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ABSTRACT

Learning effective feature representations and similarity measures
are crucial to the retrieval performance of a content-based image
retrieval (CBIR) system. Despite extensive research efforts for
decades, it remains one of the most challenging open problems
that considerably hinders the successes of real-world CBIR sys-
tems. The key challenge has been attributed to the well-known “se-
mantic gap” issue that exists between low-level image pixels cap-
tured by machines and high-level semantic concepts perceived by
human. Among various techniques, machine learning has been ac-
tively investigated as a possible direction to bridge the semantic gap
in the long term. Inspired by recent successes of deep learning tech-
niques for computer vision and other applications, in this paper, we
attempt to address an open problem: if deep learning is a hope for
bridging the semantic gap in CBIR and how much improvements in
CBIR tasks can be achieved by exploring the state-of-the-art deep
learning techniques for learning feature representations and simi-
larity measures. Specifically, we investigate a framework of deep
learning with application to CBIR tasks with an extensive set of em-
pirical studies by examining a state-of-the-art deep learning method
(Convolutional Neural Networks) for CBIR tasks under varied set-
tings. From our empirical studies, we find some encouraging re-
sults and summarize some important insights for future research.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; 1.2.6 [Artificial Intelligence]: Learning; 1.4.7 [Image
Processing and Computer Vision]: Feature Measurement

General Terms
Algorithm; Experimentation
Keywords

Deep Learning; Content-Based Image Retrieval; Convolutional Neu-
ral Networks; Feature Representation

1. INTRODUCTION

The retrieval performance of a content-based image retrieval sys-
tem crucially depends on the feature representation and similarity
measurement, which have been extensively studied by multimedia
researchers for decades. Although a variety of techniques have
been proposed, it remains one of the most challenging problems
in current content-based image retrieval (CBIR) research, which is
mainly due to the well-known “semantic gap” issue that exists be-
tween low-level image pixels captured by machines and high-level
semantic concepts perceived by human. From a high-level perspec-
tive, such challenge can be rooted to the fundamental challenge of
Artificial Intelligence (Al), that is, how to build and train intelligent
machines like human to tackle real-world tasks. Machine learning
is one promising technique that attempts to address this grand chal-
lenge in the long term.

Recent years have witnessed some important advances of new
techniques in machine learning. One important breakthrough tech-
nique is known as “deep learning”, which includes a family of ma-
chine learning algorithms that attempt to model high-level abstrac-
tions in data by employing deep architectures composed of multiple
non-linear transformations [5, 11]. Unlike conventional machine
learning methods that are often using “shallow” architectures, deep
learning mimics the human brain that is organized in a deep archi-
tecture and processes information through multiple stages of trans-
formation and representation. By exploring deep architectures to
learn features at multiple level of abstracts from data automatically,
deep learning methods allow a system to learn complex functions
that directly map raw sensory input data to the output, without re-
lying on human-crafted features using domain knowledge. Many
recent studies have reported encouraging results for applying deep
learning techniques to a variety of applications, including speech
recognition [16, 55], object recognition [26, 56], and natural lan-
guage processing [19, 34], among others.

Inspired by the successes of deep learning, in this paper, we at-
tempt to explore deep learning techniques with application to CBIR
tasks. Despite much research attention of applying deep learning
for image classification and recognition in computer vision, there is
still limited amount of attention focusing on the CBIR applications.
In this paper, we investigate deep learning methods for learning
feature representations from images and their similarity measures
towards CBIR tasks. In particular, we aim to address the following
open research questions:

(i) Are deep learning methods effective for learning good fea-
ture representations from images to tackle CBIR tasks?



(il) How much improvements can be achieved by deep learning
techniques when compared with traditional features crafted
by experts in multimedia and computer vision?

(iii) How to apply and adapt an existing deep learning model
trained in one domain to a new CBIR task in another domain
effectively?

In order to answer the above questions, we investigate a frame-
work of deep learning for content-based image retrieval (CBIR) by
applying a state-of-the-art deep learning method, that is, convolu-
tional neural networks (CNNs) for learning feature representations
from image data, and conduct an extensive set of empirical studies
for a variety of CBIR tasks. From the empirical studies, we ob-
tain some encouraging results and reveal several important insights
for addressing the open questions. As a summary, we make the
following major contributions in this work:

e We introduce a deep learning framework for CBIR by train-
ing large-scale deep convolutional neural networks for learn-
ing effective feature representations of images;

e We conduct an extensive set of empirical studies for compre-
hensive evaluations of deep convolutional neural networks
with application to learn feature representations for a variety
of CBIR tasks under varied settings.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 briefly introduces the framework of deep
learning for CBIR. Section 4 introduces all the evaluated datasets
and the adopted performance measurement. Section 5 shows the
experimental results of our empirical studies. Finally, Section 6
discusses the limitations and concludes this paper.

2. RELATED WORK

Our research lies in the interplay of content-based image re-
trieval, distance metric learning and deep neural network learning.
We briefly review each group of related work below.

2.1 Content-Based Image Retrieval

Content-based image retrieval (CBIR) is one of the fundamen-
tal research challenges extensively studied in multimedia commu-
nity for decades [30, 25, 45]. CBIR aims to search for images
through analyzing their visual contents, and thus image representa-
tion is the crux of CBIR. Over the past decades, a variety of low-
level feature descriptors have been proposed for image representa-
tion [21], ranging from global features, such as color features [21],
edge features [21], texture features [32], GIST [36, 37], and CEN-
TRIST [49], and recent local feature representations, such as the
bag-of-words (BoW) models [44, 54, 50, 51] using local feature
descriptors (e.g. SIFT [31], and SURF [3], etc.). Conventional
CBIR approaches usually choose rigid distance functions on some
extracted low-level features for multimedia similarity search, such
as Euclidean distance or cosine similarity. However, the fixed rigid
similarity/distance function may not be always optimal to the com-
plex visual image retrieval tasks due to the grand challenge of the
semantic gap between low-level visual features extracted by com-
puters and high-level human perceptions.

Hence, recent years have witnessed a surge of active research ef-
forts in the design of various distance/similarity measures on some
low-level features by exploring machine learning techniques [35, 7,
6]. Among these techniques, some works have focused on learning
to hashing or compact codes [41, 35, 23, 57, 58]. For example,
Norouzi et al [35] proposed a mapping learning scheme for large-
scale multimedia applications from high-dimensional data to binary

codes that preserve semantic similarity. Jegou et al [23] adopted the
fisher kernel to aggregate local descriptors and adopted a joint di-
mension reduction in order to reduce an image to a few dozen bytes
while preserving high accuracy. Another way to enhance the fea-
ture representation is distance metric learning (DML), as discussed
in detail as follows.

2.2 Distance metric Learning

Distance metric learning for image retrieval has been extensively
studied in both machine learning and multimedia retrieval commu-
nities [12, 2, 48, 29, 15, 47, 33, 46]. In the following, we briefly
discuss different groups of existing work for distance metric learn-
ing organized by different learning settings and principles.

In terms of training data formats, most existing DML studies of-
ten work with two types of data (a.k.a. side information): pairwise
constraints where must-link constraints and cannot-link constraints
are given and triplet constraints that contains a similar pair and a
dissimilar pair. There are also studies that directly use the class
labels for DML by following a typical machine learning scheme,
such as the Large Margin Nearest Neighbor (LMNN) algorithm [48],
which however is not essentially different.

In terms of different learning approaches, distance metric learn-
ing techniques are typically categorized into two groups: the global
supervised approaches [2, 18] that learn a metric on a global set-
ting by satisfying all the constraints simultaneously, the local su-
pervised approaches [48, 12] that learn a metric on the local sense
by only satisfying the given local constraints from neighboring in-
formation.

In terms of learning methodology, most existing DML studies
generally employ batch learning methods which often assume the
whole collection of training data must be given before the learn-
ing task and train a model from scratch. Unlike the batch learn-
ing methods, in order to handle large-scale data, online DML algo-
rithms have been actively studied recently [22, 24].

The key idea of distance metric learning is to learn an optimal
metric which minimizes the distance between similar images and
simultaneously maximizes the distance between dissimilar images.
In this condition, another technique named similarity learning is
closely related to distance metric learning. For example, Chechik
et al. proposed an online algorithm for scalable image similarity
(OASIS) [7] for improving image retrieval performance.

2.3 Deep Learning

Deep learning refers to a class of machine learning techniques,
where many layers of information processing stages in hierarchical
architectures are exploited for pattern classification and for feature
or representation learning. It lies in the intersections of several re-
search areas, including neural networks, graphical modeling, opti-
mization, pattern recognition, and signal processing, etc.

Deep learning has a long history, and its basic concept is orig-
inated from artificial neural network research. The feed-forward
neural networks with many hidden layers are indeed a good ex-
ample of the models with a deep architecture. Back-propagation,
popularized in 1980’s, has been a well-known algorithm for learn-
ing the weights of these networks. For example, LeCun et al. [28]
successfully adopt the deep supervised back-propagation convo-
lutional network for digit recognition. Recently, it has become a
hot research topic in both computer vision and machine learning,
where deep learning techniques achieve stat-of-the art performance
for various tasks. The deep convolutional neural networks (CNNs)
proposed in [26] came out first in the image classification task of
ILSVRC-2012 '. The model was trained on more than one million

1http://www.imagefnet.org/challenges/LSVRC/ZOIZ/
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Figure 1: A Framework of Deep Learning with Application to Content-based Image Retrieval.

images, and has achieved a winning top-5 test error rate of 15.3%
over 1,000 classes. After that, some recent works got better results
by improving CNN models. The top-5 test error rate decreased to
13.24% in [43] by training the model to simultaneously classify,
locate and detect objects. Besides image classification, the object
detection task can also benefit from the CNN model, as reported
in [14]. Generally speaking, three important reasons for the pop-
ularity of deep learning today are drastically increased chip pro-
cessing abilities (e.g., GPU units), the significantly lower cost of
computing hardware, and recent advances in machine learning and
signal/information processing research.

Over the past several years, a rich family of deep learning tech-
niques has been proposed and extensively studied, e.g., Deep Belief
Network (DBN) [17], Boltzmann Machines (BM) [1], Restricted

Boltzmann Machines (RBM) [42], Deep Boltzmann Machine (DBM)

[40], Deep Neural Networks (DNN) [16], etc. More detailed sur-
vey of latest deep learning studies can be found in [11]. Among
various techniques, the deep convolutional neural networks, which
is a discriminative deep architecture and belongs to the DNN cat-
egory, has found state-of-the-art performance on various tasks and
competitions in computer vision and image recognition [28, &, 10,
26]. Specifically, the CNN model consists of several convolutional
layers and pooling layers, which are stacked up with one on top
of another. The convolutional layer shares many weights, and the
pooling layer sub-samples the output of the convolutional layer and
reduces the data rate from the layer below. The weight sharing in
the convolutional layer, together with appropriately chosen pool-
ing schemes, endows the CNN with some “invariance” properties
(e.g., translation invariance). We will discuss more details of the
deep convolutional architecture in Section 3.1.

Our work is also related to some recent works in [13, 56]. Don-
ahue et al. [13] evaluated whether features extracted from the ac-
tivation of a deep convolutional network trained in a fully super-
vised fashion on a large, fixed set of object recognition tasks can
be re-purposed to novel generic recognition tasks. For feature rep-
resentation, they directly use the activation of the layer DeCAFs,
DeCAF¢ (“FC1” layer in our framework), and DeCAF, (“FC2”
layer in our framework), and adopt LogReg or SVM to train a new

classification model over the new dataset. Zeiler and Fergus [56]
introduced a novel visualization technique that gives insight into
the function of intermediate feature layers and the operation of the
classifier. For feature representation, they keep the top 1 — 7 lay-
ers of the ImageNet-trained model fixed and retrain a new softmax
classifier on top using the training images in the new database. Our
work is fundamentally different from these studies in that we focus
on evaluating feature representation performance on CBIR tasks,
where we aim to learn an effective distance measure for retrieval
tasks instead of classifiers in recognition tasks. Finally, we note
that our work is also very different from another recent study in
[52] which aims to address multimodal image retrieval using deep
learning and their raw input still rely on human-crafted features.
By contrast, we aim to learn features directly from images without
domain knowledge.

3. DEEP LEARNING FOR CBIR

In this section, we introduce the proposed deep learning frame-
work for CBIR, which consists of two stages: (i) training a deep
learning model from a large collection of training data; and (ii) ap-
plying the trained deep model for learning feature representations
of CBIR tasks in a new domain. Specifically, for the first stage,
we adopt the deep architecture of Convolutional Neural Networks
(CNN?5) as proposed in [26]. In the following, we first briefly in-
troduce the basics of CNNs, and then focus on discussing how to
generalize the trained deep models for feature representations in a
new CBIR task.

3.1 Deep Convolutional Neural Networks

Figure 1 gives an overall view of the proposed framework by
applying deep learning for CBIR tasks. For the implementation of
deep CNNss learning, we follow the similar framework as discussed
in [26] by adapting their publicly released C++ implementation °.
This model has been successfully trained on the “ILSVRC-2012”
dataset from ImageNet and found state-of-the-art performance with
1,000 categories and more than 1 million training images.

nttps://code.google.com/p/cuda-convnet/
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In general, the deep convolutional network, as shown in Fig-
ure 1 (a), consists of two parts: 1) the convolution layers and max-
pooling layers, and 2) the fully connection layers and the output
layers. Specifically, the first layer is the input layer which adopts
the mean-centered raw RGB pixels in intensity value. To reduce
overfitting, two data augmentation tricks are performed: first, the
input images are generated with translation and horizontal reflec-
tions by extracting random 224 x 224 patches from the original
256 x 256 images and our network is trained on these extracted
patches; second, to capture the invariance in illumination and color,
they add random multiples of the principle components of the RGB
pixel values throughout the dataset. According to the authors [26],
this scheme reduced their models’ test set error by over 1%.

Following the input layers, there are five convolutional layers.
The first and the second convolution layers are following with a
response normalization layers and a max pooling layers, while the
third, fourth, and fifth convolution layers are connected to one an-
other without any intervening pooling or normalization. There are
several novel or unusual features in Krizhevsky’s convolutional neu-
ral network, which makes it work better than previous convolu-
tional neural networks. First, the neuron output function f is the
nonlinear function: Rectified Linear units (ReLUs), which can re-
duce the training time of the deep convolutional neural networks
several times than the equivalents with “¢anh™ units. Second, they
adopt the “local response normalization”, which is helpful for gen-
eralization. Last but not least, they adopt the “overlapping pooling”
scheme. Max pooling layers are very common in general convolu-
tional neural networks, which summarize the outputs of neighbor-
ing groups of neurons in the same kernel map. The max pooling
step can enhance the transformation invariance of the feature map-
ping. Traditionally, the neighborhoods summarized by adjacent
pooling units do not overlap. By adopting overlapped neighbor-
hoods, they can reduce the top-1 and top-5 error rates by 0.4% and
0.3%, respectively.

Following the convolutional layers, there are two more fully-
connected layers with 4, 096 neurons, denoted as “FC1” and “FC2”.
The last output layer, which is fed by the “FC2” layer, is a 1000-
way softmax layer which produces a distribution over the 1,000
class labels in ImageNet. In the whole deep convolutional neural
network, there are about 60 million parameters in total. We train
our deep convolutional neural network based on the ImageNet’s
ILSVRC-2012 training set, which contains about 1.2 million im-
ages. It takes about 200 hours to train a model with an error rate
of 0.424 over the validation set (50, 000 images), which is close
to the error rate 0.407 reported in [26]. All the experiments were
conducted on a Linux server with NVIDIA Tesla K20 GPUs. K20
is featuring 13 active SMXes along with 5 memory controllers and
1.25MB of L2 cache, attached to 5GB of GDDRS. In our experi-
ments, the CNN model was trained on only one K20 GPU which
has enough memory for our training tasks.

3.2 Feature Representation for CBIR

Although CNNs have been shown with promising results for
classification tasks, it remains unknown how it can perform for
CBIR tasks. In this paper, our goal is to investigate effective tech-
niques by extending the trained models for learning feature repre-
sentations in CBIR tasks. In particular, we want to address two
open issues: (i) how to apply the trained CNNs from classification
to CBIR tasks in ImageNet? and (ii) how to generalize the trained
CNNs model in learning feature representation for CBIR tasks in a
new domain, which may or may not have enough training data?

Specifically, to apply a trained CNNs model for direct feature
representation, we take the activations of the last three fully con-

nected layers (FC1, FC2, and FC3) as the feature representations
for CBIR tasks. In our experiments, we denote the feature vector
of this direct feature generalization as “DE.FC1”, “DE.FC2”, and
“DE.FC3”, respectively. DEFC3 is the feature taken from the fi-
nal output layer, DE.FC2 is the features taken from the final hidden
layer, and DE.FC1 is the activations of the layer before DE.FC2. We
do not evaluate features from lower convolutional layers in the net-
work since the lower layers are unlikely to contain richer semantic
representations than the later features which form higher-level hy-
pothesis from the low-level to mid-level local information [13]. We
note that the similar approach was also used for retraining classifi-
cation models using other techniques (e.g., SVM) in some previous
studies [13, 56].

The above direct feature generalization may work on the dataset
used for training the CNNs model, but may not work well for CBIR
tasks on a new dataset, as shown Figure 1 (b), which may be very
different from the original training data set. In the following, we
discuss three kinds of feature generalization schemes in detail.

3.2.1 Scheme I: Direct Representation

This is the direct feature representation as discussed above. We
assume the retrieval domain is similar to the original dataset for
training the CNN model. In this scenario, we will simply adopt
one of the activation features DF.FC1, DE.FC2, and DF.FC3, di-
rectly. To obtain the feature representation, we directly feed the
images in new datasets into the input layer of the pre-trained CNN
model, and then take the activation values from the last three lay-
ers. Since we only need to compute the feedforward network based
on the matrix multiplication for one time, the whole scheme will
be very efficient. In our experiment, we also normalize the feature
representation with l2-norm.

3.2.2  Scheme II: Refining by Similarity Learning

Instead of directly using the features extracted by the pre-trained
deep model, we attempt to explore similarity learning (SL) algo-
rithms to refine the features in scheme I. Various distance metric
learning or similarity learning algorithms can be used, as discussed
in Section 2.2, according to the training data available in the new
CBIR tasks. In our experiment, we adopt the stat-of-the-art online
similarity learning algorithm: Online Algorithm for Scalable Im-
age Similarity Learning (“OASIS”) [7] for SL, which aims to learn
a bilinear similarity measure over sparse representation.

Specifically, consider a triplet constraint set X given as follows:

X = {(Xi7X;r,X;)|(Xi7X;r) € S; (x’hx;) €D,i= 177T}

where S contains relevant pairs and D includes irrelevant pairs,
and 7" denotes the cardinality of the entire triplet set. We denote
the similarity function of two samples as a bilinear form:

Sw(xi,%;) = x; Wx;
where W € R**¢, We define the hinge loss for a triplet:
Iw (i, %7, %x; ) = max{0, 1 — Sw(x:,x; ) + Sw(x:,x; )}

Hence the global loss Ly over all possible triplets in the training
set can be computed as:

Lw= Y

(xixf x; )EX

lW(Xu xz'+7 X:)

The OASIS algorithm aims to minimize the overall loss Ly using
the same idea of the online Passive-Aggressive (PA) algorithm [9].

In our framework, we construct the triplets by simply consid-
ering relationships of instances in same class as relevant (positive),
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Figure 2: Example images of experimental datasets used in our experiments.

and relationships of instances belonging to different classes as irrel-
evant (negative). Scheme II is similar to the ones in [13]. However,
they adopt the LogReg or SVM algorithm for classifier training
and focus on object recognition. In the following experiments, we
denote the feature representation of scheme II as “DE.FC1+SL”,
“DE.FC2+SL”, and “DE.FC3+SL”, respectively.

3.2.3  Scheme III: Refining by Model Retraining

Scheme III will retrain the deep convolutional neural networks
on the new image dataset for different CBIR tasks by initializing the
CNN model with the parameters of the ImageNet-trained models.
Depend on the available label information, there are two ways to
retrain the CNN model.

1) Refining with class labels. For datasets with class labels,
we can retrain the model by optimizing the classification objective
function. In this case, all layers of the new model will be initialized
based on our ImageNet-trained model except the last output layer,
which is adapted to the number of class labels of the new dataset
and initialized randomly. Then, we update the whole convolutional
neural networks by training on images from the new dataset. In
our experiments, we denote the feature vector of this scheme as
“ReCLS.FC1”, “ReCLS.FC2”, and “ReCLS.FC3”, respectively.

2) Refining with side information. In some special real-world
applications, obtaining the class information directly is expensive,
but gathering the side information is easier. We can retrain the CNN
model with similarity learning objective function, like what we do
in scheme II, and back-propagate the errors to previous layers in
order to refine the entire model on the new dataset. In our experi-
ment, we adopt the online distance metric learning algorithm with
cosine similarity proposed in [52]. In particular, denote y = ¢(x)
the output of CNN model on input image x, the cosine similarity
of two input images x1, X2 is defined as:

Seos(x1,x2) = y1 y2/(|[y1]| x [[y=]])

Given a training triplet input (x,x",x ), we could define the
hinge loss as follow:

1((x, xT, X ); Secos) = max{0, vy — Scos(x,x+) + Seos(x,x7)}

where + is the parameter of margin. Given (y,y ",y ™) as the out-
put achieved by the CNN network, the derivation of the [ with re-
spectto y,y+,y ™ can be computed individually. The entire CNN
model can be updated by back-propagation algorithm following
the same scheme in [52]. In our experiments, we denote the fea-
ture vector of this scheme as “ReDSL.FC1”, “ReDSL.FC2”, and
“ReDSL.FC3”, respectively.

Remark. We set a small learning rate for lower convolutional
layers in order to preserve the original CNN model in lower-level
feature layers. The original ImageNet-trained model has found a
good starting point for the deep CNN model by optimizing a 1000-
way classification problem, thus the good initialization will make

the new model converge fast. Scheme III is similar to the ones
in [56], which shows that the initialized CNN model could signifi-
cantly outperform the one with random initializations.

4. IMAGE DATASETS

Our empirical studies aim to evaluate the performance of the

three feature generalization schemes based on different image datasets,

including the general image database “ImageNet”, the object image
database “Caltech256”, the landmark image datasets “Oxford” and
“Paris”, and the facial image dataset “Pubfig83LFW”. We briefly
introduce each of them as follows.

ImageNet: is a large-scale dataset with over 15 million labeled
high-resolution images belonging to roughly 22,000 categories.
The images were collected from the web and labeled by human la-
belers using Amazon’s Mechanical Turk crowd-sourcing tool. Start-
ing in 2010, as part of the Pascal Visual Object Challenge, an an-
nual competition called the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) has been held. ILSVRC uses a subset of
ImageNet with roughly 1, 000 images in each of 1, 000 categories.
In all, there are roughly 1.2 million training images, 50, 000 vali-
dation images, and 150, 000 testing images. The Deep CNN model
in our framework is trained based on ILSVRC2012.

Caltech256: contains 30,607 images of objects, which were
obtained from Google image search and from PicSearch.com.
Images were assigned to 257 categories and evaluated by humans
in order to ensure image quality and relevance.

Oxford: contains 5,063 high resolution images automatically
downloaded from Flickr. It defines 55 queries used for evaluation,
which consists of 5 for each of the 11 chosen Oxford landmarks. It
is quite challenging due to substantial variations in scale, viewpoint
and lighting conditions.

Paris: is analogously to the previous “Oxford” datasets. Its
6,412 images were obtained from Flickr, and there are also 55
queries for evaluation. As it contains images of Paris it is con-
sidered to be an independent dataset from “Oxford”.

Pubfig83LFW: is an open-universe web facial image dataset [4],
which combines two widely used face databases: PubFig83 [27]
and LFW [20]. The 83 individuals from PubFig represent the test
images and training gallery, and all the remaining individuals from
LFW represent the distractor gallery or background faces. All the
faces from each individual in PubFig83 are randomly divided into
two-third training faces and one third test faces. All overlapping
individuals from LFW are manually removed, and the left LFW
dataset is used as distractors to PubFig83. All the facial images are
resized to 250 x 250, and only the facial images that can be detected
by a series commercial software are remained. In summary, the
PubFig83+LFW dataset has 83 individuals with 8,720 faces for
training and 4, 282 faces for testing and over 5,000 individuals
from LFW with 12, 066 faces for background and distractor faces.


PicSearch.com

Table 1: Image Retrieval Performance on ImageNet

Feature | mAP P@K=1 P@K=10 P@K=50 P@K=100 R@K=1 R@K=10 R@K=50 R@K=100
BoW.1200* | 0.0007  0.0472 0.0234 0.0144 0.0118 0.0000 0.0002 0.0006 0.0009
BoW.4800* | 0.0008  0.0487 0.0243 0.0148 0.0121 0.0000 0.0002 0.0006 0.0009
BoW.1K 0.0012  0.0243 0.0170 0.0124 0.0108 0.0000 0.0001 0.0005 0.0008
BoW.10K 0.0013  0.0212 0.0142 0.0106 0.0094 0.0000 0.0001 0.0004 0.0007
BoW.100K | 0.0015  0.0216 0.0140 0.0110 0.0099 0.0000 0.0001 0.0004 0.0008
BoW.1M 0.0016  0.0286 0.0174 0.0132 0.0117 0.0000 0.0001 0.0005 0.0009
GIST | 0.0002  0.0137 0.0080 0.0056 0.0049 0.0000 0.0001 0.0002 0.0004
DFEFCI1 0.0748  0.4427 0.3650 0.2967 0.2637 0.0003 0.0028 0.0116 0.0205
DEFC2 0.1218  0.4711 0.4105 0.3547 0.3254 0.0004 0.0032 0.0138 0.0254
DEFC3 0.1007  0.4282 0.3726 0.3183 0.2898 0.0003 0.0029 0.0124 0.0226

* BoW.1200 and BoW.4800 are extracted by other groups, which are publicly available *.

Table 2: Image Retrieval Performance on Caltech256

| | Euclidean | Various Metric Learning on Bow” | OASIS on Deep Feature
| Features | BowWw* DEFClI DFEFC2 DEFC3 | OASIS MCML LEGO LMNN | DEFC1 DFFC2 DFEFC3
mAP 0.2300 0.6424  0.7695  0.7109 | 0.3300 0.2900 0.2700 0.2400 | 0.8617 09153  0.8512
10 P@K=1 | 03700 0.8800  0.9200  0.8800 | 0.4300 0.3900 0.3900 0.3800 | 0.9360  0.9560  0.9440
classes | P@K=10 | 0.2700 0.7748  0.8624  0.7928 | 0.3800  0.3300  0.3200 0.2900 | 0.9084  0.9400  0.8944
P@K=50 | 0.1800 0.3614  0.4188  0.3930 | 0.2300 0.2200  0.2000  0.1800 | 0.4457  0.4614  0.4498
mAP 0.1400  0.4984  0.5609  0.5493 | 0.2100 0.1700  0.1600  0.1400 | 0.6962  0.7388  0.6399
20 P@K=1 | 0.2500 0.7840  0.7960  0.8020 | 0.2900 0.2600  0.2600  0.2600 | 0.8320  0.8780  0.7860
classes | P@K=10 | 0.1800 0.6228  0.6772  0.6588 | 0.2400  0.2100  0.2000  0.1900 | 0.7768  0.8130  0.7186
P@K=50 | 0.1200  0.2998  0.3315  0.3290 | 0.1500 0.1400 0.1300 0.1100 | 0.3905  0.4084  0.3764
mAP 0.0900 0.4011 04624  0.4286 | 0.1200 - 0.0900 0.0800 | 0.5186  0.5410  0.4603
50 P@K=1 | 0.1700 0.6792  0.7240  0.6912 | 0.2100 - 0.1800  0.1800 | 0.7288  0.7320  0.6840
classes | P@K=10 | 0.1300 0.5333  0.5913  0.5519 | 0.1600 - 0.1300  0.1200 | 0.6194  0.6394  0.5600
P@K=50 | 0.0800 0.2509  0.2836  0.2700 | 0.1000 - 0.0800  0.0700 | 0.3155  0.3308  0.2980

The results marked with % are taken directly from the study in [7].

S. EXPERIMENTS

In this section, we design an extensive set of experiments to eval-
uate the performance of deep learning techniques for CBIR tasks.
Specifically, the first experiment is to examine how the deep CNN
model performs for CBIR tasks on the same dataset that was used
to train the model, and the rest experiments aim to test the general-
ization of the pre-trained deep model to CBIR tasks on other new
domains, which may be very different from the training data used
for training the original CNN models.

For performance evaluation metrics, we use three standard eval-
uation measures widely used in CBIR tasks, including the mean av-
erage precision (mAP), the precision at particular ranks (“P@K”),
and the recall at particular ranks (“R@K?”).

5.1 Experiment on ImageNet

In this experiment, we aim to evaluate the CBIR performance
using scheme 1. We evaluate the retrieval performance on the IL-
SRVC 2012 dataset. We use the 50, 000 validation images as query
set, and search on the 1.2-million training image set. We compare
scheme I with several bag-of-words (BoW) feature representations,
which are widely used for large-scale image retrieval. Among these
BoW features, “BoW.1200” and “BoW.4800” are extracted by other
groups °. The experimental results are shown in Table 1. Several
image retrieval results on ImageNet dataset are shown in Figure 3.

http://cloudcv.org/objdetect/

Several observations can be achieved from the results. Firstly,
we can observe that this is a very challenging CBIR task. The best
BoW feature representation based on a codebook with the vocabu-
lary size 1,000, 000 can only achieve the mAP of 0.0016, and the
performance of global GIST feature is even much worse. The re-
sults of “BoW.1200” and “BoW.4800" are generated based on the
features released in other works, which is similar to the other BowW
representations generated by ourselves.

Secondly, the activations based feature vector from the fully-
connected layer FC1/FC2/FC3 achieve significantly much better
results, among which the “DF.FC2” (the last hidden layer) achieved
the best performance with top-1 precision of 47.11%. Although the
last output layer DF.FC3 is the classification output of the ImageNet-
trained CNN model, which contains the best sematic information,
it seems not a good feature representation for CBIR tasks. By ex-
amining the standard evaluation measures: precision and recall,
we can find the same observations. When K = 1, the P@K=1
of DEFC2 is about 0.4711. It means the error rate of the nearest
neighbor classification with K = 1 is 0.529, which is very close to
the classification error rate of the ImageNet trained model (0.424).
Finally, we note that our current experiments did not add extra post
processing step to improve the CBIR performance, although some
techniques (such as “geometric constraint based reranking” [38] or
“query expansion” [53]) often can further boost the image retrieval
performance, which however is out of the scope of this study.
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Figure 3: Qualitative evaluation of image retrieval results on
ImageNet. For each row, the image on the left-hand side is the
query, and the images on the right are the top-5 returned re-
sults by each retrieval scheme.

5.2 Experiments on Various CBIR Tasks

In this section, we aim to evaluate the performance of feature
representation schemes in Figure 1 (b) on new diverse CBIR tasks.
Specifically, we examine the performance of the models for feature

representations on three different CBIR tasks: (i) object retrieval
tasks using the “Caltech256” dataset, which is an object-based im-
age dataset, and different categories are quite distinct; (ii) landmark
retrieval tasks using the “Oxford” and “Paris” datasets, which con-
sist of landmark photos where all the images are captured under
various conditions (scale, viewpoint and lighting conditions); and
(iii) facial image retrieval tasks using the “Pubfig83LFW” dataset,
which is challenging as intra class difference sometimes could be
even larger than inter class difference.

5.2.1 Object Image Retrieval

In this experiment, we evaluate the retrieval performance of scheme
I and scheme II on the Caltech256 dataset. Following exactly the
same experimental setting in [7], we use subsets of sizes 10, 20,
50 classes, and images from each class were randomly split into a
training set of 40 images and a test set of 25 image. Several kinds
of distance metric learning algorithms are used to refine the origi-
nal BoW feature vector (note that these experimental results were
taken directly from the study in [7]). For scheme II, we adopt the
OASIS algorithm for similarity learning. All the experimental re-
sults are shown in Table 2.

Several observations can be drawn from the results. Firstly, con-
sidering scheme I, the performances of DE.FC1/2/3 are consistently
better than the general BoW representation. Similar to the previ-
ous experiment, the feature vector of the last hidden layer DE.FC2
achieved the best performance.

Second, similar to the previous experiment, based on the Cal-
tech256 dataset, the output layer feature DE.FC3 generally per-
forms better than the feature DE.FC1. Since the Caltech256 dataset
is similar to the ImageNet dataset, and the difference between dif-
ferent categories is significant, the last layer feature that represents
the final semantics information is also a good representation.

Thirdly, by adopting the similarity learning algorithm, the OA-
SIS algorithm achieves the best performance, which can boost the
mAP value from 0.23 to 0.33 for the 10-classes case. However, the
performance of the refined BoW feature representation is still much
lower than DE.FC2 in scheme I (0.7695). If we consider scheme
II by refining the first feature generalization scheme with OASIS
algorithm, the performance can be further improved, as shown in
the last three columns in Table 2. Last but not least, we observe that
after using similarity learning, the performance of DF.FC1 is better
than that of the DE.FC3, especially for the harder problems with
more categories (e.g. 50 classes). This shows that with DML, one
can explore more useful information from the high-dimensional
hidden layers than the final class output layers.

The overall encouraging results show that by adapting the pre-
trained deep model on a new dataset using similarity learning, we
can achieve significantly better performance than the original fea-
tures.

5.2.2  Landmark Image Retrieval

In this experiment, we evaluate the retrieval performance of the
three different feature representation schemes for landmark retrieval
tasks on the “Oxford” and “Paris” datasets. Following the previous
studies [38], we construct the BoW feature using a codebook with
vocabulary size of 100K and 1M, respectively. In additional, we
take the experimental results on “Oxford” and “Paris” from [39] for
comparison, which tried to use the features extracted from a CNN
model in a different way. The experimental results are shown in Ta-
ble 3 and Table 4. Since there are no explicit class label available
in these datasets, we adopt the SL objective function in scheme III.

Several observations can be drawn from the results. Firstly, we
observe that the BoW feature representation works well on both



Table 3: Image Retrieval Performance on “Oxford”

Feature | mAP P@K=1 P@K=10 R@K=10
BoW-100K 0.5193  0.7636 0.6127 0.2764
BoW-1M 0.6044  0.8000 0.7073 0.3352
CNNaug-ss [39] | 0.6800 - - -
DEFC1 0.4170  0.8364 0.5273 0.2091
DEFC2 0.3875 0.8364 0.4873 0.1810
DE.FC3 0.3347  0.7091 0.4309 0.1495
DE.FC1+SL 0.4658  0.4909 0.4909 0.1044
DE.FC2+SL 0.4441  0.5273 0.4836 0.1013
DFE.FC3+SL 0.3019  0.4364 0.3818 0.0646
ReDSL.FC1 0.7834  0.8727 0.7291 0.2948
ReDSL.FC2 0.6770  0.7455 0.6309 0.2169
ReDSL.FC3 0.7332  0.8727 0.6927 0.2574

Table 4: Image Retrieval Performance on “Paris”

Feature | mAP P@K=l P@K=10 R@K=10
BoW-100K 0.5841  0.9455 0.8709 0.0711
BoW-1M 0.6298  1.0000 0.9491 0.0766
CNNaug-ss [39] | 0.7950 - - -
DEFCI1 0.5808 0.9818 0.9200 0.0740
DE.FC2 0.6009  0.9636 0.9145 0.0739
DEFC3 0.5168  0.9455 0.8836 0.0716
DE.FC1+SL 0.8683  0.9455 0.9582 0.0775
DFEFC2+SL 0.8479 09818 0.9600 0.0770
DE.FC3+SL 0.7007  0.8545 0.8873 0.0718
ReDSL.FC1 0.9474 09818 0.9727 0.0782
ReDSL.FC2 0.9122  1.0000 0.9655 0.0775
ReDSL.FC3 0.9233  1.0000 0.9473 0.0760

datasets, which is consistent with the previous studies. For exam-
ple, based on a vocabulary with size 1 million, the mAP perfor-
mances of BoW on the “Oxford” and “Paris” datasets are 0.6044
and 0.6298, respectively. Generally, the landmark images con-
tain lots of useful interesting points, which are corresponding to
the corner or edge information of the inside buildings. Hence, the
BoW feature representation is a suitable solution for such kinds of
datasets. The performances on the Paris dataset are generally better
than those on the Oxford dataset.

Secondly, the feature representation of scheme I performs poorly
on the two landmark datasets, and the performances of feature rep-
resentations in different levels are different. In particular, the hid-
den layer features (DF.FC1 and DE.FC2) are quite comparable, and
obviously better than the output layer feature (DF.FC3). By adopt-
ing the SL technique in scheme II, the retrieval performance can be
improved on both datasets, especially for the Paris dataset.

Thirdly, for scheme III, the model retrained with SL objective
achieves the best retrieval performance on both datasets. It indi-
cates that the “deep” retraining step in scheme III is more effective
to explore the hidden semantic information than the “shadow” sim-
ilarity learning step in scheme II. This is reasonable since scheme
III has the ability of refining the similarity measurements of the
extracted feature and tuning the underlying feature representations
simultaneously. However, the extra retraining cost of scheme III is
also much higher than that of scheme II using similarity learning.

Finally, we compare our methods to the spatial search method
with feature augmentation, named “CNNaug-ss”, in [39]. From Ta-

ble 3 and Table 4 we can see that “CNNaug-ss” is much better than
scheme I, but worse than scheme III with SL objective. Compared
with scheme II, “CNNaug-ss” is better on “Oxford” but worse on
“Paris”. Generally, “CNNaug-ss” has relatively better results on
“Oxford” than on “Paris”, since it explores sub-patches over mul-
tiple scales and the scale variation on Oxford dataset is larger. Ex-
ploring a large number of sub-patches over multiple scales makes
“CNNaug-ss” computational expensive and limits its scalability.

5.2.3  Facial Image Annotation

In this experiment, we evaluate the search-based facial image
annotation performance with the first and third feature generaliza-
tion schemes on the Pubfig83LFW facial dataset. We conduct this
experiment because the performance of search-based annotation
scheme highly depends on the performance of content-based fa-
cial image retrieval. Specifically, we conduct the whole experiment
based on the evaluation framework in [4], in which all the feature
are evaluated based on the same settings. For feature representa-
tion, we use scheme I and scheme III with classification objective,
since the class label information is available on this dataset. We
compare them with a state-of-the-art feature representation, Hog-
LBP-Gabor, which fuses three kinds of famous facial image rep-
resentation features *. All the experimental results are shown in
Table 5 and Fig. 4.

Several observations can be drawn from these results. First, sim-
ilar to the previous experiments on the landmark datasets, scheme I
does not work well on the facial image dataset, by comparing with
the well-known facial image representation features. In particular,
the best mAP value of scheme I (DE.FC1) is only 0.51.

Second, by using scheme III and retraining a new deep CNN
model on the new facial image dataset, the performance of deep
features can be significantly boosted. For example, the mAP of
ReCLS.FC2 is about 0.81. The improvement over the regular Hog-
LBP-Gabor feature is almost 23%, which indicate scheme III can
considerably extract a set of suitable feature representation for new
image retrieval task. In general, the intra-personal differences might
be even larger than the inter-personal differences on facial image
datasets, which also indicates that we need a higher level feature
generalization scheme for facial image retrieval problem.

Finally, based on the KNN annotation method, we compare the
Precision-Recall curves of scheme I and scheme III, as shown in
Figure 4. We can see that the retrieval performance can be signif-
icantly boosted by adopting scheme III. This encouraging results
again validate the good generalization performance of the CNN
models for learning effective features in a new domain.

6. CONCLUSIONS

Inspired by recent successes of deep learning techniques, in this
paper, we attempt to address the long-standing fundamental feature
representation problem in Content-based Image Retrieval (CBIR).
We aim to evaluate if deep learning is a hope for bridging the
semantic gap in CBIR for the long term, and how much empiri-
cal improvements in CBIR tasks can be achieved by exploring the
state-of-the-art deep learning techniques for learning feature repre-
sentations and similarity measures. In particular, we investigate a
framework of deep learning with application to CBIR tasks with an
extensive set of empirical studies by examining a state-of-the-art
deep learning method (convolutional neural networks) for CBIR
tasks under varied settings.

Our encouraging results from the extensive empirical studies re-
veal that (i) deep CNN model pre-trained on large scale dataset

*nttp://goo.gl/QQUv7
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Table 5: The Recall (@Precision=95% ) and mean Average Precision on the Pubfig83LFW Dataset.

| Hog-LBP-Gabor | DEFCI(Best) | ReCLS.FC1

ReCLS.FC2 ReCLS.FC3

Algorithm Recall mAP | Recall
Nearest Neighbor(NN) | 0.249 0.655

mAP
0.330 0.514 | 0434

Recall mAP Recall mAP Recall mAP
0.790 0.421 0.805 0.259 0.733
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Figure 4: Precision-recall result on the Pubfig83LFW dataset.

can be directly used for features extraction in new CBIR tasks, the
promising results on Caltech256 dataset demonstrate that the pre-
trained model are able to capture high semantic information in the
raw pixels; (ii) The features extracted by pre-trained CNN model
may or may not be better than the traditional hand-crafted features,
but with proper feature refining schemes, the deep learning feature
representations consistently outperform conventional hand-crafted
features on all datasets; (iii) When being applied for feature rep-
resentation in a new domain, we found that similarity learning can
further boost the retrieval performance of the direct feature out-
put of pre-trained deep models; and (iv) Finally, by retraining the
deep models with classification or similarity learning objective on
the new domain, we found that the retrieval performance could be
boosted significantly which is much better than the improvements
made by “shallow” similarity learning. Despite encouraging results
achieved, we believe this is just a beginning for deep learning with
application to CBIR tasks, and there are still many open challenges.
In future work, we will investigate more advanced deep learning
techniques and evaluate more other diverse datasets for more in-
depth empirical studies so as to give more insights for bringing the
semantic gap of multimedia information retrieval in the long term.
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