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Abstract. The widespread use of social networks enables the rapid diffusion
of information, e.g., news, among users in very large communities. It is a sub-
stantial challenge to be able to observe and understand such diffusion processes,
which may be modeled as networks that are both large and dynamic. A key tool
in this regard is data summarization. However, few existing studies aim to sum-
marize graphs/networks for dynamics. Dynamic networks raise new challenges
not found in static settings, including time sensitivity and the needs for online
interestingness evaluation and summary traceability, which render existing tech-
niques inapplicable. We study the topic of dynamic network summarization: how
to summarize dynamic networks with millions of nodes by only capturing the few
most interesting nodes or edges over time, and we address the problem by find-
ing interestingness-driven diffusion processes. Based on the concepts of diffusion
radius and scope, we define interestingness measures for dynamic networks, and
we propose OSNet, an online summarization framework for dynamic networks.
We report on extensive experiments with both synthetic and real-life data. The
study offers insight into the effectiveness and design properties of OSNet.

1 Introduction

The summarization of networks or graphs continues to be an important research prob-
lem due in part to the ever-increasing sizes of real-world networks. While most studies
consider the summarization of static networks according to criteria such as compression
ratio, network representation, minimum loss, and visualization friendliness [15,20], re-
cent developments in social network mining and analysis as well as in location-based
services [6, 13] and bioinformatics [20] give prominence to the study of a new kind of
dynamic network [9,10] that captures information diffusion processes in an underlying
network. These developments offer new challenges to network summarization.

An information diffusion process in a network can be represented by a stream of
timestamped pairs of nodes from the underlying network, where a timestamped pair
indicates that information was sent from one node to the other at the given time. This
stream can be modeled as a dynamic network. An example of an information diffusion
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process is the spread of news items among Twitter users by means of the network’s
“reply/(re)tweet” functionality.

While the network that may be created from a completed diffusion process by as-
sembling the node pairs that represent the process is a static network, the summarization
task for a diffusion process distinguishes itself from that of a static network. The criti-
cal difference lies in that, for a dynamic diffusion process, it is most valuable to capture
each “interesting” development as the process evolves, in an online fashion. This prob-
lem is termed dynamic network summarization (DNS) and has many applications. We
highlight several as follows.

In information visualization, massive dynamic networks are hard to visualize due
to their size and evolution [14]. With DNS, it is possible to create online, time-labeled
summaries in the form of “trajectories” such that it is possible to view the change in a
diffusion process as it evolves. In social graph studies, DNS enables the identification
of interesting dynamics in the form of “backbones” that describe how information prop-
agates and that can help capture the evolving roles of different participants in diffusion
processes. This is useful for tasks such as change detection [18] and trend mining [4]. In
road traffic analysis, DNS can capture major traffic flows. Summaries for given periods
can be projected onto the road network to detect traffic thoroughfares, provide better
road planning services, or analyze how people move in a city [11].

One approach is to compute a summary from the evolving diffusion process period-
ically. Thus, the process is represented by a sequence of summaries of static networks.
Each network aggregates edges and nodes in a time interval of size 4t [14]. However,
this approach is costly when networks are large. Further, parameter 4t is fundamen-
tally hard to set: if it is too small, performance deteriorates, while if it is too large,
important diffusion dynamics may be missed. Even if given a4t, most of the previous
methods show difficulty in producing results that capture interesting dynamics, because
their specific criteria and goals do not target dynamics.

As suggested by the application examples, DNS faces unique challenges.

(1) Time Sensitivity. Diffusion processes often represent vast, viral, and unpredictable
processes, e.g., breaking news and bursty events [21]. As a result, the rate of diffusion
can vary drastically over a short period of time. It is a difficult challenge to respond
adaptively to the changing dynamics and to achieve timely summarizations.

(2) Online Interestingness Evaluation. A key challenge is to capture the most interest-
ing nodes and edges in summarizations. Compared with traditional network summariza-
tion, interestingness evaluation in DNS assumes an extra degree of difficulty because of
the partial view of the network at any time of the evaluation.

(3) Summary Traceability. An important goal is to enable a better understanding of
the evolution of the diffusion process throughout its life cycle. A good summary should
reveal the flow of the dynamics so that interesting developments can be traced.

To tackle the DNS problem, we propose OSNet, a framework for Online Sum-
marization of Dynamic Networks that aims to produce concise, interestingness-driven
summaries that capture the evolution of diffusion processes. Our contribution is five-
fold: 1) Unlike previous proposals that apply optimization criteria in offline settings, we
consider a setting where network summarization occurs online, as a diffusion process
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evolves. 2) Based on the concepts of propagation radius proRadius and propagation
scope proScope, we formalize the problem of characterizing the interesting dynam-
ics of an evolving diffusion process in a traceable manner. 3) We propose OSNet that
encompasses online and incremental dynamic network summarization algorithms on a
spreading tree model. In terms of entropy, OSNet archives the best summaries with
respect to informativeness. 4) A generalization of OSNet is presented. 5) Extensive
experiments are conducted with both synthetic and real-life datasets.

2 Problem Definition

The input to the problem is a stream of time ordered interactions (i.e., diffusion pro-
cesses) on a network G. We define a network as a labeled graph G = (V,E, lG), where
V is a set of nodes, E ⊂ V × V is a set of undirected edges, and lG is a labeling
function. Given a set Σ = {ς1, ς2, . . . , ςk} of labels, labeling function lG : V (G) 7→ Σ
maps nodes to labels.

A diffusion process on a network G, denoted by D(G), is a stream of time-ordered
interactions. An interaction x = (δ, u, v, t) ∈ D(G) indicates that a specific story is
diffused from node u to node v at time t ∈ T . A story is defined by a textual keyword
list used to describe an event, such as breaking news in Twitter. The diffusion from u
to v captures that node v receives the story from u. We also say that u is an infector
of v while v is an infectee of u. We call time t the infection time of node v. Note
that a diffusion process of a story can be initiated by different nodes that are regarded
as seeds or roots. For each interaction x, we further define δ to be a three-tuple as a
canonical identifier, i.e., δ = (storyID , vr, t

′), where storyID is the identity of the
diffusing story, vr represents the seed node starting the diffusion, and t′ is the infection
time of the infector u. The diffusion process from a seed over a time period forms a
time-stamped graph, known as a network cascade C [9,18] where each interaction is a
directed edge from the infector to the infectee.

Definition 1. [Cascade C] A cascade C is a directed graph C = (VC , EC , lVC
, lEC

),
representing a diffusion process D(G) = {x = (δ, ui, vi, ti)} diffusing from a seed on
a story during a time period T . The node set is VC = ∪ui + ∪vi, and the edge set is
EC = ∪ui,vi∈x(ui, vi). A node pair (ui, vi) for each x is considered as a directed edge
from ui to vi. lVC

: VC 7→ Σ is node labeling function, and lEC
: EC 7→ T is an edge

labeling function.

A network G with diffusion processes is termed a diffusion network or a dynamic
network, which, for simplicity, we also denote by G. Given a diffusion network G, a
set I(G) ∈ V (G) is given that contains the seed nodes from which a diffusion starts.
The infection time of a seed vr is given as tvr . We use deg+(u) to denote the number
of infectees of a node u in a cascade C.

Before we present the definition of interestingness, two measures are introduced to
evaluate nodes in a dynamical process by i) how far the information can travel (Mea-
sure 1: depth) and ii) how many infectees a node can have (Measure 2: breadth). These
two measures can be used for capturing the interestingness of a diffusion process for
three reasons : 1) The two measures agree with intuition. 2) The two measures capture
the cascade, enabling reconstruction with little more information. 3) The two measures
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offer a foundation for computing different properties of a cascade. In addition, we ob-
serve that other studies also suggest that the two measures can characterize diffusion
processes [2, 22].

Measure 1 [Propagation Radius (proRadius)] The propagation radius of a node v
in a cascade C, denoted by y(v), is the length of the path l(v) from the root of C
to v, |l(v)|. The maximum propagation radius of a node in C is the diameter of C:
d(C) = max(y(v)). Note that the propagation radius of the root is 0.

Measure 2 [Propagation Scope (proScope)] The proScope, w(v) = deg+(v), of a
node v for a cascade C is the number of infectees of v in C.

Definition 2. [Interestingness] We represent a node v by a vector (y(v), w(v)) and use
Equation 1 to quantify the total interestingness of the node. As the degree distribution
of many networks follows a power-law, we use a log value of the proScope:

ξ(v) = α logw(v) + (1− α)y(v), (1)

where α ∈ [0, 1] balances the two measures. We set logw(v) = 0 if w(v) = 0. Note
that cascades evolve over time as interactions arrive in the stream. We thus use ξt(v) to
denote the interestingness of a node v at time t, which is calculated using the values of
proScope and proRadius of v at t.

Definition 3. [Interesting Summary S(C)] Given a cascade C and a threshold τ , an
interesting summary S(C) is a subgraph of C satisfying that for any node vi ∈ S(C),
ξt(vi) > τ holds; for two nodes u and v in V (S(C)), the edge e′ = (u, v) exists in
S(C) if and only if e = (u, v) exists in C. Labels of the edges and nodes in S(C) retain
the labels they have in C.

Definition 4. [Traceable Interesting Summary S(C)] Given an interesting summary
S(C) ⊂ C, a traceable interesting summary S(C) is a super-graph of S(C), denoted
S(C) ⊂ S(C). A node vi in C is in S(C) if: vi is the seed, or ξt(vi) > τ ∨ (∃vj ∈
C, (vi ∈ l(vj) ∧ ξt(vj) > τ)).

As some nodes are removed from an interesting summary (Definition 3), remaining
interesting nodes may become disconnected. Definition 4 includes the missed nodes on
the paths from the seed to the remaining interesting nodes. A traceable interesting sum-
mary thus is possible to reveal the flow of dynamics and interesting developments can
be traced throughout their life cycle. To explain the evolution in a traceable interesting
summary, we next introduce the concepts diffusion rise and diffusion decay, defined
by the notion of acceleration intensity. In the rest of the paper, we use a summary (sum-
maries) to indicate a traceable interestingness summary (summaries) for simplicity.

Definition 5. [Acceleration Intensity %] Given a node vi as an infector of a node vj
in a cascade C, the acceleration intensity is defined based on the diffusion path from vi
to vj (l(vi, vj)) in C as

%(l(vi, vj)) =
ξtj (vj)− ξti(vi)
|tj − ti|

, (2)

where ti and tj are the infection times of vi and vj , respectively.
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We can now define the rise and decay of a diffusion process: When % > 0, the propaga-
tion process from vi to vj is a diffusion rise process; otherwise, it is a diffusion decay
process.

The goal of the DNS problem is to better understand network dynamics. A summary
thus needs to be informative with respect to the original data. There are several methods
to evaluate informativeness. Among these, we propose to use Entropy. A review of
Shannon Entropy and details are presented in Section 3.2. Here we denote the entropy
of a traceable interesting summary S(C) by H(S(C)). Recall that the entropy gains
when its value decreases. We thus aim to find a summary with minimal entropy to
achieve the best informativeness. The problem is stated as follows:

Problem Statement (Interestingness-driven Diffusion Process Compression).
Given a diffusion network G with seed sets ∪I(G), stories diffuse from each seed over
time. The dynamic process is represented by a stream of interactions, which forms a
set of cascades {. . . , Ci, . . .}. The output of the problem is a set of traceable interest-
ing summaries S(G) = {. . . , Si(Ci), . . . } (|Si(Ci)| > 0). The entropy (H(S(C))) of
each summary Si(Ci), which reveals diffusion rise and decay, is minimized subject to
the balancing parameter 0 ≤ α ≤ 1 of the aggregate score and the interestingness
threshold τ ≥ 0.

To solve the problem, two sub-problems have to be solved: i) How to model the
dynamics on the top of graphs? Is the cascade model suitable? The diffusion processes
we discuss are evolving over time. And all the cascades on a node are merged. This may
cause problems for the summarization because the interestingness of a node is associ-
ated with time stamps and stories as node instances. This requires to design a labeling
function to distinguish the node instances, which is ineffective. ii) How to set proper
values for α and τ for different diffusion processes? Given an α in the range [0, 1],
each connected subgraph of a cascade C over time can be a summary, which yields a
hard graph decomposition problem. On the other hand, the scale of a summary mostly
depends on the threshold τ . A proper value is necessary because we intend to find all in-
teresting developments. We proceed to develop the OSNet framework that encompasses
new and incremental techniques capable of continuously summarizing dynamics based
on a spreading tree model in step with the evolution of diffusion processes.

3 Our Method
3.1 Spreading Tree Model

Although network cascades can model diffusion processes. several issues of dynamics
challenge the effectiveness of network cascades. First, the interactions on a node are
merged in cascades [9]. However, in dynamic networks, a node may become interesting
only at a specific interaction, which would require extra efforts in designing labels to
distinguish different interactions and cascades. Furthermore, as cascades are directed
graphs, there exist backward and forward edges or even cycles. This makes a cascade
hard to interpret and navigate. Second, the cascade model is a graph model. Summary
search can then be regarded as subgraph search. However, graph search is usually time-
consuming since it involves isomorphism checking. Third, since cascades are merged
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into one directed graph, the graph search space grows exponentially, which makes the
problem even harder. We propose to instead use a Spreading Tree model. First, spread-
ing trees are constructed directly by interactions without any other efforts. The model
distinguishes interactions and cascades by itself. Next, tree search is relatively efficient.
Numerous proposals of efficient tree operations exist. Third, there are no backward and
forward edges in spreading trees. The tree structure is not as complex as a cascade. The
search space is proportional to the scale of the interactions.

Definition 6. [Spreading Tree T ] A spreading tree T = (vr, V
′, E′, lV ′ , lE′), is a

rooted and labeled n-ary tree, where vr ∈ V ′ is the root, V ′ is a set of nodes, E′ ⊆
V ′ × V ′ is a set of edges, lV ′ : V ′ 7→ Σ is node labeling function, and lE′ : E′ 7→ T is
an edge labeling function.

Intuitively, a node represents a specific user in a network, and the node’s label is the
name of the user; an edge in a spreading tree connects an infector node with an infectee
node, and the edge’s label is the infection time of the infectee node. A non-root node
has one infector. A non-leaf node has one or more infectees, and a leaf node has no
infectees.

Given a diffusion network G, each seed vr ∈ V (G) forms the root of a spreading
tree. When an interaction x = (δ, u, v, t) ∈ D(G) arrives, the spreading tree for δ is
updated by inserting a new node labeled v and an edge labeled t from an existing node
labeled u to v. Note that both u and v are labels of the nodes. To find the existing node
u, we search the tree in breadth-first order starting from the root until a node with label
u and infection time δ.t′ is found. Therefore, although multiple nodes have the same
label, the three-tuple δ can determine from which node to insert the edge to the new
infectee.

From the above, the spreading tree model achieves the following properties: 1) cas-
cades can be equally modeled as spreading trees, such that the summarization on cas-
cades equals the task on spreading trees; 2) the trees are separated by seeds; 3) a node
can be duplicated in a spreading tree, which shows the model distinguishes node in-
stances; 4) the size of trees is proportional to the scale of interactions; 5) infection
occurs top-down, and diffusion always occurs from a parent node to a child node.

3.2 Parameter Relief

Although using fixed values for parameters is simple for implementation, two main is-
sues demand better approaches. First, for a single diffusion process, prediction of the
network statistics (arrival rate, number of infectees, propagating range, etc.) is usually
difficult. Thus, it is hard to find parameter settings that can best capture the dynam-
ics. Second, different diffusion processes vary substantially in range and scope. Thus,
the same settings are not likely to work across different processes. Our study aims to
provide a self-tuning mechanism that adapts to differences in the summarization.

Alpha Estimation Recall that the entropy H of a random variable E with possible
values {e1, . . . , en} is defined as

H(E) = −
n∑

i

p(ei)log2p(ei), (3)
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where p(ei) is the probability mass function of outcome ei. H(E) is close to 0 if the
distribution is highly skewed and informative.

We measure the entropy of a summary S(C) and aim to maximize the informa-
tiveness of S(C) to have the maximum possible information out of T . Given a set of
continuous interactions D(G) by time t (denoted by D(G)t), the probability of diffus-
ing story i from a node vj is regarded as a conditional probability:

p(i,t)(vj) = p(i,t)(vi)×
∑D(G)t f(i,t)(vj , x)

|D(G)t|
,

where p(i,t)(vi) is the probability of the node that infects vj . Note that for a seed node,
the probability of its infector is 1 in order to guarantee that a root is infected. The
function f(i,t)(vj , x) is an indicator that is 1 if vj is an infectee in x when storyID = i
by time t, otherwise 0. Then we use the entropy Hp(i,t)(S(C)) as an informativeness
measure of a summary S(C) with respect to T :

Hp(i,t)(S(C)) = −
|S(C)|∑

j=1

p(i,t)(vj) log p(i,t)(vj). (4)

Thus, S(C) is the most informative by time t with respect to T if the value of its
entropy Hp(i,t) is minimized. Before we present the details of the estimation, Lemma 1
is introduced as a property of a summary’s entropy.

Lemma 1. If two summaries S(T ) and S ′(T ) satisfy d(S(T )) > d(S ′(T )), V ′(S ′(T )\
S(T )) = ∅, and |l(v)| > d(S ′(T )) where v ∈ S(T )\S ′(T ), then we haveHp(i,t)(S(T ))
≤ Hp(i,t)(S ′(T )) holds.
The proof is omitted due to the space limitation. It shows that the entropy is smaller for
those summaries with greater depth. By Equation 1, to achieve the smallest entropy, we
need to minimize α because a smaller α yields a higher weight for depth such that deep
summaries are preferred. In the remainder of the section, we present the bounds onα
followed by our estimation based on entropy.

Lemma 2. The depth of a summary S(T ) is bounded by the parameter α as d(T ) ≥
τ/(1− α).
Proof. By Measure 1, we have max(y(v)) = d(T ), v ∈ S(T ). Given such a node v,
we have (1− α)d(T ) ≥ τ when we set w(v) = 0.

Theorem 1. Let n as the maximal number of nodes in a summary S(T ) with a threshold
τ . The parameter α is bounded as

τ/ d(T )

√
n

d(T ) + 1
≤ α ≤ 1− τ/d(T ). (5)

Proof. Lemma 2 confirms the right part of Equation 5. The left part is achieved as
follows. Similar to Lemma 2, the maximum fanout of S(T ) is τ/α as a positive integer
and larger than 1. Then we obtain ( τα )

d(T ) + . . . + τ
α + 1 =

∑d(T )+1
i ( τα )

i ≤ n.

Since
∑d(T )+1
i ( τα )

i ≤ (d(T ) + 1)( τα )
d(T ), the given S(T ) has at most n nodes, i.e.,

( τα )
d(T ) + . . .+ τ

α +1 ≤ n, if (d(T )+ 1)( τα )
d(T ) ≤ n. By transforming the inequality,

the left part follows.
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Several studies [9, 22] have shown that most diffusion processes are within 3 hops
in social networks. Without loss of generality, we assume that the lower bound of the
depth of S(T ) is 3. The bound yields the maximum lower-bounded α. As we know, the
minimum α turns out to produce the most informative summaries. Thus, by Equation 5
we have the estimation for α as:

α = τ
3

√
4

n
, (6)

to obtain the minimum entropy. The estimation is therefore able to facilitate summa-
rization regardless of varying dynamics.

Threshold Selection The goal is to find the most interesting developments of dynamics
over time as summaries. This naturally requires OSNet to only focus on the small set
of the interesting nodes and edges in a spreading tree T . Our goal is to find a proper
threshold that can make the summarization converge fast and produce a small sized
summary over time. However, the changes and differences of dynamics challenge the
setting of such a threshold. Therefore, a selection mechanism adapting to the trends of
dynamics (i.e., rise and fall) is necessary.

The idea of the proposed solution is to maintain a variable τ ′ for each spreading
tree T , which is the maximum value (MAX) of ξt′(vi), vi ∈ T by time t′. During the
summarization, we compare a new interestingness score ξt(vj) with τ ′: if ξt(vj) > τ ′,
then τ ′ = ξt(vj), and vj is inserted into the corresponding S(T ). If we have a value
of τ ′ that is large enough, OSNet converges to a relatively steady state until there is a
more interesting node, e.g., far away from the seed and with many infectees, to exhibit
another rise of the diffusion. Thus, in a summary S(T ) based on MAX, the interesting
nodes (by the first condition in Definition 3) in deeper levels always show diffusion
rises from those in lower levels. From an interesting node to a node recovered for the
next interesting node, the flow is always a diffusion decay.

Other methods than MAX would be possible, e.g., average value (AVG) of ξt′(vi)
as

∑
vi∈V ξt′(vi)/|V |. We compare these alternatives experimentally in Section 4.

3.3 Algorithmic Framework and Details
Framework Overview An overview of OSNet is shown in Figure 1. The input is a
diffusion process D(G) that is captured by a set of indexed spreading trees. There are
indexes on storyID and seeds, such that we can insert an interaction into a spreading
tree Ti efficiently. By Equation 1, the interestingness-based operator is to evaluate the
interestingness of nodes in spreading trees with two parameters, α and τ . We evaluate
the interestingness of a node v when it infects new nodes (i.e., w(v) increases). If v
has ξt(v) > τ , it is inserted into a summary S(Ti). The summaries are also indexed in
the same way as T . We thus insert v into S(Ti) by searching storyID and seed. Once
a node v is inserted into tree T , it is tagged with its branch such that a node cannot be
reinserted into the summary S(Ti). We only insert new nodes and edges into a tree over
time, and it is not necessary to rebuild any part of T or S(T ).

When a node v of Ti is to be inserted into S(Ti) at time t, there may be three cases:
1) S(Ti) does not exist and vi is not a seed (v 6∈ I(G)); 2) S(Ti) exists and the infector
of v in Ti is already in S(Ti); 3) S(Ti) exists and the infector of v in Ti is not in S(Ti).
Cases 1) and 2) are straightforward. We can create a new tree for case 1); and for case 2),



Interestingness-Driven Diffusion Process Summarization in Dynamic Networks 9

A

B B C

A D

t1 t2
t3

t4 t5

E

B F

A D

t1 t6

t7 t7

. . .

T1

Tn

Indexed spreading trees

Interestingness-based

∑
(α, τ)

A
B

A D

t2
t4 t5

E

B F

D

t1 t6
t7

. . .

S(T1)

S(Tn)

Indexed summaries

storyID u v time

1 Jaycee Vineapp t0
1 Carola Vineapp t1
1 Vineapp Jaycee t2
2 Suhas Windows t3
1 WindowsJaycee t2

Continous X as dynamics

operator

Fig. 1. Overview of the OSNet framework.

we insert v as a child of its infector in S(T ). In case 3), the insertion of v renders S(Ti)
disconnected, and the process thus cannot be traced from the seed to v. A solution is to
recover all the nodes in the path from the root to vi. We call this problem the Recovery
Problem.

Path Recovery An efficient way in a tree-based data model to solve the Recovery
Problem is to construct S(T ) as a search tree. The basic idea is that all the siblings at
each level of S(T ) are ordered. The canonical ordering is based on timestamps of tree
branches (edges) and node labels. If a node vj gets infected from vi at time ti, vj is
inserted in the approach: the timestamps of edge labels of all the siblings on the left
are no later than ti, and the node labels on the left are not lexicographic larger than vj .
Lemma 3 presents the worst case search cost of the search tree.
Lemma 3. Let a tree T have n nodes and fanout d. The worst case search cost when
d(T ) is minimum is:

O(log
(n(d−1)+1)
d (log

(n(d−1)+1)
d −1) log2 d).

The proof is omitted due to the space limitation.

Algorithm Details There exist two essential components of OSNet depicted by Algo-
rithm 1: 1) Constructing spreading trees (from lines 3 to 5); 2) Summarizing the most
interesting dynamics into S(T ) (from lines 8 to 10). Specifically, the following ex-
plains details. We allow users to terminate the summarization process through variable
breakFlag in line 2. According to applications, one can also bound the size of S(T ) to
abort the algorithm. Note that we have no limitation on the size n. Once a new inter-
action x(δ, vi, vj , t) arrives (line 3), we call mapT in line 4 to retrieve the T of story
δ. Next, branchOut in line 5 is an insertion, which inserts an infectee vj from vi with
an edge labeled by t into T . We implement each S(T ) as a search tree. From line 6,
we summarize the updated node according to Equation 1. If the node’s interestingness
exceeds the threshold, it shows a diffusion rise, and the node is inserted into S(T ).
Parameters are automatically adjusted in line 7 based on discussion in Section 3.2.

Before inserting a node into S(T ), we retrieve the path from the root in line 8 by
iteratively pushing an infector (function Push) into list path. We then insert the missed
nodes and edges into S(T ) in line 10. These nodes show diffusion decays from the last
interesting node, but rises to the next. Summaries are returned if necessary in line 11.

4 Evaluation
4.1 Experimental Methodology and Settings
The study probes into three questions: 1) Sense-making Evaluation: Compared with
the state-of-the-art, do summaries generated by OSNet make sense and achieve the goal
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Algorithm 1 Algorithmic description of the OSNet
Input : Network G, seed set I(G).
Output: A set of summarized spreading trees, S(G).

1 begin
2 Threshold τ ← 0; weight parameter α← 0;

Boolean beakFlag← false;
List path← null;
Spreading tree set Set(T ) rooted by seeds in I(G);
if beakFlag == false then

3 if x(δ, vi, vj , t)← D(G)[tij ] exists then
4 T ← mapT(Set(T ), δ)

/* add x onto T. */
5 vi ← Search(T, vi) branchOut(vi, vj , t)
6 if ξ(vi) > τ then
7 τ ← ξ(vi), α← τ 3

√
4
n
/* retrieve path from T. */

8 while vi.getInfector(T ) 6∈ I(G) do
9 path.Push(vi.getinfector(T ))

10 S(T )← getST(Set(T ), T ) insertPath(S(T ), path)

11 return Set(T )

of capturing interesting dynamics? 2) Parameter Study: Can we use fixed parameters?
What are the effects of the parameters? Does OSNet converge fast, using MAX or
AVG? 3) Real-life Data: How does OSNet work on real-life data?

The experiments on synthetic data are used to test whether our methods produce
expected results in a controlled environment. We first generate an underlying structure
G0 containing 10,000 nodes. With a random seed set I(G0), we then start the prop-
agation for each seed in a breadth-first manner. The number of infectees of a node v
obeys the following models to simulate different dynamics: I) Gaussian distribution
(G); II) Poisson distribution (P); III) Zipf distribution (Z), which is an approximate
power law probability distribution. We define the modeled number of nodes to be the
number of nodes we choose for a dataset, and we require that their numbers of infectees
obey one of the three distributions. To simulate continuous dynamics, we generate the
interactions as a data stream with an arrival rate of 1 per millisecond.

Experiments were conducted on a 3.2 GHz Intel Core i5 with 16GB 1600 MHZ
DDR3 main memory and running OSX 10.8.5. Algorithms were implemented in JDK
1.6.

4.2 Sense-Making Evaluation
We compare OSNet with several existing algorithms using synthetic data. To enable
existing methods to support diffusion processes, we generate a graph sequence for each
dataset, in which each graph aggregates all edges and nodes in a time interval ∆t. Due
to the space limitation, we only report results for several time intervals. Similar findings
apply to other intervals. We compare our techniques against the following state-of-the-
art algorithms:
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– DisSim-Alg: This is a graph compression algorithm that abstracts a large graph into
a smaller graph that contains approximately the same information. It is developed
based on the notion of dissimilarity between the decompression graph and the orig-
inal graph. We use an existing implementation [20] and set the weight of an edge
to 1 if the adjacent nodes diffuse infection by time t: otherwise, edge weights are
set to 0.

– MDL-Alg: MDL is a successful and popular technique for graph compression. We
compare against a recent study by Navlakha et al. [15] where a graph is compressed
and represented as a graph summary and a set of corrections. We use the original
GREEDY algorithm that offers the best compression and lowest cost [15]. To en-
able cliques to be merged into a single supernode, we add self-edges to each node
before applying the algorithm.

(OSNet): Figures 2 to 4 show an example from t1 to t3 using data generated by
applying Zipf distribution. The infector as the central node of each group is labeled
with a canonical identifier for ease of explanation. The node with identifier 0 is the
seed of the propagation. In the figures, the red and darker nodes are the nodes that are
already infected; the grey and lighter nodes are other nodes in the synthetic networks.
To facilitate visualization, we remove the background nodes and edges in the underly-
ing networks that are not involved in the diffusion process. Figures 5 to 7 present the
summaries by OSNet from t1 to t3. The results show the incrementality of the sum-
maries. The intuitively interesting nodes are captured, and the summaries are traceable
and connected paths, such that we can spot the dynamics from the start to the nodes i)
that infect nodes in great quantity; and ii) that are far from the seed. We observe that the
summaries in Figures 5 and 6 are the same. Although in the original diffusion process
from t1 to t2, the diffusion reached nodes 86 and 87 at t2, the number of infectees is
quite few. Compared with the other nodes in S(T ), 86 and 87 are thus not interesting
enough to be summarized. This shows that from t1 to t2 the diffusion process is not ris-
ing according to Definition 5, and OSNet adapts to the changes in diffusion. In contrast
at time t3, both 108 and 109 have many infectees and they are far away from the seed
0. They again expedite the diffusion process such that we capture the two as interesting
nodes. If we only summarize the two without including nodes 86 and 87, we loose the
connections that allow us to interpret how information propagates. Thus, 86 and 87 are
recovered and included. The findings show that OSNet is capable of finding a small set
of connected interesting nodes that meaningfully capture the diffusion process.

(DisSim-Alg): We vary ∆t to generate graph sequences and try various values for
the internal compression ratio parameter. We report three of representatives at t1 in Fig-
ure 8. The findings show that the summaries vary a lot w.r.t. compression ratio. Compar-
ing (a) and (c) where (c) is with a higher compression ratio, the graph size of (c) is much
smaller but it is with less information of the propagation because DisSim-Alg aims to
minimize the dissimilarity according to edge weights. To maintain a smaller dissimi-
larity, some edges or superedges are removed (e.g., (c)). Figure 8(b) shows a summary
caused by using a smaller ∆t that is larger than that of (a). This occurs because when
the compression ratio is achieved, although new edges and nodes arrive, the algorithm
only considers the dissimilarity and does not attempt further compression. As a result,
the algorithm does not adapt to dynamics and capture traceable flows well.
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Fig. 7. S(T ) at t3 with
recovery of 86 and 87.

(MDL-Alg): Figure 9 shows summaries obtained by MDL-Alg on the same diffu-
sion process. MDL-Alg does not require the users to supply parameters. It computes the
best cliques to merge in order to maintain a low cost. The findings show that MDL-Alg
generates separate cliques, which makes little sense for diffusion process.
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Fig. 8. Summaries by DisSim-Alg at t1.

(a) Summary at t1 (b) Summary at t4

Fig. 9. Summaries by MDL-Alg.

4.3 Parameter Study and Understanding

(Weight α on proScope): We increase α from 0 to 1 in steps of 0.1. For synthetic
data, the depth of the spreading trees is 100, and the modeled number of nodes is 1000.
For Gaussian (G) datasets, we set the mean to 100 and the standard deviation to 20.
The expect value for Poisson distribution (P) is 50. The maximum deg+(v) of the Zipf
distribution(Z) is 200. Consequently, we have three datasets with 89, 037 (G), 45, 306
(P), and 36, 892 (Z) interactions, respectively. All the interactions are simulated as data
streams with an arrival rate of 1 per millisecond. We set τ to 100, which means that the
score of a node with expect out-degree deg+(v) is 100; and we set α = 1. Figure 10
shows the I/O efficiency with respect to α. We count the I/O cost as the size of sum-
maries, namely the number of interactions in S(T ). The I/O cost for the dataset P is 0
in the experiments, which means that no node in the propagation process gains a score
that reaches 100. The findings show that the same fixed threshold does not work well
across different datasets. For both G and Z in Figure 10, the I/O cost decreases as α
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increases. As we know, α controls the weight of proScope. Thus, when α is small, the
proRadius becomes more important in Equation 1. As a result, nodes that are far away
from a seed are more likely to be captured, which yields a higher I/O cost.

(Threshold τ ): We compare our proposal that uses the current maximum score
(MAX) against using the average historical score AVG. We use the same datasets as
above. Figure 11 shows the findings on dataset G, which indicate that the I/O cost of
MAX is much lower than that of AVG. And with a given α, the summarization with
MAX converges faster to a relatively steady state than with AVG. MAX requires less
updates on the summarized spreading trees than does AVG. Compared with the findings
in Figure 10, the I/O cost increases as α increases when using AVG, because a larger
value of α yields a larger score. This allows more nodes of a D(G) to be summarized,
which increases the I/O cost. However for MAX, the cost remains almost the same when
α < 0.6 and it increases only slightly afterwards. We obtain similar results on the other
two datasets.

By Equation 6, α never decreases because τ is based on the MAX strategy. This
is beneficial for summarization for two reasons: i) With MAX, a larger α allows a bit
more nodes to be summarized if diffusion rises; ii) a larger α decreases the influence
of proRadius such that the summarization converges faster. This keeps OSNet from
capturing too many nodes even when many are far away from seeds.

(Maximum Possible Summary Size n): We evaluate the effect of n in Equation 6
by varying n from 100 to 100,000. The findings in Figure 12 for all the three datasets
show that the I/O cost increases as n increases. A larger n yields a smaller α by Equa-
tion 6. Figure 12 thus shows the same I/O cost trend as does Figure 10. However, the
variation in Figure 12 is slight. For simplicity, we suggest to set n to be the (average)
number of nodes of a T , which is also the maximum number of nodes that can be
summarized in an S(T ).

4.4 Evaluation on a Real-life Social Network
We use data from Sina Weibo, a Chinese Twitter-like micro-blogging service platform
(http://www.weibo.com) that has two important features that are not yet offered by Twit-
ter: 1) A user can comment on any other user’s tweets, which yields more user inter-
actions; 2) The retweeting/forwarding chain is visible to the public, which is important
for studying diffusion processes. Our dataset covers more than 1.8 million users, and
we reconstruct the diffusion processes from their replies. There are 41,561 cascades
(diffusion processes) with 2,211,221 interactions. We show that the probability density
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Fig. 16. A sample of diffusion processes. Fig. 17. A sample of summaries.

distribution (PDF) of the cascade size (Log-Log) as a property of the original data in
Figure 13. The input is simulated as a stream with an arrival rate of 10 per millisecond,
and OSNet outputs 8,647 summaries in which a seed has at least one infectee. Among
the results, the summary with the most edges has 62 edges. The PDF of the summary
size (Log-Log) is shown in Figure 14, which shows that most of the summaries are
small. Figure 15 shows that the runtime of OSNet is proportional to the number of
interactions in the dataset. Figure 16 shows a sample of diffusion processes represented
by cascades. Figure 17 gives the corresponding OSNet summaries. Although the cas-
cades in Figure 16 may merge on some nodes, the summaries are separated from each
other w.r.t. stories. This is because OSNet models diffusion using spreading trees that
naturally separate cascades. The summaries in Figure 17 show a vocabulary of patterns,
which may be used for event classification or diffusion prediction based on diffusion
processes.

5 Related Work

Statistical methods [3] are widely used to characterize properties of large graphs. How-
ever, most of these methods do not produce topological summaries, and their results
are hard to interpret. Graph pattern mining [7] can be used for summarizing graphs, but
usually yields overwhelmingly large numbers of patterns. Although constraint-based
graph mining approaches [23,24] are introduced to reduce the number of patterns, they
only work for specific constraints. Further, summaries of diffusion processes are not
inherently frequent.
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Next, graph OLAP has been introduced to summarize large graphs [16, 19]. How-
ever, most studies are designed for static network analyse and are limited to user-
specified aggregation operations. Graph compression or simplification mainly focus on
generating compact graph representations to simplify storage and manipulation. Much
of the work has focused on lossless web graph compression [1,17]. Most of these stud-
ies, however, only focus on reducing the number of bits needed to encode a link, and
few compute topological summaries since the compressed representation is not a graph.
Based on the MDL principle, Navlakha et al. [15] propose an error bounded representa-
tion that recreates the original graph within a bounded error. Toivonen et al. [20] merge
nodes of a graph that share similar properties. Compared with these studies, our ap-
proach is developed to summarize diffusion processes.

As one of the attempts to consider time-evolving networks, Liu et al. [14] com-
press weighted time-evolving graphs, and they encode a dynamic graph by a three-
dimensional array. The goal is to minimize the overall encoding cost of the graph. This
is equivalent to compressing a sequence of static graphs according to time slices. Ferlež
et al. [5] propose TimeFall in a principled MDL way to monitor network evolution,
which clusters text in scientific networks and uses MDL to connect clusters. This class
of studies are inherently distinct from ours in four aspects: 1) we use general networks
and do not have assumptions on text processing; 2) OSNet takes as argument an in-
teraction stream rather than a timestamped offline network; 3) we do not assume to be
given a sequence of time-sliced graphs; 4) we aim to summarize diffusion processes.
There are also studies on multiple social networks [12] and their temporal dynamics [8],
including trend mining [4]. They focus on tasks different from ours.

6 Conclusion and Future Work

We studied the problem of dynamic network summarization and proposed an online,
incremental summarization framework, OSNet, capable of simultaneously capturing
the most intuitively interesting summaries that best represented network dynamics.

Several directions for future research are promising, including the development of
techniques capable of exploiting the networks underlying diffusion networks, parallel
processing of spreading trees, and summarization with structural network changes.
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