/
jvms/se5.0/html/VMSpecTOC.doc.html

[24] J. Black and P. Rogaway, “Ciphers with arbitrary finite
domains,” in Topics in Cryptology (Lecture Notes in Computer
Science), vol. 2271. Berlin, Germany: Springer-Verlag, 2002,
pp. 114–130.

Yongdong Wu received the B.A. and M.S. degrees
from Beihang University, Beijing, China, the
Ph.D. degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing, and the mas-
ter’s degree in management of technology from the
National University of Singapore, Singapore. He is
currently a Senior Scientist with the Department of
Infocomm Security, Institute of Infocomm Research,
Agency for Science, Technology and Research,
Singapore. He is also an Adjunct Associate Professor
with Singapore Management University, Singapore.

His research interests include multimedia security, e-Business, digital right
management, and network security. He has authored over 100 papers, and
holds seven patents. His research results and proposals were incorporated in
the ISO/IEC JPEG 2000 security standard 15444-8 in 2007. He was a recipient
of the Best Paper Award at the 13th Joint IFIP TC6 and TC11 Conference
on Communications and Multimedia Security (2012).

Zhigang Zhao received the B.A. degree from the
University of Science and Technology Beijing,
Beijing, China, and the M.S. degree from the
Institute of Software, Chinese Academy of Sciences,
Beijing. He is currently a Senior Research Engineer
with the Department of Infocomm Security, Institute
of Infocomm Research, Agency for Science,
Technology and Research, Singapore. His research
interests include digital right management, software
protection, network security, and multimedia
security.

Feng Bao received the B.S. degree in mathe-
matics and the M.S. degree in computer science
from Peking University, Beijing, China, and the
Ph.D. degree in computer science from Gunma Uni-
versity, Maebashi, Japan. He was a Researcher with
the Chinese Academy of Sciences, Beijing, and a
Visiting Scientist with the University of Hamburg,
Hamburg, Germany. From 1996 to 2012, he was
with the Institute of Infocomm Research, Agency
for Science, Technology and Research, Singapore,
and was the Principal Scientist and Head of the

Department of Cryptography and Security. He is currently the Director of
the Security Laboratory with Huawei International Pte. Ltd., Singapore. His
research interests are mainly in cryptography and information security. He
has authored over 200 papers in international conferences and journals, which
have over 5000 citations. He holds 16 patents and has been involved in the
management of dozens of industry projects and international collaborations.
He is a member of the Asiacrypt Steering Committee and an Editorial Member
of two international journals. He has chaired over 20 international conferences
in security.

Robert H. Deng received the B.Eng. degree from
the National University of Defense Technology,
Changsha, China, in 1981, and the M.Sc. and
Ph.D. degrees from the Illinois Institute of Technol-
ogy, Chicago, IL, USA, in 1983 and 1985, respec-
tively. He has been a Professor with the School
of Information Systems, Singapore Management
University, Singapore, since 2004. He was the
Principal Scientist and Manager of the Department
of Infocomm Security at the Institute of Infocomm
Research, Agency for Science, Technology and

Research, Singapore. His research interests include data security and privacy,
multimedia security, and network and system security. He is the Cochair of the
Steering Committee of the ACM Symposium on Information, Computer and
Communications Security. He was a recipient of the University Outstanding
Researcher Award from the National University of Singapore, Singapore, in
1999, and the Lee Kuan Yew Fellow Award for Research Excellence from
the Singapore Management University in 2006. He was named as Community
Service Star and Showcased Senior Information Security Professional by
(ISC)2 under its Asia-Pacific Information Security Leadership Achievements
Program in 2010. He received the Distinguished Paper Award of the 19th
Annual Network and Distributed System Security Symposium (NDSS 2012)
and the Best Paper Award of CMS 2012.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2015

	Software puzzle: A countermeasure to resource-inflated denial-of-service attacks
	Yongdong Wu
	Zhigang Zhao
	Bao Feng
	Huijie Robert DENG
	Citation

	Software Puzzle: A Countermeasure to Resource-Inflated Denial-of-Service Attacks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

