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Prediction of Venues in Foursquare

Using Flipped Topic Models

Wen-Haw Chong, Bing-Tian Dai, and Ee-Peng Lim

Singapore Management University 80 Stamford Road, Singapore 178902
whchong.2013@phdis.smu.edu.sg, {btdai,eplim}@smu.edu.sg

Abstract. Foursquare is a highly popular location-based social plat-
form, where users indicate their presence at venues via check-ins and/or
provide venue-related tips. On Foursquare, we explore Latent Dirichlet
Allocation (LDA) topic models for venue prediction: predict venues that
a user is likely to visit, given his history of other visited venues. However
we depart from prior works which regard the users as documents and
their visited venues as terms. Instead we ‘flip’ LDA models such that we
regard venues as documents that attract users, which are now the terms.
Flipping is simple and requires no changes to the LDA mechanism. Yet it
improves prediction accuracy significantly as shown in our experiments.
Furthermore, flipped models are superior when we model tips and check-
ins as separate modes. This enables us to use tips to improve prediction
accuracy, which is previously unexplored. Lastly, we observed the largest
accuracy improvement for venues with fewer visitors, implying that the
flipped models cope with sparse venue data more effectively.

Keywords: Foursquare, venue prediction, topic models.

1 Introduction

The prevalence and growing popularity of social media in recent years have led
to an explosive grow in observable user behavior data. In particular, location-
based platforms such as Foursquare and Gowalla provide rich context and user-
visitation data. For example, Foursquare users can indicate their presence at
venues via check-ins. They can optionally write reviews about visited venues,
referred to as tips. These data are fast growing, fine-grained and vast in volume.
Currently Foursquare1 reports a user base of over 50 million, with more than
6 billion check-ins generated. Thus it is not surprising that check-ins has been
especially well studied for user profiling and modeling [2,4,5,7].

In this work, we focus on Foursquare due to its market dominance and the
ease of accessing related data. Our problem of interest is to predict venues that
a user will visit. This translates easily to applications of commercial value, such
as user profiling, venue analysis and targeted advertising. For example, venue
owners may want to direct their advertisements or promotions at selected new
users based on their propensity of visitations.

1 https://foursquare.com/about

A. Hanbury et al. (Eds.): ECIR 2015, LNCS 9022, pp. 623–634, 2015.
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Weexplore several topicmodels.Althoughourwork is carriedoutonFoursquare,
the models are easily applicable on venue visitation logs from other platforms. In
addition, we also proposed models to handle user generated reviews/tips that are
tied to venues. We discussed the targeted problem next.

1.1 Problem Definition

Our prediction task is straightforward: predict venues that a user will likely visit,
given historical information of his other visited venues. We cast this as a ranking
problem. Given a list of candidate venues for each user, we seek to rank venues
such that high ranking venues are more likely to be visited by the user.

Our defined problem serves a different purpose and differs from next venue
prediction [6,8,13] and time-aware venue prediction [9,7]. Next venue prediction
aims to predict the next venue a user will visit, given additional factors such as a
user’s current location, time of the day, location of friends etc. Time-aware venue
prediction is highly similar, but prediction is for a certain time slot and the user’s
current location may not be known. In contrast, for our venue prediction task,
we do not assume that additional information or contextual constraints such
as time are available. The task can also be understood as inferring the overall
propensity of a user to visit a venue.

In many cases, the lack of additional information makes venue prediction
task harder than next or time-aware venue prediction. For example, consider
next venue prediction. With spatial constraints, a user’s next venue is likely to
be geographically near his current venue [13,6]. Time constraints help as well,
e.g. food venues are obviously more likely to be visited during meal times [7].
In addition, for both next and time-aware venue prediction, a venue may be
repeatedly visited [13,8] in a user’s visitation history, e.g. his home or workplace.
All these help to rank or narrow the list of candidate venues. In contrast for our
problem, we consider candidate venues that are not visited by the user according
to the observed visitation data. Hence, many methods for next venue and time-
aware venue prediction tasks are less appropriate to solve the proposed problem.

1.2 Proposed Research Idea

Approach. Our approach is based on Latent Dirichlet Allocation (LDA) [1].
LDA was first introduced for modeling topics in text corpus. Since then, topic
models have been widely applied in various domains, including social media
platforms. Recent works [4,5] had applied LDA on Foursquare check-ins. Both
works model the users as high level documents containing venues as terms. For
discussion, we denote this as the base model: LDA-Udoc.

Our research idea originates from the key observation that in Foursquare [2],
there are many more users than venues. There are many users with little visita-
tion data. On the other hand, venues are often visited by many users who leave
traces of check-in’s and tips. Hence if we regard venues as documents containing
users as terms, we obtain fewer, but longer documents over a larger term dictio-
nary. The question is how these changes affect venue prediction. Based on this
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insight, we define the LDA-Vdoc model which is essentially a flipped version of
LDA-Udoc, while retaining all the underlying LDA mechanisms. Remarkably,
LDA-Vdoc easily outperforms LDA-Udoc in venue prediction.

We consider further LDA extensions, whereby we model check-ins and tips as
two separate modes of user behavior. Again, we compare the two design choices.
Vdoc uses venues as high level documents while Udoc does so with users. Our
experiments indicate that Vdoc performs better. In fact, the Vdoc model enables
us to exploit tips to improve prediction accuracy. To the best of our knowledge,
the venue as document idea and multi-modal extension were unexplored in prior
works [4,5,6,7] which focused on check-ins (or location logs) only. Our research
findings further reveal that accuracy improvement is largest for unpopular venues
where there are fewer users, and hence sparser data. Obviously, venues may
also have fewer users if they are newly added, thus there are parallels with the
cold-start problem for new items in recommendation tasks. In such cases, Vdoc
outperforms other models significantly.

Contributions. Flipping and the inclusion of tips constitute the novel aspects
of our work. In summary, we present two flipped models, Vdoc-LDA and Vdoc
for venue prediction in Foursquare. Vdoc-LDA models a single mode. If tips
are available as well, we propose to apply Vdoc. Vdoc also copes with sparse
venue data more effectively for prediction. This is important since new venues
are continuously being added to Foursquare.

2 Models

We shall describe explored models, starting with the vanilla LDA models. Let the
number of users, venues and topics be U , V andK respectively. Also let tip words
be from a vocabulary of size W . We represent symmetric Dirichlet distributions
with hyperparameters α as Dir(α); and multinomials with parameter vector θ as
Mult(θ). Other notations are introduced in an inline manner for ease of reading.

2.1 LDA Models

We begin with the base model: LDA-Udoc. Traditionally, LDA assumes a text
document is generated by sampling a topic for each word, followed by sam-
pling the word conditional on the topic. Let us now regard a document as a
user and a word as a check-in/tip venue. Each user u has a latent vector θu
with a Dirichlet prior Dir(α). θu specifies his distribution over topics z which in
turn specifies distributions over venues. The model assumes a single venue mode
without differentiating whether users have chosen to check-in and/or write tips
at venues. Note that prior work [4,5] had simply used check-ins. However we
include venues from tips2 such that prediction accuracies of all uni-modal and
multi-modal models can be fairly compared on a common venue set. Tip words
are ignored in LDA-Udoc. Formally, LDA-Udoc has the generative process:

2 Some users write tips about a venue without generating check-ins.
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1. For each user u, sample θu ∼ Dir(α)
2. For each topic k, sample φk ∼ Dir(β)
3. For venue vi in check-in/tip i of user u, sample:

(a) Topic zi ∼ Mult(θu), Venue vi ∼ Mult(φzi )

Now we flip the model and propose the LDA-Vdoc model, whereby venues
attract users to check-in and/or write tips. Hence venues play a more active
generative role and generate the users. Note that topics are now defined over
users instead and denoted by y. LDA-Vdoc also does not differentiate between
users from check-ins or tips. Tip words are ignored. The generative process is:

1. For each venue v, sample θv ∼ Dir(α)
2. For each topic k, sample φk ∼ Dir(β)
3. For user ui in check-in/tip i of venue v, sample:

(a) Topic yi ∼ Mult(θv), User ui ∼ Mult(φyi)

2.2 Multi-modal Models

We now propose models Udoc and Vdoc which generate check-ins and tips in
distinct weakly coupled modes, unlike previous LDA models. With Udoc, venues
from check-ins and tips are treated as distinct entity modes generated by check-
in and tip topics respectively. However we also tie the mentioned two modes
of topics with a common topic indicator. This accounts for the weak coupling
and can be viewed as a form of regularization between the two modes. Vdoc is
defined in a similar way.

Udoc generates venues, tip content and is a direct, non-flipped extension of
the base model Udoc-LDA. It seeks to exploit all information from tips, including
the tip words. Since tips are short with a character limit of 200 imposed by
Foursquare, we assume each to cover only a single topic. We also attribute each
tip word to either the venue or topic with a Bernoulli switch Bern(η), with a
prior from a beta distribution Beta(λ). The intuition is that certain venues may
have a large influence on tip content.

For each user, venues are now differentiated as check-in venues ṽ and tip
venues v̂, generated via check-in topics z̃ and tip topics ẑ. Let each tip contains
Nw words w. Udoc’s generative process is listed below (best understood with
the plate diagram in Figure 1).

1. For each user u, sample θu ∼ Dir(α)
2. For each topic indicator k, sample distributions for tip topics: φk ∼ Dir(β),

γk ∼ Dir(ω), and check-in topics: ˜φk ∼ Dir(˜β)
3. For each venue v, sample γ̂v ∼ Dir(ω̂)
4. Sample a global Bernoulli vector for flags: η ∼ Beta(λ)
5. For tip i of user u, sample tip topics, tip venues and words:

(a) Topic ẑi ∼ Mult(θu), Venue v̂i ∼ Mult(φẑi )
(b) For the j-th word wi,j

i. Sample a flag xi,j ∼ Bern(η)
ii. Sample wi,j ∼ Multi(γẑi) if xi,j=0, else sample wi,j ∼ Multi(γ̂v̂i )
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Fig. 1. Udoc model. Each user u has Cu check-ins and Tu tips.

6. For check-in i of user u, sample check-in topics and check-in venues:
(a) Topic z̃i ∼ Mult(θu), Venue ṽi ∼ Mult(˜φz̃i )

Vdoc is a flipped version of Udoc and regards each venue as a document
unit. Intuitively, each venue attracts users to either check-in, write tips or do
both. In addition, we observed in our Foursquare dataset of an Asian city, (refer
Section 3.1) that 76% of venues have both check-ins and tips. In contrast, only
21% of users both check-in and write tips, with the rest being biased towards
only one behavior mode. In this sense, more venue documents have both modes
and can be regarded as more ‘complete’ than user documents. This will impact
prediction accuracy as shown in our experiments (refer section 3.2).

For each venue, users are now differentiated as check-in/tip users (ũ/û), gen-
erated via check-in/tip topics (ỹ/ŷ). We also let tip words to be attributable to
either tip topics or tip users. We now define Vdoc’s generative process with the
corresponding plate diagram shown in Figure 2.

1. For each venue v, sample θv ∼ Dir(α)
2. For each topic indicator k, sample distributions for the tip mode: φk ∼

Dir(β), γk ∼ Dir(ω), and check-in mode: ˜φk ∼ Dir(˜β)
3. For each user u, sample γ̂u ∼ Dir(ω̂)
4. Sample a global Bernoulli vector for flags: η ∼ Beta(λ)
5. For tip i at venue v, sample tip topics, tip users and words:

(a) Topic ŷi ∼ Mult(θv), User ûi ∼ Mult(φŷi)
(b) For the j-th word wi,j

i. Sample a flag xi,j ∼ Bern(η)
ii. Sample wi,j ∼ Multi(γŷi) if xi,j=0, else sample wi,j ∼ Multi(γ̂ûi )

6. For check-in i at venue v, sample check-in topics and check-in users:
(a) Topic ỹi ∼ Mult(θv), User ũi ∼ Mult(˜φỹi

)

2.3 Inference

We use Collapsed Gibbs Sampling (CGS) to infer parameters for all the models.
CGS draws a sequence of samples to approximate joint distributions. It has been
widely used for inference [3] in LDA-based models. For the multi-modal models,
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Fig. 2. Vdoc model. Each venue v has Bv check-ins and Sv tips.

Udoc and Vdoc’s sampling equations are highly similar in form. Due to space
constraints, we only present sampling equations for Vdoc topics.

The topic inference task is to sample for tip and check-in topics. For notation
simplicity, we also omit hyperparameters which are implicitly conditioned upon
during sampling. Recall that in Vdoc, venues v are not differentiated while users
are differentiated as check-in users ũ and tip users û. Given a tip i with bag of
words wi, we sample its topic as follows:

p(ŷi = k|, ŷ−i, û,v,w,x) ∝
NTV

kvi,−i + α
∑

k′
NTV

k′v,−i +Kα

N ÛT
ûik,−i + β

∑

û′
N ÛT

û′k,−i + Uβ

∏

w∈wwwi,
xw=0

NWT
wk,−i + ω

∑

w′
NWT

w′k,−i +Wω
(1)

where subscript −i means contributions from tip i are excluded. NTV , N ÛT and
NWT are respective count matrices for assignments of topics to venues, tip users
to topics and tip words to topics. Subscripts reference the matrix elements. For
a check-in i, we sample its topic as:

p(ỹi = k|, ỹ−i, ũ,v) ∝
NTV

kvi,−i + α
∑

k′ NTV
k′v,−i +Kα

N
˜UT
ũik,−i +

˜β
∑

ũ′ N
˜UT
ũ′k,−i + U ˜β

(2)

where N
˜UT counts assignments of check-in users to topics and NTV is previously

defined. Similarly, the sampling equations for flag assignments per tip word can
be readily derived. We omit their discussion here for brevity.

2.4 Prediction

Our goal is to predict the venues that a user is likely to visit. We do not differ-
entiate between check-in/tip venues in prediction, hence the targeted quantity
is p(v|u). This is used to rank candidate venues. While in practice, a user can
tip without having actually visited a venue, extensive inspections of sample tips
indicate that it is reasonable to assume most tips are generated post-visits.
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For Udoc-LDA, p(v|u) is computed via topic marginalization:
∑

z p(v|z)p(z|u).
To obtain p(v|u) for Udoc, topic marginalization is done for each mode and then
combined with the two observed empirical probabilities of u performing a check-
in and tip. For Vdoc-LDA, we marginalized out topics over users and then apply
Bayes theorem p(v|u) ∝ p(u|v)p(v). The same formula applies to Vdoc as well,
however we first need to compute p(u|v). Assume that a venue v generates check-
ins and tips with conditional probabilities p(c|v) and p(t|v). We compute p(u|v)
by marginalizing over modes: m = {c, t} and applying the chain rule:

p(u|v) = p(u,m = c|v) + p(u,m = t|v) = p(ũ|v)p(c|v) + p(û|v)p(t|v) (3)

Note that p(ũ|v) and p(û|v) in (3) are obtained via marginalizing out the topics:

p(ũ|v) =
∑

ỹ

p(ũ|ỹ)p(ỹ|v), p(û|v) =
∑

ŷ

p(û|ŷ)p(ŷ|v) (4)

where p(ỹ|v), p(ŷ|v), p(û|ŷ) and p(ũ|ỹ) are estimated with count matrices from
CGS in a similar fashion as proposed in [3].

3 Experiments

3.1 Data and Setup

In our experiments, we use two Foursquare datasets: United States (US) check-
ins from [2] and check-ins plus tips which we extract from users in Singapore
(SG), spanning Mar 2012 to Dec 2013. The latter comprises of check-ins posted
as tweets on the user’s Twitter timeline3 and tips crawled directly using the
Foursquare API. Following standard noise filtering practices [4,7,10,6], we ex-
clude inactive users with too few venues and inactive venues with too few users.
We used a common threshold of 6 for both user and venue filtering, i.e. ≥ 6.

For each user, we randomly select one of his venues as the test venue. We then
hide all his tips and check-ins from the test venue. His remaining tips/check-ins
are then included in the training set for model building. This process is repeated
for all users. We generate 10 trials of training/test sets whereby trials differ due
to random sampling of test venue per user. Also note that prediction here is in
terms of retrieving hidden venues, and that to support multiple trials, we have
not restricted hidden venues to be necessarily the most recent visited venues.

On average, the US training set contains 48,900+ users, 14,900+ venues and
252,000+ check-ins. The SG training set contains 24,400+ users, 17,600+ venues,
62,900+ tips and 1,062,200+ check-ins. Comparing both datasets, the US dataset
has more users and fewer venues than the SG dataset.

Note that for the US dataset, we only apply LDA-Vdoc and LDA-Udoc since
tips are not available. For the SG dataset, we ignore tip content when applying
uni-modal models, such that there are no differentiation between entities (users
or venues) from check-ins/tips. With each model, we rank candidate venues for

3 Check-ins are visible only if posted as tweets, otherwise they are hidden.
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each user (excluding those in his training set). Hence for each user, the number
of candidates is slightly less than the number of venues per dataset. We then
extract the rank of the hidden test venue and compute the Mean Reciprocal
Rank (MRR), a standard information retrieval measure defined as:

MRR =
1

Q

∑Q

i
1/ranki (5)

where ranki is the rank of the hidden test venue i predicted by the model and
Q is the total number of test cases. (Each test case consists of a user and his
hidden test venue.) MRR lies between 0 and 1 with the latter implying perfect
ranking accuracy. We compute the average MRR across the 10 trials.

All models are fitted using 500 iterations of CGS with a burn-in of 200 iter-
ations. For estimating distributions required for prediction, we collect samples
with a lag of 20 iterations in between. We have experimented with various num-
ber of topics and observed that relative prediction performance of models are
fairly consistent, e.g. Vdoc being consistently the best performer. In subsequent
discussion, we present results involving 20 topics.

3.2 Prediction Results

In this section, we compare the models quantitatively. We regard LDA-Udoc
as the baseline and focus on how other models perform relative to it. Table 1
presents the prediction results. Also recall that our notion of documents depends
on the models. For LDA-Vdoc and Vdoc, documents are venues while for LDA-
Udoc and Udoc, documents are users.

Table 1. Average MRR with standard deviations (bracketed). Gain is % improvement
over LDA-Udoc. (US: United States check-ins, SG: check-ins & tips in Singapore).

Dataset Model Ave. MRR Gain (%)

US LDA-Vdoc 0.1302 (2.05E-3) 22.35
LDA-Udoc 0.1064 (1.77E-3) -

SG Vdoc 0.0575 (1.34E-3) 7.06
Udoc 0.0532 (1.21E-3) -0.89

LDA-Vdoc 0.0564 (0.93E-3) 4.92
LDA-Udoc 0.0537 (1.25E-3) -

On both datasets, LDA-Vdoc easily outperforms the previously proposed
LDA-Udoc model [4,5]. This supports the argument of flipping. Accuracy gain
is especially large at over 20% on the US dataset. As described in section 3.1,
the US dataset has more users and yet, fewer venues than the SG dataset. This
means that in the former, LDA-Vdoc’s characteristics are even more pronounced,
i.e. modeling fewer and longer documents. Hence we expect a larger accuracy
gain over LDA-Udoc, compared to the SG dataset.
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On the SG dataset, Vdoc is the best performer with more than 7% improve-
ment over the baseline. The difference is consistent across different runs and
statistically significant (using the Wilcoxon signed rank test) with a p-value of
less than 0.01. In addition, LDA-Vdoc consistently emerges as the second best
performer (p-value < 0.01) when compared with LDA-Udoc). Hence models us-
ing venues as documents (as in Vdoc, LDA-Vdoc) consistently perform better
than models with users as documents.

Vdoc’s superiority over LDA-Vdoc indicates that tips contain useful informa-
tion, which the former had exploited. However we note that while Udoc considers
tips as well, its performance is essentially the same as LDA-Udoc. We attribute
this to overly sparse co-occurrence information. Obviously, in breaking up en-
tities into different modes, some co-occurrence information is lost. (To see this,
imagine treating every entity as a unique mode. This leads to a total loss of co-
occurrence information.) Thus additional information from tips may have been
cancelled off in Udoc. Vdoc is however more robust to this effects.

We attribute Vdoc’s robustness to previously discussed characteristics such
as having fewer, but longer documents. In addition, Vdoc’s documents are more
complete than Udoc’s documents in containing entities from both modes. As
mentioned in Section 2.2, 76% of venues (Vdoc’s documents) from the SG dataset
contain users from both tips and check-ins. In contrast, with users as documents
(as in Udoc), only 21% contains both tip and check-in venues. This is a direct
consequence of how users utilize Foursquare, i.e. leaning towards either generat-
ing check-ins or writing tips rather than doing both in a more balanced manner.

3.3 Prediction Results by Venue Popularity

For a more in-depth analysis, we bin test cases for the SG dataset by test venue
popularity. This allows us to examine how various models perform on venues of
different popularities. We quantify venue popularity by two measures: combined
tip/check-in count and number of unique users per venue. We divide test cases
into three bins of equal size, corresponding to venues of low, medium and high
popularities. Figure 3 shows the MRR of venues with different popularities.

Figures 3(a) and 3(d) show that Vdoc’s accuracy improvement over other
models is biggest for the least popular venues. The improvement decreases as we
consider more popular venues. For low popularity venues, Vdoc outperforms the
baseline LDA-Udoc by around 200% for both popularity measures, hence indi-
cating that Vdoc makes better use of sparse venue data. This takes on an even
greater importance if we consider a common scenario in Foursquare: newly cre-
ated venues will usually belong to the unpopular bins simply by virtue of having
little or no previous data. Predicting for them is analogous to recommending for
new items in recommender systems, which relates to the cold start problem. In
such cases, prediction/recommendation difficulty increases due to data sparsity.
Compared with other models, Vdoc is more accurate in such scenarios.

For highly popular venues, Figures 3(c) and 3(f) show that Vdoc’s improve-
ment over LDA-Udoc is smaller at 4-5% for both popularity measures. Hence,
even though popular test venues are easier to predict for, Vdoc still manages
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Fig. 3. MRR binned by combined tip/check-in count (a,b,c) and unique user count
(d,e,f). Each sub-figure plots Vdoc, Udoc, LDA-Vdoc and LDA-Udoc (left to right).
Numbers are mean tip/check-in count for (a,b,c), and mean user count for (d,e,f).

some improvement over Udoc-LDA. We also compare Vdoc with LDA-Vdoc.
Their performance differs more for low popularity venues, and less with increased
venue popularity. Since unpopular venues have much less data for models to ex-
ploit, content information in the few related tips will be relatively more impor-
tant. Vdoc is able to exploit this additional information in contrast to LDA-Vdoc
which totally ignores content.

4 Sample Topics

We illustrate some Vdoc’s topics over tip words on the SG dataset. By inspecting
the topics, one easily gets a understanding of user interests and the aspects that
they care about enough to write tips. Table 2 shows the top 12 words of 6 sample
topics (out of 20) from Vdoc. As can be seen, the topics are easily interpretable.

Table 2. Top 12 words of sample Vdoc topics. We manually annotate the displayed
topics (labels in bold) for ease of understanding.

Service: service food staff slow bad time order long wait good don waiting

Transport: bus service time interchange train long will queue wait station mins morning

Pastry: ice cream chocolate cake tea nice good love best sweet caramel awesome

Tea/Coffee: tea milk ice coffee nice best good jelly drink love sugar green

Western Food: good chicken cheese beef pasta fries sauce great nice awesome fish pizza

Opening hours: hours closed open public till sat sun mon fri daily place opens

5 Related Work

As mentioned, [4,5] had applied LDA to model Foursquare check-ins. They pre-
sented qualitative analysis of the topics instead of quantitative results. In [6],
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Kurashima et. al modeled venues conditional on both topics and each user’s
movement history. The model was used to predict the last visited venue of the
user. Note that all the above mentioned works treated users as documents, venues
as terms and topics as distributions over venues.

Some works [11,12,10] had explored topic models of geo-located tweets. Tweet
contents and originating locations are used in [11,12] while [10] included time
information as well. The aim is to predict geographic coordinates that tweets are
sent from. This problem is less applicable on Foursquare since tips can possibly
be generated post-visits by users when they may not be physically present at the
venue locations. Nonetheless, we note that all the proposed models [11,12,10] had
utilized users as documents, instead of spatial regions or locations as documents.
Potentially model flipping can be investigated for accuracy gains.

Other researchers had explored non topic modeling approaches in next venue
[8,13] and time-aware venue prediction [7,9]. In [8], dynamic Bayesian networks
were used to model a user’s locations as hidden states. Each state is conditional
on the last state and emit observations such as time information and the locations
of friends. Noulas et al. [13] trained M5 model trees with mobility and temporal
features to predict a user’s next check-in venue. Yuan et al. [7] constructed a
time-aware collaborative filtering model to predict user locations conditional on
time. Cho et al. [9] conducted a similar task with a mixture of Gaussians.

Lastly we mention works more applicable to our prediction task, but with
models in the continuous space [9,15,14]. (We mentioned [9] earlier for time-
aware venue prediction, but it can be adapted for this). Typically continuous
distributions such as Gaussian mixtures [9,15] or kernel estimated densities [14],
are fitted to model the spatial coordinates of venues. In contrast, we model venues
in the discrete space and do not require spatial coordinates. Both continuous and
discrete modeling have their strengths and weaknesses. For example, different
venues can occur at the same coordinates, by being at different levels of the
same building. Predicting between these venues is tricky with continuous mod-
eling, which by far, had mainly utilized two dimensional distributions [9,14,15].
Nonetheless, in our further work we will be interested in fusing the models pre-
sented here with continuous techniques such that the strengths of both can be
leveraged on. We describe a possible research direction in our conclusion.

6 Conclusion

We have explored several LDA based models for venue prediction in Foursquare.
In particular, we consider flipped models such that venues are treated as docu-
ments and users as terms. Flipping is extremely easy to apply, and yet leads to
significant accuracy gains in venue prediction. It also has the additional benefit
of allowing us to exploit tips. Without flipping, it is uncertain that including
tips can increase accuracy, e.g. Udoc does not improve over Udoc-LDA.

In ongoing research, we are exploring the fusion of the models here with
continuous models [15,14,9]. Instead of designing ever more complex generative
models, one possible approach is to combine different models, either linearly or
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otherwise. This allows information from various diverse aspects, e.g. tips, spatial
and social influence to contribute to the prediction task. In addition, the inferred
combination weights serve to indicate the relative importance of various aspects.

Lastly, given the huge variety of topic models out there in different applica-
tions, many can potentially be flipped and the performance investigated. Re-
searchers can also consider flipped/non-flipped versions in the design of any new
models. Hence our works here has served as a motivating example.
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