
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2014

Android or iOS for Better Privacy Protection?
Jin Han

Qiang Yan

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

Jianying Zhou

Huijie Robert DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Information Security

Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
Han, Jin; Yan, Qiang; GAO, Debin; Zhou, Jianying; and DENG, Huijie Robert. Android or iOS for Better Privacy Protection?. (2014).
International Conference on Secure Knowledge Management in Big-data Era (SKM 2014), 8-9 December. 1-10. Research Collection School
Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2632

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2632&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Android or iOS for better privacy protection?

Jin Han∗, Qiang Yan†, Debin Gao‡, Jianying Zhou§, Robert Deng‡

∗Software Engineer †Software Engineer

Twitter Product Security Group USA Google Switzerland

‡School of Information Systems §Cryptography and Security Department

Singapore Management University Institute for Infocomm Research

{dbgao, robertdeng}@smu.edu.sg jyzhou@i2r.a-star.edu.sg

Abstract—With the rapid growth of the mobile market, secu-
rity of mobile platforms is receiving increasing attention from
both research community as well as the public. In this paper,
we make the first attempt to establish a baseline for security
comparison between the two most popular mobile platforms.
We investigate applications that run on both Android and
iOS and examine the difference in the usage of their security
sensitive APIs (SS-APIs). Our analysis over 2,600 applications
shows that iOS applications consistently access more SS-APIs
than their counterparts on Android. The additional privileges
gained on iOS are often associated with accessing private
resources such as device ID, camera, and users’ contacts.

A possible explanation for this difference in SS-API usage
is that privileges obtained by an application on the current
iOS platform are invisible to end users. Our analysis shows
that: 1) third-party libraries (specifically advertising and an-
alytic libraries) on iOS invoke more SS-APIs than those on
Android; 2) Android application developers avoid requesting
unnecessary privileges which will be shown in the permission
list during application installation. Considering the fact that
an Android application may gain additional privileges with
privilege-escalation attacks and iOS provides a more restricted
privilege set accessible by third-party applications, our results
do not necessarily imply that Android provides better privacy
protection than iOS. However, our evidence suggests that
Apple’s application vetting process may not be as effective
as Android’s privilege notification mechanism, particularly in
protecting sensitive resources from third-party applications.

I. INTRODUCTION

The current intensive competition among mobile plat-

forms has sparked a heated debate on which platform has

a better architecture for security and privacy protection.

Discussions usually focus on Google’s Android and Apple’s

iOS, which are the top two players in terms of user base [1],

[2]. Some claim that Android is better since it makes the

complete permission list visible to users and it takes an

open-source approach [2]. Some argue that iOS is better

because 1) Apple screens all applications before releasing

them to the iTunes App Store (aka. Apple’s vetting process);

2) Apple has complete control of its hardware so that OS

patches and security fixes are more smoothly applied on all

devices; and 3) the open-source nature of Android makes

it an easier target of attacks than iOS [1]. Others [3], [4]

suggest that the two platforms achieve comparable security

but in different ways. These different voices clearly raise

the need for establishing a baseline for security comparison

among different mobile platforms. Unlike most prior efforts

in comparing the abstract and general practices towards

security [1], [2], [3], [4], we make the first attempt to

establish such a baseline by analyzing the security-sensitive

API usage on cross-platform applications.

A cross-platform application is an application that runs on

multiple mobile platforms, e.g., the Facebook application has

both an Android and an iOS version with almost identical

functionality. We first try to identify these cross-platform

applications by crawling information on both Google Play

and iTunes App Store. Our web crawler collects information

of more than 300,000 Android applications and 400,000 iOS

applications. Several data mining techniques are adopted to

match the applications released for the two platforms. We

find that 12.2% of the applications on Google Play have a

replica on iTunes Store. Among them, we select the most

popular 1,300 pairs to further analyze their security-sensitive

API usage.

A security-sensitive API (SS-API) is a public API pro-

vided for third-party applications that may have access to

private user data or control over certain device components

(e.g., Bluetooth and camera). In order to analyze the similar-

ities and differences of the SS-API usage, the first challenge

is to develop an SS-API mapping between Android an iOS.

Based on the permission concept on Android and the existing

Android API-to-permission mapping provided by Felt et

al. [5], we group the SS-APIs on iOS into 20 different

API types and map them to the corresponding Android SS-

APIs. Our analysis produces a list of SS-API types that

are both supported by Android and iOS. With such API

mappings available, we statically analyze the cross-platform

applications (Android Dalvik binaries and iOS Objective-C

executables).

By analyzing the 1,300 pairs of cross-platform applica-

tions, which are sampled from the most popular applications,

we show that 73% of them on iOS access additional SS-

APIs, compared to their replicas on Android. The addi-



tional SS-APIs invoked are mostly for accessing sensitive

resources such as device ID, camera, user contacts, and

calendar, which may cause privacy breaches or security risks

without being noticed. We further investigate the underlying

reasons by separately analyzing third-party libraries and

applications’ own code. Our results show that the commonly

used third-party libraries on iOS, especially the advertising

and analytic libraries access more SS-APIs compared to

the corresponding libraries on Android. Similar results are

observed from the applications’ own code. Further analysis

shows that a likely explanation of such differences is that

sensitive resources can be accessed more stealthily on the

current iOS platform, compared to Android where all the

privileges required by an application have to be shown to the

end user during installation. We also discover, and confirm

with the Android application developers, that SS-APIs may

be intentionally avoided if the same functionality can be

implemented by non-security sensitive APIs. These results

suggest that Apple’s vetting process may not be as effective

as that most users think, particularly in protecting users’

private data from third-party applications. This problem

might also have been realized by Apple Inc., as the newly

released iOS 6 has added privilege notifications for accessing

user contacts, calendar, photos, and reminders.

II. CROSS-PLATFORM APPLICATIONS

A. Preliminary Data Collection

In order to find out what are the applications that exist on

both Android and iOS, we need to compare their detailed

information such as application name, developing company,

application description, etc. The application product pages

from Google Play and iTunes App Store do provide such

information, although public APIs of obtaining this infor-

mation do not exist. Thus, we build web crawlers for both

Google Play and iTunes Store, and collect detailed appli-

cation information for 312,171 Android applications and

478,819 iOS applications from April to May in 2012, which

are further analyzed to identify cross-platform applications.

B. Identifying Cross-platform Applications

We consider two applications (one on Android and the

other on iOS) to be two versions of the same cross-platform

application if they have the same set of functionality. For

example, both Android and iOS has a Facebook application

that provides the same functionality.

To be able to handle the large number of candidate cross-

platform applications, we first develop an automatic tool to

find the most likely candidates by comparing their names,

developer information, and the application descriptions.

These candidates are categorized into five non-overlapping

sets according to the degree of similarity in the three at-

tributes, and we randomly select some candidate applications

from each set and manually analyze the functionality of them

for verification.

An interesting output of this analysis is that it enables us

to estimate the total number of cross-platform applications

on Android and iOS. Using the true positive rates obtained

from our manual verification, we find that 12.2% (about one

in eight) applications on Android have a replica application

on iOS.

C. Stratified Sampling

To minimize the propagation of errors from the identifica-

tion of cross-platform application into subsequent analysis,

we focus our static analysis of cross-platform application

on the candidate set that contains application pairs that

have exactly the same name and developer information as

well as a high degree of similarity in the descriptions.

This set provides a total number of 20,171 cross-platform

applications. The distribution of these applications among

different categories is given in Figure 1, which is compared

with the distribution of all applications on Android and iOS

in the entire data set collected. As shown in Figure 1, cross-

platform applications are more likely to appear in “Business”

and “Games” categories, and are less likely to appear in

“Books” or “Utilities”.
B
o
o
k
s
&
R
e
fe
re
n
c
e

B
u
s
in
e
s
s

E
d
u
c
a
ti
o
n

E
n
te
rt
a
in
m
e
n
t

F
in
a
n
c
e

S
h
o
p
p
in
g
&
F
o
o
d

G
a
m
e
s

H
e
a
lt
h
&
F
it
n
e
s
s

L
if
e
s
ty
le

M
e
d
ic
a
l

M
u
s
ic

T
ra
v
e
l
&
N
a
v
ig
a
ti
o
n

N
e
w
s

P
h
o
to
&
V
id
e
o

P
ro
d
u
c
ti
v
it
y

S
o
c
ia
l

S
p
o
rt
s

U
ti
lit
ie
s

W
e
a
th
e
r

O
th
e
rs

0%

4%

8%

12%

16%

20%
Cross-platform apps

All apps on iOS

All apps on Android

Figure 1. The distribution of the cross-platform apps vs. the distribution
of all third-party apps on Android and iOS.

Among these 20,171 cross-platform applications, we se-

lect 1,300 pairs (2,600 applications) to perform detailed

static analysis on the application executables. To improve

the representativeness of this sample set, we perform a

stratified sampling according to the category distribution of

these cross-platform applications. We then pick the most

popular free applications within each category. During the

sampling, we also exclude applications that only work on

tablets (e.g., iPad and Google Tablet) so that our analysis

could focus on applications that are mainly developed for

smartphones. Finally, we manually checked all the chosen

pairs of applications to ensure that they are real cross-



platform applications. The results of the static analysis on

these selected applications will be presented in Section V.

III. COMPARING APPLICATION PRIVILEGES

To compare the security architecture of Android and iOS,

one of the most important comparison perspectives is to

find out the similarity and difference on restricting the

privileges for the third-party applications running on these

platforms. However, it is not clear how such privileges can

be compared as they might be of different granularity on

the two platforms, and a mapping of them between the two

platforms is not present in the literature. To make things

more complicated, although Google provides a comprehen-

sive list of application permissions for Android [6], there

is no official documentation specifying what privileges are

allowed for third-party applications on iOS – this is one of

the iOS mysteries to be revealed in our work.

We choose to focus our work on Android 4.0 and iOS

5.0 which were both officially released in October 2011.

Given the 122 application permissions supported on Android

4.0 [6], we first find out what is the exact privilege obtained

in each permission by examining the functionality of all

APIs related to this permission according to the mapping

of Android permission to API1 provided by [5]. We then

carefully investigate both online advisories and offline iOS

documentations on Xcode2 to find out whether each privilege

available on Android is supported, and how it is supported

on the iOS platform. The overview of the analysis result is

given in Table I.

Table I
A CLASSIFICATION OF ANDROID APPLICATION PRIVILEGES

Group of Privileges #* SS-API types

Does not actually exist in Android

7

SET PREFERRED

APPLICATIONS

BRICK

Already deprecated in Android, or no
Android API corresponds to it.

Reserved by Android system

42

DELETE CACHE

FILES

WRITE SECURE

SETTINGS

Only for OEMs, not granted to third-
party apps. i.e., these privileges can only
be used by apps signed with system keys.

Not supported on iOS

51

CHANGE

NETWORK STATE

MODIFY AUDIO

SETTINGS

Either iOS does not have such device e.g.,
removable storage; or iOS does not allow
third-party apps to have such privilege.

Both supported by iOS and Android

20

BLUETOOTH

READ CONTACTS

RECORD AUDIO

Third-party apps have these privileges on
iOS as default.

* This column lists the number of SS-API types [6] in each privilege group.

Although the term “permission” used on Android platform

is concise, it also implies that there is access control in the

1The mapping provided by [5] focuses on Android 2.2. We extend the
mapping by adding the 10 additional permissions supported on Android
4.0 with a similar method introduced in [5].

2Xcode is a suite of tools from Apple for developing software for Mac OS
X and iOS. It provides iOS API documentations for registered developers.
See http://developer.apple.com/xcode/.

architecture, which iOS barely has3. Thus, in the rest of the

paper, we use SS-API type to refer to a group of SS-APIs

that require the same privilege to access certain private data

or sensitive service. The name and scope for most of the SS-

API types follow the official Android permission list [6] with

three exceptions which will be explained in Section III-C.

As shown in Table I, among all the Android SS-API types,

three of them (PERSISTENT ACTIVITY, RESTART PACKAGES

and SET PREFERRED APPLICATIONS) have deprecated, and

four of them (such as BRICK) do not really exist in Android,

as there are no API calls, content providers or intents in

Android related to these SS-API types [5]. The rest of the

SS-API types are then divided into three groups according

to our findings4.

A. Privileges reserved for Android system applications

The openness concept of Android and its online documen-

tations may have given a misleading understanding to users

and developers that a third-party Android application can

obtain any privilege. However, this is not true – many SS-

APIs are only provided for original equipment manufacturers

(OEMs), and are not granted to third-party applications.

Examples of these API types include DELETE CACHE FILES,

INSTALL LOCATION PROVIDER, FACTORY TEST, etc.

Since there are no official documentations specifying

which privileges are reserved for OEMs on Android, we

identify this list of SS-API types by analyzing the protection

level tags in the frameworks/base/core/res/AndroidManifest.xml

file, as API types reserved for system applications are

labeled as android:protectionLevel=“signatureOrSystem” or an-

droid:protectionLevel=“signature” in this firmware configuration

file. In order to validate this list, a testing application is

developed which tries to access all SS-APIs on Android, then

those SS-API types that are denied to this application are

recorded. Finally, 42 SS-API types are found to be reserved

for system applications on Android, which are not granted

to third-party applications unless users explicitly give them

the root privilege.

B. Privileges not supported on iOS

Among the rest of SS-API types which can be used

by Android third-party applications, we are interested in

finding out how many of them are also supported by iOS.

3Security entitlements are introduced for iOS applications from iOS 5,
which are semantically similar to permissions. However, according to the
latest official document [7], the accessible entitlements for third-party iOS
developers only control iCloud storage and push notification. Though fine-
grained entitlements are available on OS X to control access of private data
such as address book and pictures, a third-party iOS application does not
need such entitlements to access these data.

4The four groups of privileges listed in Table II are exclusive with
each other. There could be more refined categorization in each group.
E.g., privileges that are reserved by Android system can be further divided
according to whether these privileges are supported on iOS. However, we
do not further divide each group in Table II, as the focus of this paper is
the privileges that are allowed to third-party applications and supported on
both Android and iOS, which is the last row in the table.



Surprisingly, our analysis result shows that more than 2/3

of these SS-API types are not supported on iOS. The

reasons are either because iOS does not have corresponding

functionality/device, or iOS just does not allow third-party

applications to have such privileges. Examples of SS-API

types which are not supported on iOS are given in Table II.

Table II
EXAMPLES OF UNSUPPORTED SS-API TYPES ON IOS

Reason (1) iOS does not have corresponding functionality/device:

SS-API type Description iOS Explanation

MOUNT FORMAT

FILESYSTEMS

Allows formatting
file systems for
removable storage.

There is no remov-
able storage for iPhone,
iPad, or iPod Touch.

NFC

Allows applications
to perform I/O oper-
ations over NFC.

Current iOS devices in-
cluding iPhone 5 still
do not have NFC chip.

Reason (2) iOS does not allow it to third-party applications:

SS-API type Description

KILL BACKGROUND

PROCESSES

Allows an application to kill background
processes.

PROCESS OUTGOING

CALLS

Allows an application to monitor, modify,
or abort outgoing calls.

RECEIVE SMS
Allows an application to monitor, record or
process incoming SMS messages.

It is interesting to notice that iOS does not allow some

SS-API types to applications due to non-security reasons.

Although it is not officially documented, APIs for changing

global settings that would affect the user experience (UX)

are usually disallowed by Apple, and that is one of the

reasons why there are still many people who jailbreak

their iPhones. Examples of such SS-API types include

MODIFY AUDIO SETTINGS, SET TIME ZONE, SET WALLPAPER,

WRITE SETTINGS, etc. Although this would limit the capabil-

ity of third-party applications, it is still reasonable from the

UX perspective. For example, it could be a disaster if you are

waiting for an important call, but a third-party application

mutes the sound globally without your awareness.

C. Privileges supported by both Android and iOS

The last group of privileges in Table I contains the SS-API

types supported on both Android and iOS. A comprehensive

list of these SS-API types is given in Table III. Note that

although there are only 20 SS-API types both supported

on Android and iOS, these SS-APIs cover the access rights

to the most common resources/services, including user cal-

endar, contacts, Bluetooth, Wi-Fi state, camera, vibrator,

etc. As shown in Table III, due to the API difference on

Android and iOS, the name and scope of three SS-API types

have been changed compared to corresponding Android

permissions [6].

The first refined SS-API type is ACCESS LOCATION. On

Android, there are two permissions correspond to the priv-

ilege of accessing the location information, which are AC-

CESS COARSE LOCATION and ACCESS FINE LOCATION. There

Table III
SS-API TYPES SUPPORTED ON BOTH ANDROID AND IOS

SS-API Type Abbr. Description & Explanation

ACCESS LOCATION LOC

Allows to access the location info.

This type corresponds to both AC-

CESS COARSE LOCATION and AC-

CESS FINE LOCATION in [6].

ACCESS NETWORK

INFO
ANI

Allows to access information about net-

works. This SS-API type corresponds to

both ACCESS NETWORK STATE and

ACCESS WIFI STATE in [6].

BATTERY STATS BAT Allows to collect battery statistics.

BLUETOOTH BLU Allows to connect to bluetooth devices.

BLUETOOTH ADMIN BTA To discover and pair bluetooth devices.

CALL PHONE PHO Allows to initiate a phone call.

CAMERA CAM Allows to access the camera device.

CHANGE WIFI

MULTICAST STATE
CWS

Allows applications to enter Wi-Fi Multi-

cast mode.

FLASHLIGHT FLA Allows access to the flashlight.

INTERNET INT Allows to open network sockets.

READ CALENDAR CAL Allows to read the user’s calendar data.

READ CONTACTS CON Allows to read the user’s contacts data.

READ DEVICE ID RDI Allows to read the device ID.

RECORD AUDIO RAU Allows an application to record audio.

SEND SMS SMS Allows to send SMS messages.

USE SIP SIP Allows an application to use SIP service.

VIBRATE VIB Allows the access to the vibrator.

WAKE LOCK WAK To disable auto-lock or screen-dimming.

WRITE CALENDAR CAL Allows to write the user’s calendar data.

WRITE CONTACTS CON Allows to write the user’s contacts data.

are 20+ API calls related to these two permissions on

Android, but all of them only require either of the two

permissions. Similar as Android, iOS devices employ a

number of different techniques for obtaining information

about the current geographical location, including GPS, cell

tower triangulation and most inaccurate Wi-Fi connections.

However, which mechanism is actually used by iOS to detect

the location information is transparent to the application

and the system will automatically use the most accurate

solution that is available. Thus, for an iOS application

which invokes the location-related API calls (e.g., CLLoca-

tionManager.startUpdatingLocation), it actually requires both AC-

CESS COARSE LOCATION and ACCESS FINE LOCATION privi-

leges. Therefore, we create the ACCESS LOCATION SS-API

type as a common privilege between Android and iOS, in

order to perform a fair comparison.

Similarly, Android provides APIs for checking the status

(e.g., availability or connectivity) of different network types

(e.g., WiFi or 3G). However, iOS APIs do not distinguish

the different network types when checking the reachability

of a given host or IP address. Thus, ACCESS NETWORK STATE

and ACCESS WIFI STATE are combined into a single SS-API

type – ACCESS NETWORK INFO to mitigate the bias when

comparing the SS-API usage on these two platforms.

The last refined SS-API type is READ DEVICE ID. On

Android, the scope of READ PHONE STATE permission corre-



sponds to at least 18 Android API calls, which can be used

to read the device ID, phone number, SIM serial number

and some other information. However, on iOS, only device

ID is allowed to read since iOS 4.0. Other information is

forbidden to be accessed by third-party applications due to

security reasons. Thus, we create the READ DEVICE ID type

which only includes the SS-APIs on both platforms that

access the device ID. By obtaining the list of SS-API types

both supported on Android and iOS, we are now able to

analyze the usage differences of these SS-APIs in cross-

platform applications.

IV. STATIC ANALYSIS TOOLS

To compare the SS-API usage for third-party applications

on Android and iOS, we build static analysis tools for both

Android applications (Dalvik bytecode) and iOS applications

(Objective-C executables). We explain the work flow of the

static analysis on both platforms in this section.

A. Android Static Analysis Tool

Each Android application provides a list of privileges that

is shown to the user during installation, which is recorded

in the AndroidManifest.xml in each application package file.

However, this is not the exact list of SS-API types that this

application actually accesses – many third-party applications

are overprivileged by requesting a superset of privileges [5].

Thus, the ultimate goal of our Android static analysis tool is

to output a minimum set of SS-API types that are accessed

by the given application. The work flow of our Android tool

is shown in Figure 2.

Figure 2. The work flow of our Android static analysis tool.

As shown in Figure 2, for each Android application,

we first obtain the corresponding Dalvik executable

(DEX), which is then disassembled into a set of .ddx

files using the Dedexer tool [8]. With the extended

Android API call to permission mapping [5], our tool

then performs multiple iterations on parsing and analyzing

the disassembled files to produce a candidate list of

SS-API types that this application accesses. However, this

candidate list is not a minimum set due to the ambiguity

in the Android API-to-permission mapping, which is

caused by Android’s permission validation mechanism. For

example, android.app.ActivityManager.killBackgroundProcesses

API call requires either RESTART PACKAGES or

KILL BACKGROUND PROCESSES – i.e., either permission

is sufficient for the application to invoke this API call. In

order to further determine the exact privilege needed and

output a minimum set of SS-API types, our tool then takes

the intersection of the candidate list and the claimed list of

SS-API types (parsed from AndroidManifest.xml). The output

set of SS-API types is then used to compare with the set of

SS-API types used by the replica application on iOS.

There are several technical challenges in analyzing the

disassembled applications. On Android, SS-API calls may

be invoked with different class names due to inheritance.

By analyzing class information in the disassembled files,

our tool rebuilds the class hierarchy so that it can recognize

the API calls invoked from the applications’ own classes,

which are inherited from API classes. API calls may also be

invoked through Java reflection. Our tool performs backward

slicing [9] to resolve the method name and class name

actually invoked in each reflection instance – it traverses

the code backwards, resolving all instructions that influence

the method variable and class variable used in corresponding

reflection. We also apply specific heuristics to resolve inter-

procedural or inter-classes reflections. Although it is not

possible to completely resolve all reflections statically [10],

fortunately Android applications rarely use reflections ac-

cording to our observations. Finally, SS-APIs may be ac-

cessed through content providers and intents on Android.

Our tool adopts the same mechanisms as Stowaway [5] to

recognize the invocation of content providers and intents in

the applications.

B. iOS Static Analysis Tool

Compared to Android, static analysis on iOS platform is

more challenging, as iOS is a closed-source architecture.

Apple tries to control all software executed on iOS devices

(iPhone, iPad and iPod Touch), which has several effects.

First of all, the only way for a non-jailbroken iOS device to

install third-party applications is through iTunes App Store.

When an application is downloaded via iTunes Store, it will

be encrypted and digitally signed by Apple. The decryption

key for the application is added to the device’s secure key

chain, so that each time this application is launched, it can

be decrypted and then start to run on the iOS device.

It is not possible to directly perform static analysis on

encrypted application binaries. Thus, before analyzing each

application downloaded from iTunes Store, we need to

obtain the decrypted application binary, which can only

be achieved on a jailbroken iOS device. Jailbreaking gives



us the capability to install the GNU Debugger, the Mach-

O disassembler oTool and also the OpenSSH server on

the device. These development tools enable us to crack

any installed application on the device. After obtaining the

decrypted iOS application binary, we utilize IDA Pro. [11]

to disassemble the binary to obtain assembly instructions.

However, IDA itself is only able to mark a very small por-

tion of Objective-C methods, especially when the symbols

are stripped in the binary. The underlying reason is that iOS

binaries are allowed to interchangeably use two instruction

sets, ARM and THUMB, which have different instruction

sizes and alignments. Without knowing the starting point of

a method, IDA may treat a code fragment as a data entry by

mistake. Thus, our analysis tool extracts metadata5 from the

application binary to guide IDA’s disassembling process.

After disassembling all methods in IDA, the next step

is to resolve all the API calls in the assembly instructions,

where the key step is to handle the objc msgSend function.

In an Objective-C executable, all accesses to a method or

attribute of an Objective-C object at runtime utilize this

objc msgSend function, which is used to send messages to an

instance of class in memory [12]. To statically determine the

corresponding API call for each observed objc msgSend, we

adopt the backward slicing and forward constant propagation

proposed by [13] in our iOS static analysis tool. The work

flow of our iOS static analysis tool is illustrated in Figure 3.

Figure 3. The work flow of our iOS static analysis tool.

The last step of our static analysis tool is to output

the set of SS-API types used in an iOS application. The

access to most SS-API types can be directly recognized

through corresponding API classes and methods, for exam-

ple, user contacts are operated through ABPerson and ABAd-

dressBook related APIs. However, some SS-API types like

CALL PHONE and SEND SMS require further analysis of the

parameter value. For example, given an API call [[UIApplica-

tion sharedApplication] openURL:[NSURL URLWithString:[NSString

stringWithFormat:@“tel:123-456-7890”]]], this will only launch

the phone dialer when the string parameter starts with “tel:”

prefix. The SS-API type SEND SMS, however, has two forms

5These metadata extracted include the class names, the instance method
list, the class method list, the instance variable list, the property list and
the protocols that classes conform to. For each method, the method name,
method signature string, and the start address of the method body are
collected to guide IDA disassembling process.

of realizing the SMS functionality – the SMS sending view

can be triggered by openURL with “sms:” prefix; an applica-

tion can also call API such as MFMessageComposeViewCon-

troller.setMessageComposeDelegate to send SMS messages. We

carefully handle each of the cases for every resolved API call

and corresponding parameter values in order to detect such

SS-API invocations.

V. COMPARISON ANALYSIS RESULTS

We applied our static analysis tools to the 1,300 pairs

of selected cross-platform applications (downloaded in June

2012), the basic statistics of these applications are given

in Table IV. The direct outputs of our analysis tools are

the lists of SS-API types accessed by these applications. By

obtaining such lists, we are then able to compare the SS-API

usage for each pair of cross-platform applications.

Table IV
STATISTICS OF DOWNLOADED CROSS-PLATFORM APPLICATIONS

Parameters Android apps iOS apps

Number of apps 1,300 1,300

App size range (.apk & .ipa) 11KB∼47MB 106KB∼366MB

Total size of apps 7.42 GB 14.5 GB

App executable file size range

(.dex & Objective-C binary)
3KB∼6.2MB 25KB∼39.5MB

Total size of executable files 1.10 GB 5.03 GB

A. Comparisons on both-supported SS-API types

Our first comparison focuses on the 20 SS-API types that

are both supported on Android and iOS. We are interested

in finding out how differently these SS-API types are used

on the two platforms for cross-platform applications. Our

results show that the total amount of SS-API types 6 that

are used by 1,300 Android applications is 4,582, which

indicates that each Android application uses 3.5 SS-API

types on average. In comparison, the corresponding 1,300

iOS applications access a total amount of 7,739 SS-API

types, which has on average 5.9 types per iOS application.

948 (73%) of the applications on iOS access additional SS-

API types compared to its Android version.

Among the 20 different SS-API types, some of them

are accessed almost equally by the applications on both

platforms. For example, INTERNET is required by 1,247

Android applications, and 1,253 iOS applications. However,

some other SS-API types are used much more often by iOS

applications compared to Android applications. The top 10

SS-API types that are accessed more often on iOS compared

to Android are listed in Table V.

6The set of SS-API types used by an application contains no duplicates,
which indicates that the maximum number of SS-API types used by each
application is 20. When calculating the total amount of SS-API types for
1300 applications, we simply sum the number of SS-API types used by
each application.



Table V
SS-API TYPES WITH GREATEST DISPARITY THAT ARE ACCESSED BY THE APPLICATIONS ON ANDROID AND IOS.

SS-API type
Number of

Android apps

Number of

iOS apps

Only on

iOS1

Only on

Android

On both

platforms

Lib / App

Ratio2

Exclusive Lib / App

Ratio3

READ DEVICE ID 510 925 469 54 456 60% / 64% 36% / 40%

CAMERA 172 601 435 6 166 38% / 73% 27% / 62%

VIBRATE 374 522 290 142 232 62% / 46% 54% / 38%

ACCESS NETWORK INFO 885 1065 269 89 796 15% / 96% 4% / 86%

READ CONTACTS 151 388 256 19 132 52% / 75% 25% / 48%

SEND SMS 29 264 248 13 16 49% / 68% 32% / 51%

WRITE CONTACTS 86 297 219 8 78 51% / 80% 20% / 49%

ACCESS LOCATION 553 728 217 42 511 48% / 67% 33% / 53%

RECORD AUDIO 37 177 155 15 22 35% / 99% 1% / 65%

READ CALENDAR 35 174 141 2 33 35% / 67% 33% / 65%

1 The number of cross-platform apps which access the corresponding SS-API type only in its iOS version, but not in its Android version. The value of this

column equals to the difference between “Number of iOS apps” and “On both platforms”.
2 A break-down for the sources of SS-API types: Lib – from third-party libs; App – from the app’s own code. The base of the ratio is column “Only on iOS”.
3 The ratio of applications in column “Only on iOS”, where the corresponding SS-API type is exclusively caused by third-party libraries or apps’ own code.

To obtain a detailed understanding of the results provided

in Table V, we look into typical applications in each SS-

API type. We find out that famous applications such as

Twitter and XECurrency [14] do not access READ DEVICE ID

APIs on Android. However, on their corresponding iOS

version, we observe 5 locations in Twitter’s code and 6

locations in XECurrency’s code which read the device ID.

Another typical instance is the famous free game “Words

With Friends” [15] application. Compared to its Android

version, the additional SS-API types accessed by its iOS

version include (but are not limited to):

• BATTERY STATS, as API call UIDevice.setBatteryMoni-

toringEnabled is observed;

• CALL PHONE, as UIApplication.openURL with “tel:” param-

eter is observed in IMAdView.placeCallTo and two other

locations;

• CAMERA, as UIImagePickerController.setSourceType with

argument value 0x1 (which is UIImagePickerCo-

ntrollerSourceTypeCamera) is observed in MobclixRich-

MediaWebAdView.takePhotoAndReturnToWebview;

• FLASHLIGHT, as AVCaptureDevice.setTorchMode is ob-

served in MobclixRichMediaWebAdView.turnFlashlight-

OnWithSuccess; etc.

More interestingly, we also check the most popular game

application Angry Birds, although it does not belong to the

1,300 sampling set as it is not free on iOS. The result

shows that compared to its Android version, Angry Birds

on iOS additionally reads the user contacts data, as API

call ABAddressBookGetPersonWithRecordID and ABAddressBook-

CopyArrayOfAllPeople are observed in the code section of

CCPrivateSession.getArrayOfAddressBookEmailAddresses-

NamesAndContactIDs and four other locations7.

7The API calls which access user contacts have been observed in all
previous versions of Angry Birds including version 2.1.0, which was
released in March 2012. However, from Angry Birds version 2.2.0 (released
in August 2012), these API calls have been removed from this game, which
is probably due to the privacy changes of the newly released iOS 6.

As shown in Table V, our findings in the comparisons on

the 20 SS-API types both supported on Android and iOS

show that iOS third-party applications turn to access more

often to some devices (such as camera and vibration) and

are more likely to access sensitive data such as device ID,

user contacts and calendar. Thus, our next step of analysis

is to find out the underlying reason why such phenomenon

exists. As one may notice from the examples given above,

some of these APIs are actually invoked by the third-party

libraries used in these applications (such as IMAdView and

MobclixRichMediaWebAdView classes in the WordsWithFriends

application). Thus, our next step is to analyze the SS-API

usage of the third-party libraries on both platforms.

B. SS-API Usage of Third-party Libraries

In order to analyze the SS-API usage of third-party

libraries, first of all, we need to identify all the third-

party libraries within each application. As there are no clear

boundaries that an included library or package in a given

application is written by the application developer or belongs

to a third-party library, we first process the whole application

set to calculate the number of different package names (on

Android) or class names (on iOS). Then the packages or

classes that appear in more than 10 applications (and at

least belong to two different companies) are automatically

collected. We then manually check this list to identify the

third-party libraries, which include advertisement libraries,

analytic libraries or just third-party development libraries.

Some of the packages or classes are combined because

they belong to the same third-party library. Finally, we

identified 79 third-party libraries on Android and 72 third-

party libraries on iOS that are commonly used. The 8 most

commonly used advertising and analytic libraries on Android

are listed in Table VI, and the 8 most common libraries on

iOS are listed in Table VII.By tracking the code regions of these libraries, our static

analysis tools are able to determine the origin of the SS-API

calls in each application. We can then identify the types of



Table VI
MOST COMMON ADVERTISING/ANALYTIC LIBRARIES ON ANDROID

Library Name App Ratio SS-API types*

com/google/ads 21.7% ANI, INT

com/flurry/android 19.1% LOC, INT

com/google/android/apps/analytics 12.5% ANI

com/tapjoy 7.9% INT, RDI

com/millennialmedia/android 7.3% ANI, INT, RDI

com/admob/android/ads 4.4% LOC, INT

com/adwhirl 3.8% LOC, INT

com/mobclix/android/sdk 3.2% LOC, ANI, INT, RDI

* The abbreviations of these SS-API types are given in Table III.

Table VII
MOST COMMON ADVERTISING/ANALYTIC LIBRARIES ON IOS

Library Name App Ratio SS-API types*

Flurry 19.9% LOC, INT, RDI

GoogleAds 15.9% ANI, INT, RDI, SMS, VIB, WAK

Google Analytics 9.8% INT

Millennial Media 9.3% LOC, ANI, CAM, INT, CON,

RDI, VIB

TapJoy 9.1% ANI, INT, RDI

AdMob 7.2% LOC, INT, CON, RDI

AdWhirl 6.9% LOC, ANI, INT, RDI

Mobclix 3.7% LOC, ANI, BAT, CAM, FLA, INT,

CAL, CON, RDI, SMS, VIB

* The abbreviations of these SS-API types are given in Table III.

SS-APIs used in each third-party library on both platforms,

which are shown in Table VI and Table VII. The data from

these two tables clearly indicate that libraries on iOS turn

to access more SS-API types compared to Android third-

party libraries. Thus, the SS-API usage difference for those

cross-platform applications is indeed partially caused by the

difference of third-party libraries.

To quantify the influence of the third-party libraries on

the SS-API usage difference between the two versions of

cross-platform applications, for each SS-API type, we first

identify those applications which access the corresponding

SS-API type only on its iOS version, but not on Android

version (which is the “Only on iOS” column in Table V). For

each of these applications, we then track the origins in the

code which access the corresponding SS-APIs – either from

the third-party libraries used in the application, or from the

application’s own code. The results are shown in the last two

columns in Table V. The two ratios in the “Lib/App Ratio”

column represent the percentage of the applications that: (a)

the third-party libraries used in the application access the

corresponding SS-API type; (b) the application’s own code

access the corresponding SS-API type. As can be seen from

the table, the sum of these two ratios is more than 100%.

This is because in some applications, SS-APIs belong to the

same type are used both in the application’s own code and

in the third-party libraries. Thus, the last column in Table V

is given, which shows the percentage of applications, where

the corresponding SS-API type is only used by the third-

party libraries or application’s own code.

From the results shown in Table V, we can see that the

third-party libraries do have certain impacts on the difference

of the SS-API usage for cross-platform applications. For

example, 54% applications which use additional VIBRATE

APIs on iOS is purely because of the third-party libraries

used in these applications. And from Table VII we can find

the exact source – libraries such as GoogleAds, Millennial

Media and Mobclix all use VIBRATE APIs. Thus, any ap-

plication which includes these libraries will in turn use this

SS-API type. Similar links can be drawn from Table V and

Table VII for other SS-API types such as READ DEVICE ID

and READ CONTACTS.

Comparing the data in Table VI and Table VII, the results

show that the most commonly used third-party libraries, es-

pecially advertisement and analytic libraries on iOS, access

much more SS-APIs compared to the libraries on Android. A

likely explanation of this phenomenon could be because on

iOS, the SS-APIs can be accessed more stealthily compared

to on Android, where applications need to list out the types

of SS-APIs they need to access during installation. The

privileges to use these SS-APIs on iOS are granted to third-

party applications as default without users’ awareness, which

gives certain freedom for advertisement and analytic libraries

to access user data and sensitive resources.

To confirm our findings on the third-party iOS libraries,

we further check each library listed in Table VII to see

whether it is an open-source library. For the open-source

libraries (e.g., AdWhirl [16]), we manually look into their

source code and confirm all SS-API types that are accessed.

For the closed-source library Flurry, we also find evidences

that this library collects the device ID in its official doc-

umentation [17], which mentioned “Because Apple allows

the collection of UDID for the purpose of advertising, we

continue to collect this data as the Flurry SDK includes

AppCircle, Flurry’s mobile advertising solution.”

From the data given in the last column in Table V, one can

observe that third-party libraries only contribute a portion

of the difference of the SS-API usage for cross-platform

applications; the other part of the difference is caused by

the application’s own code. By removing the SS-API types

that are exclusively caused by third-party libraries, our static

analysis tools manage to output the lists of SS-API types that

are caused by the applications’ own code on both platforms.

The comparison result shows that 3,851 SS-API types are

used by 1,300 Android applications in their own code, while

iOS applications use 6,393 – there is still a significant

difference for the SS-API usage on the two platforms. This

difference leads us to investigate further into applications’

code logic to find out the underlying reasons.

C. Microanalysis on Application Code Logic

In order to perform a manual analysis on the code logic of

the cross-platform applications, it will be ideal to have full



access to the application source code. However, applications

which are open-source on both platforms are very rare,

given the fact that iOS platform has very little open-source

applications. Nevertheless, we manage to find 8 applications

that are open-source on both platforms8. We retrieve the

source code of these applications and analyze the underlying

reasons of their SS-API usage differences. The detailed API

information collected from closed-source applications is also

utilized to assist the analysis. According to our manual

inspection, there are at least two factors that have strong

correlations with the SS-API usage differences between iOS

and Android applications.

1) Coding difference: The most natural reason which may

be expected is the implementation difference between the

two versions of cross-platform applications. For example,

ACCESS NETWORK INFO APIs are only used by the iOS ver-

sion of WordPress, but not by its Android version. In its iOS

version, several API calls in WPReachability class are invoked,

which are used to test the reachability to the WordPress

hosts. However, for the Android version of WordPress, there

is no code for testing any reachability. For example, when

posting a blog to the server, the code of Android WordPress

simply checks the return value of the posting function to

see whether the connection is successful or failed. But on

iOS, many Objective-C classes in the WordPress code will

actively check the reachability beforehand, and notify the

users if the network is not reachable. Such implementation

difference leads to the SS-API usage difference that Word-

Press on iOS uses the additional ACCESS NETWORK INFO

APIs compared to its Android version. Similar evidence can

be found in the source code of MobileOrg application.

Such coding difference is also the main reason causing the

difference in using the CAMERA SS-APIs. Taking the popular

applications such as eBuddyMessenger and SmackIt, in their

iOS versions, the user profile photo in the setting can either

be chosen from the pictures stored on device, or by directly

taking the photo with the device’s camera. However, their

Android versions do not provide such photo taking option.

Note that such implementation difference does not only exist

in the applications’ own code, but also for the same third-

party libraries on two platforms. For example, CAMERA SS-

APIs are used by OpenFeint library on iOS, but not by

its Android version, which is caused by the same reason

mentioned above.

2) Intentional avoidance: On the other hand, we also find

evidences that even the functionality of the two versions of

cross-platform application are the same, some SS-APIs are

intentionally avoided to be used on Android. We use open-

source application WordPress to explain this phenomenon.

Compared to its Android version, WordPress on iOS uses

the additional READ DEVICE ID APIs. In the WordPress iOS

8These 8 open-source applications are WordPress, Mixare, MobileOrg,
andRoc/iRoc, Mp3tunes, ZXing(Barcodes), DiceShaker and MobileSynth.

code, runStats method of WordPressAppDelegate reads the uuid,

os version, app version, language, device model, and then sends

them to http://api.wordpress.org/iphoneapp/update-check/1.0/ to

check whether this application needs to be updated. On the

Android platform, the code of WordPress performs the same

functionality – in the wpAndroid class, uploadStats method tries

to retrieve the same set of data and sends these data back

to WordPress server to check for update. However, there is

one major difference for the WordPress code on Android

compared to the code on iOS. In its iOS code, the uuid is

retrieved by directly calling UIDevice.uniqueIdentifier, which

returns the device unique ID. In contrast, for its Android

version, the uuid used is a random ID which is unique, but

not the real device ID. It is a unique ID that is randomly

generated and stored as the first record in WordPress’s own

SQLite database on the Android device. Thus, the different

way of obtaining uuid is the reason that WordPress on iOS

uses the additional READ DEVICE ID SS-API type.

The special way of obtaining the uuid in the Android

version of WordPress makes us speculate that the program-

mers intentionally try to avoid using the READ DEVICE ID

APIs on Android. This is further confirmed by consulting

one of the WordPress developers, who gives the explanation

as: “a random id is better than the device id because it

doesn’t require that permission which reads quite poorly as

‘read phone state and identity’ ”. Thus, the reason that the

developers do not try to avoid using the device ID on iOS

is because of the same reason mentioned in Section V-B –

on Android, an application needs to show the list of SS-

API types it needs to access to the user during installation;

while on iOS, no such notification is given to the user.

We suspect that this may also be the main reason which

causes the difference in accessing SS-API types such as

READ CONTACTS and READ CALENDAR. But unfortunately,

due to the limited access to applications’ source code, we are

not able to get the ground-truth evidence for these SS-API

types, as what has been done for the READ DEVICE ID.

D. The Usage of SS-API Types Unsupported on iOS

Previous analyses focus on the 20 SS-API types that are

both supported on Android and iOS, without taking into

account of the additional 51 SS-API types that are only

supported on Android platform. Thus, the last step of our

analysis is to find out how frequently these SS-APIs are

used by those Android applications, and what are usage

characteristics of these SS-APIs.

Taking into account of the 51 SS-API types, our results

show that the 1,300 Android applications use 1,230 SS-API

types in total which are unsupported on iOS. As shown in

Table VIII, the most frequently accessed SS-API type that is

unsupported on iOS is WRITE EXTERNAL STORAGE, which is

used by more than half of the Android applications. This can

be explained from the nature of Android devices. Different

from iOS devices which have 8GBytes to 64GBytes of



internal storage, Android devices usually have less internal

storage. Thus, all Android devices support external storage

such as microSD card. As a result, Android applications

which want to store their application data usually need

to utilize WRITE EXTERNAL STORAGE APIs to write to the

microSD card, in order to save the internal storage space.

Table VIII
THE USAGE OF SS-API TYPES UNSUPPORTED ON IOS (TOP 8)

SS-API types unsupported on iOS # of Android Apps

WRITE EXTERNAL STORAGE 762

GET ACCOUNTS 133

RECEIVE BOOT COMPLETED 55

GET TASKS 45

CHANGE WIFI STATE 44

READ LOGS 15

RECEIVE SMS 13

READ HISTORY BOOKMARKS 11

Except WRITE EXTERNAL STORAGE, the remaining 50 SS-

API types that are not supported on iOS are used infre-

quently (only 468 in total, which is 0.36 per application on

average). Such a result shows that the 20 SS-API types both

supported on iOS and Android are the most commonly used

SS-APIs for third-party applications. Note that although the

SS-API types only supported on Android are not commonly

used in popular Android applications, they may bring serious

security breaches when utilized by malicious applications.

For example, the READ LOGS privilege, which allows a third-

party application to “read the low-level system log files” can

be utilized to read many other sensitive data such as SMS,

contacts and location information as demonstrated in [18].

On the other hand, iOS also has its own specific SS-APIs

that do not exist on Android. For example, two services,

iCloud storage and push notification, which are controlled by

entitlements are specific to the iOS platform. However, since

the focus of this paper is on the SS-API types supported

on both platforms, investigating the SS-APIs that are only

supported on iOS is left as future work.

VI. CONCLUSION

In this paper, we made the first attempt towards system-

atically comparing mobile application security on diverse

mobile platforms. In particular, the two most popular mobile

platforms, Android and iOS, are chosen to investigate how

the platform difference influences third-party applications in

terms of privacy protection. As a prerequisite, we investi-

gated the security-sensitive API (SS-API) types supported

on iOS and their relations to Android application privileges,

which were previously unclear. We then built our static

analysis tools to perform massive static analysis for cross-

platform applications on their SS-API usage.

Our analysis showed that applications on iOS tend to use

more SS-APIs compared to their counterparts on Android,

and are more likely to access sensitive resources that may

cause privacy breaches or security risks without being no-

ticed. Further investigation revealed a strong correlation be-

tween such difference and the lack of application privilege-

list on the current iOS platform. Such results may imply

that Apple’s vetting process is not as effective as Android’s

explicit privilege list mechanism in restricting the privilege

usage by third-party application developers.

REFERENCES

[1] “Trend Micro: Android much less secure than
iPhone,” electronista News, January 2011. http:
//www.electronista.com/articles/11/01/11/trend.micro.warns.
android.inherently.vulnerable/.

[2] “Why Android App Security Is Better Than
for the iPhone,” PCWorld News. August 2010.
http://www.pcworld.com/businesscenter/article/202758/why
android app security is better than for the iphone.html.

[3] “Android, iPhone security different but matched,” cNET
News, July 2010. http://news.cnet.com/8301-27080
3-20009362-245.html.

[4] “Smartphone Security Smackdown: iPhone vs. Android,” In-
formationWeek, July 2011. http://www.informationweek.com/
news/security/mobile/231000953.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the
18th ACM conference on Computer and communications
security, 2011, pp. 627–638.

[6] Android API level 14, Manifest.permission, http://developer.
android.com/reference/android/Manifest.permission.html.

[7] “Apple, Entitlement Key Reference,” http://developer.apple.
com/library/mac/#documentation/Miscellaneous/Reference/
EntitlementKeyReference/Chapters/AboutEntitlements.html.

[8] G. Paller, Dedexer, http://dedexer.sourceforge.net/.

[9] M. Weiser, “Program slicing,” in Proceedings of the 5th
international conference on Software engineering, 1981.

[10] J. Sawin and A. Rountev, “Improving static resolution of
dynamic class loading in java using dynamically gathered
environment information,” Automated Software Engineering,
vol. 16, pp. 357–381, June 2009.

[11] “IDApro, a multi-processor disassembler and debugger,” Hex-
Rays, http://www.hex-rays.com/products/ida/index.shtml.

[12] Nemo, “The Objective-C Runtime: Understanding and Abus-
ing,” phrack, Volume 4, Issue 66, http://www.phrack.org/
issues.html?issue=66&id=4.

[13] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting Privacy Leaks in iOS Applications,” in Proceedings
of the Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2011.

[14] XE Currency on iOS: http://itunes.apple.com/app/
xe-currency/id315241195, XE Currency on Android: https:
//play.google.com/store/apps/details?id=com.xe.currency.

[15] Words With Friends Free, iOS version: http:
//itunes.apple.com/app/words-with-friends-free/id321916506,
Android version: https://play.google.com/store/apps/details?
id=com.zynga.words.

[16] AdWhirl Developer’s Resources, https://www.adwhirl.com/
home/dev.

[17] Flurry Product Updates, http://blog.flurry.com/updates/bid/
33715/New-Flurry-SDK-Available-for-iPhone-OS-4-0-iOS.

[18] A. Lineberry, D. L. Richardson, and T. Wyatt, These Are Not
the Permissions You Are Looking For, Def Con 18 Hacking
Conference, 2010.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2014

	Android or iOS for Better Privacy Protection?
	Jin Han
	Qiang Yan
	Debin GAO
	Jianying Zhou
	Huijie Robert DENG
	Citation


	main.dvi

