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Generic Instance-Specific Automated Parameter Tuning Frarawork

Lindawati

Abstract

Meta-heuristic algorithms play an important role in sofyitombinatorial optimiza-
tion problems (COP) in many practical applications. Theeaavs that the perfor-
mance of these meta-heuristic algorithms is highly depeinaie their parameter con-
figuration which controls the algorithm behaviour. Selegtihe best parameter con-
figuration is often a difficult, tedious and unsatisfyingktad his thesis studies the
problem of automating the selection of good parameter cordtgns.

Existing approaches to address the challenges of paraocwtéguration can be
classified intane-size-fits-allandinstance-specifi@approaches. One-size-fits-all ap-
proaches focus on finding a single best parameter configarfdr a set of problem
instances, while instance-specific approaches attempid@érameter configurations
on a per instance-basis, based on identifying specific fesitof a specific problem.
Both approaches have their strengths and limitations, gi¢her offers ageneric ap-
proach for finding instance-specific parameter configunatio

In this thesis, we take a middle ground hybrid approach, whber goal is to per-
form instance-specific tuning via clustering of problemtamses using a problem-
independent feature. Our approach is similar to ISAC [64i}, ibstead of using
problem-specific features, we propose a problem-indeperidature from the local
search trajectory.

We are primarily concerned with the tuning of target aldoris that are local-
search based, where we make use of the local search trgjestohe feature, since
they can be obtained from any given local-search baseditdgowith a small addi-
tional computation budget. We show that there is a strongetadion between search
trajectories and good parameter configurations, and héaseng by search trajec-
tories allow a configurator to find parameter configuratioasell on clusters rather

than the entire set of training instances. We proposeg®reeric frameworks Clu-



PaTra andCluPaTra-1l that cluster a set of instances using search trajectorfesebe
configuring the parameters for each clusterCloPaTra, we use a simple pair-wise
sequence alignment technique, whileGiuPaTra-Il, we design two pattern mining
techniques to extract compact features for clusteringgeeg. Using our approaches,
we run extensive numerical experiments on three classioalgms : Traveling Sales-
man Problem (TSP), Quadratic Assignment Problem (QAP) atdC8vering Prob-
lem (SCP) and demonstrate encouraging results in botheclgstality and overall
computational performance.

A second contribution of this thesis is the implementatibmm automated pa-
rameter tuning system that comprisglsiPaTra, CluPaTra-Il, and other components
required for automated tuning. More specifically, we depedotoParTune, a web-
based workbench that enables algorithm designers to perotomated parameter
tuning with minimal effort. AutoParTune is constructed based on a three-tier archi-
tecture that integrates instance-specific parameter agatign with parameter search
space reduction and global tuning. We implement two sectethniques to prevent
Internet attacks and design a communication schema tolisstabmmunication be-
tween components. We apply this workbench to tune two prodkeom industry: the
Aircraft Spares Inventory Optimization Problem and thembéd?ark Personalized In-
telligent Route Guidance ProblerautoParTune shows a better overall performance
compared to the default configurations.

Finally, as a bridge for future works, we consider an extamsif the above instance-
specific tuning approach to tune population-based algostsuch as Genetic Al-
gorithms. We introduce two preliminary idea®eTra and PaRG which are de-
signed based on generic features pertaining to populatinardics in a Genetic Al-
gorithm. Preliminary experiments with the Two-Populat®anetic Algorithm have
given promising results in terms of the overall computadigerformance.

In summary, we show in this thesis that our approach yielgisifscant improve-
ment in performance compared with the pure one-size-fitseafigurators on both

classical and industry problems. We observe that our apprparforms significantly



better or equal to several existing instance-specific cardigrs which use problem
specific features. Based on these results, we claim thaiMéthodologically divid-
ing the instances into smaller clusters before tuning plewibetter parameter con-
figurations; (2) The Search Trajectory is a suitable gerfeature to cluster similar
instances for tuning process; (3) Our web-based workberwhdes an effective tool
for tuning complex optimization problems; and (4) There agble extensions for

automated parameter tuning of population-based algosithm
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Chapter 1

Introduction

1.1 The Journey for a High-Performance Algorithm

In the last few decades, there has been a dramatic rise ignilegivarious meta-
heuristic algorithms to solve computationally difficult @binatorial Optimization
Problems (COPSs) in many practical applications. Meta-s&aralgorithms, such as
Iterated Local Search (ILS), Tabu Search (TS) and SimulAteukaling (SA), are
basically high-level procedures that coordinate simpbrae methods and rules to
find good (often optimal) approximate solutions [23]. Eveaugh meta-heuristic al-
gorithms do not guarantee global optimality, they gengnatbvide good solutions
within reasonable time [20].

Creating a simple meta-heuristic algorithm for a given COPften easy. All
one needs to do is to instantiate certain meta-heuristippooents, set some param-
eters with (usually) default values, and run the algorithmilee given instances [47].
However, to design a high-performance meta-heuristicrélga in general is dif-
ficult [60]. One fundamental aspect that affects the peréoroe of meta-heuristic
algorithm is its parameter configuration. For example, auTabarch algorithm will
perform differently with different tabu lengths and a Genétigorithm will perform
differently with different mutation rates. Previous seslhave indicated that finding

performance-optimizing parameter configurations of netaristic algorithms often



requires considerable effort [17, 3, 7, 60]. In [3], it isteththat only ten percent of
development time is spent on algorithm design and testimgewhe rest is spent on
fine-tuning the parameter settings which, in many casesri®pned manually and
in an adhoc fashion by the algorithm designer.

Given a meta-heuristic algorithm to solve a given COP, ib &ilas been observed
that different problem instances require different par@meonfigurations in order
for the algorithm to find good solutions [39, 90, 115]. Withnmerous parameter
configurations and a large number of instances, finding @anos-specific automated
tuning manually not only takes a lot of time and effort, dué®®enormous parameter
configurations space, but also requires substantial krimelef the algorithm and the
problem itself. This tedious labour-intensive work giviseto the need farutomated
parameter tuningAutomated parameter tuning is useful in a variety of cotstesuch
as improving meta-heuristic performance and trading hutinaa with machine time
[58]. Furthermore, it has been shown that automated paesrmeting often leads to
better performance compared to manual parameter tunifjg [60

There are several existing works on automated parametegtalso calledau-
tomated algorithm configuratioor automated parameter optimizatijpwhich can be
classified into two partsone-size-fits-alandinstance-specific On one hand, one-
size-fits-all approaches focus on finding the best pararnetdiguration for the entire
set (or distribution) of problem instances [17, 60, 71, A&, These approaches use
average quality or other statistical measures to deterthméest parameter configu-
ration. One common shortcoming of these approaches isitéaingle configuration
produced may not be effective for large and diverse ins&fttie

On the other hand, instance-specific approaches attemgleict the best parame-
ter configuration for given instances [90, 56, 57, 64] usingbfem-specific features.
Unfortunately, finding features itself is often tedious awmain-specific, requiring
re-examination of features for each new problem. As an el@nhpstance-Specific
Algorithm Configuration (ISAC) [64], an instance-specifig@ithm configuration

for finding instance-specific parameter configuration fdsiteary algorithms, uses



AutoParTune

\ One-Size-Fits-All Configuration** |
\ Parameter Search Space Reduction \

Instance-Specific Tuning

Sequence | CluPaTra PeTra*
| CluPaTra-ll - SufTra |
Graph| | CluPaTra-ll - FloTra | | | PaRG* |

Local-search-based Algorithms  Population-based Algorithms

* = Have not been implemented in AutoParTune
** = Using Existing One-Size-Fits-All Approaches

Figure 1.1: Summary of PhD Contributions

problem-specific features to identify characteristicshef problem instances. In [64],
ISAC uses 24 features for Set Covering Problem [79] and lfhifeafor Satisfiability
Problem [115].

To date, no single approach is generic enough to providanustspecific param-
eter configurations. A one-size-fits-all approach is genand may be applied to
tune various applications in various COPs, but only providesingle best parameter
configuration. On the other hand, an instance-specific @gprtends to use problem-

specific features that make the approach less general.

1.2 Summary of Contribution

In this thesis, we propos€luPaTra and CluPaTra-Il which are problem-
independent automated parameter tuning frameworks, based on clugtefinn-
stances using a new set of generic features extracted fre@glorithm’s search tra-
jectory. The search Trajectory is defined as the path thata kearch algorithm
follows as it searches from an initial solution to its neighbfrom one iteration to
the next. We also implement a web-based workbench to enhlaacesability of auto-
mated configurators. We demonstrate extensions of our appan population-based
algorithms. Thus, our major contributions, as illustraiteéig. 1.1, are summarized

as follows:



e CluPaTra: Instance-specific Automated Parameter Tuning via Trajecory

Clustering

We propose ageneric instance specific automated parameter tuning frame-
work by adopting a cluster-based approach for local-sebaged algorithms.
We also introduce the notion of an instance search trajge®ithe problem-
independent feature and represent it as a directed sequélecapply a simple
yet effective technique of sequence alignment to calcaaienilarity score be-

tween a pair of instances based on its problem-indepeneature.

e CluPaTra-II: Pattern Mining Approaches for Instance-specific Automatel

Parameter Tuning

To boostCluPaTra’s computational performance and improve the cluster qual-
ity and the quality of solutions, we introduce another tegha for clustering
instances. We model the features extraction in generiarncst specific parame-
ter tuning as a frequent pattern mining problem and desigmisw algorithms:

SufTra for search trajectory sequence dfdTra for search trajectory graph.

e AutoParTune: Web-based Automated Parameter Tuning Workbench

To provide better decision support for tuning, we design &-vased work-
bench that integrateéSluPaTra andCluPaTra-II. This workbench makes use of
the parameter-space reduction method in [45] and the globatsize-fits-all)

parameter tuning in [60] and [19].

¢ Instance-specific Tuning: Extension to Genetic Algorithms

We extend our methods for single point local search to pajumieased algo-
rithms by introducing two new techniqueBeTra andPaRG, based on generic

features pertaining to population dynamics.



1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter @flgrreviews the back-
ground knowledge related to automated parameter tunirtggme including a formal
definition of the problem and notations used in the rest &f tihesis. In this chapter,
we also review the recent trends of automated parametergui@hapter 3 presents
CluPaTra: our generic framework for instance specific automatedmatar tuning
that uses a simple yet effective model to calculate instamoéarity using sequence
alignment and introduces the problem independent featasedon the algorithm’s
search trajectory. Chapter 4 discusses the enhancem&iuBaTra by modeling
the feature extraction as a pattern mining problem and @eptwo new approaches,
SufTra andFloTra. Chapter 5 then shows how our framework can be implemented
onto a web-based automated parameter tuning workbenchalpter 6, we present
the extension of our approaches for population-basedithgas with two preliminary
ideas based on population dynamics. Finally in chapter lGomelude our work and

provide potential future directions.
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Chapter 2

Background

Automated parameter tuning is a rapidly evolving field thatssto overcome the lim-
itations and difficulties associated with manual paramiteing. Many approaches
have been introduced to address this problem, includinghetristic and machine
learning. The successful implementation of these tuning@grhes for many Com-
binatorial Optimization Problems (COPs) emphasize itsaotjpn meta-heuristic al-
gorithm performance.

In this chapter, we provide background materials used ferr#ést of this the-
sis and discuss related works on automated parameter tuiVegstart with a brief
introduction of the Combinatorial Optimization ProblemdE) and its associated al-
gorithms. We then provide a review of meta-heuristic aldpons for COP and the
challenges in designing meta-heuristic algorithms. Wetinae to formally define
(instance-specific) parameter tuning problems and intteats notations. We discuss
existing approaches for automated parameter tuning arityfpravide a summary of

the chapter.

2.1 Combinatorial Optimization Problem

Many problems, both theoretical (classic) and practicalftife), focus on finding
the”best” solution [89]. These problems can be categorized into tywegy problems

whose solutions are encoded with continuous variablespartdlems whose solutions



are encoded with discrete variables. While both categgregide interesting mate-
rials for research, our research is oriented solely on tierle&Such problems are also
called Combinatorial Optimization Problems (COPs). In @@Ps, we are looking
for an optimal solution from a finite solution set which isitygdly an integer number,
a subset, a permutation or a graph structure. As in [20], GJBrimally defined as

follows:

Definition 1 (Combinatorial Optimization Problem [COP]) Given a set of vari-
ablesX = {x,...,z,}, a variable domainD for each variabler in X, constraints
among variables, ambjective functionf to be minimized (or maximized) where
f : Dy x ..x D, — R, a set of all possible feasible assignmests{s =
{(z1,v1), ..., (xn,vn) }v; € D;, s satisfies all the constraints the COP (S, f) is to

find a solutions* € S wheref(s*) < f(s)Vs € S.

S is also called a search (or solution) space or fithess lapdseaere each ele-
ment inS can be seen as a candidate solutigns called a globally optimal solution
of (S, f) and the set o6* C S is called the set of globally optimal solutions. Find-
ing a globally optimal solution to some problems may be @maging, but it is often
possible to find a solutiof which is relatively best in itsieighborhood89]. The
neighborhood of solution is a set of solutions that are "close” in some sense to so-
lution s. The closeness is defined using a neighborhood structuneas2c— change
neighborhood structure wherg,(s) = {g : ¢ € S andg can be obtained from
by swapping two variables iX from s}.The best solutios is called locally optimal

which is defined as follows:

Definition 2 (Locally Optimal [LO]) Given a COP(S, f) and neighborhoodV, a
feasible solutiors € S is calledlocally optimalwith respect taV if f(s) < f(g) for

all g € N(3).

COPs have many application in real-life, e.g. the TraveBadesman Problem
(TSP) in VLSI chip fabrication and X-ray crystallography[6the Quadratic Assign-
ment Problem (QAP) in backboard wiring and campus planri2ig, the Set Cover-
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Table 2.1: Performance Comparison of Exact and Non-exagirhms

Algorithm Best Found Objective Value Time (sec)
Exact Algorithm (Branch and Bound) 1,150 2,947.32
Non-Exact Algorithm (Meta-heuristic) 1,252 1.90

ing Problem (SCP) in crew scheduling and railway applicaf2b] and the General-
ized Assignment Problem (GAP) in fixed-charge plant locatitodels and resource
scheduling [28]. With its many practical uses, it is impatt have good solvers for
COPs. Unfortunately, finding a good solver for several C@Rsreal challenge due to
the hardness of these COPs. Many important COPs are NP (Mondeistic Poly-
nomial time) complete [40] where a complete exhaustive esration solver might
need exponential computation time in the worst-case [28],this is the motivation

for research in optimization algorithms.

2.2 Algorithms for Solving COPs

In general, algorithms for solving COPs are classified imto types: exact or non-
exact algorithms [20]. Exact algorithms are guaranteechtbdin optimal solution in
bounded time, whereas non-exact algorithms sacrifice theagtee of finding opti-
mal solution and settle for obtaining good quality solusi@m a significantly reduced
amount of computational time. For many large instances cthifiplete problems,
such as TSP where the largest instance solved is of sizeBgl9@nd QAP where
the largest instance solved is of size 40 [22], exact algoritrequire a lot of time to
generate the optimal solution due to their very high comjpartal time. Therefore,
we turn to non-exact algorithms for a good enough solutichiwia reasonable com-
putational time. An example of exact and non-exact algorigerformance for a QAP

instance with the size of 15 are shown in Table 2.1.

2.2.1 Exact Algorithms

For some COPs, it is possible to design algorithms that grafgiantly faster than

a traditional exhaustive search, although still not in polyial time. This class of
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algorithms are called exact (or complete) algorithms. Tdreycomplete in a sense that
the existence of feasible and then optimal solution(s) eaadtermined with certainty
once the algorithm has successfully terminated. Exampflexact algorithms are
Branch and Bound (B&B) [110] and Constraint Programming)({S8].

The B&B algorithm searches the complete space of solutiona §iven problem
to find the best solution. However, explicit enumerationdsmally impossible due to
the exponentially increasing number of potential solwtiofhe use of bounds for the
function to be optimized combined with the value of the coti@est solution enables
the B&B algorithm to search parts of the solution space omiglicitly.

CP works basically by stating the variables in the form ofstoaints. The con-
straints used in CP are of various kinds: those used in @nsgatisfaction problems
(e.g. "A or B is true”), those solved by the simplex algoritheng. "x = 6”), and oth-
ers. Constraints are usually embedded within a programiaimguage or provided
via separate software libraries.

Although exact algorithms are able to find optimal solutighgy are faced with
computational bottlenecks especially for large instarafellP-complete problems.
This often leads to computational times that are too highpfactical purposes. If
optimal solutions cannot be achieved, the other posgibgito trade optimality for
efficiency. In other words, the guarantee of finding optinwligons can be sacri-
ficed for the sake of getting good solutions in polynomialginh class of non-exact

algorithms seeks to obtain this goal.

2.2.2 Non-Exact Algorithms

In non-exact algorithms, optimality is not guaranteed adyquality solutions can
be found in polynomial time (either in the worst case or orrage) [32]. In practical
applications, we are often faced with extremely large msts with very limited time,
for that near-optimal solutions are often good enough. kéndixact algorithms, non-
exact algorithms are unable to confirm the existence of amapsolution once they

have successfully terminated. We also cannot measure gwusd quality of the
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found solutions with respect to the optimality. In the norstance of optimality, the
goodness of found solutions are measured subjectivelydglgorithm developers or
users.

Non-exact algorithms can be divided in two: approximatiod émeta-)heuristics
algorithms. Approximation algorithms have a proven perfance where the solu-
tion is within an approximation ratio af from an optimal solution. Examples of ap-
proximation algorithms are MST-Prim algorithm for 2-apgiroation TSP and greedy
approximation algorithm for SCP [32].

Heuristic algorithms are defined as simple techniques winchgood solutions at
a reasonable computational cost (low-order polynomia¢jifd7]. They are usually
based on the characteristics of the good solutions. Therrajtation of heuristic
algorithms is that they have the tendency to explore only@lssearch space and are
easily trapped in a local optimal space. To solve thesedimoms, a more effective
method can be implemented to guide the heuristic algorithrayhat are known as
meta-heuristic algorithms.

Meta-heuristic algorithms are iterative generation psses which guide a basic
heuristic methods by intelligently combining differeninoepts for exploring and ex-
ploiting the search space [20]. Most meta-heuristic ators have learning strategies
that are used to structure information in order to find effittienear-optimal solutions.
Although meta-heuristic algorithms do not guarantee oglityy they provide good
enough solutions in relatively short computational timeamples of meta-heuristic

algorithms are Tabu Search (TS) [42] and Genetic Algorit@A)[82].

2.3 Meta-heuristic for Solving COPs

Meta-heuristic algorithms have been introduced to solvayr@OPs such as Lin-
Kernighan algorithm for TSP [52] and Robust Tabu Searchrélga for QAP in
instances with essentially no strong structure [104] amchted Local Search for QAP

in more structured instances [101]. Generally, meta-s&algorithms are classified
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into two types: local-search-based and population-bageid. classification is based

on the number of solutions used and explored at the same time.

2.3.1 Local-search-based Algorithms

Local-search-based algorithms (or trajectory algoritim|®0]) are a class of algo-
rithms that work on a single solution for each iteration. &lesearch based algorithms
start from an initial solution and move to a better solutiorhie search space by ap-
plying local changes, until a solution deemed optimal isnbor a maximum time
allowed is exceeded. These solutions’ movements form adi@y in the search
space. Characteristics of the trajectory provide inforomatbout the behavior of
the algorithm and its effectiveness with respect to theams¢ that is tackled [20].
The local-search-based algorithms used in this thesis iaral&ed Annealing (SA)
[68, 29], Tabu Search (ST) [42], and Iterated Local Searc8)[77].

Simulated Annealing (SA) is a probabilistic method propmbse[68, 29] which
is known to be the oldest meta-heuristic algorithm and trst firat has an explicit
strategy to escape from local minima [20]. It is modeledratite physical process
of annealing metals (cooling molten metal to solid minireakrgy state). SA allows
worse moves (uphill moves) in order to escape from a locahegtusing a certain
probability. In the beginning of the search, the probapifitr uphill moves is high to
allow search space exploration. The probability is slovdgréased to lead the search
to a convergence (local optimal). SA works by first genegatm initial solution
and initializing a temperature paramefér For each iteration, it randomly samples a
solutions’ based on the neighborhood structure of the current solytenmd accept
the new solution based on the objective functio’ok and a probability which is a
function of T'. The temperaturé’ is decreased based on a cooling schedule. A slow
cooling schedule guarantees the convergence to a globalapBut for some of the
COPs the cooling schedule is too slow [20].

Tabu Search (TS) is the most cited and used meta-heurigtcitdm for COPs

[20]. TS works by maintaining a history list of forbidden nesv(called tabu list)
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[42]. Tabu list keeps the most recently visited solutiond &orbids moves towards
them to prevent endless cycling and forces the search tomxfiie search space by
accepting even uphill moves. A set of aspiration criteridefined to overwrite the
tabu conditions where the selected solutions are betterttfeacurrent best one. TS
starts by generating an initial solution. At each iteratiba best solution from the
neighborhood, which is not in tabu list, is chosen as the naweat solution. This
solution is then added to the tabu list and one solution irtdbe list is removed in
FIFO order. A tabu move is allowed if the aspiration criteara met. The length of
tabu list is controlled using the tabu list parameter.

Iterated Local Search (ILS) is a simple but powerful metartstic algorithm [77].
It starts from an initial solution and applies a local searotil it finds a local optimal.
ILS then perturbs the solution and restarts the local sedrbbre are four important
components of ILS: initial solution generation, local starmerturbation and accep-
tance criteria. A good initial solution is very importanta® to arrive at high-quality
solutions as soon as possible. The standard way to genkeateitial solution is ei-
ther randomly or by greedy construction. The local searghrghm can be treated as
a black box but ILS performance is quite sensitive to the @hoif this local search.
In practice, there are many different local-search-bakgatithms that can be used as
the local search component. The perturbation is very ingpbto guide the search in
ILS. Too small perturbations might not enable ILS to escapmfthe basins of attrac-
tion while too strong perturbations would make ILS similaatrandom restart local
search. The last component, acceptance criteria, is usamhtool the search balance
between intensification and diversification. Intensifizatiefers to the exploration of
the accumulated search experience so far while diversditegfers to the exploration

of the search space [20].

2.3.2 Population-based Algorithms

In population-based algorithms, each iteration involveseta(i.e. a population) of

solutions. Population-based algorithms provide a natumédinsic way to explore
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the search space [20]. The most studied population-bagedithins for COPs are
Evolutionary Computation (EC) [8].

Evolutionary Computation (EC) is inspired by nature’s dafiy to evolve living
beings well adapted to their environment. An EC uses opexatdled recombination
or crossover to recombine two or more individuals to procume individuals. Other
operators in EC are mutation, inversion, and selection.nipta of EV is Genetic
Algorithm (GA) [82].

Genetic Algorithm is a meta-heuristic algorithm that mofresn one population
of chromosomes (e.g., strings of ones and zeros, or bitshé&wgpopulation by using
"natural selection” together with the genetics-inspirgei@tors of crossover, muta-
tion, and inversion [82]. Each solution is represented biiramosome that consists
genes (e.g., bits) as an instance of a particular allele, @.gr 1). Chromosome is
an abstract representation of the possible solution. Baanosome has a value cor-
responding to its fitness function, which evaluates how gbedcandidate solution
is in terms of its objective value. The optimal solution ig thne which maximizes
(or minimizes) the fitness function. A set of reproductioreigtors is then applied
directly on the chromosomes to perform mutations and reauetibns.

As described in [98], the GA works as follows. It starts by gexting an initial
population of chromosomes. This first population must odfevide diversity of ge-
netic materials which is generally generated randomly.nTliee GA loops over an
iteration process to make the population evolve as illtestian Fig. 2.1. Each iteration

in GA consists of the following:

1. Selection;where chromosomes in a population are selected as parents-fo
production process. The selection process is done randasinlg a probability
function depending on its relative fitness function. Thedjobromosomes are

more often being selected than poor ones.

2. Reproduction; in which new offsprings are created by selected parent chro-

mosomes using crossover mechanism. Crossover excharyes tsu(bits) of

two selected chromosomes, mimicking biological recomibamabetween two
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Figure 2.1: Genetic Algorithm Cycles.

single-chromosome organisms. To diversify the offsprimgstation and inver-
sion mechanisms may be applied after crossover. Mutatiotoraly changes
the allele values of some locations in the chromosome winlersion reverses
the order of a contiguous section of the chromosome, thuisargging the order

in which genes are constructed.

3. Evaluation; at this stage, the fitness function of the new offsprings iade

evaluated.

4. Replacement;which is the last step where chromosomes from the old popu-
lation is replaced by new offsprings according to the "swaiof the fittest”

procedure.

2.3.3 Challenge in Designing Meta-heuristic Algorithms foCOPs

Most often, even a quick-and-dirty implementation of a riegaristic is able to obtain
fairly good results for solving COPs [16]. All one needs toislto instantiate certain
meta-heuristic components, set some parameters withlfylsiefault values, and run
the algorithm on a set of COP instances [47]. But if stat¢hefart results are needed,
some extra efforts are often necessary to optimize the hetastic algorithm.

One factor that the meta-heuristic algorithm effectivensges upon is its pa-
rameter configuration. Different COP’s problems requiféedént configurations so
that meta-heuristic algorithms perform well. It also hasrbebserved that different

instances from certain COPs require different parametefigiarations in order for
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Table 2.2: The Effect of Three Different Parameter Configars on 4 QAP in-
stances.

Instances Config. I Config. Il Config. I
tai40a 1.4 1.0 2.0
tai60a 1.7 1.6 2.2
tai40b 9.0 9.0 0.0
tai60b 2.1 2.9 0.3

the algorithm to find good solutions (e.g. [39, 90, 115]).I€aB.2 provides an exam-
ple of the performance from three different parameter conditions for 4 Quadratic
Assignment Problem (QAP) instances as presented in [48]eTa.2 shows that the
first 2 instances perform better in Configuration Il while tlest perform better in
Configuration Ill. The differences between the performarare significant.

Despite its importance, finding the optimal parameter camétjon is often a
difficult, tedious and unsatisfying challenge. Previouslsts revealed that finding
performance-optimizing parameter configuration of medarlstic algorithms often
requires considerable efforts [17, 3, 7, 60]. In [3], it is@ktated that only 10% of
the time is spent on algorithm designing and testing; wiigerest of the development
time is spent on fine-tuning the parameter configurationmdny cases, this process
is performed manually by the algorithm designer.

With the large parameter configuration space and the largegauof instances,
finding a configuration, especially instance-specific camfigjon, manually takes a lot
of time and effort due to the enormous possible number ofrpatar configurations-
instances matching. As an example, for a target algorithth #vparameters, where
each parameter has 20 possible values, 100 instances, aamdiag the time needed
to run the target algorithm for each instances is 1 secondatwally try all parameter
configuration will need approximately 185.2 days. Thus, arsautomated parame-

ter tuningmethod is needed.
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2.4 Automated Parameter Tuning Problem

The automated parameter tuning problem is informally defe& given a paramet-
ric algorithm with a set of parameter configurations and aoéétaining and testing
instances, find a parameter configuration under which tharithgn achieves the best
possible performance. As shown in [60], the tuning scenariidustrated in Fig. 2.2.
Automated parameter tuning is useful in a variety of corgiestich as improving meta
heuristic performance and trades human time for machine [&8]. Furthermore, it
has been shown that automated parameter tuning often ledughiy better perfor-
mance compared to manual parameter tuning [60]. To avoifusan between an
algorithm whose performance is being optimized and an dlgorused to tune it, we
refer to the former as tharget algorithmand the latter as th@onfigurator Before we
define the problem in greater detail, we introduce some iooimind the performance

metric.

Let:
e A: be the target algorithm with number of parameters to be tuned

I: be the given set of (training and testing) problem instance

x;. be the parameter that can assume a value taken from a (ie&@er value)

interval|a;, b;]

X: be the parameter configuration (i.e. a point in the paransptece)

O: be the feasible region of all parameter configurationsgpeter space)
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e Best: be the best known value for each instange/. For benchmark instances
with a known global optimal or best known value, we use i0d31’, while for

new instances, we use the target algorithm’s best foundignlu

We measure the target algorithm performance based on thig/agpighe solutions.

The performance metric is defined as follows:

Definition 3 (Performance Metric [H]) Leti be a problem instance, andx(i) be
the objective value of the corresponding solution for ins&i obtained by a target
algorithm A when executed under configurationLet Best (i) denote the best known
value for instance. H,(:) is formulated as:

(| Best(i) — Ax(i)])

(i) = Best (i)

(2.1)

Unlike standard optimization problems, functidhis a meta-function o and it
is highly non-linear and very costly. Using the performamegricH, we formally de-
fine the parameter tuning problem for the target algorithai thinimizes its objective

value as follows.

Definition 4 (Parameter Tuning [PT]) Given a set of instances a parameter con-
figuration spaceO for a target algorithmA and a performance metrié{, the PT

problem can be formulated as an optimization problem agvast

X" = argmin Hx- (i) (2.2)

subject to x* € © (2.3)

The central topic of this thesis revolves around the ingaspecific parameter
tuning problem. The purpose of tuning is not to find best caméigon with good

performance for all the problem instances, but to find thdigaration that fits best
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for each instance. Using the same notation as for the paearugting problem, we

define the instance-specific parameter tuning problem asiisl

Definition 5 (Instance-Specific Parameter Tuning [ISPT]) Given a set of instances
I, a parameter configuration space for a target algorithm.4 and a performance
metric H, the ISPT problem is to find a parameter configuratiari € © for each

i € I such thatH,- (i) is minimized oveP.

Instead of finding a parameter configuration for each ingatiwe ISPT prob-
lem can be approximated in a cluster-based manner in whiblgmn instances are
grouped into clusters and the parameter configuration ispated for each cluster
[64]. We adopt this approach and focus on finding the besterland parameter con-
figuration for each instance. We define the problem of cluséesed instance-specific

parameter tuning as follows.

Definition 6 (Cluster-based Instance-Specific Parameter Tuing [C-ISPT]) Given
a set of instances$, a parameter configuration spaée for a target algorithmA, a
performance metrid{, the C-ISPTproblem is to find a clustering of all instances
of I and a parameter configuration € © for each cluster ofr such that () cluster
quality of 7 is maximized; and (Il) the averadg¥, (i) for each cluster is minimized

overo.

We measured the cluster quality usiegtrinsic method [51] for instances that
has ground-truth cluster&xtrinsic methods compare the clusters against the known
class labels oground-truthclusters (i.e. the set of clusters which represents the
ideal/optimal clustering). We define the cluster qualitya®ws:

Let this score be denoted &s, which is the average value of thraining clusters
quality scoreQ,,..., andtesting instances mapping scatk., defined as follows:

Let I (resp.l;) be a set of training (resp. testing) instancéde the set of clusters
generated from the training phase ardbe theground-truthclusters. Each cluster in
c € C has an associatdtbmeclusterc, € C, which contains the largest number of

instances contained in(ties broken arbitrarily).
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Definition 7 (Training Clusters Quality Score Q,,...,) For each clusterc € C, let
mazx(c) count the number of instances in the cluster which also lgetogether in
the associated home cluste®,..,, is defined as the sum ofax(c) over allc € C

divided by the number of instances/in

Definition 8 (Testing Instance Mapping ScoreQ,.;) For each instanceé € [;, we
say that; is "matched” if it is mapped to a cluster € C' whose home clustey, € C,
also containg. Q.. is defined as total number of such matches divided by the numbe

of instances in;.

2.5 Literature Review on Automated Tuning

The quest for finding a technique for smart automated paemating started since
the early 1990s. Some approaches are designed for a spagjet algorithm on a
specific problem such as the fine-tune technique for thedmrmethod on block relo-
cation problem [26] and Tabu Search (TS) on the telecomnatioits network design
problem [113]. In the corridor method on the block relocatwoblem, [26] tunes the
parameters using Response Surface Methodology (RSM),l&n@in technique in
Design of Experimental (DoE) methodology. RSM represdrggparameters as a pla-
nar model and uses the steepest ascent method to changesaimefes to a promising
range until it finds a local minimum. While in [113], they eropltwo standard sta-
tistical tests (Friedman’s test and Wilcoxon'’s test forrpdiobservations) to improve
a specific TS algorithm in [112] for telecommunications natkvdesign. Although
these two techniques are general and can conceptually ipgeddan different target
algorithms, applying it to target algorithms is not as siepl

Rather than focusing on a specific target algorithm, someoagpes attempt to
find the best configuration for generic target algorithmglisas [33, 17, 3, 58, 90,
64]). They can be used to fine tune target algorithms withgoateal or numerical

parameters. In this subsection, we discuss the currermdren these approaches.
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2.5.1 Classification of Current Approaches

There exist different ways to classify and describe thesnimpproaches in automated
parameter tuning. Depending on the aspects in which thepeatifferentiated, sev-
eral classifications are possible, each of them being that @flsspecific viewpoints.

We briefly review two aspects to classify the current appneac

One-Size-Fits-All vs. Instance-Specific

The most obvious way to categorize the current approachbased on the strat-
egy to handle diverse instances. There are one-size{figp@toaches (or instance-
oblivious in [64] or global tuner in [71]), like F-Race [178Jland ParamILS [61, 60],
Vs instance-specific approaches such as auto-WalkSAT {@DISAC [64].

One-size-fits-all approaches attempt to find the paramegstdting in the best
average performance of a target algorithm on all trainirsainces. They ignore the
instance diversity and use a specific statistic measurefaech as mean or standard
deviation) measured over the entire set of problem ins&ntkis is the main draw-
back of one-size-fits-all approaches because not all instayield to the same param-
eter configuration [107, 84]. This observation supportsNibeFree Lunch theorem
[111] that states that no single algorithm can be expectguetform optimally over
all instances.

With this observation, instance-specific tuning approaaigempt to generate pa-
rameter configuration for each instance by computing a sketadfires from the train-
ing instance set. The instance-specific tuning approachesdly assume the existence
of a set of instance-specific features for different COPsh @5 [64] uses 24 specific

features from [79] for the Set Covering Problem.

Model-based vs Model-free

Another aspect that can be used for classifying currentagmbres is the existence of
a statistical model. Approaches that use statistical nsomefuide the tuning pro-

cess are called model-based approaches such as CALIBRAJ3MIAC [58], while
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Table 2.3: Classification of Current Approaches in Autordd&®arameter Tuning

)

and HyDra [114]

Category Common Technique Example
Model-Free Machine Learning or Metar F-Race [17, 18] anc
One-size-fits-all Heuristic technique ParamiILS [61, 60]
Model-Based | Design of Experiment of CALIBRA [3] and
statistic function SMAC [58]
Model-Free Clustering ISAC [64]
Instance-Specific Model-Based | Regression and interpolation Auto-WalkSAT  [90]

other approaches that do not have a specific model for th@mgyrocess are called
model-free like ParamILS [61, 60] and GGA [7]. Some modekfapproaches can
handle a large number of numerical and even categoricafpess. Model-based ap-
proaches, on the other hand, offer statistical insightstime correlation of parameters

with regard to algorithm performance.

Using the following two aspects: (1) the strategy to handlerde instances and (2)
the use of statistical models to explain the tuning prooessdivide the current ap-

proaches into four groups as summarized in Table. 2.3.

2.5.2 Analyzing Different Approaches

In this subsection, we discuss recent and notable diffeggmtoaches for each cate-
gory. We start by introducing one-size-fits-all approachil and without statistical
models. We continue with the instance-specific approadieghen give remarks for

instance-specific approaches.

One-Size-Fits-All Model-Free

An early approach in this categoryksRace proposed by [17]. F-Race is inspired by
the Al machine learning literature for "model selectionaigh cross-validation”. F-
Race works by empirically evaluating a set of candidate gonditions and discarding
bad configurations as soon as statistically sufficient exddes gathered against them.
When F-Race was first introduced in [17], candidate configoma were obtained by

a full factorial design on parameter space which contaihsashbinations of values
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for a set of discrete (or discretised) parameters. Thisregvémits the size of the
configuration space such that F-Race can only be used toduet falgorithms with
a small number of possible parameter configurations.

Two more recent variants of F-Race, Sampling F-Race andtiNerF-Race, have
been introduced to address this limitation [10, 18]. Sangpk-Race randomly selects
r number of samples and uses it as an initial set of configuraitioa standard F-Race,
while iterative F-Race uses an iteration procedure to réfraobabilistic model to a
sample set of configurations. All three versions of F-Rasemag that all parameters
are numeric. Hence, F-Race can only be used to tune numpaicaheters. The latest
version of F-Race [19] overcomes this limitation by samgplaategorical parameter
values from discrete probability distributions. But thefpemance of F-Race is really
dependent on the probability distributions used.

Other model-free approaches are ParamILS [61, 60] and GGA Both ap-
proaches apply meta-heuristic algorithms for tuning theupeeters: ParamILS uses
Iterated Local Search (ILS) while GGA uses Genetic Alganii{GA). They also claim
that they can be used to configure a very large number of paeasne

ParamlLS utilizes ILS to explore the parameter configuresjgace in order to find
a good parameter configuration for the given training ingtanParamILS has two dif-
ferent variants: BasicILS and FocusILS where the main diffee is in the technique
used to assess the performance of a configuration. Basi@tsrms a fixed number
of runs based on user defined values of the target algoritimg tise same instances
and pseudo random number seeds, while FocusILS evaluatiguations using few
target algorithm runs and subsequently performs additroms to obtain precise per-
formance estimates for promising configurations. Using technique, FocuslILS is
able to quickly focus on promising configurations rathentbaing trapped in evalu-
ating poor configurations. To expedite its overall seardtess, ParamILS applies an
adaptive capping technique to limit the time spent in eu#igapoor configurations
measured by the performance observed for the current ineamb

ParamiILS has been successfully applied to tune a broad ohhggh-performance
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algorithms with a large number of parameters. Examples efpttoblems are the
Satisfiability (SAT) Problem [61, 60], Mixed Integer Prograning (MIP) Problem
[60], Post Enrollment Course Timetabling problem for Trackf the International
Timetabling Competition (ITC2007) [30], Planning SysteBY], Answer Set Pro-
gramming (ASP) for homogeneous instances [41], etc. Tq @aamILS is the most
powerful tuning algorithm and the only tuning algorithmthhas been implemented
for tuning a very large number of parameters such as CPLEX&Gtparameters [60].

However, we notice that ParamILS has two main limitationfoflews. First, it
can only be used to tune discrete parameters. For contimarameters, a discretiza-
tion mechanism should be performed beforehand. Secondnifla® is dependent
on the default (or initial) parameter configuration giventbg user or from random
initialization. ParamILS moves from the initial paramedbgrchanging one parameter
value at a time. If ParamILS is provided with a good defaulapzeter, it gives a
better performance.

GGA (or gender-based genetic algorithm) is a robust, pEr@kenetic Algorithm
to configure algorithms automatically. It uses the notiogehder separation (com-
petitive and non-competitive population) to balance exatmn and exploration, and
applies different selection pressure for these two pojuiat For competitive popu-
lation, candidate configurations have to compete on a caleof training instances.
The parameter configuration that yields best overall peréorce are then mated with
candidates from the non-competitive population. The coméiion with the poor-
est performance is removed. GGA also exploits the depeieent parameters by
applying a "variable tree” structure which indirectly defgithe cross-over operator.

GGA is claimed to be remarkably successful in tuning exgssialvers, often out-
performing ParamILS on some COPs [7], but GGA has only begieimented in a
limited number of problems. One limitation of GGA is that éeds a very large tun-
ing budget to avoid over-tuning where the configuration wask training instances
but gives a bad result on testing instances [120].

Lau et. al. [71] proposed a Randomized Convex Search (RC&hwises a
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randomized scatter search technique. The underlying gggmof RCS is that the
points lie inside the convex hull of a certain number of thetloints (parameter
configurations). RCS can be used to tune both discrete antthaoos parameter

values.

One-Size-Fits-All Model-Based

For model-based approaches, one idea is proposed by Cay[8Bhlsing a proce-
dure based on experimental design and gradient descentstiggest that computing
a good parameter set for few of instances and averaging ra@hpeers results in pa-
rameters that would work well for the general case. It is usdédne two local search
algorithms, for solving Vehicle Routing Problems, basechorariant of Lagrangian
relaxation and an edge exchange procedure. The approashssnably effective in
terms of solution quality. They also highlight that the r@sge surface and average
setting might not be appropriate if the class of problemsasliroad. The approach,
however, suffers once more parameters need to be set osd flerameters are not
continuous.

Another model-based approach which was introduced is CRABproposed in
[3], which combines statistical experimental design (glesif experiment) and local
search procedure. CALIBRA automatically calibrates patmvalues from a given
pre-defined range for each parameter. CALIBRA employs affgiorial 2¢ design
and a Taguchi fractional factorial design followed by a laszarch procedure to it-
eratively narrow down the range of parameter values untbitverges to a "local
minimum”. Some notable limitations of CALIBRA are: (1) it jrtunes up to 5 pa-
rameters; (2) if the given parameter value ranges are tot), S0#eLIBRA is quickly
trapped in a "local minimum” of the configuration space andt(®cuses on the main
effects of parameters without exploiting the interactiffees between the parame-
ters.

The most current model-based approach is SMAC, proposesiBin SMAC is

an improved model-based technique which can tune multiblem instances at a
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time, which is an extension of their earlier work SPO+ [53ttban only deal with a
single problem instance at a time. This line of work is basethe Sequential Param-
eter Optimization framework [12, 13]. It constructs prédie performance models
to focus attention on promising regions of a design space AGMims at tuning

target algorithms with continuous and categorical paramsdbr sets of problem in-
stances. The authors claims that SMAC can be used to conguasy large number
of parameters. The performance of SMAC is highly dependeith@mccuracy of the

performance model used to capture the interrelations gbain@meters.

Instance-Specific Model-Free

There are not many approaches for instance specific apg@eadth model-free man-
ner. One (and perhaps the only one) instance-specific witteirfoee manner is ISAC
(Instance-specific algorithm configuration) proposed }.[6SAC is the first method
that uses clustering to approximate instance-specific gor#tions. It extends the
stochastic offline programming framework [79]. ISAC worksflvst running a clus-
tering methodyg — means, to cluster instances using problem specific features and
then find a good parameter configuration for each clustegusone-size-fits-all con-
figurator.

It is interesting to note that ISAC does not make use of anie@xpbrmulation
(such as linear or Gaussian regression) that maps instémadssters, which may
be very hard if not impossible to derive. Instead, ISAC eitplthe instance-features
relationship that correlates with algorithm performariostances are clustered based
on these features using predictive modeling. This form o$tering preserves rich
features that represent the individual instances within it

ISAC has been implemented in various problems problem sac®ea Covering
Problem (SCP) [64], Mixed Integer Programming (MIP) [64htiSfiability (SAT)
Problem [64, 70], Constraint Programming (CP) [70] and BlBox Optimization
(BBO) problem [2]. In these problems, ISAC shows promisiagults which prove

the effectiveness of clustering-treatmentin solving peeter tuning problems [71, 79,
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64].

One weakness of ISAC is that it uses problem-specific featame assumes that
there exist a collection of problem-specific features faheastance that can be used
to correctly identify its structure, and thus use to idgntife sub-types of the prob-
lems. Hence, for new COPs or industrial cases without a kret/of features, ISAC

cannot be implemented.

Instance-Specific Model-Based

As in ISAC, the approaches in this category rely on instespesific features. These
approaches use regression or interpolation to fit a modelviiiadetermine the
solver’s strategy. Several approaches have been propsesgpthese techniques such
as: auto-WalkSAT [90], empirical hardness model [56, 5i{] Bydra [114].

Auto-WalkSAT calculates an estimation of the invarianicatf a provided SAT
instance and uses this value to set the noise value, or howently a random deci-
sion is made. It uses recursive bracketed search (goldénrssearch) and parabolic
interpolation to adaptively search the invariant ratio fué solution from the global
minimum without exactly solving the satisfiability formul@hese values can be used
to guide a search for the minimum ratio which in turn leadsrtestimated optimal
noise level. It then return this estimated optimal noiselléy the provided stochastic
algorithm (target algorithm). Auto-WalkSAT is shown to biéeetive on four DI-
MACS benchmarks, but fails for those problems where ther@iselationship be-
tween invariant ratio and optimal noise parameter.

Hutter et. al [56, 57] proposed ampirical hardness mod&b predict the runtime
of search algorithms for hard combinatorial problems. Hpisroach can handle both
continuous and ordinal (but not categorical) parametdns.model predicts algorithm
runtime for the problem instances at hand and then simpgctethe configuration
that minimizes the prediction by using the linear regrassiethod, Bayesian linear
regression. This Bayesian linear regression is used to eapping from features

into a prediction of runtime. Based on this mapping for givestance features, a

27



parameter set that minimizes predicted runtime is searfdred

A recent approach in this category is Hydra. It works by canrg automated al-
gorithm configuration and portfolio-based algorithm sgtet It automatically builds
a set of solvers with complementary strengths by iteratigeeinfiguring new algo-
rithms using regression to be used in its portfolio. To datgdra has only been
applied to optimize the target algorithms runtime perfanoeaand not the quality of
their solutions.

All the above approaches in instance-specific tuning usimgpdel-based manner
depend on accurately fitting a model from the features to arpeter. It is intractable
and requires a lot of training data when the features andheteas have non-linear

interactions. These approaches may need more tuning boolggiared to ISAC.

Remarks on Instance-specific Approaches

While providing a significant quality improvement compangidh one-size-fits-all

approaches, these instance-specific approaches can onlyedefor problems that
have a set of instance features. Unfortunately, findingaims#-specific characteris-
tics/features is nothing easy, which requires profoundtedge of the algorithm as
well as the problem itself. Consequently, an interestirsggaech problem is to de-
velop a generic instance-specific automated parametergscheme that is problem-

independent and yet can perform as well as those exploitwiggm-specific features.

2.5.3 Further Relevant Research

As described in [47], two problems closely related to autmtigparameter tuning
problems are the algorithm selection problem and dynamerpeter adjustment. The
goal in the algorithm selection problem is to correctly sebn algorithm that yields
the best performance for a particular instance. For exarf4¢proposes to combine
several algorithms into a portfolio, and run them in patadieinterleave them on a
single processor. This approach is more robust than anyeoinitividual solvers.

Another well-known approach is SATzilla in [115] which usesempirical hardness
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model to select among their candidate solvers. The empineaness model is a
predictor of an algorithm’s runtime on a given problem insebased on the features
of the instance and the algorithm’s past performance.

Automated parameter configuration is mainly executed effon before the ac-
tual target algorithm run. This contrasts with and completmé¢he volume of works
which seek to adaptively adjust the parameter configuratoamically during search
[14, 15]. For example, [14] applied reinforcement learniRg) to adapt the diversifi-
cation in a fast online manner to the characteristics ofladasl of the local configu-
ration. In a adaptive scenario, the parameter values ardiegobtb respond the search
algorithm’s behavior during its execution.

All of the above approaches is done automatically withouan interference. In
a separate front, there are approaches which require dintaboration with human
to guide the tuning process [48, 4]. These approaches exgierhuman ability to
the recognize target algorithm pattern and behavior t@gdesbetter target algorithm.
For example, [48] visualized the local search algorithntissfss landscape search tra-
jectory that allows algorithm designers to investigatefitmess landscape structure of

the target algorithm.

2.6 Chapter Summary

In this chapter, background materials for automated patemtening are discussed.
We introduce notations and formal definitions for the auttmugparameter tuning
problem. We categorize works related to automated parautugti@g into four groups
based on two aspects: the strategy to handle diverse iestamd the existence of
statistical models to explain the tuning process, and vexéeent approaches in each
category.

The existing approaches have shown significant improvesnetihe performance
of target algorithms. Each approach also has its respdativations; one-size-fits-

all approaches find only a single configuration, which maybeeffective on large
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and diverse instances, while instance-specific approaateekess generic due to its

instance-specific features.
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Chapter 3

Instance-Specific Automated
Parameter Tuning via Trajectory

Clustering (CluPaTra)

In the previous chapter, we have formally defined the autechpirameter tuning
problem, which aims to find the parameter configuration ta bptimize a target
algorithm. We use a performance metric based on the pegediviation of quality
from the global optimum or best known solution to measureanget algorithm. We
also introduce some terms and notations used in this thesis.

Several existing works for automated parameter tuning baes introduced in
the literature. Some approaches return a "one-size-fitpatameter configuration
for all instances. This is unsatisfactory because diffemestances may require the
target algorithm to use very different parameter configongtin order to find good
solutions. On a separate front, there have been approdshepdrform instance-
based automated tuning, but they are usually problem{spduaie to their reliance on
problem-specific features.

In this chapter, we proposéluPaTra, a generic instance-specific parameter
tuning framework which automatically finds good parameter configurations oy a

instances clustering approach based on a problem-indepefehture, search trajec-
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tory. Search trajectory is defined as the path that a locatiesgorithm follows
as it searches from an initial solution to its neighbor frone gteration to the next.
The advantage dfluPaTra is the fact that the search trajectory is computed from a
local-search based algorithm. Hence our approach is prelsidependent and may
conceptually be applied to any local search-based algorith

In this chapter we descrili@uPaTra in greater detail. First we present the frame-
work overview, followed by its three major components: teatselection, similarity
calculation, and clustering method. We then desc@théaTra’s four instantiations.
We show the results of our experiments on three COPs and tbeusg the result. We

conclude with a chapter summary.

3.1 Framework Overview

Rather than ambitiously attempting instance-specificiigimvhich we believe to be a
computationally prohibitive and unachievable task in teamfuture because of the
large parameter configuration space and large number @inoss CluPaTra adopts
a cluster-based treatment. The result is a fine-grainedguramework that does not
produce a one-size-fits-all parameter configuration, bsiiamce (or rather cluster)-
based parameter configurations. Even though strictly spgasur method is cluster-
specific rather than instance-specific, it represents adag from one-size-fits-all
schemes.

CluPaTra is designed as a generic (problem-independent) approadedbon
CLU stering instances with simildAtterns according to their seardiRA jectories.
We represent a search trajectory as a directed sequenceplychavell-studied se-
guence alignment technique to cluster instances basedeosirthlarity of their re-
spective search trajectories. We then tune each clusterd@fgood parameter con-
figuration for the respective cluster.

CluPaTra is illustrated in Fig. 3.1. It is divided into two phases: iniag and

testing. The training phase starts with a clustering proeaes is followed by a tuning
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Figure 3.1:CluPaTra Framework

process. The clustering process is where we select andsesyira generic feature,
calculate similarities and perform clustering. Moving e tuning process, we apply
a tuning procedure to derive the best parameter configmsatar each cluster.

In the testing phase, we match the search trajectory of gimgeinstance against
the clusters using pair-wise sequence alignment to find th& similar cluster. We
then return the parameter configuration found for that elugtiuring the training
phase) as the recommended parameter configuration for sipeative testing in-
stance. The steps involved in the training and testing phaseshown in Fig. 3.2
and Fig. 3.3 respectively.

In this thesis, we focus on the clustering process. For theguprocess, we use
existing one-size-fits-all configurators such as CALIBRA, [BaramILS [60] or F-
Race [17]. The clustering process has three major compsnétfeature selection;
(2) similarity calculation; and (3) clustering method. Té@mponent details are de-

scribed as follows.

3.2 Feature Selection

Instance specific features that determine the intrinsiicdify of an instance play
an important role in the meta-heuristic algorithm’s penfance [78]. Consequently,
there has been increasing interest in finding instancesrissathat have impact on the
difficulty, in terms of performance, of improving algorithperformance [6, 53, 54,

91, 93, 100, 102, 105, 106, 109, 115].
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Procedure TrainingPhase
Inputs:  A: Target Algorithm;
I: Training instances;
0: Parameter Configuration Space;
X;: Initial Sequence Configuration;
Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;

M

1. F' = FeatureExtractio, I, x;);
2: S = SimilarityScore(, F);

3: C =Cluster(, S);

4: for all clusterinC do

5. X, = configuratord, C;, ©);
6: returnC, X;

Figure 3.2:CluPaTra Training Phase

Procedure TestingPhase
Inputs:  A: Target Algorithm;
I;: A set of Testing instance;
C: Set of clusters;
X: Parameter configurations for each clustefin
x;: Initial Sequence Configuration;
Outputs: BestConfig: Arecommended configuration;
Method:
1: for each instance ify do
2. BestClust; = Mapping(:;, A, z;, C);
3:  BestConfig; = X[BestClust;];
4: returnBestConfig;

Figure 3.3:CluPaTra Testing Phase

Various problem-specific features have been proposed fada range of Com-

binatorial Optimization Problems (COPs). Some notablaufes are flow dominance

for Quadratic Assignment Problem (QAP) [53, 102, 105, 10%] population corre-

lation structure and constraint slackness for the KnapBagklem [54, 93]. The most

straightforward features are those that are extracted tiherproblem or instance def-

inition itself, such as number of variables and constraimsich can be derived to

numerous candidate features using computational feattirgcéon processes [100].

Other non-straightforward features may require largeeseaperimental studies and

are highly dependent on domain knowledge in a particular.G@®Rling appropri-

ate features takes tremendous human effort, and the featuneost cases cannot be
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Table 3.1: Run Time for Random-3-SAT instances

Instances Percentage of Local Optima Found Run Time
uf20-91/easy 0.11% 13.05
uf20-91/medium 0.13% 83.25
uf20-91/hard 0.16% 563.94
uf50-218/medium 47.29% 615.25
uf100-430/medium 43.89%  3,410.46
uf150-645/medium 41.95% 10,231.89

reused for another problem.

On a separate front, there have been approaches that atetogdind problem-
independent features using correlation between objefitivetion and search space
(fitness landscape) [6, 55, 91, 106]. Problem-indepen@attfes can be used on dif-
ferent COPs, such as Traveling Salesman Problem (TSP)QRHdratic Assignment
Problem (QAP) [6] and Knapsack Problem [106]. Examples ebkéhfeatures are:
Fitness Distance Correlation (FDC) [91, 55] and ruggediessficient [6, 55]. In
FDC, we test if there exists any correlation between deltees$s and distance from
a solution to the nearest local optimum that is known prignfortunately, to calcu-
late the FDC, we need to find all the local optima. This meansaed to explore
the entire fitness landscape, which is time consuming andrteeextent are impos-
sible for certain instances [91]. To illustrate the amouintime needed to explore
the fitness landscape, Table 3.1 shows the search cost aistixigarenumeration of
search space for Random-3-SAT instances [55]. Similaalgutating the ruggedness
coefficient also entails the exploration of the entire fimsdscape [6].

In attempting to utilize a problem-independent featurechhtan be more effi-
ciently computed, we propose the use of the search trajedter a solution path
derived from one run of the target local-search algorithins the proxy to fitness
landscape that can be obtained with a small amount of addit@mputational time.
In section 3.6, we demonstrate that the search trajectdseieh provides a good mea-

sure of the fitness landscape’s similarity of instances.
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Figure 3.4: Example of Search Trajectory from the TravelBajesman Problem
(TSP) instance

3.2.1 Search Trajectory Definition

Search trajectory is defined as the path of solutions thagettalgorithmA finds as
it searches through the neighborhood search space. It cderiveed from any local
search based algorithm without incurring much additiormhputation time. The
search trajectory illustration for one Traveling SalesrRaablem (TSP) instance is
shown in Fig 3.4.

Thexy plane represents the search space whabeis represent the objective value.
Since it is not possible to provide a perfect 2-D layout fortla solutions such that
the 2-D Euclidean layout distance preserves the Hammirigrdie for each pair of
the solutions, we make use of the heuristics algorithm, tathe spring model [47],
where it has been shown that the spring model can reduceybatlarror by more
than 83% (from 0.18 to 0.03) (see page 44 of [47]).

We propose search trajectory as a generic feature to defimiasty between
problem instances. The rationale of our feature is preélican the relationship be-
tween fitness landscape and search trajectories [48], artdhtit correlation between
the fitness landscape and algorithm performance [92]. Véisegenerating entire fit-
ness landscape for each instance is time consuming andafjgnerpractical, we
propose to use search trajectory as a proxy for fitness lapdscGranted that dif-
ferent parameter configurations may produce (very) diffesearch trajectories for a

given instance, we claim that tisemilarity of search trajectories between instances is
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Figure 3.5: Example of Direct Sequence Representation afc&elrajectory for the
Travelling Salesman Problem (TSP) instance
preserved across configurations.

Given a fixed local search algorithi, our bold conjecture is that instances with
similar fitness landscapes have similar trajectory pastander a fixed parameter set-
ting; and that there exists a parameter setting that yieddsl golutions in instances
with a similar fitness landscape. The latter claim has besemkd in TSP and QAP
instances [49].

Note that we are using search trajectory as a proxy for fitleestscape; granted
however that the search trajectory will not adequatelyesgnt the entire fitness land-
scape. Our goal is to find similar behavioral patterns of tger&hm; not to measure
the actual performance of the algorithm. To that extent, lagrcthat search trajec-
tory (under a single suitably defined parameter configunqiga sufficient proxy to

measure similarity between instances.

3.2.2 Representation of Search Trajectory

Generally, we presented search trajectory as a directesegq of symbols, each rep-
resenting a solution along the search trajectory, asiitestl in Fig 3.5. Each symbol
encodes a combination of two solution attributes: posityge and its percentage
deviation of quality fromBest (as defined in Definition 3).

Position type represents the local property of a solutiath wespect to its search

neighborhood, and is defined based on the topology of thé feighborhood [55].
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Table 3.2: Position Types Property of Search Trajectory

Objective Value

Position Type Label Symbol larger equal smaller
SLMAX (strict local max) A No No Yes
LMAX (local max) X No Yes Yes
LEDGE L Yes Yes Yes
SLOPE P Yes No Yes
IPLat (interior plateau) I No Yes No
LMIN (local min) M Yes Yes No
SLMIN (strictlocal min) S Yes No No

'Yes’ = present, 'No’ = absent; referring to the presence of
neighbors with larger, equal and smaller objective values

There are 7 position types determined by evaluating thdisalobjective value with
its local direct neighbors’ objective values - whether ibetter, worse or equal. The
7 positions types are shown in Table 3.2. In the actual sdeagctory, we only use
either LMIN or LMAX (respectively SLMIN and SLMAX) dependgon the target
algorithm type (maximizing or minimizing).

The deviation of solution quality measures in a sense glotmgderty of a solution
(since it is compared wittBest). If the global optimum value is unknown, we use
the best known value; granted the best known value is notaime ®1s global optimal
value. This provides a reasonably good upper bound (for anmEation problem);
because our aim is to find similar patterns of the transitromfone solution to the
next; notto measure the actual absolute performance ofghatam. The best known
value suffices in providing a good proxy to the global optinadue for our purpose of
representing the trajectory. We believe that the seargdgctay using the best known
value can be shifted (with a constant translation vectothéoreal search trajectory
using global optimum value.

Position type and percentage deviation of quality are castinto a symbol with
the first two digits being the deviation of solution qualitydathe last digit being the
position type. Note that the attributes are generic, whigamns they can be eas-
ily retrieved/computed from any local-search based allyorialbeit from different

problems. Being mindful that some target algorithms mayetaicles and (random)
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restarts, we intentionally add two additional symbols: &d 'J’ in sequence repre-
sentation. 'C’ symbol is used when the target algorithmmegfuo a position that has
been found previously. We do not record the cycle positiahjast use 'C’ symbol to
mark a cycle. The 'J’ symbol is used when the local searchsisrted.

An example of the sequence representing the search trgjectbig. 3.5 is15L-
11L-09L-07L-07P-06P-04S-05L-J-21L-1%otice that after position 8, the target al-
gorithm performs a random restart, hence we add a 'J’ synftesi position 8.

In addition to the above representation (which we refer tBxasct Sequence), we
also represent the search trajectory as a transition segu€&he transition sequence is
made up of symbols that represent a transition (or movenbetyeen two neighbor-
ing solutions in the search trajectory. The focus is not dat&m position, but rather
the movement along the search trajectory in order to detajeictories that move in
parallel but are not necessarily identical (their correstdog positions differ by a con-
stant value). We use the transition sequence to capturkasiiyiacross different size

instances. In the transition sequence, each symbol carttaiee parts:
1. the absolute difference in deviation between the firstssodnd solutions
2. the position type of the first solution
3. the position type of the second solution

Similar to an exact sequence, a transition sequence mayaisotwo additional
symbols: 'C’ and 'J’. These attributes are also generic arde easily derivied from
any exact sequence. An illustration of the transition seqaeepresenting the search
trajectory of the Traveling Salesman Problem (TSP) ingand-ig. 3.5 is shown in

Fig. 3.6.

3.3 Similarity Calculation

Having represented trajectories as linear sequences,ndtigal to apply pairwise

sequence alignment to obtain the similarity score betwepaitaof trajectories. In
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Figure 3.6: Example of Transition Sequence for searchdiaijg of Traveling Sales-
man Problem (TSP) instance

pairwise sequence alignment [51], the symbols of one seguare matched with
those of the other sequence while respecting the sequendiat in two sequences.
This also allows small gaps to occur if symbols do not matalvo ®r more search
trajectories are similar if some fragments (several nunab@onsecutive moves) of
the path have identical solution attributes. The longeifthgments the more similar
it is. In the following, we introduce our two techniques (fgasnd robust sequence
alignment) for the search trajectory similarity calcudatbased on pairwise sequence

alignment.

3.3.1 Basic Sequence Alignment

In basic sequence alignment, two symbols are matched ifttheg identical solution
attributes. A standard sequence alignment method is apigimaximize the number
of matched symbols between two sequences sequentiallyir Afpaatched symbols
gives a positive score (+1), while a gap gives a negativees¢dr). The similarity
score is calculated as the sum of the scores of matched sgr{#i)l and gaps in the
alignment (-1). Noted that the sequence alignment is dotee ae have the whole
search trajectory, thus there is no insertion, deletiorogt modification in the score
calculation process. An example of sequence alignmenwoisearch trajectories of
Traveling Salesman Problem (TSP) instances is illustriatddble 3.3.

There are two types of alignment strategies: local and ¢ldbdocal alignment,
sequences are aligned partially, whereas global alignadegnis the entire length of
the sequences. Because search trajectory sequences Imang W@ngths, we find
local alignment fits our needs. One well-known algorithm geaforms such sequence

alignment is the&smith-Waterman algorithf®1] that works by comparing all possible
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Table 3.3: Example of Sequence Alignment from a pair of msts

Instancd9L 19P 18P 17/P 16P 15P 14P 13P 11P 10P

1

IR T A T R R
Instance ~ 19P 18P 17P 15P 13P 11P 10P
2
score +1 +1 +1 -1 +1 -1 +1 +1 +1

alignments regardless of their lengths, start and endipositlt then chooses the best
alignment as the alignment that maximizes the similarirecwhich is calculated as
sum of the scores of matched symbols and gaps in the alignrivene that the best
alignment may start and end anywhere in the two sequencdsngas it produces
the best similarity score. We adapt the Smith-Watermanrdhgo and use the best
similarity score for each pair of sequences. The final siityigcore is normalized by
dividing it with 1 x (|Sequence;| 4+ |Sequences|).

The sequence alignment algorithm is implemented using ™iymarogramming
with time complexityO(n?) wheren is the maximum sequence length. To cluster
instances (see the subsection below), we need to compuilrgiynscores for all
possible pairs of training instances. Hence, the total wom@plexity for sequence
alignment isO(m? x n?), wheren is the maximum sequence length of the sequences

andm is the number of instances in the training set.

3.3.2 Robust Sequence Alignment

In robust sequence alignment, we relax the matching aitéWhereas in basic se-
guence alignment, two symbols are a match if and only if the $ymbols are ex-
actly identical, in robust sequence alignment, we conspdetial matching where
the symbols are identical but the deviation attribute ifedént in a certain threshold.
This relaxed similarity calculation allows us to more ratysapture search trajectory
similarity. Under robust sequence alignment, a match acifune of the following

conditions is satisfied:
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Table 3.4: Threshold Value for Robust Sequence Alignment

Threshold Similarity Score

1 0.97
2 0.93
3 0.92
4 0.87
5 0.56

1. The two symbols are identical

2. Theposition typeof the symbols is the same and the absolute difference in the

deviationattribute of the two symbols is less than a certain threshold

Robust sequence alignment requires us to make sure thattiched symbols are
still very similar. Hence, the threshold should not be tacefaart. We run a series of
preliminary experiments to determine the threshold valie. calculate the average
similarity between a pair of similar sequences using défiferthresholds as shown
in Table. 3.4. We then set the threshold value to threshdigegawith the highest
similarity score in our experiment.

We apply the same sequence alignment algorithm and sconeatination tech-

niques as in basic sequence alignment.

3.4 Clustering Method

Our goal in clustering is to group similar instances acaggdo their search trajectory
similarity. A typical clustering algorithm requires a diste measure between data
points. For distance measure we lgzsm After such measurement is made,
a standard clustering algorithm could be deployed.

In instance-specific tuning process, we need a good and ltegexnng method
which can easily and automatically determine the optimumimer of clusters without
additional computation time. For this purpose, we compacatell-known clustering

method: AGNES (AGglomerative NESting) [65] and k-medoials][
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Figure 3.7: Hierarchical Clustering Method: AGNES (AGglerative NESting)

AGNES works by placing each instance initially in a clustért® own and iter-
atively merges two closest clusters (i.e., a pair of clisstath the smallest distance)
resulting in a lesser number of clusters of larger sizes.prbeess is repeated until all
nodes belong to the same cluster unless a termination comdpplies. Examples of
termination conditions are when a minimal number of cluseeached or when the
maximal inter-cluster distance goes below a certain va\@NES can be computed
in a linear computation time. AGNES is illustrated in FigZ 3.

To automatically determine the minimal number of clusterbe used, we apply
the L method [95] that works using an evaluation graph whereta®is is the number
of clusters and thg-axis is the evaluation function valuexatlusters. For the eval-
uation function value, we use average distance among a#rinss in two different
clusters. Thel, method determines the number of clusters by fitting the evain
graph into two lines that most closely fit the curve, as illatd in Fig. 3.8. The
method chooses the intersection point between those tws &s the optimum num-
ber of clusters. The intersect point is the point of maximwmvature of this graph
which has minimum average distance (calculated using r@atmsquare error) for
both the left and right side of the intersect point. It is cédted using the following

formula;

¢ = min

RMSE(L) | RMSE(R)

nr nr

(3.1)

where;
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Figure 3.8: Evaluation Graph fdr-Method to Determine Number of Cluster

Notation Definition

RMSE(L) root mean squared error of points in the left side of
nr, number of points in the left side of

RMSE(R) root mean squared error of points in the right side of
ng number of points in the right side of

To determine the optimum number of clusters, the L-methdgraguires AGNES
algorithm to be run once because all the clusters genergte@NES can be recorded
in one run.

On the other hands-medoids is a partition-based clustering method that tepea
edly breaks the data set up inftaroups as an attempt to improve the clusters’ eval-
uation function [51], which in this paper, is the averageatise among all instances
in two different cluster. It is a variant of tlemeans method but it selects real data
points as centers (medoids or exemplars) instead of imggpuants. The complexity
of k-medoids isO(k(n — k)?) with k being the number of clusters andbeing the
number of instances.

In k-medoids, we may automatically determine the number ohaoyt clusters
using statistical comparison methods on the cluster quadiing-means, a variant of
k-medoids, that is used in ISAC [64], an existing instanceedft parameter tuning.
But the calculation may need some additional computatioe ti

Because AGNES with L-Method is easier to implement and Imesali time com-
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Table 3.5: Four instantiations @fluPaTra

Instantiation Search Trajectory Represergimilarity Calculation
tation

Standard Exact sequence Basic Seq. Align.

Trans Transition sequence Basic Seq. Align.

Robust Exact sequence Robust Seq. Align.

Trans-Robust Transition sequence Robust Seq. Align.

plexity, we use AGNES with L-method as the clustering methd provide a de-
tailed comparison between AGNES akanedoids in the Empirical Experiment Re-

sult section.

3.5 CluPaTra Instantiations

As described aboveCluPaTra has two search trajectory representations, exact and
transition sequence, and two similarity calculation tegbes, basic and robust se-
guence alignment. We combine these techniques and confdtnagnstantiations of

CluPaTra. The terminology used is given in Table 3.5.

3.6 Empirical Experiment Result

We conduct a series of experiments to investigaiigPaTra performance. We start
by describing our experiment measurement, target probérdsalgorithms and the
experiment setting and setup. We then show the empiricaltries: verification of

similarity preservation, clustering analyses, compatal time, performance com-

parison and different clustering method comparison.

3.6.1 Experiment Measurement

In this experiment, our objective is to investigate @laPaTra performance on cluster
quality as well as solution performance. For cluster quale use training and testing

cluster quality in Definition. 7 and 8 respectively. For tlodusion performance, we
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use the performance metric in Definition. 3.

3.6.2 Target Problems and Algorithms

To demonstrate the generic nature of our approaches, weimeue using three clas-
sical Combinatorial Optimization Problems (COPs): TranglSalesman Problem
(TSP), Quadratic Assignment Problem (QAP) and Set Covdtnogplem (SCP). The

details of these problems and their target algorithms afellasvs.

Traveling Salesman Problem (TSP)

Given a list of cities and the distances between each paiitiescthe objective of
Traveling Salesman Problem (TSP) is to find the shortesilgessute that visits each
city exactly once and returns to the origin city [74]. TSP ie®f the NP-Complete

problem [40]. It can be formally defined as follows.

Definition 9 (Traveling Salesman Problem [TSP])Given a complete weighted
graph G(V, £), with v being the set of cities andbeing the weighted distance be-
tween two cities, the TSP objective is to find a closed totlrat visits each of the
cities exactly once and minimizes the objective funcTE;rmlsisi+1 + ds, s, -

In our experiment, we use a well-known Iterated Local Se#lic8) algorithm
as implemented in [49] as the target algorithm. We modifydbde and extract 4
discrete parameters to be tuned as shown in Table 3.6. Feoqmliments, we fix the
maximum number of iterations to 1000.

We apply our target algorithm to 70 benchmark instancesetad from TSPLib
(http://comopt.ifi.uni-heidelberg.de/software/TSPRES). For best known values, we
use the optimum/best values from TSPLib. Fifty six randostances are used as
training instances and the remaining 14 instances as gesistances. The problem

size (number of cities) varies from 51 to 3038.
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Table 3.6: Parameters for ILS Algorithm for Traveling Sates Problem (TSP)

Parameter  Description Range

Pert number of perturbations being done [1,10]

nimprove  max non-improving moves [1,10]

choice perturbation strategy where: 3=3-opt change andubid-bridge [3,4]
move

acp acceptance criteria strategy where: O=accept onlyowiug moves and [0,1]

1=accept all moves

Quadratic Assignment Problem (QAP)

Quadratic Assignment Problem, or QAP in short, aims to assigumber of facilities
to n number of locations with the goal of minimizing the sum of thistances and
flows from every locations [73]. QAP is also an NP-Completaytem [40]. It can be

formally defined as follows.

Definition 10 (Quadratic Assignment Problem [QAP]) Given an x n matrix of
flow information between facilitied and n x n matrix of distance between loca-
tions B, the QAP objective is to find a permutatien{1, 2, 3, ..n} that minimizes the

objective functiord " a,s; bi;.
i=1j=1

The target algorithm to solve QAP is hybrid Simulated Animegphnd Tabu Search
(SA-TS) algorithm (presented in [87]). It uses the GreedydRenized Adaptive
Search Procedure (GRASP) to obtain an initial solution, #ugth use a combined
Simulated Annealing (SA) and Tabu Search (TS) algorithmmtprove the solution.
There are four parameters, real and integer values, to lael tas described in Table
3.7. For all instances, we set the maximum number of itematio 500.

We use two set of instances: (1) Set A: benchmark instanceég3nSet B:
generated instances. In Set A, we use 50 benchmark instdraasQAPLib
(http://www.seas.upenn.edu/qaplib/), and randomly sko#0 instances for training
and 10 for testing. The problem size (number of facilitiespet A varies from 20 to
150. We use the optimum/best values from QAPLIib for best knealues. In Set B,
we use two generators in [69] for single-objective QAP as88j[ The first genera-

tor generates uniformly random instances where all flowsdisidnces are integers
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Table 3.7: Parameters for SA-TS Algorithm for Quadratic igssent Problem

(QAP) _
Parameter  Description Range
Temp Initial temperature of SA [100,5000]
Alpha Cooling factor [0.1,0.9]
Length Length of tabu list [1,10]
Pct Percentage of non-improving iterations [0.01,0.1]

sampled from uniform distributions. The second generadoegates flow entries that
are non-uniform random values, having the real-like stmecind resemblance to the
structure of QAP problems found in practical applicationg generate 500 instances
with size from 10 to 150 from each generator and randomly sbdd0 as training

instances and 400 as testing instances.

Set Covering Problem (SCP)

Set Covering Problem (SCP) is an NP-Complete problem [4Q]aims to find small-
est number of sets from finite sé&f whose union still contains all elements in the

family set of F' [32]. It can be formally defined as follows.

Definition 11 (Set Covering Problem [SCP])Given a finite setsS ={1,...,n} of
items, a familyF'={5, ..., S,, C S} of subsets of, and a cost function=F — R*,
the SCP objective is to find a subgetC F' such thatS C Ug,<¢S; and ZSieC c(S;)

iS minimized.

We use the tabu-search algorithm in [85] as the target dlgorwith four param-
eters to be tuned as described in Table. 3.8.

We use two different instances set. (1) Set A: benchmarlaicgts and (2) Set
B: generated instances. For Set A, we use 50 benchmark eestdrom OR library
(http://people.brunel.ac.uk/ mastjjb/jeb/orlib/sdpimtml) and randomly pick 40 in-
stances for training and 10 for testing. For Set B, we use 8@mgeed instances as

used in [64], with 40 as training instances and 40 as testisiginces.
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Table 3.8: Parameters for TS Algorithm for Set Covering Rnot(SCP)

Parameter Description Range
fTSLength Tabu Length Factor [1000, 10000]
iNonimprove Non Improvement Moves [5, 200]
iProbRandom Probability of Random Moves [1, 20]
iDeterministic Stochastic Factor [0, 1]

3.6.3 Experiment Setting and Setup
One-size-fits-all Configurator

In order to derive meaningful experimental comparison, ekbeérately chose to use
ParamlILS [60] as our one-size-fits-all configurator. Pats8ns itself an iterated local
search algorithm used for tuning discrete parameters. eStaramILS works only
with discrete parameters, we first discretize the valueb®ptarameters if the target
algorithm has parameters that assume continuous valuedisévetize the continuous
parameters to 20 possible values by simple enumerationfronmum to maximum

value.

Validity and Statistical Significant Measurement

To ensure unbiased evaluation, we use a 5-fold cross-vaiidgs1]. To do 5-fold
cross validation, we randomly divide the instances intoridoem groups and use 4
groups as training instances and 1 group as testing ingakéerepeat the process 5
times and take the average. We perform a statistical tesitgpare the significance of
our result. We use a t-test [83]; and we consider p-valuesa@l05 to be statistically

significant (confidence level 5%).

Comparison Method

We compare our experiment results with the ISAC method, dlairslustering-
approach that uses problem specific features [64]. Whe&&6 requires problem-
specific features, we select the standard deviation of tiyed@tances, the variance
of the normalized nearest neighbour distances and the cieeffiof variation of the

normalized nearest neighbour distances for TSP [99] anddtowinance and sparsity
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of flow matrix for QAP [102]. We do not generate the clusterS@P for ISAC but
instead we use the clusters used previously by ISAC in [64].

Because our aim is to measure solution quality, we do not eoenpur approach
with Hydra [114], another instance-specific configuratat tbeeks to optimize run

time performance but not solution quality of the target alton.

Experimental Setup

All experiments are performed on a 1.7 GHz Pentium-4 macitunaing Windows
XP. We measure runtime as the CPU time needed by this macksnan input to the
configurator, we set a cutoff time at 10-100 seconds per ruthéotarget algorithms.
For each cluster from our approaches, we allow each configanarocess to execute
the target algorithm for a maximum of two CPU hours and totbaltarget algorithm
for a maximum of 25 x: times, where: is the number of instances in the cluster. To
ensure fair comparison, we set the time budget for ISAC amdrP&.S to be equal to
the average total time needed to run a full procesSlaPaTra. This time budget is

the stopping condition for ISAC and ParamILS.

3.6.4 \ferification of Similarity Preservation

Prior to presentingCluPaTra’s performance, we provide a scientific argument for
CluPaTra. In the following, we justify our claim, that theimilarity of search trajec-
tories between instances is preserved across configusabgrproviding a series of
experimental observations. For this purpose, we expetiorea small set of TSP and
QAP instances (Set A).

First, we provide a visual intuition for similarity presation across different pa-
rameter configurations. Fig. 3.9 shows the trajectorieainbtl by 10 consecutive
moves of an Iterated Local Search (ILS) algorithm for thr&@Henchmark instances,
namelya28Q d198andberlin52using two random parameter configurations, namely
configuration | and configuration II.

Thexy plane represents the search space whabeis represent the objective value.
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To layout the moves into a 2-dimensiongl plane, we calculate the distance between
two solutions (e.g., number of different cities in TSP) apg@lg "the spring model”
[49]. "The spring model” provides a heuristic for good layout if and only if the
Euclidean distance between 2 solutions in theplane is roughly proportional to
their Hamming distance. In this example, we observe thab@ih configurations,
a280andd198 exhibit very similar topology ((a) and (b), (d) and (e)),ilerberlin52
has a different topology compared to the similaritya@80andd198

Next, we provide a statistical verification of the notion ohsarity preservation
for the trajectories produced by the TSP and QAP target dligos used in our ex-
periments. For this purpose, we verify on random pairs diaimses across differ-
ent parameter configurations. First, we randomly selectu2cgoinstances (namely,
benchmark instances280, berlin52for TSP andchr20a, sko100lor QAP); Next
we select randomly 10 other destination TSP (resp. QAPaumtsts. We randomly
generate 5 parameter configurations for each target digorind record the search
trajectory for each instance. To simplify the experimeng, take the first 300 solu-
tions obtained from the target algorithm as the searchdi@jg samples and calculate
its similarity scores.

For each source-destination pair in each configuration orgeite their similarity
score (based on the Standard instantiatio€lfPaTra). The results are presented
in Fig. 3.10. Observe that most pairs of instances maintagir similarity across
different parameter configurations as shown by the smattescaf similarity values
in each column (with the exception of several instances énab80 instance). The
deviation, mean and coefficient of variance (CV) of simthavialues for the different
parameter configurations are given in Table 3.10. For mass,phe CV value is
low (especially for QAP pairs), which means that the sinityascore across different
parameter configurations do not differ substantially frame another.

Finally, we present examples of clusters based on threerdiif parameter con-
figurations for TSP and QAP generated using the Standam@hiiation ofCluPaTra.
We use 10 instances for both TSP and QAP. The clusters aranshdwable 3.9. Most
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Table 3.9: Examples of Clusters from Different Parameterfi@orations
Parameter Config. Cluster# Instances

TSP
1 1 a280, fl3795, d1655, ts225
1 2 berlin52, kroal50, krob100, pri152
1 3 lin105, ch150
2 1 a280, fl3795, ts225
2 2 berlin52, kroal50, krob100, pri152
2 3 lin105, ch150, d1655
3 1 a280, fl3795, d1655, ts225
3 2 berlin52, kroal50, krob100, prl152
3 3 lin105, ch150
QAP
1 1 chr20a, chr22a, chr22b
1 2 sko100b, sko100e, sko90
1 3 nug28, nug30, tai30a, wil100
2 1 chr20a, chr22a, chr22b
2 2 sko100b, sko100e, sko90
2 3 nug28, nug30, tai30a, wil100
3 1 chr20a, chr22a, chr22b
3 2 sko100b, sko100e, sko90
3 3 nug28, nug30, tai30a, wil100

of the instances (except one instance of TSP, d1655) arepdalsin the same groups
regardless of the parameter configuration used.

Based on the above observations, we argue that even thougéraigstance may
have different search trajectories under different comégans, thesimilarity between
two instances is preserved across configurations. Thisagitgipreservation property
allows us to perform clustering of instances using an abjtparameter configura-

tion.

3.6.5 Clustering Analyses

To investigate the quality of clusters generated fil@lmPaTra, we conduct series of
experiments for TSP, QAP and SCP using its benchmark inssiset A for QAP and
SCP) and compare the result with ISAC.

We compare an example of clusters generated by one of ounagpsCluPa-
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Parameter Configuration |
(a) a280 (b) d198 (c) berlin52

Parameter Configuration I
(d) a280 (e) d198 (f) berlin52

Figure 3.9: Search Trajectories of three TSP instanceg wgio random parameter
configuration
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Table 3.10: Similarity Score of Randomly Selected InstéPaies for Instances’ Sim-

ilarity Preservation

Instances o I Cy o W Cy
l. TSP a280 berlin52

ch150 32.70 82.20 0.40 12.42 5220 0.24
d1655 57.47 181.20 0.32 6.02 25.60 0.00
de57 35.31 144.60 0.24 1554 36.20 0.43
fI3795 14.81 262.00 0.06 2.24 16.40 0.14
kroal50 412 2580 0.16 6.7378.80 0.09
krob100 3.58 11.00 0.33 24.3384.20 0.29
lin105 18.18 77.20 0.24 935 62.40 0.15
pri52 7.78 18.80 0.41 2238 77.40 0.29
rd100 25.32 50.80 0.50 17.8560.40 0.30
ts225 39.55 201.60 0.20 3.88 2240 0.17
Il. QAP chr20a sko100b
chr22a 6.49 104.80 0.06 0.00 16.00 0.00
chr22b 4.13 113.40 0.04 120 10.60 0.11
lipa50b 6.83 118.40 0.06 0.00 24.00 0.00
nug28 0.75 12.20 0.06 0.00 18.00 0.00
nug30 0.75 10.80 0.07 0.00 16.00 0.00
sko100e 1.60 6.80 0.24 2.87129.40 0.02
sko90 1.60 8.80 0.18 5.04121.20 0.04
ste36a 471 103.20 0.05 0.00 26.00 0.00
tai30a 471 12.20 0.39 0.00 13.00 0.00
wil100 0.40 520 0.08 0.00 41.00 0.00

o=standard deviationj=mean;c,=coefficient of variation;
Boldface indicates the best similarity score mean.
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Figure 3.11: TSP Cluster Result Comparison
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Figure 3.12: QAP Cluster Result Comparison

Tra (Trans Instantiation) and ISAC using one set of training tesing benchmark
instances as reported in Fig. 3.11 for TSP and Fig. 3.12 faP.QA

For TSP, we observe that t@#uPaTra (Trans Instantiation) method is able to cap-
ture the similarity of instances with differing sizes, whimay have different search
trajectory symbols but have similar transitions along thareh trajectories. Because
of the non-existence ajround-truthclassification for TSP benchmark instances, we
cannot compute the cluster qualitia8;f.;, and Q,..;) directly; instead it is inferred
from the performance of the target algorithm which is ddsiin the later subsec-
tion.

For QAP, we use the existing well-studied classificatioredam distance and flow

metrics [105] as thground-truthclassification. It divides the instances into 5 groups:
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Table 3.11:CluPaTra’s Cluster Quality Comparison for Quadratic Assignmentiiro
lem (QAP) and Set Covering Problem (SCP)

QAP SCP
Technique Training Testing Training Testing
CluPaTra Standard 0.68 0.70 0.75 0.60
CluPaTra Trans 0.85 0.90 0.82 0.65
CluPaTra Robust 0.78 0.70 0.81 0.60
CluPaTra Trans-Robust 0.7 0.80 0.81 0.62
ISAC 0.80 0.80 - -

Boldface indicates the best cluster quality.

(1) random and uniform distances and flows, (2) random flowgrats, (3) real-
life problems, (4) characteristics of real-life problermglg5) non-uniform, random
problems. Due to the limitation of the target algorithm (@thiis unable to solve
group (4) and (5) problems), we only use instances from ggdlip (2) and (3). The
clusters fromCluPaTra and ISAC are shown in solid boxes while tgeund-truth
classification (for QAP only) are shown in dashed boxes. d¢dtiat the clustering by
CluPaTra (Trans Instantiation) is almost the same asglmind-truthclassification.

We then compare the clusters generated for QAP and S@MuRaTra and ISAC
and show the result in Table. 3.11. We do not compare ourtresul SP because
we do not have thground-truthfor those problems. We use the same ground-truth
classification as above for QAP. For SCP, it has been show88hthat benchmark
instances from OR library and [11] have very different FD@r{€ss Distance Cor-
relation) scores. We consider those two sets of benchmatérines as the ground
truth clusters. For SCP, we do not generate clusters for IB&&ause we do not have
features for SCP.

Our approaches construct better clusters compared to |1StkGespect to cluster
quality metric @.qin and Q;.;) as shown in Table 3.11. We observe that the cluster

quality score foiCluPaTra Trans is the highest compared to other approaches.
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Table 3.12:CluPaTra’s Computational Time

TSP QAP SCP
Technique Training Testing Training Testing Training Tegt
CluPaTra Standard 558s 0.04s 1,051s 2,718s 163s 53s
CluPaTra Trans 5.46s 0.05s 1,002s 2,547s 160s 48s
CluPaTra Robust 6.02s 0.07s 1,984s 3,157s 198 s 80s

CluPaTra Trans-Robust 6.05s 0.08s 2,012s 3,254s 205s 89s
Boldface indicates the fastest computation time.

3.6.6 Computational Time

The time needed (in seconds) foluPaTra to form clusters in the clustering process
is shown in Table. 3.12. For QAP and SCP, we used generatishaes (set B) while
for TSP we used benchmark instances.

The most time-consuming procedure in the training phasel@utating the simi-
larity of trajectories. Evidently, different similarityatculation techniques require dif-
ferent computational budget for calculating the simijarithe most time-consuming
procedure in the training phase is calculating the sintyarf trajectories. Evidently,
different similarity calculation techniques require difént computational budget for
calculating the similarity. IrCluPaTra, the Robust sequence alignment technique
takes almost four times longer than the basic sequencenadigh This happens be-

cause it requires more computation time to find partial-tmagenbols.

3.6.7 Performance Comparison

To evaluate the effectiveness of our approaches, we comperiments for TSP,
QAP and SCP and compare its result against the result fromiazane-size-fits-all
configurator (ParamILS) and ISAC. For QAP and SCP, we userggrteinstances
(set B) while for TSP we used benchmark instances. Table sha®s the average
performance result from 5-fold-cross-validation for TRIAP and SCP. Notice that
CluPaTra Trans outperforms other methods in both training and tgstistances.

We verify the effectiveness of our approaches in providheghiest configuration
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Table 3.13:CluPaTra’s Performance Comparison of Three Classical COPs

Problem Technique

Training Testing

TSP ParamlILS 2.67 2.02
CluPaTra Standard 222 1.93
CluPaTra Trans 201 1.7
CluPaTra Robust 2.10 1.8
CluPaTra Trans-Robust 206 1.93
ISAC 2.02 1.88

QAP ParamlILS 2.21 2.27
ground-truth 1.93 2.09
CluPaTra Standard 1.99 2.19
CluPaTra Trans 1.88 2.08
CluPaTra Robust 1.89 2.10
CluPaTra Trans-Robust 1.90 219
ISAC 1.98 2.15

SCP ParamlILS 1.53 0.82
CluPaTra Standard 1.24 0.81
CluPaTra Trans 0.78 0.80
CluPaTra Robust 1.01 0.98
CluPaTra Trans-Robust  0.67 0.78
ISAC 1.13 0.77

* = statistically significant against ParamILS
Boldface indicates the fastest computation time.

for each testing instance by experiments using QAP bendhimstances (Set A) and
generated the clusters usi@iuPaTra Trans. We run the target algorithm for all QAP
testing instances in Fig. 3.12 using parameter configuratitom each cluster and
show the result in Table 3.14. From the table we observe #t gesting instance,
except for tai35a, has the best performance using param@téigurations from the
most similar cluster.

To further investigate the effect of clustering in the ollgvarformance result, we
calculate the Pearson product-moment correlation coeffi¢or the testing instances
in Table 3.14. We also calculate the Pearson correlatiofiiceat (and the p-value)
for cluster number and the overall performance result feheasting instance and
report the results in Table 3.15. From the table we obsemeftn each testing in-
stance, except for nug25, there is a strong correlationdmvthe cluster number and
overall performance result. This may indicate that theteliisg influence the overall

performance result. Although there are other factors #iffg¢he overall performance

58



Table 3.14:CluPaTra’s Testing Instances Performance using Different Clusted-
rameter Configuration

Parameter Configuration for each Cluster
InstanceCluster C#1 C#2 C#3 C#4 C#5 C#6

nug2s5 1 0.48 0.64 0.69 058 0.58 0.58

tail2a 1 0 0 0 0 0 280

tail5a 1 0.19 0.76 052 122 172 2.66
tai30a 1 1.86 2.81 220 257 3.03 2.65
tai35a 1 1.49 1.38 3.37 3.75 3.047 3.95
kra30b 2 0.07 0.07 0.97 0.07 188 1.18

ste36c 2 191171 508 895 7.84 7.82
sko100b3 0.69 1.220.53 116 131 1.29
sko100e3 1.18 1.181.10 130 134 121
wil100 3 0.65 0.69 0.63 0.81 0.96 0.93

Parameter Configuration for:

C#1: Temp=4000, Alpha=0.9, Length=7,Pct=0.08
C#2: Temp=2000, Alpha=0.5, Length=7,Pct=0.09
C#3: Temp=3000, Alpha=0.3, Length=10,Pct=0.1
C#4: Temp=4000, Alpha=0.3, Length=10,Pct=0.07
C#5: Temp=100, Alpha=0.3, Length=10,Pct=0.03
C#6: Temp=5000, Alpha=0.1, Length=1,Pct=0.08
Boldface indicates the best performance result.
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Table 3.15: Correlation between Cluster Quality and OVv&=atformance

Instance Pearson’s Coefficienp-value
nug25 0.210 0.681
tail2a 0.654  0.133
tailba 0.943**  0.001
tai30a 0.626  0.158
tai3ba 0.838**  0.021
kra30b 0.709**  0.090
ste36¢ 0.874**  0.011
sko100b 0.620 0.164
sko100e 0.505 0.285
wil100 0.888***  0.008

*** p <0.05; **: p <0.1

Table 3.16 CluPaTra’s Performance Comparison using Different Clustering Meth
TSP QAP SCP
Technique  Training Testing Training Testing Training Tegt

AGNES 2.01 1.72 1.88 2.08 0.78 0.80
k-medoids 1.88 1.90 2.08 2.16 0.99 0.80
Boldface indicates the best performance result.

result, such as the robustness of the global tuning and dlcbastics of the target al-
gorithm, we postulate that cluster quality significantlieats the overall performance

result.

3.6.8 Comparison of Different Clustering Methods

To investigate the effect of different clustering methau€luPaTra, we conduct an
experiment using another well-known clustering methiethedoids. We compare the
performance result of using AGNES ahemedoids clustering methods on the Trans
instantiation for TSP, QAP and SCP. For QAP and SCP, we userged instances
(set B) while for TSP we use benchmark instances. We sét tladue to be equal to
the AGNES cluster number. Table 3.16 shows that AGNES pagalightly better

thank-medoids even though it is not statistically significant.
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3.7 Discussion

The experimental results show that the instance-specitfanaated parameter tun-
ing framework yields a significant improvement in perforro@arcompared with the
pure one-size-fits-all configurator ParamILS. We also olesénat allCluPaTra in-
stantiations perform significantly superior to or equal$&C. Having more similar
instances in smaller clusters will eventually guide theingrprocess to find better
parameter configurations for each cluster. Based on thistyege verify that divid-
ing the instances into clusters usiuPaTra before running one-size-fits-all con-
figurator provides a better parameter configuration for éastiance and significantly
improves the performance.

To represent the search trajectory, we need the best knptimiam solution value
(OPT) for each instance. We use either (a) the known globiinap value, or (b)
when the global optimal value is unknown, the best knowne/afor all TSP and sev-
eral QAP benchmark instances, we use the known global optahze from TSPLib
and QAPLIb respectively, while for other QAP benchmarkanses, we use the best
known value from QAPLIib. For QAP and SCP generated instarwesise the best
found values as the best known values. For generated irstane use the best found
solution. From the experiment result, we observe that opragches using either
known global optimal value or best known value are able toegete good clusters
and hence improve the overall performance.

The effect of different clustering methods is also evaldétecomparing two well-
studied clustering approaches, AGNES &nohedoids. The result shows that there is
no significant difference; with these two clustering methadtis may indicate that the
underlying clustering method does not have a substanfedtesnCluPaTra.

Up to this stageCluPaTra is bounded by limitations due to its reliance on se-
guence structure representation and sequence alignneaittdate similarity. Search
trajectories naturally have cycles, and a sequence repegsm of the search trajec-
tory does not record the cycles. Hence the sequence repgdésammay reduce its

granularity and remove some important information. Segeelignment inherits a
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computational bottleneck whose worst-case time compléxiO(m? xn?) (wherem
is the number of instances in the training set angs the maximum length of the
sequences). This sequence alignment may not be scalabdersize of instances

with long search trajectories.

3.8 Chapter Summary

In this chapter, we propose and disc@$sPaTra, generic instance-specific automated
parameter tuning framework. We describe the frameworkwserand its three main
components: feature selection, similarity calculatiod elnistering method. In feature
selection, we present the notion of search trajectory aslalgm-independent feature
and represent in two variance: exact sequence and transéguence representation.
For similarity calculation, we used pairwise sequencenafignt and implemented it
in two variants: basic and robust sequence alignment. Asistering method, we
applied a well-known agglomerative hierarchical clustgriAGNES.

From a series of experiments on three classical COP: TrageHalesmen Prob-
lem (TSP), Quadratic Assignment Problem (QAP) and Set Qayétroblem (SCP),
CluPaTra shows a significant improvement compared to a vanilla one-iis-all ap-
proach, ParamILS. Compared with existing instance-spettifiing using problem-

specific featureCluPaTra shows a significantly superior or equal result.
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Chapter 4

Pattern Mining Approaches for
Instance-specific Automated

Parameter Tuning

In the previous chapter, we discuSkiPaTra, a generic instance-specific automated
parameter tuning framework using search trajectory asategc feature. It rep-
resents search trajectory as two simple directed sequeegast and transition se-
guencesCluPaTra performs a sequence alignment method to calculate thessityil
score for each pair of instances. Sequence alignment wgrksinparing all possi-
ble alignments regardless of their lengths, start and esdipos, and then chooses
the best alignment as the alignment that maximizes theaiityilscore, which is the
sum of the scores for matched symbols and gaps in the alignmdéer having the
similarity score ,CluPaTra then clusters the instances using agglomerative clusgterin
method and tunes each cluster using an existing one-s&zalfitonfigurator. For test-
ing instancesCluPaTra simply returns the most similar cluster’s configurationfaes t
testing instance’s configuration.

However, the experimental results on three classical Coatbiial Optimization
Problems (COPs) confirm th&luPaTra provides a promising improvement com-

pared to existing tuning methods. Due @uPaTra’s reliance on sequence repre-
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sentation and sequence alignment to calculate similaritgherits some structural
issues and computational bottleneck. Due to these limitafCluPaTra works only
on short instances and when the number of instances is small.

To overcome the limitations aZluPaTra, we proposeCluPaTra-Il, a more com-
plex approach by modeling the feature extraction as a patténing problem. For
feature extraction and similarity calculation, we desigio new pattern mining al-
gorithms: (1)SufTra, Suffix tree for sequential searchrajectory pattern extraction,
and (2)FloTra, Flower graph mining for graph seardhajectory pattern extraction.
SufTra is constructed for search trajectory sequence repregantahile FloTra for
graph representation. These approaches provide efficienaicéon of compact and
discriminative features of search trajectory and are dapabretrieving similarity
measures across multiple segments. Using a pattern mirodglnfeatures extracted
usingSufTra andFloTra can efficiently and effectively form better and tighter ¢érs
and hence improve the overall performance.

In this chapter, we discuss these two approaches. We fitsbrelieCluPaTra-Il,

a pattern mining framework for automated parameter tun@ then present our
two novel pattern mining approacheSufTra andFloTra. with SufTra as a pattern
mining technique via suffix tree arféloTra for graph pattern mining for search tra-
jectories. We then describe the experimental setting asultreé=inally, we conclude

by summarizing the chapter.

4.1 CluPaTra-ll: Tuning Framework using Pattern
Mining Approach
The CluPaTra dependency on sequential representation and sequenoenahg to

calculate similarity share the following limitations.

1. Scalability.

Both sequence alignment techniques, basic and robustrsegaégnment, are

implemented using standard dynamic programming [51], wittomplexity of
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Figure 4.1: Similarity Patterns from three search trajgcsequences

O(n?) wheren is the maximum sequence length of the sequences. To closter i
stances, we need to compute similarity scores for all ptespdars of training in-
stances. Hence, the total time complexity for sequencerakgt isO(m? xn?),
wherem is the number of instances in the training set and the maximum
length of the sequences. This poses a serious problem tanoes with long

search trajectories and when there is a large number ohicesa
. Flexibility.

The process of sequence alignment is aligning a pair of segusegments that
gives the highest alignment score, when it is possible tftmséquences, espe-
cially for long sequences, share similarities in more thamgegment. Sequence
alignment is not flexible enough to capture multiple-segnaéignment with an

acceptable time complexity.

As an example, Fig 4.1 shows three search trajectory segqsenthe boxes
represent the similar patterns found in these three seajectories. Using the
CluPaTra similarity calculation method, we may conclude that instat and
2 are similar and belong to the same cluster because thesiygcore for in-
stance (1) and (2) is 4 while the similarity score for otheir p&instances is
3. If we examine the search trajectories further, we mayodiscother similar
patterns and observe instance (1) and (3) actually shaghafmumber of sim-
ilar patterns instead of instance (2) because instancen(lL{3) have matching
symbols in two segments. Hence, instance (1) and (3) sheldad to the same

cluster, while (2) should be in a different cluster.
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3. Descriptiveness.

Animportant aspect of the fitness landscape that can bereaidtom the search
trajectory is its local optima. A local optimum is an optinfeither maximal or
minimal) solution with regards to its direct neighborind eé solutions [55].
It may or may not be the global optimum. General meta-hearagorithm
should avoid being trapped in local optima. But a strong lloggimum may
force the search process to continuously return to thid mm#mum. Identify-
ing the local optimal is quite essential to improve the pemfance of the target

algorithm [88].

Although local optima information can be extracted from skearch trajectory,
it can not be represented in sequence representation. \Wa¢arget algorithm
returns to a position that has been found previously, it adlys a'C’ symbol to
the sequence but does not point the cycle solution. Heneejgh of sequence

representation may result in a loss of the search trajestougtural pattern.

For example, Fig. 4.2 shows the sequence and graph repxgearfor three

search trajectories of Quadratic Assignment Problem (QABances. The
three sequences have many similar subsequences (Fighdizhg real search
trajectories (as shown in Fig. 4.2b) are different; two eledrajectories have a

smoother search while the other one has many cycles.

As an attempt to answer these limitations, we propose a neinguramework
using a pattern mining approach which we refeCagPaTra-1l. Similar toCluPaTra,
CluPaTra-1l works in two phases: training and testing. The frameworKustrated
in Fig. 4.3 and the steps involved in training and testingselsaare shown in Fig. 4.4
and Fig. 4.5 respectively. The training phase works by fepreésenting the search
trajectory as a directed sequence @ufTra) or graph (forFloTra). Instead of using
the sequences or graphs directly to calculate the similacibre as irCluPaTra, we
extract a set of compact features from search trajectosiassing frequent pattern

mining techniques.
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(a) Sequence Representation of Search Trajectories

9L-8L-7L-7L-6M-9L-9L-9L-8L-8L-7L-6M-C-9L-8L-7L-7L-7L-7L-7L-7M-6M-C-6M-8L-8L-8L-C-...

9L-8L-7L-7L-7L-6L-6L-6M-6L-6M-C-6L-5L-5L-5L-5L-5L-5M-6L-5M-C-6L-5L-4M-6L-6L-7L-4M-...

9L-9L-8L-7L-7L-6L-6L-6L-6L-6L-5L-5L-5M-8L-7L-7L-5M-C-9L-7L-7L-7L-7L-6L-6M-5L-5L-5L-...

(b) Graph Representation of Search Trajectories

Figure 4.2: Sequence and Graph Search Trajectories Repatsa for three
Quadratic Assignment Problem (QAP) instances

In frequent pattern mining, we find substructures (subsecgseor subgraphs) that
appear in a data set with a frequency of no less than a useifisde¢hreshold (called
Mminsupport) [90]. IN OUr setting, a set of itembis a set of search trajectories repre-
sented as a sequenger a graphg. Since we want to find patterns from different
search trajectories, we present the search trajectorieriical data formaia set of
sequences or graphg) and perform mining to find frequent patterns across search

trajectories. We define the frequent pattern mining protdsrfollows.

Definition 12 (Frequent Pattern Mining [FPM]) Given a setS of sequences of
graphs, aming,pe-+ value andmins,.. value, the frequent pattern mining problem is
to find all sub-sequences or sub-graphs of size at least,;.. appearing in at least

Minsuppors NUMber of segments Sfor graphsG.

These sub-sequences or sub-graphs are used as distieetivesk to describe the
instances characteristics.
We construct two novel pattern mining approach8&sifTra and FloTra. Suf-

Tra utilizes the Suffix Tree structure to retrieve featuresmedir computational time,
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Figure 4.3: Tuning Framework using Pattern Mining Approach

wheread-loTra mines features from search trajectory grapufTra andFloTra ex-
tract the features and construct an instance-feature eweltich correlates instances
with each featureSufTra andFloTra details are described separately in the following

subsections.

Procedure TrainingPhase
Inputs:  A: Target Algorithm;
I: Training instances;
O: Parameter Configuration Space;
X;: Initial Sequence Configuration;
Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;
Method:
. T = SearchTrajectoryRepresentatidn(, X;);
F = FeatureExtractiofI();
S = SimilarityScore(, F);
C = Cluster(, 5);
for each cluster i’ do
P; = configuratord, C;, ©);
returnC, X;

NogahkhwnRE

Figure 4.4: Tuning Framework using Pattern Mining Approaciining Phase

To calculate the similarity for each pair of instances frominstance-feature met-

ric, we use cosine similarity, a widely-used similarity raege for comparing vectors
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Procedure TestingPhase
Inputs:  A: Target Algorithm;
I;: A set of Testing instance;
C: Set of clusters;
X: Parameter configurations for each clustefin
X;: Initial Sequence Configuration;
Outputs: BestConfig: Arecommended configuration;
Method:
1: for each clusterid' do
2.  SIGN; = SignatureExtraction;);
3: end for;
4: for each instance ify do
5:  BestClust; = Mapping(:;, A, SIGN);
6: BestConfig; = X[BestClust;];
7. returnBestCon fig;

Figure 4.5: Tuning Framework using Pattern Mining Approaekting Phase

[46]. Cosine similarity is equal to 1 when the angle is 0, anslliess than 1 when the

angle is of any other value. Cosine similarity is formulatsd

S o(Li(fs) x I(f) »
Vi Lilfi)? < /20y Ia(fi)? (4.1)

whereI;(f;) and Iy(f;) are the scores from instance-feature metric for featwe

sitmilarity =

Instance 1 and 2 respectively.

CluPaTra-ll then clusters the instances by a well-known clustering o,
AGNES with L method. Detail description of AGNES and method is provided
in subsection 3.2. A tuning process is then performed to fistbest parameter con-
figuration for each cluster. An example that illustrates steps in the algorithm is
shown in Fig. 4.6.

For new testing instances, we improve the matching procggsdposing a new
classification method to map testing instances to clustéris method enables us to
generate more accurate mappings with shorter computatien tn the testing phase,
we use the knowledge from the training phase to return iostapecific configura-
tion(s) for testing instances. This phase is usually peréat online. To achieve this,
we design a new method for fast and accurate testing instaapping. Our proposed

method consists of two steps:
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1. Signature Construction. We construct the signaturesdoh cluster. This step
is run once, and can be performed offline. The signature naigin step is
similar to feature extraction (in the training phase) butveed to run feature

extraction for each cluster. We use these features as thechisignature.

2. Cluster Mapping. For an arbitrary testing instance, wé&hds search trajec-
tory to the cluster’s signature and return the parametefigumation from the
best-matching cluster’s as its parameter configurations 3tep is performed

online.

In the next subsections, we describafTra andFloTra in detail.

4.2 SufTra: Pattern Mining via Suffix Tree

SufTra utilizes suffix tree data structure to represent the seaapctories of a target
algorithm. It extracts compact features from search ttajexs for similarity calcula-
tion using the cosine similarity techniqu8ufTra addresse€luPaTra’s limitations

as follows:

1. Scalability: We propose a linear time algorithm for botiff& Tree construc-

tion and traversal; and

2. Flexibility: We generate compact patterns from searajettories and use them
as features. The patterns may occur in multiple segmentg éhe search tra-
jectory, so suffix trees enable us to consider multiple-sagnsimilarities to

improve clustering accuracy.

In SufTra, we use the basic sequence representation of search drgjest de-
scribed in subsection 3.2. Here, we only explore one seguespresentationSuf-
Tra works in 4 stages: sequence hashing, suffix tree constnjdgatures retrieval

and instance-feature metric calculation. The details sifeliows.
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4.2.1 Sequence Hashing

In a search trajectory, several consecutive solutions ragg kimilar solution proper-
ties before the final improvement to reach the local optimtonéxample04L-04L-
04L-04L-04L-02F. We therefore compress the search trajectory sequencelasia
Stringby removing the consecutive repetition symbols and ste@&timber of repeti-
tions in aHash Tableo be used later in pair-wise similarity calculatioitash String
is the shorter version of the search trajectory after cosging all the repetition sym-
bols. An example oHash Stringfrom 04L-04L-04L-04L-04L-02Fhe is04L-02P If
the sequence has a longer repetition, it should have a hégbee because it contains
more symbols. To store the number of repetition, we canmaplyi encode it in the
Hash Stringoecause it makes the symbol different if the repetitionfiedent. Hence,
we may lose some important features. To still include thetigpn in the similarity
score calculation and maintain the important feature, veealitash Tableo store the
repetition and calculate the repetition only to calculdie similarity score. In this
example, the number of repetition of 04L is 5.

Removing consecutive repeated symbols gives us two adyesita

1. It offersgreater flexibility for SufTra in capturing more varieties of similarity
for symbol patterns between two instances. Two instancegsgnare similar
patterns (such as4L-5L) but have different numbers of consecutive symbols,

e.g., forl4L occurs 10 times in one instance and 5 times in another.

2. It reduces computational cosin constructing and traversing the suffix tree,
since the time needed is decided by its length. Hash Striagnere compact

and shorter representation of the original search trajgstguence.

After constructing Hash Table and removing repetitions,cesvert the symbol

for each solution to a single character and concatenatwitistring (Hash String).
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(a) Suffix Tree for Single String (b) Suffix Tree for a Set of String
P$ _ LM MNP$, 4 1

5 P$ LMMNP$ 1

M
NPH P\ MNPS

4 3 ™2

Figure 4.7: Example of Suffix Tree for a single strifg (LM M N P) and for two
stringsS1=LM MN P andSy=LM N M M

4.2.2 Suffix Tree Construction

The search trajectory sequences found in the previousosastused to build a suffix
tree. A suffix tree is a data structure that exposes the iatstructure of a string for
the particularly fast implementation of many importanirgjroperations. Suffix trees
are used to solve exact and inexact matching problems iarliti@e and are widely
used in substring problems [46]. The construction of a sufée proves to have a
linear time complexity w.r.t. the input string length [46].

A suffix treeT” for anm-character string' is a rooted directed tree having exactly
m leaves numbered 1 ta. Each internal node, except for the root, has at least two
children and each edge is labeled with a substring (inclyithe empty substring) of
S. No two edges out of a node has edge-labels beginning witkaime character.

To represent suffixes of a séb, Ss,....S, } of strings, we use generalized
suffix tree. Ageneralized suffix tree is built by appending a different end of string
marker (which is a symbol not used in any part of the stringhsas *) to each string
in the set, then concatenating all the strings together,barniding a suffix tree for
the concatenated string [46]. An example ojeaeralized suffix tree for strings is
LMMNP andLMNMM is LMMNP x LMNMM=x. The time needed to build
this suffix tree is proportional to the total length of all thieings. An example of a
suffix tree for a single string; and a set of string; andS; is shown in Fig. 4.7.

In a suffix tree structure, we can easily retrieve matchirgsgings from a set
of string by finding the branch that has leaves from corredpanstrings. From our
suffix tree example (Fig. 4.7b), branches with edge-labbelv, LM, MM, andM N

have leaves from both strirt§) andS,. These edge-labels represent the same substring
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shared byS; and S,. We use such common substrings to exti@afTra instance
features.

We construct the suffix tree for the Hash Strings derived fesarch trajectories
using the Ukkonen’s algorithm [46]. We build a singjeneralized suffix tree by
concatenating all the Hash Strings together to cover atlitrg instances. The length
of the concatenate string is proportional to the sum of &l ltash String lengths.
Ukkonen'’s algorithm works by first building an implicit suffiree containing the first
character of the string and then adding successive chesaotél the tree is com-
plete. Details of Ukkonen’s algorithm can be found in [46Lur@kkonen’s algorithm
implementation require®(n x 1), wheren is the number of instances ands the

maximum length of thédash String

4.2.3 Features Retrieval

After constructing the suffix tree, we extract the frequartistrings. As described
in Definition. 12, a substring is considered as frequent Has a sufficient length
and occurs in a significant number of strings [50]. The mimmmumber of length
and occurrences is determined tayn,;.. andmin,,,,....\We apply a local search to
provide sufficiently good values in reasonable times.

We use a first-improvement local search to move from ini@lies ofmin,;.. and
ming,per+ t0 their neighbors by changing eithering;.. or ming,,,. at each move
until the average distance among all instances in two @iffeclusters are no longer
improving. To find initial values ofnin,;,. and ming,,,.+, We run a competition

among 5 candidates, which are:

1. Lower bound ofmin,;,. and ming,,,.. We assume a good feature pattern
should appear in more than one instance and contain moreoti@isymbol,

therefore, we set the lower bound value for boiin,;.. andmin,,: to 2.

2. Upper bound ofning;,. andming,pper¢. TO S€tming;.. and theming,,,.» upper

bound, we observe the number of features extracted forrdiffenin,;.. and
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Milgyppere Values. Ifming.. is more than 20% of maximum string length and
Ming,per: IS MOre than 20% of the number of instances, most likely, weldvo
not find any frequent substring. Therefore, we set the uppand default value
of ming;,. as 20% of maximum string length and the default valugof;,,,,0¢

as 20% of the number of instances.
3. The middle value between the lower and upper bound.
4. First random value.

5. Second random value.

4.2.4 Instance-Feature Metric Calculation

After extracting the features, we calculate the instanse@e for each feature and

construct an instance-feature metric using the followirlgs:
1. if the instance does not contain the feature, the scoreis 0

2. otherwise the score is calculated by summing up the nuoiepetitions for
each symbol in the feature from the previously construetagh Table A fre-
guent substring may occur multiple times in one string. Weuwate the score
for each occurrence and choose the maximum score as théasctire instance-

feature metric.

4.3 FloTra: Graph Pattern Mining for Search Trajec-
tory

Representing the search trajectory with a sequence@siiPaTra andSufTra suffers
from the issue of descriptiveness due to their use of segquespresentation model.
CluPaTra andSufTra may oversimplify the search trajectory and lose finer granul

details in some structural patterns.
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Figure 4.8: Flower Graph with stem, petals and thorns

To overcome this limitation, we introdu¢doTra, a technique to uncover impor-
tant patterns from search trajectory graph for generi@ants#-specific automated pa-
rameter tuningFloTra constructs a graph representation of the search trajeataty
conducts a graph pattern mining to discover specific and itapbpatterns in the
search trajectory. Using those patterlgTra then calculates instance-feature met-
ric.

In FloTra, we represent a search trajectory as a graph. Each solatgmaph rep-
resentation is represented as symbol of two solution ate# the position type and
its performance metric as described in subsection 3.2. A m®a solution and an
edge is the movement from one solution to another is predergen edge as illus-
trated in Fig 4.8. A search trajectory graph is a special lgthpt has two distinctive
structures: (1) a long skinny path representing solutiomeneent from initial solution
to end solution and (2) multiple short paths and loops repriasg the movement to
or from local optima. The more loops in the graph, the strotige local optima are.

The search trajectory graph can be considered as a flowpe-gjtaph where the
skinny long path is a stem and the short paths and loops aaés@etd thorns. In a
flower-shape graph, we define the stem, thorns and petallas/$olGiven a flower-
shape graph, a stem is considered as a single long path f@nmittal node. An
example of this stem is the path from the initial node (nodélthe end leaf node
(node 25) in Fig. 4.8. A petal is defined as a short path fromrende along the stem
that returns to the same node, while a thorn is a short patldtdes not return to the
same node. To differentiate petals and thorns from stemssseme that petal and
thorn lengths should be shorter than stems. This is basedrasbservation of actual

search trajectory graphs where we find that petals and ttasenshorter than stems.
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Table 4.1: Average length of Stem, Thorn and Petal
Parts Average Length

Stem 45
Petal 12
Thorn 6

The average length of stems and petals and thorns is shovabla B.1.

An example of a petal and thorn in Fig 4.8 is the path 8-9-8 ahd8 respectively.

To efficiently mine frequent patterns (subgraphs) from dedrajectory graphs and
calculate similarity scores for each pair of instances, arestruct a feature extraction
and similarity calculation method that exploits the gratidctive structures.

The aim ofFloTra is to find a set of frequent patterns (subgraphs) from a set of
search trajectory graphs. As described in Definition.Al@Tra has two parameters:
Ming;,. andming,pyor¢. Ming.. determines the minimum subgraph length (which is
translated to the minimum length of a stem and the maximumtkeof thorns and
petals) whereasing,,,.« determines the minimum number of graphs that contains
a frequent subgraph. In this thesis, the valuesndi,;.. andming,,,. are fixed
beforehand.

FloTra works in four stages. It first mines short frequent pathsr(te@and petals)
from all nodes, except the initial node. It then continuesiioe long skinny paths
(long stems) from the initial node. After having a set of ti®mpetals and stemBlo-

Tra then assembles the thorns, petals and stems together aactektese as features.

Finally, FloTra constructs the instance-feature metric. Details are &anisl

4.3.1 Stage 1: Mining Flower Thorns and Petals

To find petals and thorns, we only select nodes which areedisitore than once in
the search process. Hence, the number of edges must berdgheatene. We first
enumerate all the paths from the selected nodes using théhBast Search (DFS)
algorithm [32]. One node may have several different DFS pathshown in Fig 4.9.

For paths with length less thanin,;.., we construct a Suffix Tree structure as
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Figure 4.9: DFS Path for a particular node in search trajggmaph

in SufTra. This suffix tree is used to mine similar thorns and petalssdifferent

instances. To avoid redundancy, we only insert the same grath and we run a
checking mechanism before inserting it. We then retrieeguent substrings from
different search trajectory graphs that occur more tham,,,,.. as frequent patterns

for flower thorns and petals. The details of this method aosvshn Fig 4.10.

Procedure createflower_thorn _petal
Inputs: G: Graph;
MANgupport- MIN SUPPOTT;
Csize. Max cycle length;
Outputs: Py, aset of frequent flower
thorn and petal;
Method:
LetS=0
For graphy € G
Letn = nodec g where edge> 2
Foreachh € ¢
Let P = generate_path_using_-DFS(n);
For each path € P
if not check_already_exists(p, S)
insert_to_suf fixtree(p, S);
9: Let Py,eq = retrieve_frequent_substring(S, mingupport);
10: sort(Pfreq)
11: OutputPy;c,;

ONoaA~rONE

Figure 4.10: Create Flower Thorns and Petals Procedurg siffix Tree

4.3.2 Stage 2: Mining Long Stem

Aside from flower thorns and petals, another important stinecthat we want to re-
trieve is a long stem structure. The process is similar tgesfa We first enumerate
all paths from the initial node using a DFS algorithm [32].r paths with lengths
equal to or more thamin,;.., we construct a Suffix Tree and find all frequent paths.

We retrieve the frequent substrings from different searajettory graphs that occur
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Figure 4.11: Example of frequent subgraph foundyTra

more thanmin,,.-+ as frequent patterns for long stem.

4.3.3 Stage 3: Assembling the Flower

At this stage, we assemble the flower thorns and petals fragest with the long
stem set from stage 2. For each long stem set that containsttesin the flower
thorn and petal set, we attach the flower thorn and petal amsiader it as a new can-
didate pattern. If the new candidate occurs no less that,,,.: times, we accept
it as a frequent pattern. Because frequent paths from bethqus stages are gener-
ated from multiple segments in search trajectory, the alsbegyprocess may discover
some gaps among those frequent paths. We allow these gagslantate the min-
imum number of gap and the maximum number of gap in betweersad shown
in Fig 4.11. The solid edge represents a direct path whilelished edge represents
a gap with the minimum and maximum number of nodes in betwédter assem-
bling the flower, we set all the found frequent pattern fezguf it occurs in at least

Minsuppor NUMber of graphs.

4.3.4 Stage 4: Instance-Feature Metric Calculation

After extracting the features, we calculate instance’seséor each feature and con-
struct an instance-feature metric by setting the score totldei instance does not

contain the feature, or otherwise to 1.
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4.4 Empirical Experiment Result

We conduct a series of experiments to investigate the paeoce ofCluPaTra-Il
with SufTra andFloTra. We applyCluPaTra-II for three Combinatorial Optimization
Problems (COPs): Traveling Salesman Problem (TSP), Quiadssignment Prob-
lem (QAP) and Set Covering Problem (SCP). A€inPaTra, we use the Iterated Lo-
cal Search (ILS) algorithm [49] for TSP, hybrid Simulated¥aling and Tabu Search
(SA-TS) algorithm [87] for QAP and tabu-search algorithré][8r SCP. These three
algorithms have four parameters to tune. We use the sameigne measurement
and setting as iluPaTra. The details of the target problem and the algorithm, ex-
perimental measurement and setting have been describdthpte® 3 (section 3.6).
We compare th€luPaTra-ll experiment result t&€luPaTra-Tran, the most ef-
ficient (with respect to time and quality) instantiation ©@fuPaTra, and the ISAC
result. To investigate the effectivenessGQitiPaTra-1l - FloTra in extracting features
from the search trajectory graph, we also com@@eP,aTra-11 - FloTra with a well-
known graph mining algorithm, gSpan [117]. We replacefiodra feature extraction

method with gSpan and compare the results.

4.4.1 Cluster Analysis

We first compare the clusters created fr@PaTra, ISAC, CluPaTra-Il - SufTra,
CluPaTra-Il - FloTra andCluPaTra-Il - gSpan for QAP and SCP. We use the same
ground truthclusters as irCluPaTra. The cluster quality is shown in Table. 4.2.
Notice thatCluPaTra-Il - FloTra has the highest cluster quality.

Next, we provide some insights on h@uPaTra-1l generates a good feature from
the problem instances. For this purpose, we investigatsigimature features for each
cluster.

We runCluPaTra andCluPaTra-Il usingFloTra to cluster 10 random instances of
QAP from the ground-truth clusters [105] (random and umifalistances and flows;

random flows on grids; and real-life problems). We then gateethe features (sig-
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Table 4.2:CluPaTra-1l with SufTra andFloTra Cluster Analyses Comparison

QAP SCP
Technique Training Testing Training Testing
CluPaTra-Tran 0.68 0.70 0.75 0.60
CluPaTra-1l - SufTra 0.90 0.93 0.85 0.78
CluPaTra-1I - FloTra 0.95 0.96 0.86 0.79
CluPaTra-11 - gSpan 0.92 094 0.86 0.78
ISAC 0.80 0.80 - -

Boldface indicates the best cluster quality.

natures) from each cluster. FGtuPaTra, we generate the signatures using sequence
alignment while forFloTra, we use the graph mining algorithm.

We illustrate the signatures in Fig. 4.12.@uPaTra, cluster 1 has the smoothest
search trajectory signature compared with the other twatets. In cluster 1, the local
search is able to guide the search towards a better soluiibowt restarting which
is shown by the signature that moves from position ledget¢ position ledge L)
with lower Best until it finds local minimum ). The other two clusters have a more
rough search trajectory that makes the search harder. fteis wapped in a bad local
optimum (e.g.:08P and05P). Apart from theBest values, there seems to be no
significant difference between the signatures of these tusiers.

On the other hand, iRloTra, each cluster has unique features. Cluster 1 has a long
stem with a petal which indicates that the search landssagmooth. Cluster 2 has a
long stem with more thorns and petals - which indicates thairistances have more
than one local optimum which the local search is able to es&agm using restart.
Cluster 3 has a lot of thorns and petals from one node whidlcatek that this node
is a strong local optimum which trapped the local search.

Using this observation, we conclude tl@luPaTra is only able to differentiate
cluster 1 from cluster 2 and 3 and unable to differentiatstelts 2 and 3; whil€loTra
is able to capture different unique signatures for clusierd and 3. Thes€loTra’s
signatures are also consistent with the observation in][10Sing these abilities to

capture better signatureBloTra is able to create better (more similar and tighter)
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I. CluPaTra Signatures
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Figure 4.12: Example of clusters’ signature for each clugtmerated usingloTra

clusters and hence generate a more suitable parametenaatifigp for each cluster.

4.4.2 Computational Time

Next, we report the time needed (in seconds)G@tuPaTra, CluPaTra-1l - SufTra,
CluPaTra-1l - FloTra andCluPaTra-II - gSpan to form the clusters in training phase
for TSP, QAP and SCP. For QAP and SCP, we use generated iasté®et B) while
for TSP we use benchmark instances. Since we want to testtf@mance oSufTra
andFloTra on long search trajectories and large sets of instanceseli®edately use
generated instances for QAP (Set B) because the trainin¢eatidg sets have large

numbers of instances (100 instances for training and 4G@nnoss for testing) with

long search trajectories (average search trajectory =86%,5

Table. 4.3 shows the resultSufTra is the fastest approach compared to other
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Table 4.3:CluPaTra-1l with SufTra andFloTra Computational Time Comparison

TSP QAP SCP
Technique Training Testing Training Testing Training gt
CluPaTra-Trans 546s 0.05s 1,002s 2,547s 160 s 48 s
CluPaTra-Il - SufTra 3.01ls 0.02s 56s 146 s 15s 8s
CluPaTra-Il - FloTra 421s 0.04s 350s 212s 43 s 21s
CluPaTra-Il - gSpan 521s 0.07s 471 s 184 s 54s 25s

Boldface indicates the fastest approach.

Table 4.4:CluPaTra-1l with SufTra andFloTra Performance Result Comparison

TSP QAP SCP
Technique Training Testing Training Testing Training gt
CluPaTra-Trans 201 1.71 1.87 2.08 0.78 0.79
CluPaTra-1l - SufTra 200 157 0.83 1.16° 0.35 0.78
CluPaTra-1l - FloTra 198 1.25 0.78 1.07 0.27 052
CluPaTra-1l - gSpan 199 129 080 1.09 0.3 0.68
ISAC 2.02 1.88 1.98 2.15 1.12 0.77

* = statistically significant against ISAC.
Boldface indicates the best performance result.

approaches, especially for QAP wh&wefTra is 18 times faster tha@luPaTra.

4.4.3 Performance Comparison

Finally, we compare the target algorithm performance upgrgmeter configurations
from CluPaTra, ISAC, CluPaTra-Il - SufTra, CluPaTra-1l - FloTra and CluPaTra-
Il - gSpan. For QAP and SCP, we use generated instances (SetilB)farhTSP
we use benchmark instances. For the five instance-specificooeCluPaTra,
ISAC, CluPaTra-Il - SufTra, CluPaTra-Il - FloTra andCluPaTra-Il - gSpan, we use
ParamiILS [60] as a one-size-fits-all configurator. We meatw performance using
performance metric as defined in Definition 3.

In Table. 4.4, we show the performance comparison resutisicélthatCluPaTra-

Il - FloTra outperforms other methods in both training and testingaimsss.

Furthermore, depending on the structure of the searchctosje the two meth-
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Table 4.5:CluPaTra-Il with SufTra andFloTra Comparison in Two Groups of Search
Trajectories

Group without Cycles and Restarts  Group with Cycles andaresst

Technique Quality Time (s) Performance Quality Time (s) f&f@nance
CluPaTra-1l - SufTra 0.87 34 0.97 0.86 40 0.94
CluPaTra-Il - FloTra 0.91 163 1.03 0.63 182 0.74

Boldface indicates the best cluster’s quality/time/perfance result.

ods ofCluPaTra-Il may perform differently. To investigate the relative penfiance
of these two methods, we run them under two different treatrgeoups of search
trajectory structures. We retrieve the search trajecddrim 20 QAP instances and
transform them to sequences/graphs. For the first groupgmeve all the cycles and
restarts. For the second group, we retain them. Table. éWwssthe results of the two
methods in terms of cluster quality, time and overall perfance.

Notice here thaBufTra performs slightly better thaRloTra for the first group
without cycles and restarts with much faster time. Whiléhia group with cycles and
restarts, thé&loTra results are better. From these results, we claim$udira is best
suited for search trajectories without (or with less) cg@ed restarts, whilEloTra is

best for search trajectories with cycles and restarts.

4.5 Discussion

From the experimental results, we verify the performanc€loPaTra-1l with Suf-
Tra andFloTra and observe a significant improvement in cluster qualityngota-
tional time and performance compared to its predeceSkd?aTra. CluPaTra-Il with
SufTra andFloTra also perform better than the existing instance-specifioraated
parameter tuning, ISAC.

On cluster quality, methods with the graph representati@nRaTra-1l withFlo-
Tra and gSpan) perform better than methods with sequence espation CluPaTra

and CluPaTra-1l with SufTra). This implies that the graph gives a better represen-
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tation of the search trajectory compared to the sequencei@vities more reliable
features. Hence&luPaTra-Il with FloTra and gSpan produce improved clusters com-
pared toCluPaTra and CluPaTra-1l - SufTra. We also notice thafloTra slightly
outruns gSpan [117], a generic well-known graph mining meéthThis verifies that
our graph mining approach, which is designed by considespegific search trajec-
tory graph characteristics, is more suitable for seargbdtary graph representation
compared to the generic graph mining methods. Similar tstetiquality, regarding
the performance resulGluPaTra-Il - FloTra is also superior compared @uPaTra
andCluPaTra-1l - SufTra. This further reinforces our claim that having more sim-
ilar instances in smaller clusters eventually guides tménty process to find better
parameter configuration for each cluster.

Regarding computational tim&luPaTra-Il - SufTra runs faster than other ap-
proaches especially for longer search trajectories amgkiagets of instances, as in
QAP. It is not surprising becausgluPaTra-1l - SufTra is naturally faster than any
CluPaTra andCluPaTra-1l - FloTra because it has a linear time complexity.

Based on these results, we claim that: ClyPaTra-1l is a suitable approach for
instance-specific configuration that significantly imprevee performance with mi-
nor additional computational time; (BJluPaTra-1l - SufTra has overcom€luPaTra
limitations in scalability and flexibility with a fast newfefient method for long search
trajectories and large sets of instances, by producingibatid tighter clusters faster;
and (3)CluPaTra-1l - FloTra overcomes th€luPaTra descriptiveness limitation by
employing search trajectory graph representation to betémtify instance features

and produce better clusters compare@toPaTra andCluPaTra-Il - SufTra.

4.6 Chapter Summary

In this chapter, we discugSluPaTra-11, a new tuning framework using a pattern min-
ing technique as its feature extraction method. We intredwo new pattern mining

techniques $ufTra andFloTra) for this purposesSufTra extracts features from the
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search trajectory sequence wHil®Tra, a more advanced technique, extracts features
from the search trajectory graph. We then calculate siitylacores using cosine sim-
ilarity calculation and cluster the instances using ag@aative clustering, AGNES.
We then tune each cluster with a one-size-fits-all configurator the testing phase,
we also construct a new mapping technique to find betterastsigor each testing
instance in less computational time.

We performed experiments on three COPs: Traveling Sale$tmalslem (TSP),
Quadratic Assignment Problem (QAP) and Set Covering Pnol§&CP). From our
experimental results, we verify th&luPaTra-Il with SufTra andFloTra mines more
suitable features with less computation time comparedto®@aTra. With better fea-
tures,CluPaTra-1l with SufTra andFloTra generate tighter clusters and thus result in

improved performance.

86



Chapter 5

Web-based Automated Parameter

Tuning Workbench

In the previous two chapters, we introduciPaTra and CluPaTra-Il, frameworks
for instance-specific automated parameter tun@igPaTra is the earlier version that
relies on sequence alignment for similarity calculatiohjlevCluPaTra-11 overcomes
CluPaTra’s limitations on scalability, flexibility and descriptimess by modeling the
feature extraction mechanism as a pattern mining problecapture compact and
meaningful features from a search trajectory.QluPaTra-1l, we design two tech-
niques for feature extractiorBufTra andFloTra. SufTra is a pattern mining tech-
nique which utilizes the Suffix Tree structure for searclettry sequences while
FloTra is a graph mining technique based on search trajectory griagtacteristics.
SufTra andFloTra extract meaningful features for tuning purposes.

In our empirical experiment result for three COPs: Trawgl8alesman Problem
(TSP), Quadratic Assignment Problem (QAP) and Set Covedriradplem (SCP), we
show thaiCluPaTra andCluPaTra-II give encouraging improvements in cluster qual-
ity, computational time and solution performance. We aletice that for a large
number of instances with long search trajectory, such a®NR f@stancesCluPaTra-

Il - SufTra provides the fastest computational time compared to ofhy@oaches with

comparable or even better performance.
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To distribute and make this instance-specific tuning adolessve design a web-
based workbench for automated parameter tuning. We iriee@PaTra and
CluPaTra-1l1 with parameter-space reduction method, Fact-RSM [45], gloBal
(one-size-fits-all) parameter tuning, ParamILS [60] anRdee [10], and construct
AutoParTune. CluPaTra, CluPaTra-Il and Fact-RSM are considered as preprocess-
ing components for global parameter tuning.

In this chapter, we’ll discus&utoParTune in detail. We will begin with an
overview ofAutoParTune, and followed by the description of varioAsitoParTune
components. We then discuss the major challengeddtoParTune and the tech-
niques to overcome these challenges. Next, we will desthibelesign architecture
of AutoParTune. We then present the experimental results ugwagpParTune in

two industrial case studies. Finally, we provide a summaétiis chapter.

5.1 AutoParTune Overview

It is stated that an ideal automated parameter tuning sti@awe at least three charac-
teristics: scalability, instance-specificity and problkemucture exploration [71]. Scal-
ability focuses on enabling the configurator to handle lgggemeter search spaces
while instance-specificity focuses on producing diffegamameter configurations for
different problem instances by exploring the problem dties(i.e. features) of the
underlying problem instances.

Extending and implementing the work in [71], we desigmtoParTune,
a web-based workbenchfor automated parameter tuning, which is hosted in
http://research.larc.smu.edu.sg/autopartune/index.a AutoParTune consists of
three components : instance-specific tuning, parametectsspace reduction and

global tuning.

¢ Instance-Specific Tuning

In instance-specific tuning, instances are clustered douwpto a generic fea-

ture, search trajectory prior to the tuning process. Thignsmportant pre-
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processing step that provides a better parameter configuifat each instance
while maintaining a minimum tuning time. To attain an inseyspecific tuning

component, we implemeluPaTra andCluPaTra-II.

e Parameter Search Space Reduction

A large parameter search space uses a large amount of timeghd some-
times misleads the tuning process. Reducing the paranedectsspace is a
very critical preprocessing step that will reduce the oNéuaing process, yet
still provides a better parameter configuration. For patansearch space re-
duction, we apply the Fact-RSM technique, presented in, [@h]ch is based
on design of experiment (DoE), a well-established staastpproach that in-
volves experiment designs for empirical modeling procegsee for example

[83]).

e Global Tuning

Global tuning is the kernel ofutoParTune. It produces the best parameter
configuration for training and testing instances. As a dglalnding component,

we embed ParamlILS [60] and iterated F-Race [10].

With two preprocessing components (instance-specific arehpeter search space
reduction) and global tuning componeAytoParTune is able to design five tuning
strategies as described in Table. 5.1. Due to instancefispeming method lim-
itations, which can only be implemented for local-searckedatarget algorithms,
Strategy 3, 4 and 5 in Table. 5.1 can only be used for locakhkdaased target al-
gorithms whereas Strategy 1 and 2 in Table. 5.1 can be usealldovader range of
meta-heuristic target algorithms. Fact-RSM can only bdieggor numerical pa-
rameters. Hence, Strategy 2, 4 and 5 in Table. 5.1 can onlysée for numerical
parameters.

AutoParTune is designed as a web-based workbench to address the needs
for easy access to automated parameter tuning algorithmsltholgh there

has been increasing interest for parameter tuning, an easysé automated
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Table 5.1: Five Tuning StrategiesAutoParTune

Strategy No. Instance-specific Search Space Reduction aGloning Process Order

0) &) ©)
1 No No Yes (3)
2F No Yes Yes (2)-(3)
3* Yes No Yes (1)-(3)
4+t Yes Yes Yes (1)-(2)-(3)
5t Yes Yes Yes (2)-(1)-(3)

* = Only for local-search based target algorithm.
+ = Only for numerical parameters.

parameter tuning algorithm is not yet available. Existingpr@aches such
as ParamlILS (http://www.cs.ubc.ca/labs/beta/ProjeatsimILS/) and CALIBRA
(coruxa.epsig.uniovi.es/adenso/fdehtml) are publicly available, and these are usu-
ally compiled in an executable file (Windows or Linux compég) along with how to
use documentation. To use these executable files for tuwmgeed to configure sev-
eral settings by carefully reading their documentation AlritoParTune, the tuning
complexity setting is replaced by an easy-to-use and ictieeaweb interface which
makes it easier to understand and navigate.

One advantage dAutoParTune is that the tuning workload is shifted to tiAeI-
toParTune server. Users are only required to upload the necessargfitbkdetermine
the tuning option in order foAutoParTune to run the tuning process on its server.
This tuning process may require a lot of computational time r@sources depending
on the speed of the target algorithm. Once the tuning prasesampleted, an email
message with the tuning result is sent to the requester. dj@sers oAutoParTune
are freed from the complexity of the tuning process as wethasCPU and memory
limitation of running the tuning process on their local miaeis which usually lacks
the required computational power.

Another advantage dfutoParTune is its flexibility which allows for the addition
of new techniques for its three components. New techniqoefmétance-specific,
parameter search space reduction and global tuning candse adAutoParTune
without additional modifications. The new techniques jusédto follow theAu-

toParTune format as described in Table. 5.2.
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5.2 AutoParTune Components

AutoParTune has three components, namely: (1) instance-specific tu(@hgaram-
eter search space reduction; and (3) global tuning. Thelslefathese components

are discussed in the following subsections.

5.2.1 Instance-Specific Tuning

For instance-specific tuning, we impleme@iuPaTra and CluPaTra-1l. CluPaTra
and CluPaTra-1l are premised on the assumption that an algorithm configur adi
correlated with its fithess landscape, i.e. a configuratiahperforms well on a prob-
lem instance of a certain fitness landscape will also perfwethon another instance
with similar topology [92]. Furthermore, since the fitheaadscape is difficult to
compute, it can be approximated by a search trajectory [@Bwich is deemed a
probe through the landscape under a given algorithm corafiigur.

CluPaTra works by transforming the search trajectory as a directqdesgce and
uses sequence alignment to calculate similarity for eaclopastances. On the other
handCluPaTra-1l is an extension o€luPaTra that overcomes three major limitations
of CluPaTra: scalability, flexibility and descriptivenes€luPaTra andCluPaTra-ll
are described in detail in Chapter 3 and 4 respectively.

Up to this stageCluPaTra and CluPaTra-Il can only be applied on local-search
based target algorithms due to its reliance on search toayecA search trajectory

generator is required to perfor@luPaTra andCluPaTra-II.

5.2.2 Parameter Search Space Reduction

An often neglected preprocessing step in automated pagatoeing is to reduce the
parameter space into a specific favorable parameter rangmod initial parameter
range is able tguidethe tuning process to provide a better parameter configurati
with shorter computation time.

For the parameter search space reduction component, wethpgtact-RSM [45]
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Figure 5.1: Phases of Fact-RSM, Parameter Search SpacetRedMethod using
DoE methodology

technique. Fact-RSM is a sequential experimental methosci@ening and reducing
a parameter space for numerical parameters. Fact-RSMesl lnesthe DoE (Design
of Experiment) methodology as follows.

A full factorial experiment design is applied to first scresm rank the parame-
ters. Parameters which are determined to be unimportanttfie solution quality is
insensitive to the values of these parameters) are set witstant values that reduce
the parameter space to be explored. A first-order polynomadel based on RSM
(Response Surface Methodology) is then built to define tloening initial range
for the important parameter values. For statistical calooih, we use a well-known
statistical softwareR (http://www.r-project.org/).

Fact-RSM, as illustrated in Fig. 5.1, works in two phaseseagcing, and exper-
imentation. The screening phase identifies the importargnpaters using ‘2full
factorial design, while the experimentation uses RSM tatec¢promising” regions
for important parameters. The details of the screening apdranentation phases are

as follows.

Screening Phase

A screening process is conducted to determine which pasamate significantly
more important to reduce the number of parameters undeidayason. It applies

a 2 full factorial design which consists df parameters, where each parameter
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only has two levelsd; andb;) with a; as lower bound anbl as upper bound.

As an example, consider if there are two parameters, A andd.52 shows
the 22 design with treatment combinations represented as themuof the squares.
The signs - and- denote the values of; andb; of each parameter;, respectively.
Treatment combinations are the Cartesian product of thepwameters values:(
andb;). A treatment combination is represented by a series ofricage letters. For
example, the treatment combinatiarindicates that parameters and B are set to
bs andap, respectively. To estimate the treatment combination, uvethe target
algorithm forn replicates for each treatment combination. A completegtesgquires
(2x2x... x2) xn =n x 2%, For simplicity, we set to 10.

Since the main focus in this phase is to determine the impoprameters, the in-
teractions between parameters are ignored. The importdrecparticular parameter
is defined by conducting a significance test on the paramnsetain effect. A signif-
icant level is set to 5% = 5%). Parameters with — value < « are significantly
important. The important parameters are explored furthéiné next phase. On the
other hand, unimportant parameters are set to a constat bgllooking at the main
effect value of the parameter. If the value is negative, ggsto its upper bound, if

otherwise, to its lower bound.

Experimentation Phase

This phase aims to find and locate "promising” regions foram@nt parameters by
using the Response Surface Methodology (RSM). RSM is a rrmaked approach

within DoE that can be used to quantify the importance of qaantameter, support
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interpolation of performance between parameter settisgsedl as extrapolation to
previously-unseen regions of the parameter space [59]. R&been used in the
parameter tuning scenario to finetune algorithm param&érs27] and to identify
"promising” regions of a parameter search space [59].

The underlying assumption in this phase is that the regiarbesapproximated by
a planar model (the first-order model). Since we might be agan on the response
surface that is far from the optimum, we assume that thestseanly a little curvature.
Hence a planar model would be appropriate. The planar mddbegarameters is

approximated using the following function:

Y =060+ frx1+ ... + B + € (5.1)

wheregy, 41, ..., B, are parameter coefficients,, ..., x,,, are parameters, ands error
coefficient.

In order to move rapidly to the "promising” regions, we apiilg method of steep-
est descent (for a minimization problem). This method isaedure for moving se-
guentially along the path of steepest descent, that isgmlifection of the maximum
decrease in response Y. For examplesif(coefficient of parameter 1) is the largest
absolute coefficient value compared against other coetfisi@ues, the step size of
another parametéris calculated bys, /5.

This phase is terminated when the local optimum region isdouFrom a sta-
tistical point of view, the local optimum can be indicatedthg existence of either
interaction or curvature. Interaction is tested using ysialof variance (ANOVA)

while curvature is tested using the- test.

5.2.3 Global Tuning

As a global tuning component, we implement two efficient aetl wstablished global
tunings: ParamILS [60] and F-Race [19]. ParamILS [60] z&i Iterated Local Search

(ILS) to explore the parameter space in order to find a goodrpater configuration
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based on the given training instances. ParamlILS has begiswetessfully applied to
tune a broad range of high-performing algorithms for sdveaed combinatorial prob-
lems with a large number of parameters. ParamlLS is itselfexated local search
algorithm used for tuning discrete parameters. Since Ramorks only with dis-
crete parameters, idutoParTune, we first discretize the values of the parameters if
the target algorithm has parameters that assume contivatues.

Iterated F-Race [19] is a racing algorithm for the task ofoendted parameter
tuning for categorical and numerical parameters. lter&t&thce is an extension of
F-Race [17] which is based on a statistical approach focsetgthe best parameter

configurations using stochastic evaluations.

5.3 AutoPartune Features

AutoParTune is designed as a web-based workbench that integrates tlfeeol
components of automated tuning to enable easy and flexibieguAs a web-based
workbench,AutoParTune users are able to perform a parameter tuning by upload-
ing the necessary files, including the target algorithm (iimdwws executables for-
mat) and selecting a tuning strategy from the #wdoParTune strategiesAutoPar-
Tune strategies are based on the three components (instancéespeing, param-
eter search space reduction, and global tuning) which awar@ed to be independent
components. To fully implemertutoParTune as a web-based workbench, a number
of features are provided to make sure thatoParTune is working in a web environ-

ment.

5.3.1 Security Issue

To protectAutoParTune against web attacks, we implement two security mechanisms
that prevent automated-agent perpetrators and perforcksloa the files uploaded for

virus and malicious codes. The details of this are as follows

1. Email Authentication Mechanism
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The purpose of email authentication is to validate the gsamail address and
prevent automated-agent perpetrators. After the useadplthe necessary files,
an email verification is sent to the user’'s email account. Uiber needs to
verify the email by visiting the link attached with the emladfore continuing

the tuning process. The tuning is run only after the veriiiocats completed.

2. Antivirus Scanning Mechanism

An antivirus scanning mechanism is implementedutoParTune to check if
the uploaded files are clean from virus, malware or otherciwals programs.
Before starting the tuning procegsjtoParTune executes antivirus scanning on
uploaded files directory. This process is run automatiaaipg AVG Antivirus
(http://free.avg.com/ww-en/homepage) command-linerfate. If one or more
uploaded files are considered as suspicious by the scaheetyriing process
is stopped. The files will be deleted and the respective ugkebevnotified by

email.

5.3.2 Integration Issue

Each component iAutoParTune is assumed as an independent component that adds
a specific feature to the existing workbench. The comporaetsleveloped indepen-
dently using different platforms and programming langsageich as: C#, C++ and
Java. Integrating these components requires a commoncpidto communicating
with each other.

To integrate these components and maintain communicagivyelen components,
AutoParTune designs a controller function, which is called thetoParTune Con-
troller. Each component iAutoParTune is compiled as a Windows command-line
executable file with standard input and output formats taenthe communication
connection tAAutoParTune Controller. Some additional text files such as configura-
tion files may be required by these componertstoParTune Controller runs each

component by calling a command-line executable syntaxgunnput format. After
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Figure 5.3:AutoParTune Components Communication Schema

the component execution is completéditoParTune Controller retrieves the result
from the output command-line or text file. The detailed forfivaeach component is
shown in Table 5.2. ThA&utoParTune Controller decides which components to call
based on the user’s tuning strategy. It also retrieves amdssthe tuning setting to a
database.

For the target algorithm, the user needs to provide a Windowsutable file with
a standard input output format as described in Table 6l8PaTra and CluPaTra-
Il need to call the search trajectory generator executabléofiggenerate the search
trajectory for each instance. On the other hand Fact-RSvgrP&S and F-Race

need to call the target algorithm executable file.

5.4 Application Architecture

We implementAutoParTune using a three-tier architecture, which is shown in
Fig. 5.4. The presentation layer is hosted on Microsoft B&/er and containfu-
toParTune web interface. The user interface is easily navigated wttep-by-step
tuning upload process as described inAwoParTune quick guide in Appendix A.

The application layer contains tiAaitoParTune tuning logic as shown in Fig. 5.3.
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Table 5.2: AutoParTune Components Input Output Standard

Component

Input and Output

CluPaTra and
CluPaTra-ll

Input:

- trajectory generator executable
- training instance file name

- testing instance file name

- random parameter configuration
Output: instances’ clusters file
Additional Files:

- training instance file

- testing instance file

- instance files

Fact-RSM

Input:

- target algorithm executable

- training instance list

- parameter search space file name

- training folder

Output: new parameter search space file
Additional Files:

- training instance file

- parameter search space file

- instance files

Output: statistical result

Additional File: R command file consists of
data file name, anova test syntax, output file
name

ParamILS and F-
Race

Input: training folder

Output: best tuning configuration in the last
output line

Additional Files:

- scenario file for tuning setting

- parameter search space file

- instance files
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Table 5.3: Search Trajectory Generator and Target Algoriftandard for AutoPar-

Tune

Component

Input and Output

Search Trajectory Input:

Generator

- Instance file name

- seed

- random parameter configuration
Output: search trajectory file
Additional Files: instance file

Target Algorithm

Input:

- Instance file name

- seed

- random parameter configuration

Output: best found objective value (displayed
in the last line of the screen output)

Additional Files: instance file

Presentation Layer

Web Ul
[

Application Layer
Tuning Logic

[

Database Layer
MsSsQL DB

Figure 5.4:AutoParTune Design Architecture

The database layer is hosted on Microsoft SQL Server 2@@8oParTune uses 4

tables to store tuning settings, training instances,rgstistances and tuning results.

The database design is shown in Fig. 5.5. For retrievingrimg, updating and

deleting the database, we use database Stored ProcedB)eSPSs a database sub-

routine that accesses a database system, which perforensiedtiate processing on

the database server, without transmitting unnecessaayadgabss the network. Using

SP,AutoParTune can reduce the network usage between the user machine &ad ser

5.5 Empirical Experiment Result

To demonstrate the effectiveness/AitoParTune, we run a series of experiments

on three Combinatorial Optimization Problems (COPs), ngnigaveling Salesman

99



tr_tuning_result_parameter

PK,FK1 | projectiD
PK,FK1 | clusterNo

bestParameter

l

tr_tuning_result_training_instances tr_tuning_result_testing_instances
PK,FK1 | projectiD PK,FK1 | projectlD
PK clusterNo PK clusterNo
instanceName instanceName
\ 4
tr_tuning_setting
PK | projectiD
projectName
objExe
trajExe
trainingList

testingList
parameterFile
tuningType
clusterType
tuningMethod
deterministic
budgetTime
email
progress_run

Figure 5.5:AutoParTune Database Design

Problem (TSP), Quadratic Assignment Problem (QAP) and $etfhg Problem
(SCP) and two industrial problems, namely: the aircraftep@nventory optimization
problem and the theme park personalized intelligent rouigagmce problem.

We measure performance as the average of percentage deviam the best
found solution (Definition 3) and compare our experimengsutts with the best
known values used by our industry partner. The cutoff timeetsto 500 seconds
per run and each configuration process is allowed to callarget algorithm for a
maximum of 100 xn times, wheren is the number of instances. To compare the
significance of our result, we perform a t-test [83] and coesy — values below 0.05

to be statistically significanio( < 5%).

5.5.1 Classical COPs

We compare the target algorithm performance using paramsetdiguration from

AutoParTune strategy 2, 4 and 5. We do not conduct the experiment usiategly 1
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Table 5.4:AutoParTune Performance Result Comparison for Classical COPs

TSP QAP SCP
Technique Training Testing Training Testing Training gt
Strategy 2 2.07 1.37 0.87 1.23 0.76 0.78
Strategy 4 1.88 1.13 0.71 1.06 0.22 0.49
Strategy 5 1.91 1.24 0.81 1.13 0.42 0.45

Boldface indicates the best performance result.

(global tuner only) and 3 (instance-specific only) becatuserésult is already shown

in the respective chapter. We use the same experimentgsesiin CluPaTra and
CluPaTra-1l. For QAP and SCP, we use generate instances (Set B) whileéSienie
use benchmark instances. We measure the performance @sfiogypance metric as
defined in Definition 3. In Table. 5.4, we show the performarm@parison results.
Notice thatAutoParTune - Strategy 4 outperforms other methods in both training and

testing instances.

5.5.2 Aircraft Spares Inventory Optimization Problem

We implementAutoParTune to tune an algorithm for an aircraft spares inventory
optimization (minimization) problem of a large commercaaicraft maker based in
Europe. Aircraft spares inventory optimization problemaisnaintenance, repair
and overhaul (MRO) operations problem faced by the air¢oaétl service support
provider to meet target service levels with customers basegerformance-based
contracts. Itis operated out of a network of airports. Thabpgm objective is to de-
termine the optimal inventory allocation strategy that tudfill target services levels
where optimality is defined in terms of minimal total life égcosts for spares com-
prising inventory holding cost, part purchasing and repast, logistics delivery cost,
while service levels are defined in terms of spares fill-rates

This problem is solved using@imulated Annealin¢SA) algorithm [44], a local-
search based algorithm which has 8 parameters that areasedtrol SA behavior

as described in Table 5.5. The SA algorithm works as folldna&tarts by creating one
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Table 5.5: Parameters for SA on Aircraft Spares Inventorgi@ipation Problem

Parameter Description Range
maxSuccess Maximum number of successes within one temperat [100, 1000]
maxTries Maximum number of tries within one temperature OL1®mO0]
maxComp Maximum number of solutions generated [1000,
50000]
maxConsReject  Maximum number of consecutive rejections 00,[1000]
maxChangeG Maximum change in a variable value when gengrati [100, 1000]
new solution
maxTriesG Number of tries to generate a feasible solution 00,[1000]
coolingFactor Factor to reduce the temperature by durich @ampera- [0.5, 1]

ture change

oracleStrictness A value to depict the strictness of thelefainction in ac- [0, 100]
cepting a new solution that has an objective value worse
than the current one. A higher value would result in a higher
rejection rate (e.g. a value of 100 would accept only better
solutions)

feasible initial solution. A new solution is generated byagpwingn number of variable
values wheren is determined bynaxChangeG parameter. If the new solution is
feasible, it computes the objective value and automayi@itept it if the objective
value is better than current best solution, if it is worsdeitides to accept or reject the
new solution based on theacleStrictness parameter. It continues to generate a new
solution until one of the termination criterian@zTriesG, minimum Temperature,
maxConsReject or maxTries) is violated.

We apply our approaches on 50 synthetic instances basedabmdeistrial in-
stances. We randomly select 25 instances as training cetaand the remaining 25
as testing instances. We compute the results using 5 seatg\utoParTune on Ta-
ble 5.6 and show the parameter configurations fAartoParTune on Table 5.7. To
ease the experiment computation, we QéePaTra-Il - SufTra for instance-specific
tuning and F-Race for global tuning component. We presentatierage percentage
deviation value from the default (which is the best knowruealsed by our industry
partner).

The result shows that 5 strategiesfaftoParTune give parameter configurations
that generate solutions with lower objective values comgdo the solutions from

the default configuration (the percentage deviation vatluesegative). Most of the
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Table 5.6: Aircraft Spares Inventory Optimization Probleerformance Result

Technique Training  Testing
AutoParTune Strategy 1 -0.208 -0.375
AutoParTune Strategy 2 -0.569 -047r
AutoParTune Strategy 3 -0.438 -0.557
AutoParTune Strategy 4 -0.898 -0.634
AutoParTune Strategy 5 -0.888 -0.676

* = statistically significant against Default Configuration
Boldface indicates the best performance result.

Table 5.7: Parameter Configurations for Aircraft Sparesmiwry Optimization Prob-
lem

Parameter Default Strategy 1 Strategy 2 Strategy 3 Strdtedytrategy 5
maxSuccess 100 200 500 900 300 400
maxTries 100 300 400 600 500 500
maxComp 1000 1500 5000 3000 2000 1000
maxConsReject 100 900 400 500 300 100
maxChangeG 100 300 400 500 700 100
maxTriesG 100 400 500 700 900 200
coolingFactor 0.95 0.55 0.70 0.50 0.90 0.80
oracleStrictness 30 20 70 60 10 90

results are statistically significant compared to the detaunfiguration result. Notice
that strategy 4 and 5 outperform other strategies and atiststally comparable to
one another in that the percentage deviation values iregiyat are slightly better

than those of strategy 5 in training instances and slightyse in testing instances.

5.5.3 Theme Park Personalized Intelligent Route GuidancerBb-

lem

Our second industry problem is the theme park personaliziligent route guid-
ance problem that aims to provide a personalized route thatmizes the patron’s
experiences in the theme park for a given time constraine @dtron’s experiences
are measured by an utility function that factor in the pagamdividual preferences
as well as the statuses of current attractions such as sapération status and queue
time. Hence, the objective of this problem is to maximizeutikty function subject

to:
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1. A set of patron’s attributes (attraction preferenceslthassues and physical

limitations).

2. A set of attraction’s attributes (operation status, guéme, rank and accessi-

bility).
3. Atime duration.

This problem is solved using a heuristic algorithm whichsists of 2 steps: utility
mapping calculation and construction heuristic. Utilitgmping calculation computes
the temporal utility of each attraction (dynamic value wsréime) based on patron’s
preferences. For each patron profijeéhe utility U,,;; of an attractiori in time duration
t is a function of three subset factors, namely: critical stl§§'S,;;), quantitative

subset ©S,:;), and subjective subsef,;), and could be expressed as:

Up’it = CSpZ‘t[OJ X QSzt -+ (1 — Oé) X SSpZ] (52)

where
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Notation Definition

CSpit Critical Subset Factor for attractionand patrorp on a specific time
window ¢. This factor represents the attraction’s restrictionshsas:
opening hours, maximum weight, minimum height, and heatric-
tion, that cannot be violated. The score is set to 1 if then@igiolation,
otherwise to 0.

QS;t Quantitative Subset Factor which is a linear weighted suthe#ttrac-
tion factors: rank, service time, and queue time score in a spéicife
window . Itis calculated as:

QSit = wyrank; + wgservicetime; + wyqueuetime

SSpi Subjective Subset Factor which is a linear weighted sumenfdbtors:
thrill, wet and dark suitability of patropfor attractioni. It is calculated
as:

SSpi = withrilly, + wedark,; + wywet,;

a, Wy, Ws, Wy, We, Wa, Wy, Weight coefficient that is set between 0 and 1.

Using that utility score, a route which maximizes the oveudlity is generated
using the full-insertion construction heuristic. This hstic inserts each unvisited
attraction into the route at each possible location and theses the best insertion.
For calculating the utility score, there are 7 weight coeffits which we consider as
parameters that need to be set. We describe these paraméiabe 5.8.

To apply tuning on the theme park personalized intelligente guidance prob-
lem, we designed two scenarios with two different data setStaned it separately.
The first scenario focused on the tuning patrons subjectivses factor weights
(we, wa, wyy) While the second on quantitative subset factor weights«s, w,). The

scenarios are as follows.

Scenario 1: Patron’s Subjective Subset Factor Weights

In this scenario, the tuning objective is to tusig,; weights such that the route, which

consists of a set of attractioisgenerated by personalized intelligent route guidance
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Table 5.8: Parameters for Heuristic Algorithm on Theme PParisonalized Intelligent
Route Guidance Problem

Parameter  Description Range
! weight coefficient for overall utility function [0, 1]
Wy weight coefficient for rank factor [0, 1]
Wy weight coefficient for service time factor [0, 1]
Wy weight coefficient for queue time factor [0, 1]
wy weight coefficient for patron’s thrill tolerance factor [0,
wq weight coefficient for patron’s dark tolerance factor [0, 1]
Wy weight coefficient for patron’s wet tolerance factor [0, 1]

algorithm for a specific patron, satisfies the preferencgmbbnp. We assume that
each patron decides to go to certain attractions based grathens own preferences
(such as thrill, wet and dark preferences).

Given a set of patrons preferencBsthe personalized intelligent route guidance
algorithm generates the best routg,,, which consists of a set of attractions that
match with preference®. For each set of patron preferendesthere exists a set
of patron "real” visited attraction®,;,;; as a "ground truth” set. The quality score is
measured by comparing the set of attractions generateceatdgbrithm inR,;,, with
the "ground truth” sef?,;;;. It is calculated as the size of set intersection between a
set of attractions generated by the algorithm and "groumith'trset (R,iz0 N Ruisit|)-
The route with a higher quality score is the better one.

We modify the basic tuning scenario in Fig. 2.2 to meet oudsesnd design a
tuning scenario as illustrated in Fig. 5.6. The configuratdis the personalized in-
telligent route guidance algorithm (target algorithm)watspecific parameter config-
uration. The target algorithm generates a route for eaglopapreference. "Quality
Calculation method” compares the route with the "grounthtrand returns the qual-
ity score to the configurator. The configurator saves and mesrthe route quality
for a given parameter configurator. The process continugistive configurator finds
the best parameter configuration.

We applyAutoParTune on this tuning scenario to tune;, wy, w,,. We set other
parameter to a fixed value. We use the preferences of 48 r&gangaand visited

attractions gathered in a ground survey conducted on Jubh2 &Qhe largest theme
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Table 5.9: Parameters Configurations for Theme Park Pdiseddntelligent Route

Guidance Problem
Parameter Default Strategy 1 Strategy 3

a 0.1 0.2 0.1
w, 0.2 0.4 0.5
w, 0.2 0.5 0.6
w, 0.2 0.6 0.4
w, 0.2 0.4 0.6
wy 0.2 0.6 0.5
W 0.2 0.3 0.5

park in Singapore as a set of preferenéeand a set of visited attractiors,;s;;. We
randomly select 24 instances as training instances andethaining 24 as testing
instances. To ensure a unbiased result, we use attractibpservice time and queue
time, as of June 2012.

We compute the results using 2 strategie8wioParTune, namely: strategy 1 and
3, on Table 5.10. We use F-Race as global tuning componenpr&gent the average
size of intersection and compare it with the result of theadkfparameter value used
by our industry partner. We show the default parameter cordigons and parameter
configurations fronAutoParTune in Table 5.9 The results in Table 5.10 shows that 3
strategies oAutoParTune are superior to the default. Strategy 3 outperforms styateg
1 in training and testing instances.

To test the effectiveness of our tuned weights in matchieg#tron and attraction
preferences, we run additional experiments for differeafgrence factors. For thrill
preference, we generate the patron’s preferences withfsexeht thrill values (1, 0.8,

0.6, 0.4, 0.2 and 0) and the other preference values are fixgtetsame value. For
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Table 5.10: Theme Park Personalized Intelligent Route &wd Algorithm Perfor-
mance Result using Scenario 1

Technique Training  Testing
Default 0.760 0.834
AutoParTune Strategy 1 0.773 0.917
AutoParTune Strategy 3 0.818 0.919

* = statistically significant against Default Configuration
Boldface indicates the best performance result.

Table 5.11: Routes from Default Configuration akutoParTune Strategy 3

Default Configuration* AutoParTune Strategy 3*

CYLON (1) Magic Potion Spin (0.1)

HUMAN (0.8) Enchanted Airways (0.2)

Treasure Hunters (0) Dino-Soarin (0.2)

Canopy Flyer (0.3) Canopy Flyer (0.3)

Enchanted Airways (0.2) Jurassic Park Rapids Adventufg (O.

* = Attractions (Attraction’s Thrill Factor).

this experiment, we do not compare the result to the "grouuitit We run the target
algorithm 100 times for each parameter configuration. Werassf the patron’s thrill
preference is decreasing, the occurrences of an attragtibrthe highest thrill factor
should also decrease.

Table 5.11 shows an example of the routes generated usirdethalt configu-
ration and the configuration fromutoParTune Strategy 3. In this example, we set
patron’s thrill preference to 0.2. Notice that Cylon thas karill factor of 1, should not
be included in the route because the patron’s thrill prefeges low. In the route from
default configuration, Cylon is still appearing while in tftaute fromAutoParTune
Strategy 3 is not.

We then calculate the occurrences of an attraction with tgkedst thrill factor
(thrill;=1) and present the result in Fig. 5.7(Thrill Response Effékhe result from
Strategy 1 and 3 configurations follow the natural assumpbetter than the result
from default configurations which shows a static value fon@st all preference val-

ues. We run the same treatment for dark and wet preferendeshanv the result in
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Fig. 5.7. The obtained behavior is similar as for thrill grence.

Scenario 2: Qualitative Subset Factor Weights

Other than patron preference, queue time is another imupddator in maximizing
patron experience in the theme park. General survey raaditsate a very high cus-
tomer dissatisfaction with relation to long queue times [Bherefore apersonalized
intelligent route guidance program should address thigiss

Taking the queue time into consideration, in this secondhtyecenario, we set
the tuning objective as tuning qualitative subset factagivs such that the route gen-
erated by the algorithm has the lowest overall queue timea$¥ame that the queue
time for each attraction changes while attraction rank ardice time are always
fixed. Similar to the previous scenario, we use the tuningace as illustrated in
Fig. 5.6 but for "Quality Calculation method” we simply calate the overall queue
time for the top 5 attractions and return it to the configurate only study the top
ranked attractions because those attractions usually davech higher queue time
compared to the less popular attractions. We appitoParTune on this tuning sce-
nario to tunew,, w, andw,. Forw,, w; andw,,, we use the best configuration from
the previous scenario.

We use 50 generated preferences and randomly select 2fdastas training
instances and the remaining 25 as testing instances. Weutertige results using 2
strategies oAutoParTune, namely: strategy 1 and 3, on Table 5.12. We present the

average of queue time and compare the result with the dgfatdimeter value used
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Table 5.12: Theme Park Personalized Intelligent Route &wd Algorithm Perfor-
mance Result using Scenario 2

Technique Training Testing
Default 18.416 17.958
AutoParTune Strategy 1 16.416 15.100
AutoParTune Strategy 3 13.04r 14.016

* = statistically significant against Default Configuration
Boldface indicates the best performance result.

by our industry partner. The result shows that solutionsyffutoParTune strategies

reduce the overall queue time by 2-5 minutes.

5.6 Discussion

In dealing with the complex optimization problem for induest problems, we show
that our approach provides better parameter configurati@mrsthe default manually
tuned parameter®utoParTune for non-local search based target algorithm (Theme
Park Personalized Intelligent Route Guidance Probleno) sii®ws a significant im-
provement compared to the default configuration. We claiat AutoParTune is
sufficient for automatically tuning the parameters of a¢argeta-heuristic algorithm
(local-search or non-local search based).

AutoParTune with preprocessing methods (strategy 2, 3, 4, 5 for AircBgfares
Inventory Optimization Problem and strategy 2 for ThemekHRarsonalized Intelli-
gent Route Guidance Problem) perform significantly betianAutoParTune with
only global tuner (strategy 1). Based on this result, wefyehat using the prepro-
cessing method to guide the tuning process provides a Ipettameter configuration
and significantly improves the overall performance.

Our experiments illustrate the practical impact of our s approach on tuning
local search algorithms. As meta-heuristic algorithmsuemed designed for solving
large complex optimization problems more than ever, our@ggh offers the ability

to produce effective parameter settings automatically aomputationally efficient
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manner, rather than relying on the tedious and mostly manuoaig.

5.7 Chapter Summary

AutoParTune, a web-based workbench for automated parameter tuninggptes
mented to facilitate an easy and reliable tuning processigers. It combines two
preprocessing processes with a global tuning componenbiode a more effective
and efficient automated tuning strategy. Two major chaksrg implementingiu-
toParTune as a web-based workbench are security and integrity. Weeartbe secu-
rity concerns by adding two security mechanisms: emailentibation and antivirus
scanning; whereas for integrity concerns, we develop thdge” for each component
to maintain the communication to each oth&utoParTune provides users with five
tuning options.

We usedAutoParTune on two industry problems and applied differénttoPar-
Tune strategies. The result shows encouraging superior pediocmas compared to

the default parameter configuration used by our industrinpar
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Chapter 6

Instance-Specific Tuning: Extension to

Genetic Algorithms

In the previous chapters, we discussed two frameworks Biante-specific tuning,
CluPaTra (Chapter 3), andCluPaTra-1l1 (Chapter 4). These two frameworks use
the local search trajectory as the generic feature for etiugg. CluPaTra uses the
pair-wise sequence alignment method to calculate sirtyladores whileCluPaTra-

Il models its feature extraction as a pattern mining problechdasigns novel tech-
niques to solve it. BotlCluPaTra andCluPaTra-Il show encouraging improvement
when compared to one-size-fits-all and existing instapesific configurators for
three classical COPs: Travelling Salesman Problem (TSBad@tic Assignment
Problem (QAP) and Set Covering Problem (SCP).

We also discus€luPaTra and CluPaTra-1l implementation orAutoParTune, a
web-based workbench, in Chapter 5, which integr&@kg?aTra and CluPaTra-Il
with Fact-RSM, a parameter search space reduction methoeglaas ParamILS and
F-Race as global tuning components. This workbench offezsuser five combi-
nations for performing tuning: (1) global tuning only; (2anrameter search space re-
duction and global tuning; (3) instance-specific tuning glatbal tuning; (4) instance-
specific tuning, parameter search space reduction andiglotiag; and (5) parameter

search space reduction, instance-specific tuning and Igiobag. We appliedAu-
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toParTune to tune two industrial study cases and presented signifiogrovements
in the overall performance result compared to the resuldafault configuration used
by our industry partners.

Although CluPaTra and CluPaTra-1l have shown promising results, there is still
one apparent drawback due to their scope in local-searsbdlgorithms. As an at-
tempt to extend these approaches to population-basedthlger we investigate how
to generate clusters from population-based algorithmgugeneric features pertain-
ing to population dynamics. We propose in this chapter twoulntished preliminary
ideas PeTra andPaRG) for tuning a Genetic Algorithm (GAPeTra is an extension
of CluPaTra where we analyze similarity from GARopulationEvolutionTrajectory
and represent it as a directed sequence, whét@B& is an extension o€luPaTra-

Il - FloTra where we investigate GARarent InheritancdRelationship similarity in
Graph representation.

We present the details ®Tra andPaRG. We then describe experimental results

on tuning the Two Population Genetic Algorithm that is apg@lto solve the General-

ized Assignment Problem (GAP). Finally, we conclude by swamring the chapter.

6.1 PeTra: Population Evolution Trajectory Similar-
ity
In PeTra, we focus on capturing population evolution movement fraitial popu-
lation to the next until it reaches its final population to lgma its evaluation leap.
Evaluation leap has been used as a measurement for GA parfoefil03]. A gener-
ation is said to be an evaluation leap if the best solutionlpced at the generation is
better than those in previous generations. We assume thidusinstances will have
similar evaluation leaps across their populations, suelh ¢hustering the instances
based on its evaluation leaps will create a set of thigh etgsfor the purpose of
instance-specific tuning.

Following the work inCluPaTra, we transform the population evolution as a direct

113



sequence and use sequence alignment to calculate thergyrslzore for each pair

of instances. We consider each population as a node andyariaaccording to its
generation order to form a directed path. Similar to seargjedtory representation

in CluPaTra (see chapter 3), each node in the directed sequence is a Syatsal

on two population properties: position type [55] and thecpatage deviation of its
quality from Best (as defined in Definition 3). Unlike in search trajectory, wheach
node is a solution, ilPeTra, we aggregate these position types and the percentage
deviation of quality to represent a populatitamapshot”.

For position type, we focus on capturing LOCAL MAXIMUM (or MIIMUM).
Differing from CluPaTra, where we determine the position type based on the di-
rect neighborhood solutions, a local maximum (or minimumiPéTra is determined
based on population topology by comparing each solutiorthiers in the same pop-
ulation. We count the number of local maxima (or minima) icle@opulation and
normalize the value by scaling it between 0 and 1. We thergosatee the value in
three groups: HIGH (normalized value 0.7), MEDIUM (normalized value> 0.4)
and LOW (normalized value 0.4).

The percentage deviation of quality from each solution iropypation is sum-
marized with three values: minimum, maximum and averagee Vidlues are then
compared with theé3est and categorized in three groups: HIGH (percentage devia-
tion < 5%), MEDIUM (percentage deviation 10%) and LOW (percentage deviation
> 10%).

These four properties (minimum, maximum, average, and lo@ximum) are
combined and hashed into a unique symbol. The populaticeseptation process is
illustrated in Fig. 6.1. Note that these population’s prtigs are generic which can be
easily retrieved or computed with little additional comgaiin time from any Genetic
Algorithm albeit for different problems.

After transforming the populations as a directed sequemedpllow the steps in
CluPaTra framework. We calculate similarity using sequence alignimer each pair

of population evolution trajectory sequences and clusteriristances using AGNES
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Figure 6.1: Genetic Algorithm Population Presentation.

with L method. We finally tune each cluster to find a good paramet&igroation.
For an arbitrary testing instance, we first map its poputedgiolution trajectory to the
closest cluster. The tuned parameter configuration fordhigter is then returned as

the parameter configuration for this instance.

6.2 PaRG: Parent Inheritance Relationship similarity
in Graph representation

In contrast withPeTra which investigates the population dynanifaRG focuses on
GA's selection mechanism, an important operator in GA [&&¢lection mechanism
chooses chromosomes from a population as parents usingaencselection crite-
ria based on its fithess value. On average the better chranessare more likely
to be selected than the poor ones. We explore the inheritatagonship between
selected chromosomes (parents) and represent it as a ghfgobxtend the work on
CluPaTra-1l - FloTra (Chapter 4) by replacing the search trajectory graph witara p
ent inheritance relationship graph and running a pattemngitechnique to retrieve
a set of features. We calculate instance’s similarity sosirg these features and im-
plement AGNES withl, method to cluster the instances based on its similarityescor
Finally we tune the clusters using one-size-fits-all confapor. The steps dPaRG

are shown in Fig. 6.2.
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Figure 6.2: Steps iPaRG: Parent Inheritancdrelationship similarity inGraph rep-
resentation.

We follow theCluPaTra-Il - FloTra framework and implement the same methods
for step 4, 5 and 6PaRG uses cosine similarity as the method for similarity caleula
tion (step 4) and AGNES witlh method as the clustering method (step 5). In compar-
ison, for a one-size-fits-all configurator (stepBaRG uses existing approaches such
as ParamILS, CALIBRA or F-Race. Details on step 2 (graphsfiamation) and 3

(feature extraction) are as follows.

6.2.1 Graph Transformation

The Parent Inheritance Relationship graph is defined astanparent relationship
where a node represents a parent chromosome and an edgergpitbe inheritance
relationship between chromosomes. If a chromosome is apaf@nother chromo-
some, we put an edge on the two chromosomes. A dense gramseas highly
related parents where most of the parent chromosomes adesicendants of other
parents in previous generations. This represents theeexistof an elite group which
consists of good solutions in the population. The elite grdaminates other solu-
tions in the selection mechanism and has a higher chancerfoaser to subsequence
generations. In contrast, a sparse graph behaves diffigeett it represents the case
where most of the parent chromosomes do not have any redatwith each other,
which indicates the non-existence of elite groups.

The rationale of our feature is predicted on the relatignbletween the elite pop-

ulation and GAs performance [34, 108]. Elitism, which isually preserved using
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Figure 6.3: Parent Inheritance Relationship Graph Reptasen.

simple or complex elitism strategy, improves considerabé/performance of GA in
single or multi objective optimization problems [34]. Giva fixed GA, our conjecture
is that similar instances will have similar elite groups end fixed parameter setting;
and that there exists a parameter setting that will yielddggmbutions in instances with
a similar elite group.

We present the parent inheritance relationship graph asliseated graph, where
each node represents a parent chromosome and each edgemnepeeinheritance re-
lationship between parents. As in a search trajectory gragth node in the graph
encodes a combination of two solution attributes: positype and the percentage de-
viation of its quality. InPaRG, we determine position type by evaluating the solution
objective value with other solutions’ objective valueshe same population - whether
it is better, worse or equal. The 7 positions types are shawiable 3.2 (Chapter 3).
The deviation of solution quality is calculated by compgrihe solution’s objective
value with Best (as defined in Definition 3). Position type and percentagéatien
of quality are then combined and hashed into a symbol. Thehgepresentation of a

Parent Inheritance Relationship Graph is shown in Fig. 6.3.
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Figure 6.4: Difference between the Search Trajectory GeapghParent Inheritance
Relationship Graph.

6.2.2 Feature Extraction

After obtaining parent inheritance relationship graphsdach instance, we extract
meaningful features using pattern mining techniques. Tia@lg structure for the
search trajectory graph and parent inheritance relatipriglaph are different, as il-
lustrated in Fig. 6.4. The search trajectory graph has a s and several thorns
and petals, while the parent inheritance relationshiplghegs a more complete graph.

Since the graph structures for the search trajectory graghparent inheritance
relationship graph are not the same, we cannot use simitegrpanining technique
as inFloTra (Chapter 4) forPaRG. We turn to a well-established pattern mining
technique for generic graph, gSpan [117].

gSpan (or graph-based substructure pattern mining) iscauérg pattern mining
technique that uses theDepth First Search (DFS) algorithgenerate its subgraphs
for mining in a large graph database. It also introduces alagiwographic ordering
system which is generated based on the DFS algorithm forieftigraph isomor-
phism tests. gSpan removes two most-time-and-memorydooing tasks: candidate
generations and false positive pruning. In candidate geiogis, a pattern mining al-
gorithm creates sizk frequent subgraphs and increases the size gradually bpgddi
one node for each iteration. The generation of size (1) subgraph candidates from
size k frequent subgraphs is complex and costly. On the other Hafsg positive
pruning is used to prune isomorphic candidates using a aphgsomorphism test

which is also very costly. gSpan replaces these two task®impming the growing
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and checking of frequent subgraphs into one procedure a@teserating the mining
process.

gSpan works as follows. It first creates a set of minimum spayinees (dfs-tree)
from the graphs using DFS which defines an order in which tlgegdre visited.
gSpan then construct a canonical representation in that,ardlled graphs dfs-code.
A growing technique is restricted by gSpan in two ways: fiasssubgraph can only
be extended at nodes that lie on the rightmost path of th&redés-and secondly, sub-
graph generation is guided by occurrences in the appealiateegSpan computes
the canonical (lexicographically smallest) dfs-code factegrowing step in a series
of permutations. The growing process stops either whenuppast of a subgraph is
less thamminSup or its dfs-code is not a minimum code, which means this suyigra
and all its descendants have been generated and discoveraougly. ForminSup

value, we need to set it beforehand.

6.3 Empirical Experiment Result

We perform the tuning of the Two Populations Genetic Alduritfor solving the
Generalized Assignment Problem (GAP). We measure thenpeaftce as the average
of the percentage deviation from the best found solufitas¢ (Definition 3) and
compare our experiment results with default configuratammconfigurations from a

one-size-fits-all configurator. The details of the experitrage as follows.

6.3.1 Target Problem and Algorithm

The Generalized Assignment Problem (GAP) is a widely-sdCOP with many
practical applications [66]. The GAP may be defined as fadlowsivenm agents
(or processors) and tasks (or jobs), the GAP aims at finding the maximum-profit
assignment of each task to exactly one agent, subject tajhecity of each agent. It
can be formulated as follows. Lét= 1,...,m be the set of agents and= 1, ..., n

the set of jobs. A standard integer programming formulaf@mnGAP is given in
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expression (6.1) wherg; is the profit from assigning jojpto agent, a,; the resource
required for processing jopby agent;, andb; is the capacity of agerit The decision
variablesr;; are setto 1 if joly is assigned to ageftand O otherwise. The constraints,
including the integrality condition on the variables, st#tat each job is assigned to

exactly one agent, and that the resource availabilitiegents do not exceed [66, 80].

max z = Zzpzszj S.t.Z:cij =1 Vje J,Zaz‘jxij <b V;el,x;e{0,1}
iel jeJ iel jeJ
(6.1)

The GAP is known to be an NP-hard problem. Exact approachsslve GAP
include branch-and-price [96], and branch-and-bound\8tle heuristic approaches
include tabu search [35], and path relinking with ejectibiaios [116]. Several Ge-
netic Algorithms have been proposed to the GAP [81], from aw@th a problem
specific heuristic operator involving two local improverhaieps after the regular
crossover [31] to a Guided GA that uses an extra weightingatios to identify which
genes in a chromosome are more susceptible to being changed drossover and
mutation [72].

To solve the GAP problem, we construct the Two-Populationegtie Algorithm
(FI2PopGA) [67]. In FI2PopGA, the population is dividedorfeasible and infeasi-
ble populations. The feasible population is a group of sohst that do not violate
any constraints while the infeasible population is a gropatutions that violate at
least one constraint. This approach arises from an inéuitiea that if one can sep-
arate the measuring of performance and feasibility, theag be a better chance to
find optimal solutions that are located at the boundary frath Ithe feasible and in-
feasible directions. FI2PopGA is an interesting targebatgm to tune because it
has similar parameters as in any well-known GA algorithmhwaibhe categorical pa-
rameter (i.e.: FitnessMethod) which gives FI2PopGA anawpto explore different
calculation methods.

In FI2PopGA, feasible and infeasible populations are é@aeparately and dif-
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Procedure for Two Populations Genetic Algorithm
Inputs: ¢: instance;
Method:
1: Initialize population for chromosomes (t)
2: Evaluate feasibility for each individual, separate it
into two groups (feasible and infeasible) (t)
3: Evaluate each chromosome in each population using fifaasson (t)
4: Repeat until a stopping criteria is satisfied
4.1: Select parents from population depending on selection
and reproduction criteria (t+1)
4.2: Perform crossover on parents and create new offspftindss
4.3: Perform mutation on new population (t+1)
4.4: Evaluate feasibility for each chromosome and sapérae
two groups (feasibile and infeasibile)(t+1)
4.5: Evaluate each chromosome using fitness function (t+1)
Output:  s: solution;

Figure 6.5: Two Populations Genetic Algorithm Procedure

ferently. The fitness function for the feasible populati®thie value of their objective
function; while for the infeasible population, the fitnesmdtion can be calculated
from their distance to the boundary of the feasible regiofrmn their penalty func-

tion. In the selection stage, solutions are compared onlly wiiher solutions in its

own population. The selected chromosome mates with anctiremosome in the
same population to generate offsprings. FI2PopGA is cedlin Fig. 6.5.

The genetic operators we implement are standard: singte-gr@ssover, uniform
random mutation and tournament 2 selection. The singletmrossover uses one
point to exchange part of the solution string from two pasefithe uniform random
mutation changes every number in the solution string witlivargprobability. The
tournament 2 selection chooses two parents randomly anpgar@stheir fithess score,
and the one with the higher fitness score gets to mate. Thenpsees to be tuned are
described in Table. 6.1.

We apply our target algorithm to 100 generated instancesarbmly choose 50
for training and the remaining for testing. The number okjabd agents is set to 100.

For best known values, we use the best found solution.
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Table 6.1: Parameters for Two Population Genetic Algoritméeneralized Assign-
ment Problem

Parameter Description Range
numGeneration number of generation [100, 1000]
populationSize population size [100, 1000]
FitnessMethod fitness calculation method [0, 1]
MutationRate probability to run mutation for new offsprang [0, 1]
CrossOverPoint  probability of cross over point [0, 100]

CandidateNum number of generated candidate parents fonaou[l, 10]
ment selection

6.3.2 Experiment Setting and Setup

As in CluPaTra-1l - FloTra, we use ParamlLS [60] as our one-size-fits-all configura-
tor. We discretize the continuous parameters to 20 posgiiles by simple enumera-
tion from minimum to maximum value. All experiments are penfied on a 3.30GHz
Intel Core machine running Windows 7. Cutoff times are séi@0 seconds per run
and each configuration process is allowed to call the tatgetithm for a maximum

of 100 xn times, wheren is the number of instances. To compare the significance of
our results, we perform a t-test [83]; and we consider peslelow 0.05 are taken

as statistically significant( < 5%).

6.3.3 Performance Comparison

We compare the target algorithm performance using parametdigurations from
PeTraandPaRG. We measure the performance using performance metricdiasde
in Definition 3. In Table. 6.2, we show the performance congoar results. Notice
that our approach outperforms the default configuration@mdigurations from the

one-size-fits-all configurator, ParamiLS.

6.4 Discussion

The result of the experiments on the Two Population Gendgijorthm for the Gen-
eralized Assignment Problem (GAP) verifies the performarfdeeTra and PaRG.

It shows an encouraging improvement in performance condgarthat of the default
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Table 6.2:PeTra andPaRG Performance Result

Technique Training Testing
Default 0.45 0.36
ParamILS 0.25 0.14
PeTra 0.13 0.09
PaRG 0.10 0.08

* = statistically significant against Default parameter foguration.
Boldface indicates the best performance result.

configuration and configurations from one-size-fits-allfayurator, ParamILS. Based
on this preliminary result, we verify thd&eTra andPaRG are viable extensions of
our instance-specific tuning approaches for populaticsetalgorithms.

On the performance result, we notice tRaRG outperformsPeTra. This may
indicate that the parent inheritance relationship gracalees GA's characteristics
to be better than the population evolution trajectory. Thasy be caused by the popu-
lation evolution trajectory oversimplifying the populati dynamic due to its aggrega-
tion mechanism that replaces individual solution progsrtiith its population sum-
mary statistics (minimum, maximum, average and local maxin It will be of in-
terest to implement other population properties to imptbegperformance dPeTra.

Based on these results, we claim that:H&)Yra andPaRG are suitable extensions
of instance-specific tuning for population-based algonghand (2PaRG which uses
the parent inheritance relationship graph is more sup&iBeTra that uses popula-

tion evolution trajectory.

6.5 Chapter Summary

In this chapter, we introduce ideas for extending instaspific tuning to
population-based algorithm. We study the interaction aglfation dynamic in Ge-
netic Algorithm and propose two extensiorBeTra and PaRG. PeTra focuses on
population evolution trajectories and extends @ePaTra framework. On the other

hand,PaRG explores the selection mechanism dynamic and construcaseamipin-
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heritance relationship graph to representHaRG extends the work irfCluPaTra-II
- FloTra and uses gSpan to extract compact features from the pataritance rela-
tionship graph.

We appliedPeTra and PaRG in tuning the Two Population Genetic Algorithm
that has 6 parameters. The result shows encouraging impesterom the default

parameter configuration and vanilla global configuratoraRdLS.
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Chapter 7

Conclusions

In the previous chapters, we have discussed our generimategd parameter tuning
methodology and shown experimentally its significant inveraent over the existing
approaches. In this last chapter, we provide a summary aintéia contributions of

this thesis, and provide a few pointers for future direction

7.1 Contributions

Although there has recently been keen research interestamated parameter tun-
ing, to date, there is no single approach that is clearly geti@at provides instance-
specific parameter configuration. One-size-fits-all apginea are generic and may be
applied to tune various application in various COPs, buy pnbvide one best param-
eter configuration for the entire set of problem instancestaince-specific approaches
on the other hand, tend to use problem-specific featuresthlat the approaches less
general. Thus, our major contributions are summarized|&s\s:

CluPaTra: Instance-specific Automated Parameter Tuning via Trajecbry Clus-

tering (Chapter 3).

e We have constructed generic instance specific automated parameter tuning
framework by first performing a clustering of problem instas, and tuning the

target algorithms to derive the best parameter configuratior the respective
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clusters. Subsequently, given an arbitrary instance, we itntp the closest
cluster. The tuned parameter configuration for that clusteeturned as the

parameter configuration for this instance.

¢ We have introduced the notion of an instances search toajeas the problem-
independent feature. Search trajectory is defined as thetipaita local search
algorithm follows as it searches from an initial solutiontsoneighbor from one
iteration to the next. The advantage of our approach liehénfact that the
search trajectory may be computed from a local-search kgedthm. Hence
our feature is problem-independent and may be conceptiigved from any

local search-based algorithm.

e We have constructed a novel technique to extract problelependent features
and calculate similarity based on them using a well-knowrchiree learning
technique: sequence alignment. We have explored two diffesearch trajec-

tory sequence representations and two sequence alignmglieinnentations.

e We appliedCluPaTra on three classical COPs: Traveling Salesman Problem
(TSP), Quadratic Assignment Problem (QAP) and Set Covétnoplem (SCP)
and showed significant improvement toward existing one-§tg-all configu-

rators.

CluPaTra-1l: Pattern Mining Approaches for Instance-specific Automate Pa-

rameter Tuning (Chapter 4).

¢ We have overcom€luPaTra’s limitations in scalability, flexibility and descrip-
tiveness by constructingluPaTra-Il where we add a feature extraction step and

replace the similarity calculation with a well-known methcosine similarity.

e We have modeled feature extraction as a pattern mining @nobind have de-
signed two new data mining techniques to badistPaTra computational speed

as well as to improve the cluster quality and the overallgrenfince.
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e We have presente8ufTra, a pattern mining technique to extract patterns from
sequence search trajectories based on Suffix Tree datéuseBufTra offers

a linear time algorithm to exact meaningful features.

e We have designedFloTra, a graph mining technique for search trajectory
graphs. FloTra offers a fast technique to extract compact features usieg sp

cific characteristics of search trajectory graphs.

e We have appliedCluPaTra-Il on three classical COPs as @luPaTra and
showed improved results in terms of computation time, elugtiality and over-

all performance as compared@uPaTra.

AutoParTune: Web-based Automated Parameter Tuning Workbench(Chapter

5).

e We have implemented our approaches for instance-spectberated parame-
ter tuning in a web-based automated parameter tuning wodkiibat integrates
our approaches with a method for parameter-space redumiomglobal (one-

size-fits-all) parameter tuning.

e We have applied two basic security mechanisms to profetoParTune
against Internet attacks from human and automated-aggpetpators. We im-
plement email Authentication Mechanism to prevent autechagent perpetra-
tors and anti-virus Scanning Mechanism to check files ugldddr malicious

codes.

e We have designed component communication schema to enatleuanica-

tions between each of the componentéutoParTune.

e We have applieddutoParTune in two industrial cases: the Aircraft Spares
Inventory Optimization Problem and the Theme Park Persmelintelligent
Route Guidance Problem and produced better overall pediacmresults com-

pared to the default configuration used by our industry gastn
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Instance-specific Tuning: Extension to Genetic AlgorithmgChapter 6).

We have extended our approaches for instance-specific atednparameter
tuning to population-based algorithms. We analyze Gewdgorithm popula-

tion’s dynamic and design two new approacHesTra andPaRG.

We have presenteeTra, an extension oCluPaTra for Genetic Algorithm.
PeTrais design to capture similarity from GA's Population Evadut Trajectory
by representing it as a directed sequence and calculateniiargy using pair-

wise sequence alignment.

We have introducedaRG, an extension oCluPaTra-1l - FloTra where we
investigate GA's Parent Inheritance Relationship sintijan Graph represen-
tative. We implement a well-known pattern mining technigg8pan, as the

feature extraction method.

We have implementeBeTra andPaRG on Generalized Assignment Problem
(GAP) using Two-Population Genetic Algorithm and produeedouraging re-
sults compared to the default configuration and vanilla sime-fits-all configu-

rator.

7.2 Future Directions

There are a number of future directions that can be pursuedend our work further,

and these are summarized as follows.

First, we discusgwutoParTune’s scalability. AutoParTune is designed as a web-

based application that enables users to perform theirguomputation in the server.

As all tuning processes, which are computationally timescomng, are done in the

serverAutoParTune is not scalable for tuning large instances (which may rexjie

target algorithm to run for a long time). Furthermore, thdigtto handle multiple

tuning processes concurrently poses a challenge in staldbr AutoParTune as

well.
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To overcome the challenge of scalability, two approaches lma considered,
namely, process batch and peer-to-peer computing. PusdParTune may run the
tuning process in batches, i.e. users may upload tuning &@sktime, buAutoPar-
Tune will process them in batches periodically. A queuing systeith drastically
bring down computational load.

SecondAutoParTune may adopt a peer-to-peer (P2P) approach to distribute tun-
ing tasks between th&utoParTune server and the user machine. The idea of P2P is
to allow users to share resources, such as power, knowlddgestorage and infor-
mation, between computers [76]. P2P has been used mostyge &cale data and
information sharing. Examples of well-known P2P applioas are Napster and Ox-
ford anti-cancer projects [76]. In P2P design, computensaz as both clients and
servers, with the roles determined according to the remergs of the system at any
particular given time. Using P2P techniques, one may Uistei the balance work-
load between thAutoParTune server and user machine for certain tuning processes
such as calling the target algorithm for different instanasing different parameter
configurations.

A second future research direction can be conceived to expgéxhniques for
feature extraction iCluPaTra-I1l. In this thesis, we model instance-specific parameter
tuning as a frequent pattern mining problem and construetjaential pattern mining
and a structural pattern mining algorithm to extract feagéurom search trajectories.
Other than sequential and structural pattern mining, be@agectory similarity may
be computed using other methods such as time-series patieimg [118, 75].

In time-series pattern mining, one may consider the seaapbctory as time se-
ries data and represent each solution in the search trejeatcone data point. This
technique is natural because the search trajectory hasahnporal ordering, where
each solution is found in a different algorithm step (oratern), which can also be
constituted as a different time series. We then extractehtufes using a time-series
pattern mining technique such as [97]. In [97], the timeesedata are clustered by

constructing a spectra from the original time series dath tie means adjusted to
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zero and normalizing it by the differences with the largestlp(in terms of a search
trajectory, we can associate the peak with a local optimatism). They then apply a
hierarchical clustering method to cluster the spectra.

One limitation in modeling instance-specific parametelirigras a time series
mining problem is that it can only work for sequence searafettories because the
time series data are assumed as a sequence of data pointsnialy not be suitable
for clustering search trajectories that have many cycles.

Other then time series pattern mining, search trajectonylaiity may be com-
puted using other data mining techniques such as correlatioing [51] and associa-
tive classification [51].

Third, in this thesis, we only use one single generic feafsearch trajectory)
to calculate similarity and cluster the instances. It wil &f interest to investigate
how different possible features (generic or problem-dpa&uch as Fitness Distance
Correlation (FDC) and problem size, can be incorporatethfrove the performance
of the clustering and the overall tuning result. Howeverliag different features
will increase the dimensionality of the data and make thatehing process more
challenging [24].

The common approach to deal with high dimensional data isatgsform it into
lower dimensional data via Principal Component AnalysiSAR[36]. PCA reduces
high dimensional data into a few dimensions regardlesseh#ture of the original
variables (i.e. ordinal, continues, categorical) [63]cdimension is called a Princi-
pal Component (PC) and represents a linear combinatioreofghables. The first PC
accounts for as much variation in the data as possible. Rameeding PC accounts
for as much of the variation unaccounted for by preceding #Cgossible. PCs are
orthogonal and guaranteed to be perfectly independentbfaaer. PCs are found by
calculating the eigenvectors and eigenvalues of variadii® d'he eigenvector with the
largest eigenvalue is the direction of greatest variatiompne with the second largest
eigenvalue is the (orthogonal) direction with the next lefhvariation and so on. In

our clustering context for instance-specific parameteingnsing different features,
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we can apply PCA to reduce the dimensionality of the datarset {o clustering. The
objective of using PCA prior to clustering is for the PC torext the cluster structure

in the data set as in [119] where they use the first two PCs sierithe data using a

variant of the hierarchical clustering.
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Appendix A

Empirical Experiment Result
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Table A.1: Performance Comparison on TSP

Approach #Fold Training Testing
ParamlILS 1 2.56 2.01
2 2.86 2.11
3 2.76 1.92
4 2.55 1.93
5 2.62 2.13
CluPaTra Standard 1 2.33 2.04
2 2.18 2.01
3 2.05 1.93
4 2.14 1.91
5 2.41 1.78
CluPaTra Trans 1 1.97 1.85
2 2.18 1.77
3 2.16 1.23
4 1.97 2.03
5 1.78 1.71
CluPaTra Robust 1 2.08 2.03
2 2.11 1.71
3 2.32 1.91
4 2.11 1.58
5 1.87 1.81
CluPaTra Trans-Robust 1 2.11 2.02
2 1.98 2.09
3 1.76 1.87
4 2.45 1.67
5 1.99 1.99
ISAC 1 2.23 2.09
2 2.13 1.55
3 1.95 1.23
4 2.56 1.98
5 1.23 2.53
CluPaTra-Il - SufTra 1 1.98 1.87
2 2.05 1.76
3 2.13 1.31
4 1.78 1.65
5 2.05 1.25
CluPaTra-Il - FloTra 1 1.87 1.23
2 2.34 1.45
3 2.01 1.42
4 1.96 1.03
5 1.74 1.13
CluPaTra-Il - gSpan 1 1.87 1.45
2 1.96 1.65
3 2.21 1.04
4 1.92 1.06
5 1.98 1.24
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Table A.2: Performance Comparison on QAP

Approach #Fold Training Testing
ParamlILS 1 2.03 2.48
2 2.43 2.33
3 2.55 2.01
4 2.01 2.43
5 2.05 2.12
CluPaTra Standard 1 1.92 2.13
2 1.99 2.12
3 1.98 2.17
4 2.02 2.21
5 2.04 2.32
CluPaTra Trans 1 1.87 2.13
2 1.85 2.11
3 1.96 2.04
4 1.88 2.09
5 1.84 2.04
CluPaTra Robust 1 1.89 2.14
2 1.86 2.12
3 2.01 2.11
4 1.87 2.09
5 1.82 2.06
CluPaTra Trans-Robust 1 1.91 2.19
2 1.88 2.32
3 1.97 1.99
4 1.89 2.05
5 1.87 2.39
ISAC 1 1.99 2.03
2 2.1 2.54
3 1.87 2.05
4 2.04 2.01
5 1.91 2.12
CluPaTra-Il - SufTra 1 0.65 1.14
2 1.02 1.43
3 0.77 0.98
4 0.82 1.23
5 0.87 1.01
CluPaTra-Il - FloTra 1 1.05 0.97
2 0.65 1.15
3 0.77 0.81
4 0.59 1.19
5 0.84 1.21
CluPaTra-1l - gSpan 1 0.67 1.23
2 0.87 0.93
3 0.64 1.09
4 1.09 1.04
5 0.71 1.16
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Table A.3: Performance Comparison on SCP

Approach #Fold Training Testing
ParamlILS 1 1.72 0.98
2 1.67 0.88
3 1.16 0.71
4 1.54 0.65
5 1.57 0.89
CluPaTra Standard 1 1.31 0.76
2 1.22 0.56
3 1.01 0.82
4 1.23 0.93
5 1.43 0.98
CluPaTra Trans 1 1.09 0.76
2 0.77 0.77
3 0.56 0.69
4 0.91 0.81
5 0.56 0.98
CluPaTra Robust 1 1.01 0.95
2 1.04 1.18
3 1.19 0.99
4 0.91 0.89
5 0.91 0.87
CluPaTra Trans-Robust 1 0.54 0.75
2 0.55 0.88
3 0.81 0.64
4 0.81 0.76
5 0.65 0.87
ISAC 1 1.18 0.55
2 1.34 0.76
3 1.22 0.55
4 1.02 0.98
5 0.91 1.02
CluPaTra-Il - SufTra 1 0.54 0.88
2 0.34 0.75
3 0.33 0.65
4 0.23 0.78
5 0.31 0.81
CluPaTra-Il - FloTra 1 0.23 0.45
2 0.12 0.65
3 0.56 0.23
4 0.12 0.78
5 0.34 0.48
CluPaTra-Il - gSpan 1 0.36 0.77
2 0.35 0.62
3 0.23 0.78
4 0.34 0.46
5 0.28 0.79
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Appendix B

Quick Start Guide for AutoParTune
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Quick Start Guide for AutoParTune

1. Introduction

AutoParTune (Automated Parameter Tuning Framework) is a framework for generic
automated parameter tuning for a given target algorithm (such as Tabu Search, Simulated
Annealing, GRASP). This framework is consisted of several parts, namely: parameter
space reduction, feature-based instances classification, and parameter tuning. The

framework is outlined in the picture below.

Automated Parameter Tuning

-Target Algorithm .
-Training and Testing e et
Instances o - Global | [~
-Parameter Domains ;‘ Tuning | | Cenfiguration
and Initial Value Parameter Space /A

Reduction

Figure 1. AutoParTune Framework
2. Input Files for AutoParTune

The user should provide:

e the target algorithm, which is compiled into Windows executable exe callable from
the DOS command line.
The target algorithm must be able to execute as follows:

algo-executable —I instance_file —S seed params

where:
if target algorithm is a Stochastic Local Search then the code for the target algorithm
need to be amended such that seed provides the value for the random seed used
within the algorithm; else ignore the seed.

params refers to the parameter values set for running the target algorithm
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Example:

ils_tsp.exe —I kroal00.txt —S 2345 -P 10 -B 1

The output of the target algorithm is the best found objective value (displayed in the
last line of the screen output when running the algorithm).

a set of training and testing instances — one file for each instance

a list of training and testing instances file.

First line is a number of training or testing instances; and the rest are instance “file

name” [tab] “best known value”.

Example:

56

a280.tspx 2579
ch130.tspx 6110

a txt file containing the parameter space.

The parameter space file format is one parameter per line. Each line contains:
parameter name, switch to pass the parameter to the algorithm, type of parameter
(i=integer, r=real and c=categorical), minimum and maximum value for integer and

real parameter or all possible parameter values for categorical parameter.

Example:

PERTURBATION STRENGTH "-p" r [0.1, 10]
BETTER _ACCEPTANCE CRITERIA "-B" i [0, 1]
NON_IMPROVING MOVES TOLERANCE "N c [1,2,3,4]
OptChoose 0" c [3,4]

For instance-specific tuning (CluPaTra and SufTra), please provide trajectory
generator target algorithm, which is compiled into Windows executable exe callable
from the DOS command line (similar to “target algorithm”).

The trajectory generator should produce a [instance file name].result2.RunLog
(example chl50.tspx.resultl.RunLog) containing the instance’s search trajectory

obtained. The format of the file is:
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Row | Field Name Example

1 Instance’s name a280

2 Global optimal or best-found objective value 2579

3 Restart symbol -

4% Neighbor position, whether the solution has direct neighbor | 10 1
that has same, better or worse objective value.
It is represented as 3 binary digits with 1 (yes) and 0 (no). -
first digit for same objective value, second digit for better
objective value and third digit for worse objective value.

5* Objective value of the solution found 3334

6* Solution found (sequence of nodes on the tour)

201,202,203,116,117,61,62,6
3,57,56,55,44,45,46,53,54,...

Last
row

BF OV=best found objective value

BF OV=2911

*Rows 4-6 are repeated for each solution found by the target algorithm. Collectively,

it represents the search trajectory.

3. Running AutoParTune
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Figure 2. AutoParTune Home

Click “Run AutoParTune” to run parameter configuration.
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Figure 3. Run AutoParTune — File Input
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Please input name of project, target algorithm (windows executable file), type of target

algorithm, training instance list (txt file), training instance files (zip file), testing instance

list (txt file), testing instance files (zip file), and parameter space (txt file).
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Click “Next” to continue.

&E SMU

el s TS ETET
L PP
ITHHE | L BT TR

R
I'H.__.-
Satimg

Filen [rpat

S

Prajuct Infermstion

Automated Parameter

Flarra : - Epadl
Executalda Filos
Target Algordhm ! TSP_NZarm
Typmof Taget T O
Imstascaw
Traming : Traminrisrcs B
Temting ¢ Tkl resta rews it
Fersmuiar Soacs : - Ferwmetarm b
[ st |

AutoParTune
Tuning Framework

Cofrsct

L1

Frofescis |5 Wogmg THigr

Schaod o Infarmnscien. Sysem
Binpgans FS s resrit
UrivErmEty

6] Siamird Aoed

Bngspans 176802

Emeili

Figure 4. Run AutoParTune — File Input Confirmation



Click “Next” to continue.

AutoParTune

7 SMU Automated Parameter Tuning Framework

o A L s
LES PERSTTY

—
f §1 Canksct
I'_ ' Tl
Flen Inpeat Satting Run Rt Fradess

Sohagd of Trfamm o Swsbem
S pans Mana Qe ment
Urduwarsity

Bl Stmmiced Raed

Sngapare 17303

Project information

Flarma: : el

Mrthod Sulection

i

Tunng Tyvee

Empli
With Parameiss Sesncs 3
Tpeca Reduchon

| - Mt e

Figure 5. Run AutoParTune — Tuning Method

Choose the tuning type and whether the tuning with or without Parameter Search Space

Reduction.
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Click “Next” to continue.
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Figure 6. Run AutoParTune — Tuning Instance-specific Method

If Tuning Type is Instance-Specific, choose the instance-specific method, input trajectory

generator (windows executable file).
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Click “Next” to continue.
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Figure 7. Run AutoParTune — Tuning Method Confirmation
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Click “Next” to continue.
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Figure 8. Run AutoParTune — Email Contact

Input the contact email address and click “Next” to finish the input process. Email
verification will be sent to the email account. Please use the link in the email to start the

tuning process. When the tuning process starts, an email notification will be sent.
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Figure 9. Run AutoParTune — Email Verification
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Figure 10. Run AutoParTune — Link from Email Verification
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After the tuning process is done, an email with the result xml file will be sent to the email

address.

To check the tuning progress, click menu “Check Tuning Progress”. Fill in the project id

and click “Find Result”.
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Figure 11. Check Tuning Progress
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Click menu “Documents” to view AutoParTune Documentation and related references.
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Figure 13. AutoParTune Documents
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Click menu “Terms and Conditions” to open AutoParTune terms and conditions.
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