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Designing Bus Transit Services for Routine
Crowd Situations at Large Event Venues

Jiali Du, Shih-Fen Cheng, and Hoong Chuin Lau

School of Information Systems
Singapore Management University
{jiali.du.2012, sfcheng,hclau}@smu.edu.sg

Abstract. We are concerned with the routine crowd management prob-
lem after a major event at a known venue. Without properly design com-
plementary transport services, such sudden crowd build-ups will over-
whelm the existing infrastructure. In this paper, we introduce a novel
flow-rate based model to model the dynamic movement of passenger-
s over the transportation flow network. Based on this basic model, an
integer linear programming model is proposed to solve the bus transit
problem permanently. We validate our model against a real scenario in
Singapore, where a newly constructed mega-stadium hosts various large
events regularly. The results show that the proposed approach effectively
enables routine crowd, and achieves almost 24.1% travel time reduction
with an addition of 40 buses serving 18.7% of the passengers.

Keywords: crowd management, bus transit service, vehicle routing prob-
lem

1 Introduction

In architectural and urban design community, there is a growing trend to de-
sign and build increasingly larger facilities that integrate diverse functions [18].
Examples of such facilities include stadiums, convention centers and airports.
Operating such facilities with high volumes of human traffic is very challenging
and needs to be carefully planned. Issues related to the operation of such facilities
include, but not limited to, wayfinding inside the facility, routine crowd man-
agement, and emergency egress. In particular, to serve the transportation needs
of crowds moving into and out of such facilities, an important consideration is
to integrate mass transit to the facilities.

In this paper we focus on designing a bus transit service to complement
mass transit during the routine (i.e. non-emergency) situation after an event in
order to minimize total journey time of crowds. While such crowd dynamic is
predictable in both volume and timing (the planner should know exactly how
many people will be leaving the facility, and at what time), and all utilities
can be assumed to be in perfect working condition (which contrasts the case
of emergency egress, where the timing is uncertain, and some utilities could be
faulty), the planning problem is still challenging. The major challenge in the



routine crowd management problem is to avoid bottlenecks and crowd buildups,
which is hard to avoid since mass transit is designed to satisfy regular transport
demands and not demand surges. A popular solution adopted by many planners
is to complement mass transit with bus transit services, yet despite the long
history of using such services, optimizing its delivery has not received much
attention; in the end, results in the fixed-route and ad-hoc policies.

In the area of disruption management, however, there are rich literatures
on how to optimally utilize bus transit services to make up for the lost link or
capacity due to disruptions (for instance, in [5], [7], a two-step framework for bus
transit service planning is proposed). Despite the similarity between disruption
response and routine crowd management, they are fundamentally different, in
the following aspects. For disruption response, the priority is on restoring as
much connectivity as possible, and as a result, the modeling effort has been
mostly on maximizing the amount of flow that can pass through the point of
disconnection. For routine crowd management problem, on the other hand, the
focus is on experience management, which aims at minimizing total journey time
including both travel and waiting time. To accurately account for the journey
time, we have to modify the classical flow network so that both travel and waiting
times can be quantified and thus minimized.

The objective of this paper is to formulate and study the design of bus transit
services for routine crowd situations at event venues. In doing so, we make the
following three major contributions:

1. We formulate routine crowd scenario as a normalized flow network in which
the total journey time can be easily calculated.

2. We model the introduction of bus transit services as an increase to the link
capacities in the above normalized flow network, and we create an integer
programming model to derive the optimal design of the bus transit service
that would minimize the total journey time for all flows to reach destinations.

3. We demonstrate the practical usage of our model by solving instances in-
spired by a real-world scenario. The key parameters of this scenario are
derived from a real-world public transport dataset in Singapore.

2 Literature Review

Operating the large-scale venue is very challenging due to the massive crowd after
the public events. Accelerating the crowd diffusion process is explored in many
aspects. On one hand, researchers seek for the optimal design of the egress in the
facilities[18],[1]. On the other hand, it is crucial to provide effective strategies to
handle the crowds at these venues by complementing the existing public trans-
portation network. In the literatures, majority of existing works related to such
topics focus on emergency evacuation planning [17],[14]. Stella et al. in [17] talks
about the way to speed up the egress under emergency. By adopting proper s-
trategies, they demonstrated the optimality with two benchmark performances.
Victor et al. in [14] introduces a variant of the vehicle routing problem and



models the evacuee arrival behavior in a realistic manner. By applying capacity-
constrained buses, the problem aims at providing efficient services to minimize
the waiting time at locations for all of the evacuees. However, in [2], Vinayak
et al. addressed that there are fundamental differences exist in the evacuation
traffic dynamics and routine non-emergency operations. The variations are de-
scribed in the features including free flow speeds and maximum flow rates. But
the planning problem during non-emergency period receives much less attention.
A network optimization-based approach is proposed in [3] to support the effi-
cient movement of pedestrians. In [8], Lassacher et al. addressed some applicable
methodologies to deal with the routine crowd after an event, including traffic
signal retiming, and real-time traffic monitoring. In [11], the authors divided the
routine crowd problem into three sub-stages: leaving the venue, walking from the
venue exit to the bus station and being dispersed by means of transportation
at the bus station. In our work, we put our focus on the third stage where we
provide bus transit services to help disperse the massive people flow at venues
after large events.

In public transportation field, there are various works discussing about the
vehicle route planning problem with regard to three major topics: network de-
sign, line planning and timetabling. Unlike the these works, whose focus were on
the strategic planning under daily traffic situations and improving the service
quality during a long term period, our work put the emphasis on complementing
the existing mass transit system during the large events through establishing
the temporary bus links. Reasonable bus planning strategy in context of the
daily situations might not be applicable under the large event scenarios as the
passengers demand change dramatically during special hours. Moreover, daily
bus service that is suitable for the long term period is unnecessary with respec-
t to the special cases, since the impact results from the event only last for a
few hours. Therefore, we seek strategic planning for the transportation services
under special situations.

One of the special cases is the metro infrastructure disruption management
problem. Contingency plans were investigated in case of disruption, which can
be found in [4] and [12]. A survey did by Pender et al. on the various practices
to manage the disruption in [13] , which indicated that bus transit service is the
most common way to minimize the negative impact of the disruption.

In [7], Konstantinos et al. proposed a methodological framework for planning
the bus services. There were two key steps: bus routes planning on the network
and shuttle bus assignment over the selected routes. The optimal bus routes
were generated by using a shortest path algorithm and improved by a heuristic
approach. Following this framework, Jin et al. in [5] formulated the problem by
applying a different approach for generating candidate bus routes compared to
[7]. Though the the two-step framework makes the problem tractable to some
extent, separation of the two processes, namely candidate routes selection and
resources assignment, may cause some inconsistencies. Whereas we optimize the
planning problem in an integrated manner, which covers both processes in one
optimization model and guarantees optimality for the two simultaneously.



3 Normalized Flow Model for Routine Crowd at Facilities
with Ultra High Demand

3.1 Background

Defined formally, our problem can be represented by a graph incorporating ex-
isting public transport service lines, where stations are denoted as nodes and
connectivities denoted as directed links. An example can be seen in Figure la,
where there are three lines, each represented by a different line style. Stations
along all lines are represented as hollow nodes in Figure 1a, the node with ultra-
high demand is shaded as node s. Note that node s is not necessarily connected
to existing stations, and visitors at node s might need to find their ways to the
closest station. This might be feasible during normal circumstances, yet when
the demand is beyond planned capacity, this sudden inflow of demands might
overwhelm the service provided at the nearby stations.

Q Line ®
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/

ol
O ¢

Source node s

(a) An example of pubhc trans- ’ destinalion Omilsmtion ‘\\l’/r transfer station
portation network with a node
emitting ultra high demands. (b) An example of individual’s trip

over the transportation networks

Fig. 1: Problem description

3.2 Overview

The problem is defined on a graph G = (N ,E‘), where the set N represents
all stations, and the set F represents directed links connecting stations. Every
link is defined with a link-specific flow capacity, which will be defined next. In
this context, the bus transit service between two stations is essentially a way to
add capacity to the graph: if the selected two stations are not already connect-
ed, a link with corresponding flow capacity will be created; if the selected two
stations are already connected, its flow capacity will be increased accordingly.
The planning horizon is discretized into T' time units with equal intervals, where
T is large enough for all travelers to reach their destinations even without any



transit service. The planned bus transit service can be dynamic, which means
that it can change over time. The total number of buses that can be deployed is
bounded by B.

Let s € N be the source node where surge demands originate. To focus
only on the part of graph where the transit service can reach within reasonable
amount of time, we define N C N to be the set containing only nodes that
can be reached from node s within X minutes (X is empirically set to be large
enough to contain all nodes we will ever consider). Similarly, we define E C E
to contain all edges between nodes in N. The reduced graph G = (N, E) will be
our focus for the rest of the paper. To accurately estimate total journey time, for
a passenger who travels to a destination node d not in N, a transfer node [ € N
that’s closest to node d will be chosen as the transfer node, and the remaining
travel time will be accounted for from [ to d. In other words, the total journey
time should contain two components: (1) from node s to transfer node I, and (2)
from transfer node [ to destination d. For travelers whose destination nodes are
already in IV, the transfer time will be set to 0. Figure 1b illustrates an example
of individual’s trip over the transportation networks.

3.3 Normalized Flow Network Model

In classical flow network models (such as the one introduced in [7]), the primary
focus is on flows, and journey time cannot be derived from the model directly. To
enable the quantification of journey time from flow networks, we introduce time
periods to the model. To ensure that the model is still tractable after we introduce
the time dimension, we make following assumptions. (a). The time period has
equal length; (b). Train arrives with equal frequencies; (c¢). Travel time on each
link is equivalent to the train frequency. With these assumptions, we can then
simply recover journey time by summing up flows waiting at all nodes across all
time periods. However, having uniform time periods implies that the travel time
between any pair of nodes has to be set to the same (single time period) as well.
To enable such normalization, for each edge we will calculate the normalized
flow rate to replace capacity, which intuitively refers to the amount of flow that
can pass through the edge within a single time period. (To understand how this
works, assume that it takes 5 minutes for a train with the capacity of 100 to
travel from a to b, the normalized flow rate for edge (a, b) is then 20 per minute.)

Formally speaking, we define nifi to be the amount of flow waiting at node
u in time ¢, with destination node being d and transfer node being I. Similarly,
we define xij,du,t to be the flow going through the edge (u,v) in time ¢, with
destination node being d and transfer node being [. The normalized capacity of
the edge (u,v) in time ¢ is defined as ¢y, +. In other words, for time period ¢, at
most ¢, .+ units of flow can pass from u to v. The normalization procedure will
be described in detail in Section 3.4.



3.4 Deriving Normalized Flow Capacity

As highlighted earlier, total journey time is composed of two major components:
the time required to move from s to the transfer node [, which is denoted as d5,
and the time required to move from [ to the final destination d, which is denoted
as ¢yq. If d € N, ¢ 4 will be set to 0, otherwise it will be pre-computed. 5, on
the other hand, will be computed from the normalized flow network as follows:

Ser= > my% (1)
t,u,d,lu#l

The journey time can be computed as above since flow waiting at any nodes
other than the transfer node will require one time period to move forward. Next
we will explain how we can compute the normalized capacity.

on board time: A

capacity: €
t=0 ny=¢ ny,=0
t=1 ny=e-e/A ng=e/A
t=2 n,=€-2e/A, ng=2¢€/A
t=t n,=0 ny=€

Fig.2: An example to illustrate the normalization procedure.

Figure 2 shows an example with two nodes explaining the rationality of the
normalization procedure, where € is the capacity between the start point s and
destination d and A; is the travel time from s to d before normalization.

The purpose of the normalization procedure is to normalize the capacity
of the link to be the amount of flow that can pass through in one time unit.
The normalized capacity is therefore ¢/A;. After normalization, at the time step
t = 1, the total journey time, which consists of wait time and travel time, for
the first €/A; unit of flow who successfully pass through the link is (1 4 0) x
e/A; = €/A;. Similarly, the total journey time for the second €/A; unit of flow
is (14 1) x €/t = 2¢/t. Generally, the total journey time for the it"¢/A; unit of
flow is (1 — 14+ 1) x ¢/t = ie/A;. Thus the total journey time for all e units of
flow is Y'_, i€/t = (1 + t)e/2, which indicates the journey time over the link is
(1+A;)/2. To correct the bias, we can adding a constant Ay —(1+4;)/2 = (A —
1)/2 to the final average journey time via normalization. As in an optimization
model, adding constant to the objective function does not change the solution,
therefore, we maintain the calculation of d,; as formula 1.

Total travel time out of the boundary can be measured according to the num-
ber of passengers at transfer node [ at the last time step nﬁ% and the estimated



shortest travel time from [ to d: ¢; 4. Therefore, the total journey time that we

seek to minimize will be:
l,d
253,1 + an:T “Pra- (2)
s, 1,d

Finally, the bus transit service in our context can be thought of as either
creating a new edge with capacity «,,, or increasing the existing capacity c ¢
by . Q. is the normalized capacity that corresponds to a particular bus
service connecting u and v. The transit can be time dependent, yet every assigned
bus need to complete its current service before being re-assigned to serve another
route. Our goal is to come up with a bus transit service that would minimize
the above total journey time.

4 The Integer Linear Programming (ILP) Model for
Dynamic Bus Transit Service During Routine Crowd

As highlighted in the previous section, the objective of introducing bus transit
service in our paper focuses on reducing total journey time, not making up for the
lost capacity (as in the cases of disruption management). The major innovations
we introduce in our mathematical model are: 1) normalization of link capacity
to reflect uniform time period length, and 2) the separation of node delay and
link delay. With these two modeling innovations, we can now formally introduce
the integer linear programming model for optimizing dynamic bus transit service
during the routine crowd. In our model, the objective is to minimize the total
journey time experienced by all travelers.

. 1,d
min E 0s,1 + E n'r O1,d-
5,0 1,d

Let qg’t be the demand size that comes out of node s with destination d in time
t. With such dynamic demand, (3) is to ensure the flow conservation for demand
node s, which states that the flow at s in time ¢ is constrained by the flow in
time (¢ — 1) plus the difference between new demands and outgoing flow. Flow
conservation for other nodes is described by (4). The next two constraints, (5)
and (6), state that outgoing flow of a node u should not exceed the flow at node
u as well as the capacity of the edge taken.

> nkd Znst tad, - szut | Vs,t.d, (3)
l

ut+1_nut+z wut Zx'uj,v,t VU,Z,d,t, (4)
Zycuvt<n€ff5 Vu,l,d,t, (5)

Z xu v,t < Cy,v,t V’U,, l7 d7 t. (6)



The decision variable a’;;fL)T is set to 1 if bus k is assigned to link (s,u) in time
t. This decision will add additional capacity of as,, units to edge (s,u), and is
expressed in constraint (7).

kot
Csut = Csu,0 1 § Agu,r * Xs,uy Vs, u,t. (7)
k,r

In our formulation, each bus k is allowed to make one intermediate stop before
reaching its destination. In other words, a bus route should contain leg 1 and leg
2, and is denoted as index r. The dependency between two legs of the same bus
route is specified in constraint (8).

s,u,l = Ys,u,l w,s,0

abt o<phttl Zak’t_l Vs, u, k,t. (8)
w

Although our model allows the same bus to be assigned to different routes over
time, it cannot be re-assigned unless it has completed the current assignment.
This temporal relationship is ensured by both (9) and (10). b%! is a derived
decision variable that is set to 1 when bus k starts its current trip, and its value
would increase monotonically by 1 at a time, until it ends its current service.
After the service terminates, the value of bﬁ;fw will be reset to 0, and bus k£ can

be utilized in other service route, as noted by (11).

k.t k.t
bs,u,r < Tsu * Qg r Vs, u, k7, (9)
corktm1 | kit .

k.t 0 lfbsur T a0 = Tsus

. = o o Vs, u, k,t,r (10)
ST b=l g ght otherwise; R

s,u,r Aglu,r )
kit 4 oep Ryi—1 | jkit—1

E Ao =1 if Ao T0 0 =1 Vs,uk,t. (11)
w

Both (10) and (11) are nonlinear and have to be linearized. To linearize (10), we
introduce two additional variables y*? ~and A\*! . Let L and U be the lower

s,u,r s,u,r"
and upper bounds of b’j;fl’r, which equal 0 and 75 ,, —1 respectively. The nonlinear

constraint (10) can be re-written as:

bk,tfl 4 ak,t > - yk,t + Ts,u)\k’t

S,u,T s,u,r = ERIRG S,u,T
blsc,’i}l + a?,’i,r S Tsyu)‘lg,’ztt,r + ny,’vi,r
Yerr M =1
U(l - )\5:’2,7‘) > bl;:i,r (12)
(1 - U)A§,7Z,r < blsc:z,T - (blsc,’;i;“l + alsc,’z,r)
U —ybl,)=bbl  — @b+l )
y?,ﬁ,rv )\5,’5,7« € {07 1}

(11) can be linearized similarly, and in the interest of space, we will skip it.
Budget constraint (14) is to reflect the limited number of buses that are available.
The amount of demand with destination d is represented by S4 and (13) is to



make sure that in the last time period, all travelers must reach their respective
final destinations (either their true destinations, or the transfer nodes leading to
their real destinations that are outside of the boundary). Finally, the domains
of decision variables are listed as the last two constraints.

> nyq =B Vd, (13)
l
> abl,<B W, (14)
k,s,u,r
abt . €{0,1} Vs ukt,r (15)
b’;;}im € {0, 70y — 1} Vs,u,k,t,r (16)

5 Experiment

The effectiveness of our model is demonstrated by a real-world inspired scenario
in Singapore, where a newly constructed multi-purpose national stadium is de-
signed to host large events. In this section, we first estimate passengers’ travel
demands based on a real-world public transport dataset. We then perform com-
putational experiments to measure the effectiveness of our ILP model. We solve
the ILP model using CPLEX 12.5.

5.1 Dataset Description

The public transport dataset we obtained from our industry partners is called
EZlink! dataset, which contains each passenger’s boarding and alighting infor-
mation (the boarding/alighting stations and times). It contains over one million
card users’ tap records from 1 Nov 2011 to 31 Jan 2012. We use only records
from work days for consistency.

Inferring Destinations For each card holder h, we maintain a list of candidate
destinations and append the station s’ to the list if: (1) s’ is the first station that
h registered as boarding in the morning (before 12 : 00) of a day; or (2) s’ is
the last station that h has registered as alighting during a day after 16 : 00. The
intuition behind this filtering process is based on the assumption that majority
of public transport users would depart from homes in the morning, and leave
their workplaces in the afternoon. By aggregating records collected over three
months, we can obtain the frequency of visited stations from the list.

Figure 3 plots an example of the candidate list extracted from 4 card holders.
Card holders maintain a set candidate destination stations. It is observed that
most of the card holders (1,2,3) in the figure have one dominant station s’ whose
frequency is much higher than the rest. This pattern is common when we process
the dataset. We consider a station s’ to be the home location for card holder h
if its appearance frequency is over 80%.

! http://www.transitlink.com.sg/PSdetail.aspx?ty=catart&Id=1
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Fig. 3: Candidate destination list

If no dominant station can be detected in the list, we will try to cluster
stations based on their distance. If the combined frequency of all stations be-
longing to the same cluster is high enough, we will consider the home station to
be within the cluster. For example, card holder 4 in Figure 3d maintains a list
of 6 stations. Although no dominant station can be found, we can identify the
cluster of (s1,s2,s3) as they are less than 800 meters from each other. And the
combined frequency for these 3 stations is 90.3%, well above the threshold. In
this case, we conclude that all of them are close enough to card holder 4’s real
home and thus we use station sl as the representative home station. If dominant
home station cannot be found for a card hold after the above two checks, we will
remove this card from consideration.

In total, we have extracted |D| = 22 important destinations. The distribution
of each station s and the travel times from the national stadium sy to s €
D are shown in table 1. We treat the set of card users that we identified as
representative of the whole city.

Inferring Edge Capacity We obtain the aggregate number of passengers on
rail way link (u,v) at time ¢ from the EZLink dataset. The actual flow rate ¢, ,
on each link is extracted according to train frequencies. The edge capacity ¢, . ¢
in the model is represented by the additional flow rate, which is defined as the
spare space available for passengers and can be inferred from the designed flow
rate and actual flow rate .

Cup,t = ACyp — ACy v t- (17)



Table 1: Destination distributions.

station s percentage At s station s percentage At s
Yishun 7.6% 34  Aljunied 4.0% 10
Sembawang 7.4% 38  Simei 3.9% 21
Admiralty 6.9% 41 Hougang 3.8% 20
Yew Tee 6.0% 44 Boon Lay 3.8% 40
Ang Mo Kio 5.4% 24 Tiong Bahru 3.8% 16
Khatib 4.9% 32  Sengkang 3.7% 24
Tampines 4.5% 23 Bukit Batok 3. 7% 36
Lakeside 4.5% 37 Bukit Gombak 3.7% 38
Pioneer 4.3% 42 Woodlands 3.6% 44
Choa Chu Kang 4.0% 42  Clementi 3.4% 29
Serangoon 4.0% 16  Toa Payoh 3.3% 22

We assume that the capacity of each bus is 140. In our experiment, the capacity
of bus is small compared to the capacity on the links. To reduce the solution
space (and make the numerical experiments tractable), we assume that we will
assign 4 buses at a time.

5.2 The Scenario

Let the stadium be the demand originator (sg) with up to 30,000 people. Time
horizon is assumed to be T' = 12 and is enough for all passengers to reach their
respective destinations. Each time period refers to 6 minutes. In total, there are
19 nodes (stations) and 38 links within the boundary.

5.3 Effectiveness

We first discuss the effectiveness of our approach by comparing our ILP model
to a rule-of-thumb assignment policy. After consulting industry experts on this
problem from a sports complex, they recommend a rule-of-thumb assignment
policy to create a recurrent bus service line running between the sports facility
and a major nearby station (called Cityhall station). Finally, we also assume
that the egress for all 30,000 visitors would occur at the same time. Travel time
reduction for both ILP model and rule-of-thumb approach is shown in Figure
4a. Travel time decreases along the y-axis for both approaches as the number of
available buses increases along the x-axis. When the number of buses is set to be
0, it shows the very baseline indicating the situation of assigning no bus. On one
hand, in terms of the average waiting time reduction, our ILP model improve the
total journey by 15.7 minutes, i.e., a 24.1% reduction, compared to the no bus
situation. On the other hand, with a fixed budget, the journey time reduction of
our ILP model is larger than the rule-of-thumb method, which indicates that the
ILP model is more effective in planning the bus transit services. For example,
with 40 buses, the ILP model saves almost 4 minutes (8% reduction) for each
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Fig. 4: Effectiveness.

passenger compared to the rule-of-thumb assignment. This result is not surpris-
ing as the rule-of-thumb assignment only considers the approximate demand and
does not change its strategy over time as need.

Figure 4b depicts the number of passengers that arrives at their target trans-
fer nodes over time horizon under 3 different situations. Arriving at the transfer
node is the first step of the whole trip. When there is no bus services incorpo-
rated, passengers gradually approach to the target transfer node with a much
slower pace. Before ¢ = 7, when all things being equal, the naive rule-of-thumb
approach serves a increase of around 20% passengers when the planning horizon
is going up. This is a stark contrast to our ILP model, in which almost 82% of
passengers were sent to the transfer node in time t = 4.

One phenomenon observed from Figure 4b is that the ILP approach is not
only effective in sending people to the final destinations but also efficient in
sending passengers to the transfer node. However, the rate of sending passengers
towards the transfer node after ¢ = 4 decreases significantly. On the other hand,
such rate for the rule-of-thumb approach keeps the same even after ¢ = 4.This is
because the rule-of-thumb strategy requests all of the buses serving on the edge
from sg to the preselected station, Cityhall, hence passengers quickly diffuse to
the transfer node. When ¢t = 6, most of the passengers are sent to the transfer
node and serving on the route (s, Cityhall) does not help any more. Rest of
passengers who did not reach the transfer node would have to rely on regular
train services and this accounts for the slower movement pace during this t = 6
and t =T.

In our problem, besides the trip within the boundary, another significant
factor that affect the total journey time is the trip from transfer nodes to des-
tinations. In addition to the fact that the ILP model can disperse the crowd
to the transfer nodes quickly, it also assign passengers to the optimal nodes [



for making transfers. While for the rule-of-thumb approach, it fails to assign
passengers to the optimal transfers which lead to the situation that people may
take longer time to their final destinations.

5.4 Effect of Stop

In this section, we discuss the effect of having alighting stops in our bus transit
service. For simplicity, we assume that buses can only start their services from
the demand node sp and operate in 2 different ways: 1) creating a direct link
connecting two stations, and 2) creating a route with one alighting stop. We
assume that all 30,000 passengers exit the source node simultaneously at time
t=0.

We show the map illustrating the optimal bus routes taken by the above two
services in Figure 5. In Figure 5a, buses start from the national stadium (label
A with red circle) to a set of stations with label B. In figure 5b, buses start from
the national stadium and have one alighting stop labeled as B and then at the
same station, start their service towards the end of the service stop.

(a) Direct service (b) One stop service

Fig. 5: Bus routes

Figure 6 plots the average journey time experienced by passengers when the
number of employed buses varies along the x-axis. Intuitively, we observe that for
both services, the average journey time reduces as the number of bus increases.
Another observation from Figure 6 is that direct bus service is more effective
compared to setting an alighting stop under our scenario.

In our ILP model, buses serve for two major roles: (1) facilitate the movement
of crowds out of congested area near the demand node sy (which reduce the travel
time within the boundary); (2) adjust passengers’ trip and accommodate them
to the proper transfer node [ at lower-density area, which reduce the travel time
beyond the boundary. Easing the congestion near the demand node is the key
factor that affect passengers’ total journey time. Adjusting the transfer node
further improve passengers’ travel experience. As the number of buses is too
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Fig. 6: Direct service vs one stop service

small to handle the demand (48 buses provides services for over 2% passengers),
plenty of passengers are clogged near station sg.

6 Conclusion

In this work, we presented a novel normalized flow network approach to model
the routine crowd of a large-scale facility. With such movement model, we pro-
pose an ILP-based approach to generate the optimal bus transit services. The
results from a real-world scenario show that our ILP formulation obtains 24.1%
journey time reduction with only 40 buses providing services for 18.7% of the
passengers. Even compared to the rule-of-thumb strategy, where authorities set
a bus route based on experience, it is able to save 8% of the journey time for each
passenger. Furthermore, we learn that setting an alighting node along the bus
route is not a good choice when the number of available buses is not enough. The
future research is to seek more efficient approaches to handle problem instances
on a larger scale. In addition, we also look at extending the existing model to
provide online planning strategies.
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