
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open Access) Dissertations and Theses

1-2014

Generic Instance-Specific Automated Parameter
Tuning Framework
Linda LINDAWATI
Singapore Management University, lindawati.2008@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons,
and the Theory and Algorithms Commons

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection (Open Access) by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LINDAWATI, Linda. Generic Instance-Specific Automated Parameter Tuning Framework. (2014). 1-159. Dissertations and Theses
Collection (Open Access).
Available at: https://ink.library.smu.edu.sg/etd_coll/100

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Generic Instance-Specific Automated Parameter Tuning
Framework

Lindawati

Singapore Management University
2014

Generic Instance-Specific Automated Parameter Tuning
Framework

by
Lindawati

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Hoong Chuin LAU (Supervisor/Chair)
Associate Professor of Information Systems
Singapore Management University

David LO
Assistant Professor of Information Systems
Singapore Management University

Feida ZHU
Assistant Professor of Information Systems
Singapore Management University

Roland YAP
Associate Professor of Computing
National University of Singapore

Singapore Management University
2014

Copyright (2014) Lindawati

Generic Instance-Specific Automated Parameter Tuning Framework

Lindawati

Abstract

Meta-heuristic algorithms play an important role in solving combinatorial optimiza-

tion problems (COP) in many practical applications. The caveat is that the perfor-

mance of these meta-heuristic algorithms is highly dependent on their parameter con-

figuration which controls the algorithm behaviour. Selecting the best parameter con-

figuration is often a difficult, tedious and unsatisfying task. This thesis studies the

problem of automating the selection of good parameter configurations.

Existing approaches to address the challenges of parameterconfiguration can be

classified intoone-size-fits-allandinstance-specificapproaches. One-size-fits-all ap-

proaches focus on finding a single best parameter configuration for a set of problem

instances, while instance-specific approaches attempt to find parameter configurations

on a per instance-basis, based on identifying specific features of a specific problem.

Both approaches have their strengths and limitations, yet neither offers agenericap-

proach for finding instance-specific parameter configurations.

In this thesis, we take a middle ground hybrid approach, where our goal is to per-

form instance-specific tuning via clustering of problem instances using a problem-

independent feature. Our approach is similar to ISAC [64], but instead of using

problem-specific features, we propose a problem-independent feature from the local

search trajectory.

We are primarily concerned with the tuning of target algorithms that are local-

search based, where we make use of the local search trajectory as the feature, since

they can be obtained from any given local-search based algorithm with a small addi-

tional computation budget. We show that there is a strong correlation between search

trajectories and good parameter configurations, and hence clustering by search trajec-

tories allow a configurator to find parameter configurations based on clusters rather

than the entire set of training instances. We propose twogeneric frameworks: Clu-

PaTra andCluPaTra-II that cluster a set of instances using search trajectories before

configuring the parameters for each cluster. InCluPaTra, we use a simple pair-wise

sequence alignment technique, while inCluPaTra-II, we design two pattern mining

techniques to extract compact features for clustering purposes. Using our approaches,

we run extensive numerical experiments on three classical problems : Traveling Sales-

man Problem (TSP), Quadratic Assignment Problem (QAP) and Set Covering Prob-

lem (SCP) and demonstrate encouraging results in both cluster quality and overall

computational performance.

A second contribution of this thesis is the implementation of an automated pa-

rameter tuning system that comprisesCluPaTra, CluPaTra-II, and other components

required for automated tuning. More specifically, we develop AutoParTune, a web-

based workbench that enables algorithm designers to perform automated parameter

tuning with minimal effort.AutoParTune is constructed based on a three-tier archi-

tecture that integrates instance-specific parameter configuration with parameter search

space reduction and global tuning. We implement two security techniques to prevent

Internet attacks and design a communication schema to establish communication be-

tween components. We apply this workbench to tune two problems from industry: the

Aircraft Spares Inventory Optimization Problem and the Theme Park Personalized In-

telligent Route Guidance Problem.AutoParTune shows a better overall performance

compared to the default configurations.

Finally, as a bridge for future works, we consider an extension of the above instance-

specific tuning approach to tune population-based algorithms such as Genetic Al-

gorithms. We introduce two preliminary ideas:PeTra and PaRG which are de-

signed based on generic features pertaining to population dynamics in a Genetic Al-

gorithm. Preliminary experiments with the Two-PopulationGenetic Algorithm have

given promising results in terms of the overall computational performance.

In summary, we show in this thesis that our approach yields significant improve-

ment in performance compared with the pure one-size-fits-all configurators on both

classical and industry problems. We observe that our approach performs significantly

better or equal to several existing instance-specific configurators which use problem

specific features. Based on these results, we claim that: (1)Methodologically divid-

ing the instances into smaller clusters before tuning provides better parameter con-

figurations; (2) The Search Trajectory is a suitable genericfeature to cluster similar

instances for tuning process; (3) Our web-based workbench provides an effective tool

for tuning complex optimization problems; and (4) There areviable extensions for

automated parameter tuning of population-based algorithms.

Contents

1 Introduction 1

1.1 The Journey for a High-Performance Algorithm 1

1.2 Summary of Contribution . 3

1.3 Thesis Outline . 5

1.4 List of Publications . 5

2 Background 7

2.1 Combinatorial Optimization Problem 7

2.2 Algorithms for Solving COPs . 9

2.2.1 Exact Algorithms . 9

2.2.2 Non-Exact Algorithms . 10

2.3 Meta-heuristic for Solving COPs .11

2.3.1 Local-search-based Algorithms 12

2.3.2 Population-based Algorithms 13

2.3.3 Challenge in Designing Meta-heuristic Algorithms for COPs . 15

2.4 Automated Parameter Tuning Problem17

2.5 Literature Review on Automated Tuning 20

2.5.1 Classification of Current Approaches 21

2.5.2 Analyzing Different Approaches 22

2.5.3 Further Relevant Research 28

2.6 Chapter Summary . 29

i

3 Instance-Specific Automated Parameter Tuning via Trajectory Clustering

(CluPaTra) 31

3.1 Framework Overview . 32

3.2 Feature Selection . 33

3.2.1 Search Trajectory Definition 36

3.2.2 Representation of Search Trajectory37

3.3 Similarity Calculation . 39

3.3.1 Basic Sequence Alignment 40

3.3.2 Robust Sequence Alignment 41

3.4 Clustering Method . 42

3.5 CluPaTra Instantiations . 45

3.6 Empirical Experiment Result . 45

3.6.1 Experiment Measurement 45

3.6.2 Target Problems and Algorithms 46

3.6.3 Experiment Setting and Setup 49

3.6.4 Verification of Similarity Preservation 50

3.6.5 Clustering Analyses . 52

3.6.6 Computational Time . 57

3.6.7 Performance Comparison . 57

3.6.8 Comparison of Different Clustering Methods 60

3.7 Discussion . 61

3.8 Chapter Summary . 62

4 Pattern Mining Approaches for Instance-specific Automated Parameter

Tuning 63

4.1 CluPaTra-II: Tuning Framework using Pattern Mining Approach . . . 64

4.2 SufTra: Pattern Mining via Suffix Tree 71

4.2.1 Sequence Hashing . 72

4.2.2 Suffix Tree Construction . 73

4.2.3 Features Retrieval . 74

ii

4.2.4 Instance-Feature Metric Calculation 75

4.3 FloTra: Graph Pattern Mining for Search Trajectory 75

4.3.1 Stage 1: Mining Flower Thorns and Petals 77

4.3.2 Stage 2: Mining Long Stem 78

4.3.3 Stage 3: Assembling the Flower 79

4.3.4 Stage 4: Instance-Feature Metric Calculation 79

4.4 Empirical Experiment Result . 80

4.4.1 Cluster Analysis . 80

4.4.2 Computational Time . 82

4.4.3 Performance Comparison . 83

4.5 Discussion . 84

4.6 Chapter Summary . 85

5 Web-based Automated Parameter Tuning Workbench 87

5.1 AutoParTune Overview . 88

5.2 AutoParTune Components . 91

5.2.1 Instance-Specific Tuning . 91

5.2.2 Parameter Search Space Reduction 91

5.2.3 Global Tuning . 94

5.3 AutoPartune Features . 95

5.3.1 Security Issue . 95

5.3.2 Integration Issue . 96

5.4 Application Architecture . 97

5.5 Empirical Experiment Result . 99

5.5.1 Classical COPs . 100

5.5.2 Aircraft Spares Inventory Optimization Problem 101

5.5.3 Theme Park Personalized Intelligent Route Guidance Problem 103

5.6 Discussion . 110

5.7 Chapter Summary . 111

iii

6 Instance-Specific Tuning: Extension to Genetic Algorithms 112

6.1 PeTra: PopulationEvolutionTra jectory Similarity 113

6.2 PaRG: Parent InheritanceRelationship similarity inGraph represen-

tation . 115

6.2.1 Graph Transformation . 116

6.2.2 Feature Extraction . 118

6.3 Empirical Experiment Result . 119

6.3.1 Target Problem and Algorithm 119

6.3.2 Experiment Setting and Setup 122

6.3.3 Performance Comparison . 122

6.4 Discussion . 122

6.5 Chapter Summary . 123

7 Conclusions 125

7.1 Contributions . 125

7.2 Future Directions . 128

Appendix:

A Empirical Experiment Result 132

B Quick Start Guide for AutoParTune 136

iv

List of Figures

1.1 Summary of PhD Contributions . 3

2.1 Genetic Algorithm Cycles. 15

2.2 Tuning Scenario . 17

3.1 CluPaTra Framework . 33

3.2 CluPaTra Training Phase . 34

3.3 CluPaTra Testing Phase . 34

3.4 Example of Search Trajectory from the Traveling Salesman Problem

(TSP) instance . 36

3.5 Example of Direct Sequence Representation of Search Trajectory for

the Travelling Salesman Problem (TSP) instance 37

3.6 Example of Transition Sequence for search trajectory ofTraveling

Salesman Problem (TSP) instance 40

3.7 Hierarchical Clustering Method: AGNES (AGglomerativeNESting) . 43

3.8 Evaluation Graph forL-Method to Determine Number of Cluster . . . 44

3.9 Search Trajectories of three TSP instances using two random param-

eter configuration . 53

3.10 Search Trajectory Similarity Score between two TSP andQAP in-

stances and 10 other random instances using 5 Different Random Pa-

rameter Configurations . 53

3.11 TSP Cluster Result Comparison . 55

3.12 QAP Cluster Result Comparison . 55

v

4.1 Similarity Patterns from three search trajectory sequences 65

4.2 Sequence and Graph Search Trajectories Representationfor three Quadratic

Assignment Problem (QAP) instances 67

4.3 Tuning Framework using Pattern Mining Approach 68

4.4 Tuning Framework using Pattern Mining Approach Training Phase . . 68

4.5 Tuning Framework using Pattern Mining Approach TestingPhase . . 69

4.6 CluPaTra-II Steps and Output . 70

4.7 Example of Suffix Tree for a single stringS1 (LMMNP) and for two

stringsS1=LMMNP andS2=LMNMM 73

4.8 Flower Graph with stem, petals and thorns 76

4.9 DFS Path for a particular node in search trajectory graph. 78

4.10 Create Flower Thorns and Petals Procedure using Suffix Tree 78

4.11 Example of frequent subgraph found byFloTra 79

4.12 Example of clusters’ signature for each cluster generated usingFloTra 82

5.1 Phases of Fact-RSM, Parameter Search Space Reduction Method us-

ing DoE methodology . 92

5.2 2k Full Factorial Design for Fact-RSM 93

5.3 AutoParTune Components Communication Schema 97

5.4 AutoParTune Design Architecture 99

5.5 AutoParTune Database Design . 100

5.6 Tuning Scenario for Personalized Intelligent Route Guidance 107

5.7 Effect of Patron Preferences on Route Generated from Personalized

Intelligent Route Guidance Algorithm 109

6.1 Genetic Algorithm Population Presentation. 115

6.2 Steps inPaRG: Parent InheritanceRelationship similarity inGraph

representation. 116

6.3 Parent Inheritance Relationship Graph Representation. 117

vi

6.4 Difference between the Search Trajectory Graph and Parent Inheri-

tance Relationship Graph. 118

6.5 Two Populations Genetic Algorithm Procedure 121

vii

List of Tables

2.1 Performance Comparison of Exact and Non-exact Algorithms 9

2.2 The Effect of Three Different Parameter Configurations on 4 QAP

instances. 16

2.3 Classification of Current Approaches in Automated Parameter Tuning 22

3.1 Run Time for Random-3-SAT instances 35

3.2 Position Types Property of Search Trajectory 38

3.3 Example of Sequence Alignment from a pair of instances 41

3.4 Threshold Value for Robust Sequence Alignment 42

3.5 Four instantiations ofCluPaTra . 45

3.6 Parameters for ILS Algorithm for Traveling Salesman Problem (TSP) 47

3.7 Parameters for SA-TS Algorithm for Quadratic Assignment Problem

(QAP) . 48

3.8 Parameters for TS Algorithm for Set Covering Problem (SCP) 49

3.9 Examples of Clusters from Different Parameter Configurations 52

3.10 Similarity Score of Randomly Selected Instance Pairs for Instances’

Similarity Preservation . 54

3.11 CluPaTra’s Cluster Quality Comparison for Quadratic Assignment

Problem (QAP) and Set Covering Problem (SCP) 56

3.12 CluPaTra’s Computational Time . 57

3.13 CluPaTra’s Performance Comparison of Three Classical COPs 58

3.14 CluPaTra’s Testing Instances Performance using Different Cluster’s

Parameter Configuration . 59

viii

3.15 Correlation between Cluster Quality and Overall Performance 60

3.16 CluPaTra’s Performance Comparison using Different Clustering Meth-

ods . 60

4.1 Average length of Stem, Thorn and Petal 77

4.2 CluPaTra-II with SufTra andFloTra Cluster Analyses Comparison . 81

4.3 CluPaTra-II with SufTra andFloTra Computational Time Comparison 83

4.4 CluPaTra-II with SufTra andFloTra Performance Result Comparison 83

4.5 CluPaTra-II with SufTra andFloTra Comparison in Two Groups of

Search Trajectories . 84

5.1 Five Tuning Strategies inAutoParTune 90

5.2 AutoParTune Components Input Output Standard 98

5.3 Search Trajectory Generator and Target Algorithm Standard for Au-

toParTune . 99

5.4 AutoParTune Performance Result Comparison for Classical COPs . . 101

5.5 Parameters for SA on Aircraft Spares Inventory Optimization Problem 102

5.6 Aircraft Spares Inventory Optimization Problem Performance Result . 103

5.7 Parameter Configurations for Aircraft Spares InventoryOptimization

Problem . 103

5.8 Parameters for Heuristic Algorithm on Theme Park Personalized In-

telligent Route Guidance Problem 106

5.9 Parameters Configurations for Theme Park Personalized Intelligent

Route Guidance Problem . 107

5.10 Theme Park Personalized Intelligent Route Guidance Algorithm Per-

formance Result using Scenario 1 108

5.11 Routes from Default Configuration andAutoParTune Strategy 3 . . . 108

5.12 Theme Park Personalized Intelligent Route Guidance Algorithm Per-

formance Result using Scenario 2 110

ix

6.1 Parameters for Two Population Genetic Algorithm on Generalized As-

signment Problem . 122

6.2 PeTra andPaRG Performance Result 123

A.1 Performance Comparison on TSP 133

A.2 Performance Comparison on QAP 134

A.3 Performance Comparison on SCP 135

x

Acknowledgments

This thesis would not have been completed without the academic, spiritual and moral

supports from many individuals.

First, I would like to thank my supervisor, Prof. Lau Hoong Chuin, for his guid-

ance, patience, enthusiasm, motivation, and care about my Ph.D life. Thank you for

introducing me to this interesting field of meta-heuristicsresearch - which eventually

draw my intention. Your passion for research in different areas is always amazed me.

Besides my advisor, I would like to thank the rest of my thesiscommittee: Prof.

David Lo, Prof. Zhu Feida, and Prof. Roland Yap, for their valuable comments and

insightful suggestions on my Ph.D thesis.

I am fortunate to be able to work with Prof. David Lo and Prof. Zhu Feida. I

appreciate their encouragement, ideas and experience sharing in doing research. I

have benefited intellectually from collaborating with them.

I would also like to express my appreciation to three other collaborators, Zhi Yuan,

Aldy Gunawan, and Prof. Steve Kimbrough, for contributionsto Chapter 4 and Chap-

ter 5 of the thesis. I would also sincerely thanks all my SIS friends. Thanks for the

friendship and memories.

Lastly, I would like to thanks two most important people in mylife, my father,

Madsalih Hamid and my mother, Sim Tiaw Nio. Papa, Mama, thanks for raising me

up since I was a baby until now. Without your love and encouragement, I would not

be able to be what I am today.

xi

Chapter 1

Introduction

1.1 The Journey for a High-Performance Algorithm

In the last few decades, there has been a dramatic rise in designing various meta-

heuristic algorithms to solve computationally difficult Combinatorial Optimization

Problems (COPs) in many practical applications. Meta-heuristic algorithms, such as

Iterated Local Search (ILS), Tabu Search (TS) and SimulatedAnnealing (SA), are

basically high-level procedures that coordinate simple search methods and rules to

find good (often optimal) approximate solutions [23]. Even though meta-heuristic al-

gorithms do not guarantee global optimality, they generally provide good solutions

within reasonable time [20].

Creating a simple meta-heuristic algorithm for a given COP is often easy. All

one needs to do is to instantiate certain meta-heuristic components, set some param-

eters with (usually) default values, and run the algorithm on the given instances [47].

However, to design a high-performance meta-heuristic algorithm in general is dif-

ficult [60]. One fundamental aspect that affects the performance of meta-heuristic

algorithm is its parameter configuration. For example, a Tabu Search algorithm will

perform differently with different tabu lengths and a Genetic Algorithm will perform

differently with different mutation rates. Previous studies have indicated that finding

performance-optimizing parameter configurations of meta-heuristic algorithms often

1

requires considerable effort [17, 3, 7, 60]. In [3], it is stated that only ten percent of

development time is spent on algorithm design and testing, while the rest is spent on

fine-tuning the parameter settings which, in many cases, is performed manually and

in an adhoc fashion by the algorithm designer.

Given a meta-heuristic algorithm to solve a given COP, it also has been observed

that different problem instances require different parameter configurations in order

for the algorithm to find good solutions [39, 90, 115]. With numerous parameter

configurations and a large number of instances, finding an instance-specific automated

tuning manually not only takes a lot of time and effort, due tothe enormous parameter

configurations space, but also requires substantial knowledge of the algorithm and the

problem itself. This tedious labour-intensive work gives rise to the need forautomated

parameter tuning. Automated parameter tuning is useful in a variety of contexts, such

as improving meta-heuristic performance and trading humantime with machine time

[58]. Furthermore, it has been shown that automated parameter tuning often leads to

better performance compared to manual parameter tuning [60].

There are several existing works on automated parameter tuning (also calledau-

tomated algorithm configurationor automated parameter optimization) which can be

classified into two parts:one-size-fits-alland instance-specific. On one hand, one-

size-fits-all approaches focus on finding the best parameterconfiguration for the entire

set (or distribution) of problem instances [17, 60, 71, 7, 3,58]. These approaches use

average quality or other statistical measures to determinethe best parameter configu-

ration. One common shortcoming of these approaches is that the single configuration

produced may not be effective for large and diverse instances [3].

On the other hand, instance-specific approaches attempt to select the best parame-

ter configuration for given instances [90, 56, 57, 64] using problem-specific features.

Unfortunately, finding features itself is often tedious anddomain-specific, requiring

re-examination of features for each new problem. As an example, Instance-Specific

Algorithm Configuration (ISAC) [64], an instance-specific algorithm configuration

for finding instance-specific parameter configuration for arbitrary algorithms, uses

2

����������� � 	�
�������������� � �������������� �
���������
Parameter Search Space Reduction

Local-search-based Algorithms Population-based Algorithms

One-Size-Fits-All Configuration**

Instance-Specific Tuning

����������

* = Have not been implemented in AutoParTune
** = Using Existing One-Size-Fits-All Approaches

Sequence

Graph

Figure 1.1: Summary of PhD Contributions

problem-specific features to identify characteristics of the problem instances. In [64],

ISAC uses 24 features for Set Covering Problem [79] and 15 features for Satisfiability

Problem [115].

To date, no single approach is generic enough to provide instance-specific param-

eter configurations. A one-size-fits-all approach is generic and may be applied to

tune various applications in various COPs, but only provides a single best parameter

configuration. On the other hand, an instance-specific approach tends to use problem-

specific features that make the approach less general.

1.2 Summary of Contribution

In this thesis, we proposeCluPaTra and CluPaTra-II which are problem-

independent automated parameter tuning frameworks, based on clustering of in-

stances using a new set of generic features extracted from the algorithm’s search tra-

jectory. The search Trajectory is defined as the path that a local search algorithm

follows as it searches from an initial solution to its neighbour from one iteration to

the next. We also implement a web-based workbench to enhancethe usability of auto-

mated configurators. We demonstrate extensions of our approach on population-based

algorithms. Thus, our major contributions, as illustratedin Fig. 1.1, are summarized

as follows:

3

• CluPaTra: Instance-specific Automated Parameter Tuning via Trajectory

Clustering

We propose ageneric instance specific automated parameter tuning frame-

work by adopting a cluster-based approach for local-search-based algorithms.

We also introduce the notion of an instance search trajectory as the problem-

independent feature and represent it as a directed sequence. We apply a simple

yet effective technique of sequence alignment to calculatea similarity score be-

tween a pair of instances based on its problem-independent feature.

• CluPaTra-II: Pattern Mining Approaches for Instance-specific Automated

Parameter Tuning

To boostCluPaTra’s computational performance and improve the cluster qual-

ity and the quality of solutions, we introduce another technique for clustering

instances. We model the features extraction in generic instance-specific parame-

ter tuning as a frequent pattern mining problem and design two new algorithms:

SufTra for search trajectory sequence andFloTra for search trajectory graph.

• AutoParTune: Web-based Automated Parameter Tuning Workbench

To provide better decision support for tuning, we design a web-based work-

bench that integratesCluPaTra andCluPaTra-II. This workbench makes use of

the parameter-space reduction method in [45] and the global(one-size-fits-all)

parameter tuning in [60] and [19].

• Instance-specific Tuning: Extension to Genetic Algorithms

We extend our methods for single point local search to population-based algo-

rithms by introducing two new techniques:PeTra andPaRG, based on generic

features pertaining to population dynamics.

4

1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 briefly reviews the back-

ground knowledge related to automated parameter tuning problems including a formal

definition of the problem and notations used in the rest of this thesis. In this chapter,

we also review the recent trends of automated parameter tuning. Chapter 3 presents

CluPaTra: our generic framework for instance specific automated parameter tuning

that uses a simple yet effective model to calculate instancesimilarity using sequence

alignment and introduces the problem independent feature based on the algorithm’s

search trajectory. Chapter 4 discusses the enhancement ofCluPaTra by modeling

the feature extraction as a pattern mining problem and proposes two new approaches,

SufTra andFloTra. Chapter 5 then shows how our framework can be implemented

onto a web-based automated parameter tuning workbench. In chapter 6, we present

the extension of our approaches for population-based algorithms with two preliminary

ideas based on population dynamics. Finally in chapter 7, weconclude our work and

provide potential future directions.

1.4 List of Publications

The materials are presented in this thesis based on the following work conducted by

the author together with her supervisors and colleagues.

Journal.

1. Lindawati , H.C. Lau, D. Lo, Clustering of Search Trajectory and Its Applica-

tion to Parameter Tuning,Journal of the Operational Research Society(Special

issue on Systems to build Systems), 64:1742-1752, 2013.

Conference Papers.

1. (FloTra) Lindawati , F. Zhu, H.C. Lau, FloTra: Flower-shape Trajectory Mining

for Instance-specific Parameter Tuning, InProc. 10th Metaheuristics Interna-

tional Conference (MIC), Singapore, August 2013.

5

2. (SufTra) Lindawati , Z. Yuan, H.C. Lau, F. Zhu, Automated Parameter Tuning

Framework for Heterogeneous and Large Instances: Case Study in Quadratic

Assignment Problem, InProc. 7th Learning and Intelligent OptimizatioN Con-

ference (LION), Catania, Italy, January 2013.

3. (CluPaTra) Lindawati , H.C. Lau, D. Lo, Instance-based Parameter Tuning via

Search Trajectory Similarity Clustering, LNCS: InProc. 5th Learning and In-

telligent Optimization (LION), pp. 131-145, 2011.

4. A. Gunawan, H.C. Lau,Lindawati , Fine-tuning Algorithm Parameters using

the Design of Experiment Approach, LNCS: InProc. 5th Learning and Intelli-

gent Optimization (LION), pp. 278-292, 2011.

5. S. Kimbrough, A. Kuo, H. C. Lau,Lindawati , D. H. Wood, On Using Genetic

Algorithms to Support Post-Solution Deliberation in the Generalized Assign-

ment Problem. InProc. 8th Metaheuristics International Conference (MIC),

Hamburg, Germany, July 2009.

Workshop Paper.

1. Lindawati , H.C. Lau, F. Zhu, Instance-specific Parameter Tuning via

Constraint-based Clustering,ECAI Workshop on COmbining COnstraint solv-

ing with MIning and Learning (CoCoMile), 2012.

6

Chapter 2

Background

Automated parameter tuning is a rapidly evolving field that aims to overcome the lim-

itations and difficulties associated with manual parametertuning. Many approaches

have been introduced to address this problem, including meta-heuristic and machine

learning. The successful implementation of these tuning approaches for many Com-

binatorial Optimization Problems (COPs) emphasize its impact on meta-heuristic al-

gorithm performance.

In this chapter, we provide background materials used for the rest of this the-

sis and discuss related works on automated parameter tuning. We start with a brief

introduction of the Combinatorial Optimization Problem (COP) and its associated al-

gorithms. We then provide a review of meta-heuristic algorithms for COP and the

challenges in designing meta-heuristic algorithms. We continue to formally define

(instance-specific) parameter tuning problems and introduce its notations. We discuss

existing approaches for automated parameter tuning and finally provide a summary of

the chapter.

2.1 Combinatorial Optimization Problem

Many problems, both theoretical (classic) and practical (real-life), focus on finding

the”best” solution [89]. These problems can be categorized into two types: problems

whose solutions are encoded with continuous variables, andproblems whose solutions

7

are encoded with discrete variables. While both categoriesprovide interesting mate-

rials for research, our research is oriented solely on the latter. Such problems are also

called Combinatorial Optimization Problems (COPs). In theCOPs, we are looking

for an optimal solution from a finite solution set which is typically an integer number,

a subset, a permutation or a graph structure. As in [20], COP is formally defined as

follows:

Definition 1 (Combinatorial Optimization Problem [COP]) Given a set of vari-

ablesX = {x1, ..., xn}, a variable domainD for each variablex in X, constraints

among variables, anobjective functionf to be minimized (or maximized) where

f : D1 × ... × Dn → R, a set of all possible feasible assignmentsS={s =

{(x1, v1), ..., (xn, vn)}|vi ∈ Di, s satisfies all the constraints}, the COP (S, f) is to

find a solutions∗ ∈ S wheref(s∗) ≤ f(s)∀S ∈ S.

S is also called a search (or solution) space or fitness landscape where each ele-

ment inS can be seen as a candidate solution.s∗ is called a globally optimal solution

of (S, f) and the set ofS∗ ⊆ S is called the set of globally optimal solutions. Find-

ing a globally optimal solution to some problems may be challenging, but it is often

possible to find a solution̂s which is relatively best in itsneighborhood[89]. The

neighborhood of solutions is a set of solutions that are ”close” in some sense to so-

lution s. The closeness is defined using a neighborhood structure such as2 − change

neighborhood structure whereN2(s) = {g : g ∈ S andg can be obtained froms

by swapping two variables inX from s}.The best solution̂s is called locally optimal

which is defined as follows:

Definition 2 (Locally Optimal [LO]) Given a COP(S, f) and neighborhoodN , a

feasible solution̂s ∈ S is called locally optimalwith respect toN if f(ŝ) ≤ f(g) for

all g ∈ N(ŝ).

COPs have many application in real-life, e.g. the TravelingSalesman Problem

(TSP) in VLSI chip fabrication and X-ray crystallography [62], the Quadratic Assign-

ment Problem (QAP) in backboard wiring and campus planning [21], the Set Cover-

8

Table 2.1: Performance Comparison of Exact and Non-exact Algorithms
Algorithm Best Found Objective Value Time (sec)
Exact Algorithm (Branch and Bound) 1,150 2,947.32
Non-Exact Algorithm (Meta-heuristic) 1,252 1.90

ing Problem (SCP) in crew scheduling and railway application [25] and the General-

ized Assignment Problem (GAP) in fixed-charge plant location models and resource

scheduling [28]. With its many practical uses, it is important to have good solvers for

COPs. Unfortunately, finding a good solver for several COPs is a real challenge due to

the hardness of these COPs. Many important COPs are NP (Nondeterministic Poly-

nomial time) complete [40] where a complete exhaustive enumeration solver might

need exponential computation time in the worst-case [20], and this is the motivation

for research in optimization algorithms.

2.2 Algorithms for Solving COPs

In general, algorithms for solving COPs are classified into two types: exact or non-

exact algorithms [20]. Exact algorithms are guaranteed to find an optimal solution in

bounded time, whereas non-exact algorithms sacrifice the guarantee of finding opti-

mal solution and settle for obtaining good quality solutions in a significantly reduced

amount of computational time. For many large instances of NP-complete problems,

such as TSP where the largest instance solved is of size 85,900 [1] and QAP where

the largest instance solved is of size 40 [22], exact algorithms require a lot of time to

generate the optimal solution due to their very high computational time. Therefore,

we turn to non-exact algorithms for a good enough solution within a reasonable com-

putational time. An example of exact and non-exact algorithm performance for a QAP

instance with the size of 15 are shown in Table 2.1.

2.2.1 Exact Algorithms

For some COPs, it is possible to design algorithms that are significantly faster than

a traditional exhaustive search, although still not in polynomial time. This class of

9

algorithms are called exact (or complete) algorithms. Theyare complete in a sense that

the existence of feasible and then optimal solution(s) can be determined with certainty

once the algorithm has successfully terminated. Examples of exact algorithms are

Branch and Bound (B&B) [110] and Constraint Programming (CP) [94].

The B&B algorithm searches the complete space of solutions for a given problem

to find the best solution. However, explicit enumeration is normally impossible due to

the exponentially increasing number of potential solutions. The use of bounds for the

function to be optimized combined with the value of the current best solution enables

the B&B algorithm to search parts of the solution space only implicitly.

CP works basically by stating the variables in the form of constraints. The con-

straints used in CP are of various kinds: those used in constraint satisfaction problems

(e.g. ”A or B is true”), those solved by the simplex algorithm(e.g. ”x = 6”), and oth-

ers. Constraints are usually embedded within a programminglanguage or provided

via separate software libraries.

Although exact algorithms are able to find optimal solutions, they are faced with

computational bottlenecks especially for large instancesof NP-complete problems.

This often leads to computational times that are too high forpractical purposes. If

optimal solutions cannot be achieved, the other possibility is to trade optimality for

efficiency. In other words, the guarantee of finding optimal solutions can be sacri-

ficed for the sake of getting good solutions in polynomial time. A class of non-exact

algorithms seeks to obtain this goal.

2.2.2 Non-Exact Algorithms

In non-exact algorithms, optimality is not guaranteed but good quality solutions can

be found in polynomial time (either in the worst case or on average) [32]. In practical

applications, we are often faced with extremely large instances with very limited time,

for that near-optimal solutions are often good enough. Unlike exact algorithms, non-

exact algorithms are unable to confirm the existence of an optimal solution once they

have successfully terminated. We also cannot measure the absolute quality of the

10

found solutions with respect to the optimality. In the non existence of optimality, the

goodness of found solutions are measured subjectively by the algorithm developers or

users.

Non-exact algorithms can be divided in two: approximation and (meta-)heuristics

algorithms. Approximation algorithms have a proven performance where the solu-

tion is within an approximation ratio ofε from an optimal solution. Examples of ap-

proximation algorithms are MST-Prim algorithm for 2-approximation TSP and greedy

approximation algorithm for SCP [32].

Heuristic algorithms are defined as simple techniques whichfind good solutions at

a reasonable computational cost (low-order polynomial time) [47]. They are usually

based on the characteristics of the good solutions. The major limitation of heuristic

algorithms is that they have the tendency to explore only a small search space and are

easily trapped in a local optimal space. To solve these limitations, a more effective

method can be implemented to guide the heuristic algorithm,in what are known as

meta-heuristic algorithms.

Meta-heuristic algorithms are iterative generation processes which guide a basic

heuristic methods by intelligently combining different concepts for exploring and ex-

ploiting the search space [20]. Most meta-heuristic algorithms have learning strategies

that are used to structure information in order to find efficiently near-optimal solutions.

Although meta-heuristic algorithms do not guarantee optimality, they provide good

enough solutions in relatively short computational time. Examples of meta-heuristic

algorithms are Tabu Search (TS) [42] and Genetic Algorithm (GA) [82].

2.3 Meta-heuristic for Solving COPs

Meta-heuristic algorithms have been introduced to solve many COPs such as Lin-

Kernighan algorithm for TSP [52] and Robust Tabu Search algorithm for QAP in

instances with essentially no strong structure [104] and Iterated Local Search for QAP

in more structured instances [101]. Generally, meta-heuristic algorithms are classified

11

into two types: local-search-based and population-based.This classification is based

on the number of solutions used and explored at the same time.

2.3.1 Local-search-based Algorithms

Local-search-based algorithms (or trajectory algorithmsin [20]) are a class of algo-

rithms that work on a single solution for each iteration. Local-search based algorithms

start from an initial solution and move to a better solution in the search space by ap-

plying local changes, until a solution deemed optimal is found or a maximum time

allowed is exceeded. These solutions’ movements form a trajectory in the search

space. Characteristics of the trajectory provide information about the behavior of

the algorithm and its effectiveness with respect to the instance that is tackled [20].

The local-search-based algorithms used in this thesis are Simulated Annealing (SA)

[68, 29], Tabu Search (ST) [42], and Iterated Local Search (ILS) [77].

Simulated Annealing (SA) is a probabilistic method proposed in [68, 29] which

is known to be the oldest meta-heuristic algorithm and the first that has an explicit

strategy to escape from local minima [20]. It is modeled after the physical process

of annealing metals (cooling molten metal to solid minimal-energy state). SA allows

worse moves (uphill moves) in order to escape from a local optimal using a certain

probability. In the beginning of the search, the probability for uphill moves is high to

allow search space exploration. The probability is slowly decreased to lead the search

to a convergence (local optimal). SA works by first generating an initial solution

and initializing a temperature parameterT . For each iteration, it randomly samples a

solutions′ based on the neighborhood structure of the current solutions and accept

the new solution based on the objective function ofs′, s and a probability which is a

function ofT . The temperatureT is decreased based on a cooling schedule. A slow

cooling schedule guarantees the convergence to a global optimal. But for some of the

COPs the cooling schedule is too slow [20].

Tabu Search (TS) is the most cited and used meta-heuristic algorithm for COPs

[20]. TS works by maintaining a history list of forbidden moves (called tabu list)

12

[42]. Tabu list keeps the most recently visited solutions and forbids moves towards

them to prevent endless cycling and forces the search to explore the search space by

accepting even uphill moves. A set of aspiration criteria isdefined to overwrite the

tabu conditions where the selected solutions are better than the current best one. TS

starts by generating an initial solution. At each iterationthe best solution from the

neighborhood, which is not in tabu list, is chosen as the new current solution. This

solution is then added to the tabu list and one solution in thetabu list is removed in

FIFO order. A tabu move is allowed if the aspiration criteriaare met. The length of

tabu list is controlled using the tabu list parameter.

Iterated Local Search (ILS) is a simple but powerful meta-heuristic algorithm [77].

It starts from an initial solution and applies a local searchuntil it finds a local optimal.

ILS then perturbs the solution and restarts the local search. There are four important

components of ILS: initial solution generation, local search, perturbation and accep-

tance criteria. A good initial solution is very important soas to arrive at high-quality

solutions as soon as possible. The standard way to generate the initial solution is ei-

ther randomly or by greedy construction. The local search algorithm can be treated as

a black box but ILS performance is quite sensitive to the choice of this local search.

In practice, there are many different local-search-based algorithms that can be used as

the local search component. The perturbation is very important to guide the search in

ILS. Too small perturbations might not enable ILS to escape from the basins of attrac-

tion while too strong perturbations would make ILS similar to a random restart local

search. The last component, acceptance criteria, is used tocontrol the search balance

between intensification and diversification. Intensification refers to the exploration of

the accumulated search experience so far while diversification refers to the exploration

of the search space [20].

2.3.2 Population-based Algorithms

In population-based algorithms, each iteration involves aset (i.e. a population) of

solutions. Population-based algorithms provide a natural, intrinsic way to explore

13

the search space [20]. The most studied population-based algorithms for COPs are

Evolutionary Computation (EC) [8].

Evolutionary Computation (EC) is inspired by nature’s capability to evolve living

beings well adapted to their environment. An EC uses operators called recombination

or crossover to recombine two or more individuals to producenew individuals. Other

operators in EC are mutation, inversion, and selection. Example of EV is Genetic

Algorithm (GA) [82].

Genetic Algorithm is a meta-heuristic algorithm that movesfrom one population

of chromosomes (e.g., strings of ones and zeros, or bits) to anew population by using

”natural selection” together with the genetics-inspired operators of crossover, muta-

tion, and inversion [82]. Each solution is represented by a chromosome that consists

genes (e.g., bits) as an instance of a particular allele (e.g., 0 or 1). Chromosome is

an abstract representation of the possible solution. Each chromosome has a value cor-

responding to its fitness function, which evaluates how goodthe candidate solution

is in terms of its objective value. The optimal solution is the one which maximizes

(or minimizes) the fitness function. A set of reproduction operators is then applied

directly on the chromosomes to perform mutations and recombinations.

As described in [98], the GA works as follows. It starts by generating an initial

population of chromosomes. This first population must offera wide diversity of ge-

netic materials which is generally generated randomly. Then, the GA loops over an

iteration process to make the population evolve as illustrated in Fig. 2.1. Each iteration

in GA consists of the following:

1. Selection;where chromosomes in a population are selected as parents for re-

production process. The selection process is done randomlyusing a probability

function depending on its relative fitness function. The good chromosomes are

more often being selected than poor ones.

2. Reproduction; in which new offsprings are created by selected parent chro-

mosomes using crossover mechanism. Crossover exchanges subparts (bits) of

two selected chromosomes, mimicking biological recombination between two

14

������������� �!�"�!#"$ %&���������'���#"" '��(����$
)#�#(����*#�#��(+�# �����"

,#(�-#-)� ��.,#(�-#-)� ��. /�� ��!#��/�� ��!#���� #��"�� #��"
0��#0��#

+11"� ��.2#3 *#�# �����+11"� ��.2#3 *#�# �����
Figure 2.1: Genetic Algorithm Cycles.

single-chromosome organisms. To diversify the offsprings, mutation and inver-

sion mechanisms may be applied after crossover. Mutation randomly changes

the allele values of some locations in the chromosome while inversion reverses

the order of a contiguous section of the chromosome, thus rearranging the order

in which genes are constructed.

3. Evaluation; at this stage, the fitness function of the new offsprings is being

evaluated.

4. Replacement;which is the last step where chromosomes from the old popu-

lation is replaced by new offsprings according to the ”survival of the fittest”

procedure.

2.3.3 Challenge in Designing Meta-heuristic Algorithms for COPs

Most often, even a quick-and-dirty implementation of a meta-heuristic is able to obtain

fairly good results for solving COPs [16]. All one needs to dois to instantiate certain

meta-heuristic components, set some parameters with (usually) default values, and run

the algorithm on a set of COP instances [47]. But if state-of-the-art results are needed,

some extra efforts are often necessary to optimize the meta-heuristic algorithm.

One factor that the meta-heuristic algorithm effectiveness hinges upon is its pa-

rameter configuration. Different COP’s problems require different configurations so

that meta-heuristic algorithms perform well. It also has been observed that different

instances from certain COPs require different parameter configurations in order for

15

Table 2.2: The Effect of Three Different Parameter Configurations on 4 QAP in-
stances.

Instances Config. I Config. II Config. III

tai40a 1.4 1.0 2.0
tai60a 1.7 1.6 2.2
tai40b 9.0 9.0 0.0
tai60b 2.1 2.9 0.3

the algorithm to find good solutions (e.g. [39, 90, 115]). Table 2.2 provides an exam-

ple of the performance from three different parameter configurations for 4 Quadratic

Assignment Problem (QAP) instances as presented in [49]. Table 2.2 shows that the

first 2 instances perform better in Configuration II while therest perform better in

Configuration III. The differences between the performances are significant.

Despite its importance, finding the optimal parameter configuration is often a

difficult, tedious and unsatisfying challenge. Previous studies revealed that finding

performance-optimizing parameter configuration of meta-heuristic algorithms often

requires considerable efforts [17, 3, 7, 60]. In [3], it is also stated that only 10% of

the time is spent on algorithm designing and testing; while the rest of the development

time is spent on fine-tuning the parameter configurations. Inmany cases, this process

is performed manually by the algorithm designer.

With the large parameter configuration space and the large number of instances,

finding a configuration, especially instance-specific configuration, manually takes a lot

of time and effort due to the enormous possible number of parameter configurations-

instances matching. As an example, for a target algorithm with 4 parameters, where

each parameter has 20 possible values, 100 instances, and assuming the time needed

to run the target algorithm for each instances is 1 second, tomanually try all parameter

configuration will need approximately 185.2 days. Thus, a smart automated parame-

ter tuningmethod is needed.

16

456789:;<=5;456789:;<=5; >:6869 ?@A6<;85>:6869 ?@A6<;85><;9A=BC95;8=DE><;9A=BC95;8=DE
F<;<EA=A; ?A<;@D?G<@AF<;<EA=A; ?A<;@D?G<@A >;<86869 H6I=<6@AI>;<86869 H6I=<6@AI?5CJAI?5CJAI4<CCI K8=D <IGA@878@G<;<EA=A;@56789:;<=8564<CCI K8=D <IGA@878@G<;<EA=A;@56789:;<=856

Figure 2.2: Tuning Scenario

2.4 Automated Parameter Tuning Problem

The automated parameter tuning problem is informally defined as: given a paramet-

ric algorithm with a set of parameter configurations and a setof training and testing

instances, find a parameter configuration under which the algorithm achieves the best

possible performance. As shown in [60], the tuning scenariois illustrated in Fig. 2.2.

Automated parameter tuning is useful in a variety of contexts, such as improving meta

heuristic performance and trades human time for machine time [58]. Furthermore, it

has been shown that automated parameter tuning often leads to highly better perfor-

mance compared to manual parameter tuning [60]. To avoid confusion between an

algorithm whose performance is being optimized and an algorithm used to tune it, we

refer to the former as thetarget algorithmand the latter as theconfigurator. Before we

define the problem in greater detail, we introduce some notations and the performance

metric.

Let:

• A: be the target algorithm withn number of parameters to be tuned

• I : be the given set of (training and testing) problem instances

• xi: be the parameter that can assume a value taken from a (real orinteger value)

interval[ai, bi]

• x: be the parameter configuration (i.e. a point in the parameter space)

• Θ: be the feasible region of all parameter configurations (parameter space)

17

• Best: be the best known value for each instancei in I . For benchmark instances

with a known global optimal or best known value, we use it asOPT , while for

new instances, we use the target algorithm’s best found solution.

We measure the target algorithm performance based on the quality of the solutions.

The performance metric is defined as follows:

Definition 3 (Performance Metric [H]) Let i be a problem instance, andAx(i) be

the objective value of the corresponding solution for instancei obtained by a target

algorithmA when executed under configurationx. LetBest(i) denote the best known

value for instancei. Hx(i) is formulated as:

Hx(i) =
(|Best(i)−Ax(i)|)

Best(i)
(2.1)

Unlike standard optimization problems, functionH is a meta-function onx and it

is highly non-linear and very costly. Using the performancemetricH, we formally de-

fine the parameter tuning problem for the target algorithm that minimizes its objective

value as follows.

Definition 4 (Parameter Tuning [PT]) Given a set of instancesI , a parameter con-

figuration spaceΘ for a target algorithmA and a performance metricH, the PT

problem can be formulated as an optimization problem as follows:

x∗ = argmin Hx∗(i) (2.2)

subject to x∗ ∈ Θ (2.3)

The central topic of this thesis revolves around the instance-specific parameter

tuning problem. The purpose of tuning is not to find best configuration with good

performance for all the problem instances, but to find the configuration that fits best

18

for each instance. Using the same notation as for the parameter tuning problem, we

define the instance-specific parameter tuning problem as follows:

Definition 5 (Instance-Specific Parameter Tuning [ISPT]) Given a set of instances

I , a parameter configuration spaceΘ for a target algorithmA and a performance

metricH, the ISPT problem is to find a parameter configurationx∗ ∈ Θ for each

i ∈ I such thatHx∗(i) is minimized overΘ.

Instead of finding a parameter configuration for each instance, the ISPT prob-

lem can be approximated in a cluster-based manner in which problem instances are

grouped into clusters and the parameter configuration is computed for each cluster

[64]. We adopt this approach and focus on finding the best cluster and parameter con-

figuration for each instance. We define the problem of cluster-based instance-specific

parameter tuning as follows.

Definition 6 (Cluster-based Instance-Specific Parameter Tuning [C-ISPT]) Given

a set of instancesI , a parameter configuration spaceΘ for a target algorithmA, a

performance metricH, theC-ISPTproblem is to find a clusteringπ of all instances

of I and a parameter configurationx ∈ Θ for each cluster ofπ such that (I) cluster

quality ofπ is maximized; and (II) the averageHx∗(i) for each cluster is minimized

overΘ.

We measured the cluster quality usingextrinsic method [51] for instances that

has ground-truth clusters.Extrinsicmethods compare the clusters against the known

class labels orground-truthclusters (i.e. the set of clusters which represents the

ideal/optimal clustering). We define the cluster quality asfollows:

Let this score be denoted asQc, which is the average value of thetraining clusters

quality scoreQtrain andtesting instances mapping scoreQtest, defined as follows:

Let I (resp.It) be a set of training (resp. testing) instances,C be the set of clusters

generated from the training phase andCg be theground-truthclusters. Each cluster in

c ∈ C has an associatedhomeclustercg ∈ Cg which contains the largest number of

instances contained inc (ties broken arbitrarily).

19

Definition 7 (Training Clusters Quality Score Qtrain) For each clusterc ∈ C, let

max(c) count the number of instances in the cluster which also belong together in

the associated home cluster.Qtrain is defined as the sum ofmax(c) over all c ∈ C

divided by the number of instances inI .

Definition 8 (Testing Instance Mapping ScoreQtest) For each instancei ∈ It, we

say thati is ”matched” if it is mapped to a clusterc ∈ C whose home clustercg ∈ Cg

also containsi. Qtest is defined as total number of such matches divided by the number

of instances inIt.

2.5 Literature Review on Automated Tuning

The quest for finding a technique for smart automated parameter tuning started since

the early 1990s. Some approaches are designed for a specific target algorithm on a

specific problem such as the fine-tune technique for the corridor method on block relo-

cation problem [26] and Tabu Search (TS) on the telecommunications network design

problem [113]. In the corridor method on the block relocation problem, [26] tunes the

parameters using Response Surface Methodology (RSM), a well-known technique in

Design of Experimental (DoE) methodology. RSM represents the parameters as a pla-

nar model and uses the steepest ascent method to change the parameters to a promising

range until it finds a local minimum. While in [113], they employ two standard sta-

tistical tests (Friedman’s test and Wilcoxon’s test for paired observations) to improve

a specific TS algorithm in [112] for telecommunications network design. Although

these two techniques are general and can conceptually be adapted on different target

algorithms, applying it to target algorithms is not as simple.

Rather than focusing on a specific target algorithm, some approaches attempt to

find the best configuration for generic target algorithms (such as [33, 17, 3, 58, 90,

64]). They can be used to fine tune target algorithms with categorical or numerical

parameters. In this subsection, we discuss the current trends for these approaches.

20

2.5.1 Classification of Current Approaches

There exist different ways to classify and describe the current approaches in automated

parameter tuning. Depending on the aspects in which they canbe differentiated, sev-

eral classifications are possible, each of them being the result of specific viewpoints.

We briefly review two aspects to classify the current approaches.

One-Size-Fits-All vs. Instance-Specific

The most obvious way to categorize the current approaches isbased on the strat-

egy to handle diverse instances. There are one-size-fits-all approaches (or instance-

oblivious in [64] or global tuner in [71]), like F-Race [17, 18] and ParamILS [61, 60],

vs instance-specific approaches such as auto-WalkSAT [90] and ISAC [64].

One-size-fits-all approaches attempt to find the parametersresulting in the best

average performance of a target algorithm on all training instances. They ignore the

instance diversity and use a specific statistic measurement(such as mean or standard

deviation) measured over the entire set of problem instances. This is the main draw-

back of one-size-fits-all approaches because not all instances yield to the same param-

eter configuration [107, 84]. This observation supports theNo Free Lunch theorem

[111] that states that no single algorithm can be expected toperform optimally over

all instances.

With this observation, instance-specific tuning approaches attempt to generate pa-

rameter configuration for each instance by computing a set offeatures from the train-

ing instance set. The instance-specific tuning approaches usually assume the existence

of a set of instance-specific features for different COPs, such as [64] uses 24 specific

features from [79] for the Set Covering Problem.

Model-based vs Model-free

Another aspect that can be used for classifying current approaches is the existence of

a statistical model. Approaches that use statistical models to guide the tuning pro-

cess are called model-based approaches such as CALIBRA [3] and SMAC [58], while

21

Table 2.3: Classification of Current Approaches in Automated Parameter Tuning
Category Common Technique Example

One-size-fits-all
Model-Free Machine Learning or Meta-

Heuristic technique
F-Race [17, 18] and
ParamILS [61, 60]

Model-Based Design of Experiment or
statistic function

CALIBRA [3] and
SMAC [58]

Instance-Specific
Model-Free Clustering ISAC [64]
Model-Based Regression and interpolation Auto-WalkSAT [90]

and HyDra [114]

other approaches that do not have a specific model for their tuning process are called

model-free like ParamILS [61, 60] and GGA [7]. Some model-free approaches can

handle a large number of numerical and even categorical parameters. Model-based ap-

proaches, on the other hand, offer statistical insights into the correlation of parameters

with regard to algorithm performance.

Using the following two aspects: (1) the strategy to handle diverse instances and (2)

the use of statistical models to explain the tuning process,we divide the current ap-

proaches into four groups as summarized in Table. 2.3.

2.5.2 Analyzing Different Approaches

In this subsection, we discuss recent and notable differentapproaches for each cate-

gory. We start by introducing one-size-fits-all approacheswith and without statistical

models. We continue with the instance-specific approaches.We then give remarks for

instance-specific approaches.

One-Size-Fits-All Model-Free

An early approach in this category isF-Race, proposed by [17]. F-Race is inspired by

the AI machine learning literature for ”model selection through cross-validation”. F-

Race works by empirically evaluating a set of candidate configurations and discarding

bad configurations as soon as statistically sufficient evidence is gathered against them.

When F-Race was first introduced in [17], candidate configurations were obtained by

a full factorial design on parameter space which contains all combinations of values

22

for a set of discrete (or discretised) parameters. This severely limits the size of the

configuration space such that F-Race can only be used to tune target algorithms with

a small number of possible parameter configurations.

Two more recent variants of F-Race, Sampling F-Race and Iterative F-Race, have

been introduced to address this limitation [10, 18]. Sampling F-Race randomly selects

r number of samples and uses it as an initial set of configurations in a standard F-Race,

while iterative F-Race uses an iteration procedure to refineits probabilistic model to a

sample set of configurations. All three versions of F-Race assume that all parameters

are numeric. Hence, F-Race can only be used to tune numericalparameters. The latest

version of F-Race [19] overcomes this limitation by sampling categorical parameter

values from discrete probability distributions. But the performance of F-Race is really

dependent on the probability distributions used.

Other model-free approaches are ParamILS [61, 60] and GGA [7]. Both ap-

proaches apply meta-heuristic algorithms for tuning the parameters: ParamILS uses

Iterated Local Search (ILS) while GGA uses Genetic Algorithm (GA). They also claim

that they can be used to configure a very large number of parameters.

ParamILS utilizes ILS to explore the parameter configuration space in order to find

a good parameter configuration for the given training instances. ParamILS has two dif-

ferent variants: BasicILS and FocusILS where the main difference is in the technique

used to assess the performance of a configuration. BasicILS performs a fixed number

of runs based on user defined values of the target algorithm using the same instances

and pseudo random number seeds, while FocusILS evaluates configurations using few

target algorithm runs and subsequently performs additional runs to obtain precise per-

formance estimates for promising configurations. Using this technique, FocusILS is

able to quickly focus on promising configurations rather than being trapped in evalu-

ating poor configurations. To expedite its overall search process, ParamILS applies an

adaptive capping technique to limit the time spent in evaluating poor configurations

measured by the performance observed for the current incumbent.

ParamILS has been successfully applied to tune a broad rangeof high-performance

23

algorithms with a large number of parameters. Examples of the problems are the

Satisfiability (SAT) Problem [61, 60], Mixed Integer Programming (MIP) Problem

[60], Post Enrollment Course Timetabling problem for Track2 of the International

Timetabling Competition (ITC2007) [30], Planning System [37], Answer Set Pro-

gramming (ASP) for homogeneous instances [41], etc. To date, ParamILS is the most

powerful tuning algorithm and the only tuning algorithm that has been implemented

for tuning a very large number of parameters such as CPLEX with 80 parameters [60].

However, we notice that ParamILS has two main limitations asfollows. First, it

can only be used to tune discrete parameters. For continuousparameters, a discretiza-

tion mechanism should be performed beforehand. Second, ParamILS is dependent

on the default (or initial) parameter configuration given bythe user or from random

initialization. ParamILS moves from the initial parameterby changing one parameter

value at a time. If ParamILS is provided with a good default parameter, it gives a

better performance.

GGA (or gender-based genetic algorithm) is a robust, parallel Genetic Algorithm

to configure algorithms automatically. It uses the notion ofgender separation (com-

petitive and non-competitive population) to balance exploitation and exploration, and

applies different selection pressure for these two populations. For competitive popu-

lation, candidate configurations have to compete on a collection of training instances.

The parameter configuration that yields best overall performance are then mated with

candidates from the non-competitive population. The configuration with the poor-

est performance is removed. GGA also exploits the dependencies of parameters by

applying a ”variable tree” structure which indirectly defines the cross-over operator.

GGA is claimed to be remarkably successful in tuning existing solvers, often out-

performing ParamILS on some COPs [7], but GGA has only been implemented in a

limited number of problems. One limitation of GGA is that it needs a very large tun-

ing budget to avoid over-tuning where the configuration works on training instances

but gives a bad result on testing instances [120].

Lau et. al. [71] proposed a Randomized Convex Search (RCS) which uses a

24

randomized scatter search technique. The underlying assumption of RCS is that the

points lie inside the convex hull of a certain number of the best points (parameter

configurations). RCS can be used to tune both discrete and continuous parameter

values.

One-Size-Fits-All Model-Based

For model-based approaches, one idea is proposed by Coy et al. [33] using a proce-

dure based on experimental design and gradient descent. They suggest that computing

a good parameter set for few of instances and averaging all parameters results in pa-

rameters that would work well for the general case. It is usedto tune two local search

algorithms, for solving Vehicle Routing Problems, based ona variant of Lagrangian

relaxation and an edge exchange procedure. The approach is reasonably effective in

terms of solution quality. They also highlight that the response surface and average

setting might not be appropriate if the class of problems is too broad. The approach,

however, suffers once more parameters need to be set or if these parameters are not

continuous.

Another model-based approach which was introduced is CALIBRA, proposed in

[3], which combines statistical experimental design (design of experiment) and local

search procedure. CALIBRA automatically calibrates parameter values from a given

pre-defined range for each parameter. CALIBRA employs a fullfactorial2k design

and a Taguchi fractional factorial design followed by a local search procedure to it-

eratively narrow down the range of parameter values until itconverges to a ”local

minimum”. Some notable limitations of CALIBRA are: (1) it only tunes up to 5 pa-

rameters; (2) if the given parameter value ranges are too small, CALIBRA is quickly

trapped in a ”local minimum” of the configuration space and (3) it focuses on the main

effects of parameters without exploiting the interaction effects between the parame-

ters.

The most current model-based approach is SMAC, proposed in [58]. SMAC is

an improved model-based technique which can tune multiple problem instances at a

25

time, which is an extension of their earlier work SPO+ [59] that can only deal with a

single problem instance at a time. This line of work is based on the Sequential Param-

eter Optimization framework [12, 13]. It constructs predictive performance models

to focus attention on promising regions of a design space. SMAC aims at tuning

target algorithms with continuous and categorical parameters for sets of problem in-

stances. The authors claims that SMAC can be used to configurea very large number

of parameters. The performance of SMAC is highly depended onthe accuracy of the

performance model used to capture the interrelations of theparameters.

Instance-Specific Model-Free

There are not many approaches for instance specific approaches with model-free man-

ner. One (and perhaps the only one) instance-specific with model-free manner is ISAC

(Instance-specific algorithm configuration) proposed by [64]. ISAC is the first method

that uses clustering to approximate instance-specific configurations. It extends the

stochastic offline programming framework [79]. ISAC works by first running a clus-

tering method,g − means, to cluster instances using problem specific features and

then find a good parameter configuration for each cluster using a one-size-fits-all con-

figurator.

It is interesting to note that ISAC does not make use of an explicit formulation

(such as linear or Gaussian regression) that maps instancesto clusters, which may

be very hard if not impossible to derive. Instead, ISAC exploits the instance-features

relationship that correlates with algorithm performance.Instances are clustered based

on these features using predictive modeling. This form of clustering preserves rich

features that represent the individual instances within it.

ISAC has been implemented in various problems problem such as Set Covering

Problem (SCP) [64], Mixed Integer Programming (MIP) [64], Satisfiability (SAT)

Problem [64, 70], Constraint Programming (CP) [70] and Black Box Optimization

(BBO) problem [2]. In these problems, ISAC shows promising results which prove

the effectiveness of clustering-treatment in solving parameter tuning problems [71, 79,

26

64].

One weakness of ISAC is that it uses problem-specific features and assumes that

there exist a collection of problem-specific features for each instance that can be used

to correctly identify its structure, and thus use to identify the sub-types of the prob-

lems. Hence, for new COPs or industrial cases without a knownset of features, ISAC

cannot be implemented.

Instance-Specific Model-Based

As in ISAC, the approaches in this category rely on instance-specific features. These

approaches use regression or interpolation to fit a model that will determine the

solver’s strategy. Several approaches have been proposed using these techniques such

as: auto-WalkSAT [90], empirical hardness model [56, 57], and Hydra [114].

Auto-WalkSAT calculates an estimation of the invariant ratio of a provided SAT

instance and uses this value to set the noise value, or how frequently a random deci-

sion is made. It uses recursive bracketed search (golden section search) and parabolic

interpolation to adaptively search the invariant ratio of the solution from the global

minimum without exactly solving the satisfiability formula. These values can be used

to guide a search for the minimum ratio which in turn leads to an estimated optimal

noise level. It then return this estimated optimal noise level to the provided stochastic

algorithm (target algorithm). Auto-WalkSAT is shown to be effective on four DI-

MACS benchmarks, but fails for those problems where there isno relationship be-

tween invariant ratio and optimal noise parameter.

Hutter et. al [56, 57] proposed anempirical hardness modelto predict the runtime

of search algorithms for hard combinatorial problems. Thisapproach can handle both

continuous and ordinal (but not categorical) parameters. The model predicts algorithm

runtime for the problem instances at hand and then simply selects the configuration

that minimizes the prediction by using the linear regression method, Bayesian linear

regression. This Bayesian linear regression is used to learn mapping from features

into a prediction of runtime. Based on this mapping for giveninstance features, a

27

parameter set that minimizes predicted runtime is searchedfor.

A recent approach in this category is Hydra. It works by combining automated al-

gorithm configuration and portfolio-based algorithm selection. It automatically builds

a set of solvers with complementary strengths by iteratively configuring new algo-

rithms using regression to be used in its portfolio. To date,Hydra has only been

applied to optimize the target algorithms runtime performance and not the quality of

their solutions.

All the above approaches in instance-specific tuning using amodel-based manner

depend on accurately fitting a model from the features to a parameter. It is intractable

and requires a lot of training data when the features and parameters have non-linear

interactions. These approaches may need more tuning budgetcompared to ISAC.

Remarks on Instance-specific Approaches

While providing a significant quality improvement comparedwith one-size-fits-all

approaches, these instance-specific approaches can only beused for problems that

have a set of instance features. Unfortunately, finding instance-specific characteris-

tics/features is nothing easy, which requires profound knowledge of the algorithm as

well as the problem itself. Consequently, an interesting research problem is to de-

velop a generic instance-specific automated parameter tuning scheme that is problem-

independent and yet can perform as well as those exploiting problem-specific features.

2.5.3 Further Relevant Research

As described in [47], two problems closely related to automated parameter tuning

problems are the algorithm selection problem and dynamic parameter adjustment. The

goal in the algorithm selection problem is to correctly select an algorithm that yields

the best performance for a particular instance. For example, [43] proposes to combine

several algorithms into a portfolio, and run them in parallel or interleave them on a

single processor. This approach is more robust than any of the individual solvers.

Another well-known approach is SATzilla in [115] which usesan empirical hardness

28

model to select among their candidate solvers. The empirical hardness model is a

predictor of an algorithm’s runtime on a given problem instance based on the features

of the instance and the algorithm’s past performance.

Automated parameter configuration is mainly executed offline or before the ac-

tual target algorithm run. This contrasts with and complements the volume of works

which seek to adaptively adjust the parameter configurationdynamically during search

[14, 15]. For example, [14] applied reinforcement learning(RL) to adapt the diversifi-

cation in a fast online manner to the characteristics of a task and of the local configu-

ration. In a adaptive scenario, the parameter values are modified to respond the search

algorithm’s behavior during its execution.

All of the above approaches is done automatically without human interference. In

a separate front, there are approaches which require directcollaboration with human

to guide the tuning process [48, 4]. These approaches explore the human ability to

the recognize target algorithm pattern and behavior to design a better target algorithm.

For example, [48] visualized the local search algorithm’s fitness landscape search tra-

jectory that allows algorithm designers to investigate thefitness landscape structure of

the target algorithm.

2.6 Chapter Summary

In this chapter, background materials for automated parameter tuning are discussed.

We introduce notations and formal definitions for the automated parameter tuning

problem. We categorize works related to automated parameter tuning into four groups

based on two aspects: the strategy to handle diverse instances and the existence of

statistical models to explain the tuning process, and review recent approaches in each

category.

The existing approaches have shown significant improvements in the performance

of target algorithms. Each approach also has its respectivelimitations; one-size-fits-

all approaches find only a single configuration, which may notbe effective on large

29

and diverse instances, while instance-specific approachesare less generic due to its

instance-specific features.

30

Chapter 3

Instance-Specific Automated

Parameter Tuning via Trajectory

Clustering (CluPaTra)

In the previous chapter, we have formally defined the automated parameter tuning

problem, which aims to find the parameter configuration to best optimize a target

algorithm. We use a performance metric based on the percentage deviation of quality

from the global optimum or best known solution to measure thetarget algorithm. We

also introduce some terms and notations used in this thesis.

Several existing works for automated parameter tuning havebeen introduced in

the literature. Some approaches return a ”one-size-fits-all” parameter configuration

for all instances. This is unsatisfactory because different instances may require the

target algorithm to use very different parameter configurations in order to find good

solutions. On a separate front, there have been approaches that perform instance-

based automated tuning, but they are usually problem-specific due to their reliance on

problem-specific features.

In this chapter, we proposeCluPaTra, a generic instance-specific parameter

tuning framework which automatically finds good parameter configurations by an

instances clustering approach based on a problem-independent feature, search trajec-

31

tory. Search trajectory is defined as the path that a local search algorithm follows

as it searches from an initial solution to its neighbor from one iteration to the next.

The advantage ofCluPaTra is the fact that the search trajectory is computed from a

local-search based algorithm. Hence our approach is problem-independent and may

conceptually be applied to any local search-based algorithm.

In this chapter we describeCluPaTra in greater detail. First we present the frame-

work overview, followed by its three major components: feature selection, similarity

calculation, and clustering method. We then describeCluPaTra’s four instantiations.

We show the results of our experiments on three COPs and then discuss the result. We

conclude with a chapter summary.

3.1 Framework Overview

Rather than ambitiously attempting instance-specific tuning which we believe to be a

computationally prohibitive and unachievable task in the near future because of the

large parameter configuration space and large number of instances,CluPaTra adopts

a cluster-based treatment. The result is a fine-grained tuning framework that does not

produce a one-size-fits-all parameter configuration, but instance (or rather cluster)-

based parameter configurations. Even though strictly speaking, our method is cluster-

specific rather than instance-specific, it represents a big leap from one-size-fits-all

schemes.

CluPaTra is designed as a generic (problem-independent) approach, based on

CLUstering instances with similarPAtterns according to their searchTRA jectories.

We represent a search trajectory as a directed sequence and apply a well-studied se-

quence alignment technique to cluster instances based on the similarity of their re-

spective search trajectories. We then tune each cluster to find a good parameter con-

figuration for the respective cluster.

CluPaTra is illustrated in Fig. 3.1. It is divided into two phases: training and

testing. The training phase starts with a clustering process and is followed by a tuning

32

Training
Problem
Instances

Target Algorithm

Call for each
Training Instances

Return Search
Trajectory

Call with different
Parameter Setting

Return
Solution Cost

Parameter Domains & Initial Value

Instance- based Automated Tuning Parameter

Cluster 1

Cluster 3

Cluster 2 Configuration
Process

Cluster 1

Cluster 3

Cluster 2

Conf.1

Conf.2

Conf.3

Clustering
Process

Testing
Problem
Instances

Search
Trajectory

Best
Configuration

Figure 3.1:CluPaTra Framework

process. The clustering process is where we select and represent a generic feature,

calculate similarities and perform clustering. Moving to the tuning process, we apply

a tuning procedure to derive the best parameter configurations for each cluster.

In the testing phase, we match the search trajectory of the testing instance against

the clusters using pair-wise sequence alignment to find the most similar cluster. We

then return the parameter configuration found for that cluster (during the training

phase) as the recommended parameter configuration for the respective testing in-

stance. The steps involved in the training and testing phaseare shown in Fig. 3.2

and Fig. 3.3 respectively.

In this thesis, we focus on the clustering process. For the tuning process, we use

existing one-size-fits-all configurators such as CALIBRA [3], ParamILS [60] or F-

Race [17]. The clustering process has three major components: (1) feature selection;

(2) similarity calculation; and (3) clustering method. Thecomponent details are de-

scribed as follows.

3.2 Feature Selection

Instance specific features that determine the intrinsic difficulty of an instance play

an important role in the meta-heuristic algorithm’s performance [78]. Consequently,

there has been increasing interest in finding instances features that have impact on the

difficulty, in terms of performance, of improving algorithmperformance [6, 53, 54,

91, 93, 100, 102, 105, 106, 109, 115].

33

Procedure TrainingPhase
Inputs: A: Target Algorithm;

I : Training instances;
Θ: Parameter Configuration Space;
xi: Initial Sequence Configuration;

Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;

Method:
1: F = FeatureExtraction(A, I , xi);
2: S = SimilarityScore(I , F);
3: C = Cluster(I , S);
4: for all cluster inC do
5: Xi = configurator(A, Ci, Θ);
6: returnC, X;

Figure 3.2:CluPaTra Training Phase

Procedure TestingPhase
Inputs: A: Target Algorithm;

It: A set of Testing instance;
C: Set of clusters;
X: Parameter configurations for each cluster inC;
xi: Initial Sequence Configuration;

Outputs: BestConfig: A recommended configuration;
Method:
1: for each instance inIt do
2: BestClusti = Mapping(Iti, A, xi, C);
3: BestConfigi = X[BestClusti];
4: returnBestConfig;

Figure 3.3:CluPaTra Testing Phase

Various problem-specific features have been proposed for a wide range of Com-

binatorial Optimization Problems (COPs). Some notable features are flow dominance

for Quadratic Assignment Problem (QAP) [53, 102, 105, 109] and population corre-

lation structure and constraint slackness for the KnapsackProblem [54, 93]. The most

straightforward features are those that are extracted fromthe problem or instance def-

inition itself, such as number of variables and constraints, which can be derived to

numerous candidate features using computational feature extraction processes [100].

Other non-straightforward features may require large scale experimental studies and

are highly dependent on domain knowledge in a particular COP. Finding appropri-

ate features takes tremendous human effort, and the features in most cases cannot be

34

Table 3.1: Run Time for Random-3-SAT instances

Instances Percentage of Local Optima Found Run Time

uf20-91/easy 0.11% 13.05
uf20-91/medium 0.13% 83.25
uf20-91/hard 0.16% 563.94
uf50-218/medium 47.29% 615.25
uf100-430/medium 43.89% 3,410.46
uf150-645/medium 41.95% 10,231.89

reused for another problem.

On a separate front, there have been approaches that attempted to find problem-

independent features using correlation between objectivefunction and search space

(fitness landscape) [6, 55, 91, 106]. Problem-independent features can be used on dif-

ferent COPs, such as Traveling Salesman Problem (TSP) [91],Quadratic Assignment

Problem (QAP) [6] and Knapsack Problem [106]. Examples of these features are:

Fitness Distance Correlation (FDC) [91, 55] and ruggednesscoefficient [6, 55]. In

FDC, we test if there exists any correlation between delta fitness and distance from

a solution to the nearest local optimum that is known priori.Unfortunately, to calcu-

late the FDC, we need to find all the local optima. This means weneed to explore

the entire fitness landscape, which is time consuming and to some extent are impos-

sible for certain instances [91]. To illustrate the amount of time needed to explore

the fitness landscape, Table 3.1 shows the search cost of exhaustive renumeration of

search space for Random-3-SAT instances [55]. Similarly, calculating the ruggedness

coefficient also entails the exploration of the entire fitness landscape [6].

In attempting to utilize a problem-independent feature which can be more effi-

ciently computed, we propose the use of the search trajectory, i.e. a solution path

derived from one run of the target local-search algorithm. It is the proxy to fitness

landscape that can be obtained with a small amount of additional computational time.

In section 3.6, we demonstrate that the search trajectory indeed provides a good mea-

sure of the fitness landscape’s similarity of instances.

35

Figure 3.4: Example of Search Trajectory from the TravelingSalesman Problem
(TSP) instance

3.2.1 Search Trajectory Definition

Search trajectory is defined as the path of solutions that a target algorithmA finds as

it searches through the neighborhood search space. It can bederivied from any local

search based algorithm without incurring much additional computation time. The

search trajectory illustration for one Traveling SalesmanProblem (TSP) instance is

shown in Fig 3.4.

Thexy plane represents the search space whilez axis represent the objective value.

Since it is not possible to provide a perfect 2-D layout for all the solutions such that

the 2-D Euclidean layout distance preserves the Hamming distance for each pair of

the solutions, we make use of the heuristics algorithm, namely the spring model [47],

where it has been shown that the spring model can reduce the layout error by more

than 83% (from 0.18 to 0.03) (see page 44 of [47]).

We propose search trajectory as a generic feature to define similarity between

problem instances. The rationale of our feature is predicated on the relationship be-

tween fitness landscape and search trajectories [48], and the tight correlation between

the fitness landscape and algorithm performance [92]. Whereas generating entire fit-

ness landscape for each instance is time consuming and generally impractical, we

propose to use search trajectory as a proxy for fitness landscape. Granted that dif-

ferent parameter configurations may produce (very) different search trajectories for a

given instance, we claim that thesimilarity of search trajectories between instances is

36

15L 11L 09L 07L 07P 06P 04S 05L J 21L

Figure 3.5: Example of Direct Sequence Representation of Search Trajectory for the
Travelling Salesman Problem (TSP) instance

preserved across configurations.

Given a fixed local search algorithmA, our bold conjecture is that instances with

similar fitness landscapes have similar trajectory patterns under a fixed parameter set-

ting; and that there exists a parameter setting that yields good solutions in instances

with a similar fitness landscape. The latter claim has been observed in TSP and QAP

instances [49].

Note that we are using search trajectory as a proxy for fitnesslandscape; granted

however that the search trajectory will not adequately represent the entire fitness land-

scape. Our goal is to find similar behavioral patterns of the algorithm; not to measure

the actual performance of the algorithm. To that extent, we claim that search trajec-

tory (under a single suitably defined parameter configuration) is a sufficient proxy to

measure similarity between instances.

3.2.2 Representation of Search Trajectory

Generally, we presented search trajectory as a directed sequence of symbols, each rep-

resenting a solution along the search trajectory, as illustrated in Fig 3.5. Each symbol

encodes a combination of two solution attributes: positiontype and its percentage

deviation of quality fromBest (as defined in Definition 3).

Position type represents the local property of a solution with respect to its search

neighborhood, and is defined based on the topology of the local neighborhood [55].

37

Table 3.2: Position Types Property of Search Trajectory

Objective Value
Position Type Label Symbol larger equal smaller

SLMAX (strict local max) A No No Yes
LMAX (local max) X No Yes Yes
LEDGE L Yes Yes Yes
SLOPE P Yes No Yes
IPLat (interior plateau) I No Yes No
LMIN (local min) M Yes Yes No
SLMIN (strict local min) S Yes No No

’Yes’ = present, ’No’ = absent; referring to the presence of
neighbors with larger, equal and smaller objective values

There are 7 position types determined by evaluating the solution objective value with

its local direct neighbors’ objective values - whether it isbetter, worse or equal. The

7 positions types are shown in Table 3.2. In the actual searchtrajectory, we only use

either LMIN or LMAX (respectively SLMIN and SLMAX) depending on the target

algorithm type (maximizing or minimizing).

The deviation of solution quality measures in a sense globalproperty of a solution

(since it is compared withBest). If the global optimum value is unknown, we use

the best known value; granted the best known value is not the same as global optimal

value. This provides a reasonably good upper bound (for a minimization problem);

because our aim is to find similar patterns of the transition from one solution to the

next; not to measure the actual absolute performance of the algorithm. The best known

value suffices in providing a good proxy to the global optimalvalue for our purpose of

representing the trajectory. We believe that the search trajectory using the best known

value can be shifted (with a constant translation vector) tothe real search trajectory

using global optimum value.

Position type and percentage deviation of quality are combined into a symbol with

the first two digits being the deviation of solution quality and the last digit being the

position type. Note that the attributes are generic, which means they can be eas-

ily retrieved/computed from any local-search based algorithm albeit from different

problems. Being mindful that some target algorithms may have cycles and (random)

38

restarts, we intentionally add two additional symbols: ’C’and ’J’ in sequence repre-

sentation. ’C’ symbol is used when the target algorithm returns to a position that has

been found previously. We do not record the cycle position and just use ’C’ symbol to

mark a cycle. The ’J’ symbol is used when the local search is restarted.

An example of the sequence representing the search trajectory in Fig. 3.5 is15L-

11L-09L-07L-07P-06P-04S-05L-J-21L-19L. Notice that after position 8, the target al-

gorithm performs a random restart, hence we add a ’J’ symbol after position 8.

In addition to the above representation (which we refer to asExact Sequence), we

also represent the search trajectory as a transition sequence. The transition sequence is

made up of symbols that represent a transition (or movement)between two neighbor-

ing solutions in the search trajectory. The focus is not on solution position, but rather

the movement along the search trajectory in order to detect trajectories that move in

parallel but are not necessarily identical (their corresponding positions differ by a con-

stant value). We use the transition sequence to capture similarity across different size

instances. In the transition sequence, each symbol contains three parts:

1. the absolute difference in deviation between the first andsecond solutions

2. the position type of the first solution

3. the position type of the second solution

Similar to an exact sequence, a transition sequence may alsohave two additional

symbols: ’C’ and ’J’. These attributes are also generic and can be easily derivied from

any exact sequence. An illustration of the transition sequence representing the search

trajectory of the Traveling Salesman Problem (TSP) instance in Fig. 3.5 is shown in

Fig. 3.6.

3.3 Similarity Calculation

Having represented trajectories as linear sequences, it isnatural to apply pairwise

sequence alignment to obtain the similarity score between apair of trajectories. In

39

15L 11L 09L 07L 07P 06P 04S 05L J 21L

4LL 2LL 2LL 0LP 1PP 2PS 1SL J 2LL

Figure 3.6: Example of Transition Sequence for search trajectory of Traveling Sales-
man Problem (TSP) instance

pairwise sequence alignment [51], the symbols of one sequence are matched with

those of the other sequence while respecting the sequentialorder in two sequences.

This also allows small gaps to occur if symbols do not match. Two or more search

trajectories are similar if some fragments (several numberof consecutive moves) of

the path have identical solution attributes. The longer thefragments the more similar

it is. In the following, we introduce our two techniques (basic and robust sequence

alignment) for the search trajectory similarity calculation based on pairwise sequence

alignment.

3.3.1 Basic Sequence Alignment

In basic sequence alignment, two symbols are matched if theyhave identical solution

attributes. A standard sequence alignment method is applied to maximize the number

of matched symbols between two sequences sequentially. A pair of matched symbols

gives a positive score (+1), while a gap gives a negative score (-1). The similarity

score is calculated as the sum of the scores of matched symbols (+1) and gaps in the

alignment (-1). Noted that the sequence alignment is done after we have the whole

search trajectory, thus there is no insertion, deletion or cost modification in the score

calculation process. An example of sequence alignment for two search trajectories of

Traveling Salesman Problem (TSP) instances is illustratedin Table 3.3.

There are two types of alignment strategies: local and global. In local alignment,

sequences are aligned partially, whereas global alignmentaligns the entire length of

the sequences. Because search trajectory sequences have varying lengths, we find

local alignment fits our needs. One well-known algorithm that performs such sequence

alignment is theSmith-Waterman algorithm[51] that works by comparing all possible

40

Table 3.3: Example of Sequence Alignment from a pair of instances

Instance
1

19L 19P 18P 17P 16P 15P 14P 13P 11P 10P

| | | | | | | | |
Instance
2

19P 18P 17P 15P 13P 11P 10P

score +1 +1 +1 -1 +1 -1 +1 +1 +1

alignments regardless of their lengths, start and end positions. It then chooses the best

alignment as the alignment that maximizes the similarity score, which is calculated as

sum of the scores of matched symbols and gaps in the alignment. Note that the best

alignment may start and end anywhere in the two sequences, solong as it produces

the best similarity score. We adapt the Smith-Waterman algorithm and use the best

similarity score for each pair of sequences. The final similarity score is normalized by

dividing it with 1

2
× (|Sequence1| + |Sequence2|).

The sequence alignment algorithm is implemented using dynamic programming

with time complexityO(n2) wheren is the maximum sequence length. To cluster

instances (see the subsection below), we need to compute similarity scores for all

possible pairs of training instances. Hence, the total timecomplexity for sequence

alignment isO(m2 × n2), wheren is the maximum sequence length of the sequences

andm is the number of instances in the training set.

3.3.2 Robust Sequence Alignment

In robust sequence alignment, we relax the matching criteria. Whereas in basic se-

quence alignment, two symbols are a match if and only if the two symbols are ex-

actly identical, in robust sequence alignment, we considerpartial matching where

the symbols are identical but the deviation attribute is different in a certain threshold.

This relaxed similarity calculation allows us to more robustly capture search trajectory

similarity. Under robust sequence alignment, a match occurs if one of the following

conditions is satisfied:

41

Table 3.4: Threshold Value for Robust Sequence Alignment

Threshold Similarity Score
1 0.97
2 0.93
3 0.92
4 0.87
5 0.56

1. The two symbols are identical

2. Theposition typeof the symbols is the same and the absolute difference in the

deviationattribute of the two symbols is less than a certain threshold.

Robust sequence alignment requires us to make sure that the matched symbols are

still very similar. Hence, the threshold should not be too far apart. We run a series of

preliminary experiments to determine the threshold value.We calculate the average

similarity between a pair of similar sequences using different thresholds as shown

in Table. 3.4. We then set the threshold value to threshold values with the highest

similarity score in our experiment.

We apply the same sequence alignment algorithm and score normalization tech-

niques as in basic sequence alignment.

3.4 Clustering Method

Our goal in clustering is to group similar instances according to their search trajectory

similarity. A typical clustering algorithm requires a distance measure between data

points. For distance measure we use 1

similarity score
. After such measurement is made,

a standard clustering algorithm could be deployed.

In instance-specific tuning process, we need a good and fast clustering method

which can easily and automatically determine the optimum number of clusters without

additional computation time. For this purpose, we compare two well-known clustering

method: AGNES (AGglomerative NESting) [65] and k-medoids [51].

42

LMNOPQ
LM LMN

PQ
LMNO LMNOPQ

R S T U V W
Figure 3.7: Hierarchical Clustering Method: AGNES (AGglomerative NESting)

AGNES works by placing each instance initially in a cluster of its own and iter-

atively merges two closest clusters (i.e., a pair of clusters with the smallest distance)

resulting in a lesser number of clusters of larger sizes. Theprocess is repeated until all

nodes belong to the same cluster unless a termination condition applies. Examples of

termination conditions are when a minimal number of clusteris reached or when the

maximal inter-cluster distance goes below a certain value.AGNES can be computed

in a linear computation time. AGNES is illustrated in Fig. 3.7.

To automatically determine the minimal number of clusters to be used, we apply

theL method [95] that works using an evaluation graph where thex-axis is the number

of clusters and they-axis is the evaluation function value atx clusters. For the eval-

uation function value, we use average distance among all instances in two different

clusters. TheL method determines the number of clusters by fitting the evaluation

graph into two lines that most closely fit the curve, as illustrated in Fig. 3.8. The

method chooses the intersection point between those two lines as the optimum num-

ber of clusters. The intersect point is the point of maximum curvature of this graph

which has minimum average distance (calculated using root mean square error) for

both the left and right side of the intersect point. It is calculated using the following

formula:

c∗ = min

[

RMSE(L)

nL

+
RMSE(R)

nR

]

(3.1)

where:

43

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

al
l i

ns
ta

nc
es

in

 tw
o

di
ff

er
en

t c
lu

st
er

Number of Clusters

Figure 3.8: Evaluation Graph forL-Method to Determine Number of Cluster

Notation Definition

RMSE(L) root mean squared error of points in the left side ofc

nL number of points in the left side ofc

RMSE(R) root mean squared error of points in the right side ofc

nR number of points in the right side ofc

To determine the optimum number of clusters, the L-method only requires AGNES

algorithm to be run once because all the clusters generated by AGNES can be recorded

in one run.

On the other hand,k-medoids is a partition-based clustering method that repeat-

edly breaks the data set up intok groups as an attempt to improve the clusters’ eval-

uation function [51], which in this paper, is the average distance among all instances

in two different cluster. It is a variant of thek-means method but it selects real data

points as centers (medoids or exemplars) instead of imaginary points. The complexity

of k-medoids isO(k(n − k)2) with k being the number of clusters andn being the

number of instances.

In k-medoids, we may automatically determine the number of optimum clusters

using statistical comparison methods on the cluster quality as ing-means, a variant of

k-medoids, that is used in ISAC [64], an existing instance-specific parameter tuning.

But the calculation may need some additional computation time.

Because AGNES with L-Method is easier to implement and has linear time com-

44

Table 3.5: Four instantiations ofCluPaTra
Instantiation Search Trajectory Represen-

tation
Similarity Calculation

Standard Exact sequence Basic Seq. Align.
Trans Transition sequence Basic Seq. Align.
Robust Exact sequence Robust Seq. Align.
Trans-Robust Transition sequence Robust Seq. Align.

plexity, we use AGNES with L-method as the clustering method. We provide a de-

tailed comparison between AGNES andk-medoids in the Empirical Experiment Re-

sult section.

3.5 CluPaTra Instantiations

As described above,CluPaTra has two search trajectory representations, exact and

transition sequence, and two similarity calculation techniques, basic and robust se-

quence alignment. We combine these techniques and construct four instantiations of

CluPaTra. The terminology used is given in Table 3.5.

3.6 Empirical Experiment Result

We conduct a series of experiments to investigateCluPaTra performance. We start

by describing our experiment measurement, target problemsand algorithms and the

experiment setting and setup. We then show the empirical result for: verification of

similarity preservation, clustering analyses, computational time, performance com-

parison and different clustering method comparison.

3.6.1 Experiment Measurement

In this experiment, our objective is to investigate theCluPaTra performance on cluster

quality as well as solution performance. For cluster quality, we use training and testing

cluster quality in Definition. 7 and 8 respectively. For the solution performance, we

45

use the performance metric in Definition. 3.

3.6.2 Target Problems and Algorithms

To demonstrate the generic nature of our approaches, we experiment using three clas-

sical Combinatorial Optimization Problems (COPs): Traveling Salesman Problem

(TSP), Quadratic Assignment Problem (QAP) and Set CoveringProblem (SCP). The

details of these problems and their target algorithms are asfollows.

Traveling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities, the objective of

Traveling Salesman Problem (TSP) is to find the shortest possible route that visits each

city exactly once and returns to the origin city [74]. TSP is one of the NP-Complete

problem [40]. It can be formally defined as follows.

Definition 9 (Traveling Salesman Problem [TSP])Given a complete weighted

graphG(V , E), with v being the set of cities ande being the weighted distance be-

tween two cities, the TSP objective is to find a closed tours that visits each of the

cities exactly once and minimizes the objective function
n−1
∑

i=1

dsisi+1
+ dsns1

.

In our experiment, we use a well-known Iterated Local Search(ILS) algorithm

as implemented in [49] as the target algorithm. We modify thecode and extract 4

discrete parameters to be tuned as shown in Table 3.6. For allexperiments, we fix the

maximum number of iterations to 1000.

We apply our target algorithm to 70 benchmark instances extracted from TSPLib

(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/). For best known values, we

use the optimum/best values from TSPLib. Fifty six random instances are used as

training instances and the remaining 14 instances as testing instances. The problem

size (number of cities) varies from 51 to 3038.

46

Table 3.6: Parameters for ILS Algorithm for Traveling Salesman Problem (TSP)
Parameter Description Range
Pert number of perturbations being done [1,10]
n improve max non-improving moves [1,10]
choice perturbation strategy where: 3=3-opt change and 4=double-bridge

move
[3,4]

acp acceptance criteria strategy where: 0=accept only improving moves and
1=accept all moves

[0,1]

Quadratic Assignment Problem (QAP)

Quadratic Assignment Problem, or QAP in short, aims to assign n number of facilities

to n number of locations with the goal of minimizing the sum of thedistances and

flows from every locations [73]. QAP is also an NP-Complete problem [40]. It can be

formally defined as follows.

Definition 10 (Quadratic Assignment Problem [QAP]) Given a n × n matrix of

flow information between facilitiesA and n × n matrix of distance between loca-

tionsB, the QAP objective is to find a permutations={1, 2, 3, ..n} that minimizes the

objective function
n
∑

i=1

n
∑

j=1

asisj
bij.

The target algorithm to solve QAP is hybrid Simulated Annealing and Tabu Search

(SA-TS) algorithm (presented in [87]). It uses the Greedy Randomized Adaptive

Search Procedure (GRASP) to obtain an initial solution, andthen use a combined

Simulated Annealing (SA) and Tabu Search (TS) algorithm to improve the solution.

There are four parameters, real and integer values, to be tuned as described in Table

3.7. For all instances, we set the maximum number of iterations to 500.

We use two set of instances: (1) Set A: benchmark instances and (2) Set B:

generated instances. In Set A, we use 50 benchmark instancesfrom QAPLib

(http://www.seas.upenn.edu/qaplib/), and randomly choose 40 instances for training

and 10 for testing. The problem size (number of facilities) in Set A varies from 20 to

150. We use the optimum/best values from QAPLib for best known values. In Set B,

we use two generators in [69] for single-objective QAP as in [88]. The first genera-

tor generates uniformly random instances where all flows anddistances are integers

47

Table 3.7: Parameters for SA-TS Algorithm for Quadratic Assignment Problem
(QAP)

Parameter Description Range
Temp Initial temperature of SA [100,5000]
Alpha Cooling factor [0.1,0.9]
Length Length of tabu list [1,10]
Pct Percentage of non-improving iterations [0.01,0.1]

sampled from uniform distributions. The second generator generates flow entries that

are non-uniform random values, having the real-like structure and resemblance to the

structure of QAP problems found in practical applications.We generate 500 instances

with size from 10 to 150 from each generator and randomly choose 100 as training

instances and 400 as testing instances.

Set Covering Problem (SCP)

Set Covering Problem (SCP) is an NP-Complete problem [40] that aims to find small-

est number of sets from finite setX whose union still contains all elements in the

family set ofF [32]. It can be formally defined as follows.

Definition 11 (Set Covering Problem [SCP])Given a finite setsS ={1, ..., n} of

items, a familyF={S1, ..., Sm ⊆ S} of subsets ofS, and a cost functionc=F → R
+,

the SCP objective is to find a subsetC ⊆ F such thatS ⊆ ∪Si∈CSi and
∑

Si∈C c(Si)

is minimized.

We use the tabu-search algorithm in [85] as the target algorithm with four param-

eters to be tuned as described in Table. 3.8.

We use two different instances set: (1) Set A: benchmark instances and (2) Set

B: generated instances. For Set A, we use 50 benchmark instances from OR library

(http://people.brunel.ac.uk/ mastjjb/jeb/orlib/scpinfo.html) and randomly pick 40 in-

stances for training and 10 for testing. For Set B, we use 80 generated instances as

used in [64], with 40 as training instances and 40 as testing instances.

48

Table 3.8: Parameters for TS Algorithm for Set Covering Problem (SCP)
Parameter Description Range
fTSLength Tabu Length Factor [1000, 10000]
iNonImprove Non Improvement Moves [5, 200]
iProbRandom Probability of Random Moves [1, 20]
iDeterministic Stochastic Factor [0, 1]

3.6.3 Experiment Setting and Setup

One-size-fits-all Configurator

In order to derive meaningful experimental comparison, we deliberately chose to use

ParamILS [60] as our one-size-fits-all configurator. ParamILS is itself an iterated local

search algorithm used for tuning discrete parameters. Since ParamILS works only

with discrete parameters, we first discretize the values of the parameters if the target

algorithm has parameters that assume continuous values. Wediscretize the continuous

parameters to 20 possible values by simple enumeration fromminimum to maximum

value.

Validity and Statistical Significant Measurement

To ensure unbiased evaluation, we use a 5-fold cross-validation [51]. To do 5-fold

cross validation, we randomly divide the instances into 5 random groups and use 4

groups as training instances and 1 group as testing instances. We repeat the process 5

times and take the average. We perform a statistical test to compare the significance of

our result. We use a t-test [83]; and we consider p-values below 0.05 to be statistically

significant (confidence level 5%).

Comparison Method

We compare our experiment results with the ISAC method, a similar clustering-

approach that uses problem specific features [64]. Whereas ISAC requires problem-

specific features, we select the standard deviation of the city distances, the variance

of the normalized nearest neighbour distances and the coefficient of variation of the

normalized nearest neighbour distances for TSP [99] and flowdominance and sparsity

49

of flow matrix for QAP [102]. We do not generate the clusters inSCP for ISAC but

instead we use the clusters used previously by ISAC in [64].

Because our aim is to measure solution quality, we do not compare our approach

with Hydra [114], another instance-specific configurator that seeks to optimize run

time performance but not solution quality of the target algorithm.

Experimental Setup

All experiments are performed on a 1.7 GHz Pentium-4 machinerunning Windows

XP. We measure runtime as the CPU time needed by this machine.As an input to the

configurator, we set a cutoff time at 10-100 seconds per run for the target algorithms.

For each cluster from our approaches, we allow each configuration process to execute

the target algorithm for a maximum of two CPU hours and to callthe target algorithm

for a maximum of 25 xn times, wheren is the number of instances in the cluster. To

ensure fair comparison, we set the time budget for ISAC and ParamILS to be equal to

the average total time needed to run a full process ofCluPaTra. This time budget is

the stopping condition for ISAC and ParamILS.

3.6.4 Verification of Similarity Preservation

Prior to presentingCluPaTra’s performance, we provide a scientific argument for

CluPaTra. In the following, we justify our claim, that thesimilarity of search trajec-

tories between instances is preserved across configurations, by providing a series of

experimental observations. For this purpose, we experiment on a small set of TSP and

QAP instances (Set A).

First, we provide a visual intuition for similarity preservation across different pa-

rameter configurations. Fig. 3.9 shows the trajectories obtained by 10 consecutive

moves of an Iterated Local Search (ILS) algorithm for three TSP benchmark instances,

namelya280, d198andberlin52using two random parameter configurations, namely

configuration I and configuration II.

Thexy plane represents the search space whilez axis represent the objective value.

50

To layout the moves into a 2-dimensionalxy plane, we calculate the distance between

two solutions (e.g., number of different cities in TSP) and apply ”the spring model”

[49]. ”The spring model” provides a heuristic for good layout if and only if the

Euclidean distance between 2 solutions in thexy plane is roughly proportional to

their Hamming distance. In this example, we observe that forboth configurations,

a280andd198, exhibit very similar topology ((a) and (b), (d) and (e)), while berlin52

has a different topology compared to the similarity ofa280andd198.

Next, we provide a statistical verification of the notion of similarity preservation

for the trajectories produced by the TSP and QAP target algorithms used in our ex-

periments. For this purpose, we verify on random pairs of instances across differ-

ent parameter configurations. First, we randomly select 2 source instances (namely,

benchmark instancesa280, berlin52for TSP andchr20a, sko100bfor QAP); Next

we select randomly 10 other destination TSP (resp. QAP) instances. We randomly

generate 5 parameter configurations for each target algorithm, and record the search

trajectory for each instance. To simplify the experiment, we take the first 300 solu-

tions obtained from the target algorithm as the search trajectory samples and calculate

its similarity scores.

For each source-destination pair in each configuration, we compute their similarity

score (based on the Standard instantiation ofCluPaTra). The results are presented

in Fig. 3.10. Observe that most pairs of instances maintain their similarity across

different parameter configurations as shown by the small scatter of similarity values

in each column (with the exception of several instances in the a280 instance). The

deviation, mean and coefficient of variance (CV) of similarity values for the different

parameter configurations are given in Table 3.10. For most pairs, the CV value is

low (especially for QAP pairs), which means that the similarity score across different

parameter configurations do not differ substantially from one another.

Finally, we present examples of clusters based on three different parameter con-

figurations for TSP and QAP generated using the Standard instantiation ofCluPaTra.

We use 10 instances for both TSP and QAP. The clusters are shown in Table 3.9. Most

51

Table 3.9: Examples of Clusters from Different Parameter Configurations
Parameter Config. Cluster # Instances

TSP
1 1 a280, fl3795, d1655, ts225
1 2 berlin52, kroa150, krob100, prl152
1 3 lin105, ch150
2 1 a280, fl3795, ts225
2 2 berlin52, kroa150, krob100, prl152
2 3 lin105, ch150, d1655
3 1 a280, fl3795, d1655, ts225
3 2 berlin52, kroa150, krob100, prl152
3 3 lin105, ch150

QAP
1 1 chr20a, chr22a, chr22b
1 2 sko100b, sko100e, sko90
1 3 nug28, nug30, tai30a, wil100
2 1 chr20a, chr22a, chr22b
2 2 sko100b, sko100e, sko90
2 3 nug28, nug30, tai30a, wil100
3 1 chr20a, chr22a, chr22b
3 2 sko100b, sko100e, sko90
3 3 nug28, nug30, tai30a, wil100

of the instances (except one instance of TSP, d1655) are clustered in the same groups

regardless of the parameter configuration used.

Based on the above observations, we argue that even though a given instance may

have different search trajectories under different configurations, thesimilarity between

two instances is preserved across configurations. This similarity preservation property

allows us to perform clustering of instances using an arbitrary parameter configura-

tion.

3.6.5 Clustering Analyses

To investigate the quality of clusters generated fromCluPaTra, we conduct series of

experiments for TSP, QAP and SCP using its benchmark instances (set A for QAP and

SCP) and compare the result with ISAC.

We compare an example of clusters generated by one of our approaches:CluPa-

52

Parameter Configuration I

(a) a280 (b) d198 (c) berlin52

Parameter Configuration II

(d) a280 (e) d198 (f) berlin52

Figure 3.9: Search Trajectories of three TSP instances using two random parameter
configuration

(a) a280 similarity

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(b) berlin52 similarity

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(c) chr20 similarity

0

100

200

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(d) sko100b similarity

0

100

200

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

Confg. I Confg. II Confg. III Confg. IV Confg. V

Figure 3.10: Search Trajectory Similarity Score between two TSP and QAP instances
and 10 other random instances using 5 Different Random Parameter Configurations

53

Table 3.10: Similarity Score of Randomly Selected InstancePairs for Instances’ Sim-
ilarity Preservation

Instances σ µ cv σ µ cv

I. TSP a280 berlin52
ch150 32.70 82.20 0.40 12.42 52.20 0.24
d1655 57.47 181.20 0.32 6.02 25.60 0.00
d657 35.31 144.60 0.24 15.54 36.20 0.43
fl3795 14.81 262.00 0.06 2.24 16.40 0.14
kroa150 4.12 25.80 0.16 6.73 78.80 0.09
krob100 3.58 11.00 0.33 24.33 84.20 0.29
lin105 18.18 77.20 0.24 9.35 62.40 0.15
pr152 7.78 18.80 0.41 22.38 77.40 0.29
rd100 25.32 50.80 0.50 17.85 60.40 0.30
ts225 39.55 201.60 0.20 3.88 22.40 0.17

II. QAP chr20a sko100b
chr22a 6.49 104.80 0.06 0.00 16.00 0.00
chr22b 4.13 113.40 0.04 1.20 10.60 0.11
lipa50b 6.83 118.40 0.06 0.00 24.00 0.00
nug28 0.75 12.20 0.06 0.00 18.00 0.00
nug30 0.75 10.80 0.07 0.00 16.00 0.00
sko100e 1.60 6.80 0.24 2.87129.40 0.02
sko90 1.60 8.80 0.18 5.04121.20 0.04
ste36a 4.71 103.20 0.05 0.00 26.00 0.00
tai30a 4.71 12.20 0.39 0.00 13.00 0.00
wil100 0.40 5.20 0.08 0.00 41.00 0.00
σ=standard deviation;µ=mean;cv=coefficient of variation;
Boldface indicates the best similarity score mean.

54

krob2
00

u159

u1060pcb442

pr152

vm1084

pr1002

berlin52

ch150

lin105

rd100

lin318

linhp318

pr107

pr136

eil51

gil262

kroa200

pr299

kroa100

pr226eil76

d198
rat195

d2103

a280

rl1889

rl1323

vm1748

rl1304

rat99
ch130

d493

kroc100 pr76

kroe100 krob150

krob100

(a) Trans CluPaTra

rat783

u1432

u2152

d657

rat575

pcb1173

nrw1379

fl1400

p654
st70

pr2392

Training

Testing

d1655

fl1577

fl3795

u2319

bier127

ts225 eil101

kroa150

krod100

pr124

pr144

pr439
pr264

d1291

fl417

pcb3038

rd400

u1817

tsp225

u574

u724

krob200

u159

u1060

pcb442

pr152
vm1084

pr1002

berlin52

ch150
lin105

rd100

lin318

linhp318

pr107pr136

eil51

gil262
kroa200

pr299

kroa100

pr226

eil76

d198
rat195

d2103

a280

rl1889

rl1323

vm1748

rl1304

rat99ch130

d493

kroc100

pr76

kroe100

krob150

krob100

(b) ISAC

rat783

u1432
u2152

d657
rat575

pcb1173

nrw1379
fl1400

p654

st70

pr2392

Training

Testing

d1655
fl1577

fl3795

u2319

bier127

ts225

eil101

kroa150

krod100 pr124

pr144
pr439

pr264
d1291

fl417

pcb3038

rd400
u1817

tsp225

u574

u724

Figure 3.11: TSP Cluster Result Comparison

tai64c

tai25a tai100a

tai60a

tai80a

tai40a

tai20a tai50a

chr20a

chr20b

chr20c

chr22a

tai17a

chr22b

chr25a

tho40

nug22
nug24

sko100c

nug27

sko100a

nug30

nug28

sko100d

sko90

sko100f

sko42
sko49

sko64

sko56

tho150

tho30
wil50

sko81

kra32 kra30aste36a scr20ste36b

(a) Trans CluPaTra

tai30a

sko100b

tai35akra30b

ste36c

tai12a tai15a

nug25 sko100e

Training

Testing

sko72

tai64c

tai100a
tai60a

tai80a
tai50a

chr20a

chr20b

chr20c

chr22a

tai25a
tai40atai20a

tai17a

chr22b

chr25a
tho40

nug24

nug22

sko100c

nug27

sko100a

nug30

nug28

sko100d

sko90
sko100f sko42

sko49

sko64
sko56

tho150

tho30

wil50

sko81

kra32kra30a ste36ascr20 ste36b

(b) ISAC

tai30a

sko100b

tai35a

kra30b

ste36c tai12a tai15a

nug25sko100e wil100

Training

Testing

sko72

tai30a

wil100

Figure 3.12: QAP Cluster Result Comparison

Tra (Trans Instantiation) and ISAC using one set of training andtesting benchmark

instances as reported in Fig. 3.11 for TSP and Fig. 3.12 for QAP.

For TSP, we observe that theCluPaTra (Trans Instantiation) method is able to cap-

ture the similarity of instances with differing sizes, which may have different search

trajectory symbols but have similar transitions along the search trajectories. Because

of the non-existence ofground-truthclassification for TSP benchmark instances, we

cannot compute the cluster qualities (Qtrain andQtest) directly; instead it is inferred

from the performance of the target algorithm which is described in the later subsec-

tion.

For QAP, we use the existing well-studied classification based on distance and flow

metrics [105] as theground-truthclassification. It divides the instances into 5 groups:

55

Table 3.11:CluPaTra’s Cluster Quality Comparison for Quadratic Assignment Prob-
lem (QAP) and Set Covering Problem (SCP)

QAP SCP
Technique Training Testing Training Testing

CluPaTra Standard 0.68 0.70 0.75 0.60
CluPaTra Trans 0.85 0.90 0.82 0.65
CluPaTra Robust 0.78 0.70 0.81 0.60
CluPaTra Trans-Robust 0.7 0.80 0.81 0.62
ISAC 0.80 0.80 - -
Boldface indicates the best cluster quality.

(1) random and uniform distances and flows, (2) random flows ongrids, (3) real-

life problems, (4) characteristics of real-life problems and (5) non-uniform, random

problems. Due to the limitation of the target algorithm (which is unable to solve

group (4) and (5) problems), we only use instances from groups (1), (2) and (3). The

clusters fromCluPaTra and ISAC are shown in solid boxes while theground-truth

classification (for QAP only) are shown in dashed boxes. Notice that the clustering by

CluPaTra (Trans Instantiation) is almost the same as theground-truthclassification.

We then compare the clusters generated for QAP and SCP byCluPaTra and ISAC

and show the result in Table. 3.11. We do not compare our result on TSP because

we do not have theground-truthfor those problems. We use the same ground-truth

classification as above for QAP. For SCP, it has been shown in [38] that benchmark

instances from OR library and [11] have very different FDC (Fitness Distance Cor-

relation) scores. We consider those two sets of benchmark instances as the ground

truth clusters. For SCP, we do not generate clusters for ISACbecause we do not have

features for SCP.

Our approaches construct better clusters compared to ISAC with respect to cluster

quality metric (Qtrain andQtest) as shown in Table 3.11. We observe that the cluster

quality score forCluPaTra Trans is the highest compared to other approaches.

56

Table 3.12:CluPaTra’s Computational Time

TSP QAP SCP
Technique Training Testing Training Testing Training Testing

CluPaTra Standard 5.58 s 0.04s 1,051 s 2,718 s 163 s 53 s
CluPaTra Trans 5.46s 0.05 s 1,002s 2,547s 160s 48s
CluPaTra Robust 6.02 s 0.07 s 1,984 s 3,157 s 198 s 80 s
CluPaTra Trans-Robust 6.05 s 0.08 s 2,012 s 3,254 s 205 s 89 s
Boldface indicates the fastest computation time.

3.6.6 Computational Time

The time needed (in seconds) forCluPaTra to form clusters in the clustering process

is shown in Table. 3.12. For QAP and SCP, we used generated instances (set B) while

for TSP we used benchmark instances.

The most time-consuming procedure in the training phase is calculating the simi-

larity of trajectories. Evidently, different similarity calculation techniques require dif-

ferent computational budget for calculating the similarity. The most time-consuming

procedure in the training phase is calculating the similarity of trajectories. Evidently,

different similarity calculation techniques require different computational budget for

calculating the similarity. InCluPaTra, the Robust sequence alignment technique

takes almost four times longer than the basic sequence alignment. This happens be-

cause it requires more computation time to find partial-match symbols.

3.6.7 Performance Comparison

To evaluate the effectiveness of our approaches, we conductexperiments for TSP,

QAP and SCP and compare its result against the result from vanilla one-size-fits-all

configurator (ParamILS) and ISAC. For QAP and SCP, we use generated instances

(set B) while for TSP we used benchmark instances. Table 3.13shows the average

performance result from 5-fold-cross-validation for TSP,QAP and SCP. Notice that

CluPaTra Trans outperforms other methods in both training and testing instances.

We verify the effectiveness of our approaches in providing the best configuration

57

Table 3.13:CluPaTra’s Performance Comparison of Three Classical COPs
Problem Technique Training Testing
TSP ParamILS 2.67 2.02

CluPaTra Standard 2.22∗ 1.93∗

CluPaTra Trans 2.01∗ 1.72∗

CluPaTra Robust 2.10∗ 1.81∗

CluPaTra Trans-Robust 2.06∗ 1.93∗

ISAC 2.02 1.88
QAP ParamILS 2.21 2.27

ground-truth 1.93∗ 2.09∗

CluPaTra Standard 1.99∗ 2.19∗

CluPaTra Trans 1.88∗ 2.08∗

CluPaTra Robust 1.89∗ 2.10∗

CluPaTra Trans-Robust 1.90∗ 2.19∗

ISAC 1.98 2.15
SCP ParamILS 1.53 0.82

CluPaTra Standard 1.24∗ 0.81∗

CluPaTra Trans 0.78∗ 0.80∗

CluPaTra Robust 1.01∗ 0.98∗

CluPaTra Trans-Robust 0.67∗ 0.78∗

ISAC 1.13∗ 0.77∗

* = statistically significant against ParamILS
Boldface indicates the fastest computation time.

for each testing instance by experiments using QAP benchmark instances (Set A) and

generated the clusters usingCluPaTra Trans. We run the target algorithm for all QAP

testing instances in Fig. 3.12 using parameter configurations from each cluster and

show the result in Table 3.14. From the table we observe that each testing instance,

except for tai35a, has the best performance using parameterconfigurations from the

most similar cluster.

To further investigate the effect of clustering in the overall performance result, we

calculate the Pearson product-moment correlation coefficient for the testing instances

in Table 3.14. We also calculate the Pearson correlation coefficient (and the p-value)

for cluster number and the overall performance result for each testing instance and

report the results in Table 3.15. From the table we observe that for each testing in-

stance, except for nug25, there is a strong correlation between the cluster number and

overall performance result. This may indicate that the clustering influence the overall

performance result. Although there are other factors affecting the overall performance

58

Table 3.14:CluPaTra’s Testing Instances Performance using Different Cluster’s Pa-
rameter Configuration

Parameter Configuration for each Cluster
InstanceCluster C#1 C#2 C#3 C#4 C#5 C#6

nug25 1 0.48 0.64 0.69 0.58 0.58 0.58
tai12a 1 0 0 0 0 0 2.80
tai15a 1 0.19 0.76 0.52 1.22 1.72 2.66
tai30a 1 1.86 2.81 2.20 2.57 3.03 2.65
tai35a 1 1.49 1.38 3.37 3.75 3.047 3.95
kra30b 2 0.07 0.07 0.97 0.07 1.88 1.18
ste36c 2 1.91 1.71 5.08 8.95 7.84 7.82
sko100b3 0.69 1.22 0.53 1.16 1.31 1.29
sko100e3 1.18 1.181.10 1.30 1.34 1.21
wil100 3 0.65 0.69 0.63 0.81 0.96 0.93
Parameter Configuration for:
C#1: Temp=4000, Alpha=0.9, Length=7,Pct=0.08
C#2: Temp=2000, Alpha=0.5, Length=7,Pct=0.09
C#3: Temp=3000, Alpha=0.3, Length=10,Pct=0.1
C#4: Temp=4000, Alpha=0.3, Length=10,Pct=0.07
C#5: Temp=100, Alpha=0.3, Length=10,Pct=0.03
C#6: Temp=5000, Alpha=0.1, Length=1,Pct=0.08
Boldface indicates the best performance result.

59

Table 3.15: Correlation between Cluster Quality and Overall Performance
Instance Pearson’s Coefficientp-value

nug25 0.210 0.681
tai12a 0.654 0.133
tai15a 0.943*** 0.001
tai30a 0.626 0.158
tai35a 0.838*** 0.021
kra30b 0.709** 0.090
ste36c 0.874*** 0.011
sko100b 0.620 0.164
sko100e 0.505 0.285
wil100 0.888*** 0.008
***: p <0.05; **: p <0.1

Table 3.16:CluPaTra’s Performance Comparison using Different Clustering Methods
TSP QAP SCP

Technique Training Testing Training Testing Training Testing

AGNES 2.01 1.72 1.88 2.08 0.78 0.80
k-medoids 1.88 1.90 2.08 2.16 0.99 0.80
Boldface indicates the best performance result.

result, such as the robustness of the global tuning and the stochastics of the target al-

gorithm, we postulate that cluster quality significantly affects the overall performance

result.

3.6.8 Comparison of Different Clustering Methods

To investigate the effect of different clustering methods in CluPaTra, we conduct an

experiment using another well-known clustering method,k-medoids. We compare the

performance result of using AGNES andk-medoids clustering methods on the Trans

instantiation for TSP, QAP and SCP. For QAP and SCP, we use generated instances

(set B) while for TSP we use benchmark instances. We set thek value to be equal to

the AGNES cluster number. Table 3.16 shows that AGNES performs slightly better

thank-medoids even though it is not statistically significant.

60

3.7 Discussion

The experimental results show that the instance-specific automated parameter tun-

ing framework yields a significant improvement in performance compared with the

pure one-size-fits-all configurator ParamILS. We also observe that allCluPaTra in-

stantiations perform significantly superior to or equal to ISAC. Having more similar

instances in smaller clusters will eventually guide the tuning process to find better

parameter configurations for each cluster. Based on this result, we verify that divid-

ing the instances into clusters usingCluPaTra before running one-size-fits-all con-

figurator provides a better parameter configuration for eachinstance and significantly

improves the performance.

To represent the search trajectory, we need the best known/optimum solution value

(OPT) for each instance. We use either (a) the known global optimal value, or (b)

when the global optimal value is unknown, the best known value. For all TSP and sev-

eral QAP benchmark instances, we use the known global optimal value from TSPLib

and QAPLib respectively, while for other QAP benchmark instances, we use the best

known value from QAPLib. For QAP and SCP generated instances, we use the best

found values as the best known values. For generated instances, we use the best found

solution. From the experiment result, we observe that our approaches using either

known global optimal value or best known value are able to generate good clusters

and hence improve the overall performance.

The effect of different clustering methods is also evaluated by comparing two well-

studied clustering approaches, AGNES andk-medoids. The result shows that there is

no significant difference; with these two clustering methods, this may indicate that the

underlying clustering method does not have a substantial effect onCluPaTra.

Up to this stage,CluPaTra is bounded by limitations due to its reliance on se-

quence structure representation and sequence alignment tocalculate similarity. Search

trajectories naturally have cycles, and a sequence representation of the search trajec-

tory does not record the cycles. Hence the sequence representation may reduce its

granularity and remove some important information. Sequence alignment inherits a

61

computational bottleneck whose worst-case time complexity is O(m2×n2) (wherem

is the number of instances in the training set andn is the maximum length of the

sequences). This sequence alignment may not be scalable forlarge size of instances

with long search trajectories.

3.8 Chapter Summary

In this chapter, we propose and discussCluPaTra, generic instance-specific automated

parameter tuning framework. We describe the framework overview and its three main

components: feature selection, similarity calculation and clustering method. In feature

selection, we present the notion of search trajectory as a problem-independent feature

and represent in two variance: exact sequence and transition sequence representation.

For similarity calculation, we used pairwise sequence alignment and implemented it

in two variants: basic and robust sequence alignment. As a clustering method, we

applied a well-known agglomerative hierarchical clustering, AGNES.

From a series of experiments on three classical COP: Travelling Salesmen Prob-

lem (TSP), Quadratic Assignment Problem (QAP) and Set Covering Problem (SCP),

CluPaTra shows a significant improvement compared to a vanilla one-size-fits-all ap-

proach, ParamILS. Compared with existing instance-specific tuning using problem-

specific features,CluPaTra shows a significantly superior or equal result.

62

Chapter 4

Pattern Mining Approaches for

Instance-specific Automated

Parameter Tuning

In the previous chapter, we discussCluPaTra, a generic instance-specific automated

parameter tuning framework using search trajectory as its generic feature. It rep-

resents search trajectory as two simple directed sequences: exact and transition se-

quences.CluPaTra performs a sequence alignment method to calculate the similarity

score for each pair of instances. Sequence alignment works by comparing all possi-

ble alignments regardless of their lengths, start and end positions, and then chooses

the best alignment as the alignment that maximizes the similarity score, which is the

sum of the scores for matched symbols and gaps in the alignment. After having the

similarity score,CluPaTra then clusters the instances using agglomerative clustering

method and tunes each cluster using an existing one-size-fits-all configurator. For test-

ing instances,CluPaTra simply returns the most similar cluster’s configuration as the

testing instance’s configuration.

However, the experimental results on three classical Combinatorial Optimization

Problems (COPs) confirm thatCluPaTra provides a promising improvement com-

pared to existing tuning methods. Due toCluPaTra’s reliance on sequence repre-

63

sentation and sequence alignment to calculate similarity,it inherits some structural

issues and computational bottleneck. Due to these limitations,CluPaTra works only

on short instances and when the number of instances is small.

To overcome the limitations ofCluPaTra, we proposeCluPaTra-II, a more com-

plex approach by modeling the feature extraction as a pattern mining problem. For

feature extraction and similarity calculation, we design two new pattern mining al-

gorithms: (1)SufTra, Suffix tree for sequential searchTra jectory pattern extraction,

and (2)FloTra, Flower graph mining for graph searchTra jectory pattern extraction.

SufTra is constructed for search trajectory sequence representation while FloTra for

graph representation. These approaches provide efficient extraction of compact and

discriminative features of search trajectory and are capable of retrieving similarity

measures across multiple segments. Using a pattern mining model, features extracted

usingSufTra andFloTra can efficiently and effectively form better and tighter clusters

and hence improve the overall performance.

In this chapter, we discuss these two approaches. We first elaborateCluPaTra-II,

a pattern mining framework for automated parameter tuning.We then present our

two novel pattern mining approaches:SufTra andFloTra. with SufTra as a pattern

mining technique via suffix tree andFloTra for graph pattern mining for search tra-

jectories. We then describe the experimental setting and result. Finally, we conclude

by summarizing the chapter.

4.1 CluPaTra-II: Tuning Framework using Pattern

Mining Approach

The CluPaTra dependency on sequential representation and sequence alignment to

calculate similarity share the following limitations.

1. Scalability.

Both sequence alignment techniques, basic and robust sequence alignment, are

implemented using standard dynamic programming [51], witha complexity of

64

15L – 12L – 11L – 10L – 09L – 08L – 06L – 05L– …. – 04L – 04P – 04S – J – ..

14L – 13L – 11L – 10L – 09L – 08L – 06L – 05P – …. – 05L – 04L – 04S – J – ..

11L – 04L – 04P – 04S – 03S – J – 21L – 19L – 08L – 06L – 05L – … – J – 13L

Figure 4.1: Similarity Patterns from three search trajectory sequences

O(n2) wheren is the maximum sequence length of the sequences. To cluster in-

stances, we need to compute similarity scores for all possible pairs of training in-

stances. Hence, the total time complexity for sequence alignment isO(m2×n2),

wherem is the number of instances in the training set andn is the maximum

length of the sequences. This poses a serious problem for instances with long

search trajectories and when there is a large number of instances.

2. Flexibility.

The process of sequence alignment is aligning a pair of sequence segments that

gives the highest alignment score, when it is possible that the sequences, espe-

cially for long sequences, share similarities in more than one segment. Sequence

alignment is not flexible enough to capture multiple-segment alignment with an

acceptable time complexity.

As an example, Fig 4.1 shows three search trajectory sequences. The boxes

represent the similar patterns found in these three search trajectories. Using the

CluPaTra similarity calculation method, we may conclude that instance 1 and

2 are similar and belong to the same cluster because the similarity score for in-

stance (1) and (2) is 4 while the similarity score for other pair of instances is

3. If we examine the search trajectories further, we may discover other similar

patterns and observe instance (1) and (3) actually share a higher number of sim-

ilar patterns instead of instance (2) because instance (1) and (3) have matching

symbols in two segments. Hence, instance (1) and (3) should belong to the same

cluster, while (2) should be in a different cluster.

65

3. Descriptiveness.

An important aspect of the fitness landscape that can be captured from the search

trajectory is its local optima. A local optimum is an optimal(either maximal or

minimal) solution with regards to its direct neighboring set of solutions [55].

It may or may not be the global optimum. General meta-heuristic algorithm

should avoid being trapped in local optima. But a strong local optimum may

force the search process to continuously return to this local optimum. Identify-

ing the local optimal is quite essential to improve the performance of the target

algorithm [88].

Although local optima information can be extracted from thesearch trajectory,

it can not be represented in sequence representation. When the target algorithm

returns to a position that has been found previously, it onlyadds a ’C’ symbol to

the sequence but does not point the cycle solution. Hence, the use of sequence

representation may result in a loss of the search trajectorystructural pattern.

For example, Fig. 4.2 shows the sequence and graph representation for three

search trajectories of Quadratic Assignment Problem (QAP)instances. The

three sequences have many similar subsequences (Fig. 4.2a)but the real search

trajectories (as shown in Fig. 4.2b) are different; two search trajectories have a

smoother search while the other one has many cycles.

As an attempt to answer these limitations, we propose a new tuning framework

using a pattern mining approach which we refer asCluPaTra-II. Similar toCluPaTra,

CluPaTra-II works in two phases: training and testing. The framework is illustrated

in Fig. 4.3 and the steps involved in training and testing phases are shown in Fig. 4.4

and Fig. 4.5 respectively. The training phase works by first representing the search

trajectory as a directed sequence (forSufTra) or graph (forFloTra). Instead of using

the sequences or graphs directly to calculate the similarity score as inCluPaTra, we

extract a set of compact features from search trajectories by using frequent pattern

mining techniques.

66

9L 8L 7L 7L
6
M

8L

8L

7L

9L

8L

7L
7L 7L

6
M

9L

9L

9L

8L

9L

8L7L

7L

7
M

7L
9L 8L 7L 7L 7L 5L6L

5L6L 5L 5L

5
M

6L6L

5L

4
M

5L

5L5L

6
M6L 6L

7L

6L

6L

9L 9L 8L 7L 7L

5L

9L5L6L 6L 5L

7L

6L

8L 7L

5L

5L

7L

5
M6L6L 6L

7L
6
M 7L

(b) Graph Representation of Search Trajectories

9L-8L-7L-7L-6M-9L-9L-9L-8L-8L-7L-6M-C-9L-8L-7L-7L-7L-7L-7L-7M-6M-C-6M-8L-8L-8L-C-...

9L-8L-7L-7L-7L-6L-6L-6M-6L-6M-C-6L-5L-5L-5L-5L-5L-5M-6L-5M-C-6L-5L-4M-6L-6L-7L-4M-...

9L-9L-8L-7L-7L-6L-6L-6L-6L-6L-5L-5L-5M-8L-7L-7L-5M-C-9L-7L-7L-7L-7L-6L-6M-5L-5L-5L-...

(a) Sequence Representation of Search Trajectories

Figure 4.2: Sequence and Graph Search Trajectories Representation for three
Quadratic Assignment Problem (QAP) instances

In frequent pattern mining, we find substructures (subsequences or subgraphs) that

appear in a data set with a frequency of no less than a user-specified threshold (called

minsupport) [50]. In our setting, a set of itemsI is a set of search trajectories repre-

sented as a sequences or a graphg. Since we want to find patterns from different

search trajectories, we present the search trajectories invertical data format(a set of

sequencesS or graphsG) and perform mining to find frequent patterns across search

trajectories. We define the frequent pattern mining problemas follows.

Definition 12 (Frequent Pattern Mining [FPM]) Given a setS of sequences orG

graphs, aminsupport value andminsize value, the frequent pattern mining problem is

to find all sub-sequences or sub-graphs of size at leastminsize appearing in at least

minsupport number of segments ofS or graphsG.

These sub-sequences or sub-graphs are used as distinctive features to describe the

instances characteristics.

We construct two novel pattern mining approaches:SufTra and FloTra. Suf-

Tra utilizes the Suffix Tree structure to retrieve features in linear computational time,

67

XYZ[\]^_`[Za_]bXYZ[\]^_`[Za_]b ^Yc\def\cgYdZ_\hXYi\YbY]ZcZa_] XYZ[\]^Yj[Y]dY_\ k\cieXYZ[\]^Yj[Y]dY_\ k\cie lYcZ[\YmnZ\cdZa_] XYZ[\]lYcZ[\YbXYZ[\]lYcZ[\Yb ^aoa`c\aZh^d_\YXYZ[\] ^aoa`c\aZh ^d_\YXYZ[\] ^aoa`c\aZh ^d_\Yp`[bZY\ p_]qar[\cZ_\fc\rYZs`r_\aZeo f\ca]a]r t]bZc]dYb^_ ùYb^_`[Za_]b XYd_\va]r
XYZ[\]p`[bZY\XYZ[\]p`[bZY\ p_]qar[\cZa_]q_\ Ycde p`[bZY\^ar]cZ[\YmnZ\cdZa_]f\ca]a]r p`[bZY\b ^Yj[Y]dY_\ k\cie

f\ca]a]r wecbYf\ca]a]r wecbY
fYbZa]r wecbYfYbZa]r wecbY

fc\rYZs`r_\aZeo fYbZa]r t]bZc]dYb^_ ùYb^_`[Za_]b XYd_\va]r ^ar]cZ[\Y xciia]rXYZ[\]^_`[Za_]bXYZ[\]^_`[Za_]b ^Yc\def\cgYdZ_\hXYi\YbY]ZcZa_] XYZ[\]^Yj[Y]dY_\ k\cieXYZ[\]^Yj[Y]dY_\ k\cie XYd_ooY]vYvp_]qar[\cZa_]
Figure 4.3: Tuning Framework using Pattern Mining Approach

whereasFloTra mines features from search trajectory graph.SufTra andFloTra ex-

tract the features and construct an instance-feature metric which correlates instances

with each feature.SufTra andFloTra details are described separately in the following

subsections.

Procedure TrainingPhase
Inputs: A: Target Algorithm;

I : Training instances;
Θ: Parameter Configuration Space;
xi: Initial Sequence Configuration;

Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;

Method:
1: T = SearchTrajectoryRepresentation(A, I , xi);
2: F = FeatureExtraction(T);
3: S = SimilarityScore(I , F);
4: C = Cluster(I , S);
5: for each cluster inC do
6: Pi = configurator(A, Ci, Θ);
7: returnC, X;

Figure 4.4: Tuning Framework using Pattern Mining ApproachTraining Phase

To calculate the similarity for each pair of instances from the instance-feature met-

ric, we use cosine similarity, a widely-used similarity measure for comparing vectors

68

Procedure TestingPhase
Inputs: A: Target Algorithm;

It: A set of Testing instance;
C: Set of clusters;
X: Parameter configurations for each cluster inC;
xi: Initial Sequence Configuration;

Outputs: BestConfig: A recommended configuration;
Method:
1: for each cluster inC do
2: SIGNi = SignatureExtraction(Ci);
3: end for;
4: for each instance inIt do
5: BestClusti = Mapping(Iti, A, SIGN);
6: BestConfigi = X[BestClusti];
7: returnBestConfig;

Figure 4.5: Tuning Framework using Pattern Mining ApproachTesting Phase

[46]. Cosine similarity is equal to 1 when the angle is 0, and it is less than 1 when the

angle is of any other value. Cosine similarity is formulatedas:

similarity =

∑n

i=0
(I1(fi) × I2(fi))

√

∑n

i=0
I1(fi)2 ×

√

∑n

i=0
I2(fi)2

(4.1)

whereI1(fi) and I2(fi) are the scores from instance-feature metric for featurei of

Instance 1 and 2 respectively.

CluPaTra-II then clusters the instances by a well-known clustering approach,

AGNES with L method. Detail description of AGNES andL method is provided

in subsection 3.2. A tuning process is then performed to find the best parameter con-

figuration for each cluster. An example that illustrates thesteps in the algorithm is

shown in Fig. 4.6.

For new testing instances, we improve the matching process by proposing a new

classification method to map testing instances to clusters.This method enables us to

generate more accurate mappings with shorter computation time. In the testing phase,

we use the knowledge from the training phase to return instance-specific configura-

tion(s) for testing instances. This phase is usually performed online. To achieve this,

we design a new method for fast and accurate testing instancemapping. Our proposed

method consists of two steps:

69

Figure 4.6:CluPaTra-II Steps and Output

70

1. Signature Construction. We construct the signatures foreach cluster. This step

is run once, and can be performed offline. The signature construction step is

similar to feature extraction (in the training phase) but weneed to run feature

extraction for each cluster. We use these features as the cluster’s signature.

2. Cluster Mapping. For an arbitrary testing instance, we match its search trajec-

tory to the cluster’s signature and return the parameter configuration from the

best-matching cluster’s as its parameter configuration. This step is performed

online.

In the next subsections, we describeSufTra andFloTra in detail.

4.2 SufTra: Pattern Mining via Suffix Tree

SufTra utilizes suffix tree data structure to represent the search trajectories of a target

algorithm. It extracts compact features from search trajectories for similarity calcula-

tion using the cosine similarity technique.SufTra addressesCluPaTra’s limitations

as follows:

1. Scalability: We propose a linear time algorithm for both Suffix Tree construc-

tion and traversal; and

2. Flexibility: We generate compact patterns from search trajectories and use them

as features. The patterns may occur in multiple segments along the search tra-

jectory, so suffix trees enable us to consider multiple-segment similarities to

improve clustering accuracy.

In SufTra, we use the basic sequence representation of search trajectory as de-

scribed in subsection 3.2. Here, we only explore one sequence representation.Suf-

Tra works in 4 stages: sequence hashing, suffix tree construction, features retrieval

and instance-feature metric calculation. The details are as follows.

71

4.2.1 Sequence Hashing

In a search trajectory, several consecutive solutions may have similar solution proper-

ties before the final improvement to reach the local optimum (for example04L-04L-

04L-04L-04L-02P). We therefore compress the search trajectory sequence to aHash

Stringby removing the consecutive repetition symbols and store the number of repeti-

tions in aHash Tableto be used later in pair-wise similarity calculations.Hash String

is the shorter version of the search trajectory after compressing all the repetition sym-

bols. An example ofHash Stringfrom 04L-04L-04L-04L-04L-02Pthe is04L-02P. If

the sequence has a longer repetition, it should have a higherscore because it contains

more symbols. To store the number of repetition, we cannot simply encode it in the

Hash Stringbecause it makes the symbol different if the repetition is different. Hence,

we may lose some important features. To still include the repetition in the similarity

score calculation and maintain the important feature, we use aHash Tableto store the

repetition and calculate the repetition only to calculate the similarity score. In this

example, the number of repetition of 04L is 5.

Removing consecutive repeated symbols gives us two advantages:

1. It offersgreater flexibility for SufTra in capturing more varieties of similarity

for symbol patterns between two instances. Two instances may share similar

patterns (such as:14L-5L) but have different numbers of consecutive symbols,

e.g., for14L occurs 10 times in one instance and 5 times in another.

2. It reduces computational costin constructing and traversing the suffix tree,

since the time needed is decided by its length. Hash String isa more compact

and shorter representation of the original search trajectory sequence.

After constructing Hash Table and removing repetitions, weconvert the symbol

for each solution to a single character and concatenate it into a string (Hash String).

72

(a) Suffix Tree for Single String

5
P$ LMMNP$

3 2

1

MNP$
M

NP$
NP$

4

(b) Suffix Tree for a Set of String

1,5
P$ MNP$ 1,1

N M

NP$

LM

2,1
NMM$

1,21,3

M

2,4

2,2

2,5
2,3

1,4
$

$
N

MM$

P$

P$
MM$

Figure 4.7: Example of Suffix Tree for a single stringS1 (LMMNP) and for two
stringsS1=LMMNP andS2=LMNMM

4.2.2 Suffix Tree Construction

The search trajectory sequences found in the previous section is used to build a suffix

tree. A suffix tree is a data structure that exposes the internal structure of a string for

the particularly fast implementation of many important string operations. Suffix trees

are used to solve exact and inexact matching problems in linear time and are widely

used in substring problems [46]. The construction of a suffixtree proves to have a

linear time complexity w.r.t. the input string length [46].

A suffix treeT for anm-character stringS is a rooted directed tree having exactly

m leaves numbered 1 tom. Each internal node, except for the root, has at least two

children and each edge is labeled with a substring (including the empty substring) of

S. No two edges out of a node has edge-labels beginning with thesame character.

To represent suffixes of a set{S1, S2,Sn } of strings, we use ageneralized

suffix tree. Ageneralized suffix tree is built by appending a different end of string

marker (which is a symbol not used in any part of the string, such as *) to each string

in the set, then concatenating all the strings together, andbuilding a suffix tree for

the concatenated string [46]. An example of ageneralized suffix tree for strings is

LMMNP andLMNMM is LMMNP ∗ LMNMM∗. The time needed to build

this suffix tree is proportional to the total length of all thestrings. An example of a

suffix tree for a single stringS1 and a set of stringS1 andS2 is shown in Fig. 4.7.

In a suffix tree structure, we can easily retrieve matching substrings from a set

of string by finding the branch that has leaves from corresponding strings. From our

suffix tree example (Fig. 4.7b), branches with edge-labelM , N , LM , MM , andMN

have leaves from both stringS1 andS2. These edge-labels represent the same substring

73

shared byS1 and S2. We use such common substrings to extractSufTra instance

features.

We construct the suffix tree for the Hash Strings derived fromsearch trajectories

using the Ukkonen’s algorithm [46]. We build a singlegeneralized suffix tree by

concatenating all the Hash Strings together to cover all training instances. The length

of the concatenate string is proportional to the sum of all the Hash String lengths.

Ukkonen’s algorithm works by first building an implicit suffix tree containing the first

character of the string and then adding successive characters until the tree is com-

plete. Details of Ukkonen’s algorithm can be found in [46]. Our Ukkonen’s algorithm

implementation requiresO(n × l), wheren is the number of instances andl is the

maximum length of theHash String.

4.2.3 Features Retrieval

After constructing the suffix tree, we extract the frequent substrings. As described

in Definition. 12, a substring is considered as frequent if ithas a sufficient length

and occurs in a significant number of strings [50]. The minimum number of length

and occurrences is determined byminsize andminsupport.We apply a local search to

provide sufficiently good values in reasonable times.

We use a first-improvement local search to move from initial values ofminsize and

minsupport to their neighbors by changing eitherminsize or minsupport at each move

until the average distance among all instances in two different clusters are no longer

improving. To find initial values ofminsize and minsupport, we run a competition

among 5 candidates, which are:

1. Lower bound ofminsize and minsupport. We assume a good feature pattern

should appear in more than one instance and contain more thanone symbol,

therefore, we set the lower bound value for bothminsize andminsupport to 2.

2. Upper bound ofminsize andminsupport. To setminsize and theminsupport upper

bound, we observe the number of features extracted for differentminsize and

74

minsupport values. Ifminsize is more than 20% of maximum string length and

minsupport is more than 20% of the number of instances, most likely, we would

not find any frequent substring. Therefore, we set the upper bound default value

of minsize as 20% of maximum string length and the default value ofminsupport

as 20% of the number of instances.

3. The middle value between the lower and upper bound.

4. First random value.

5. Second random value.

4.2.4 Instance-Feature Metric Calculation

After extracting the features, we calculate the instance’sscore for each feature and

construct an instance-feature metric using the following rules:

1. if the instance does not contain the feature, the score is 0,

2. otherwise the score is calculated by summing up the numberof repetitions for

each symbol in the feature from the previously constructedHash Table. A fre-

quent substring may occur multiple times in one string. We calculate the score

for each occurrence and choose the maximum score as the scorefor the instance-

feature metric.

4.3 FloTra: Graph Pattern Mining for Search Trajec-

tory

Representing the search trajectory with a sequence as inCluPaTra andSufTra suffers

from the issue of descriptiveness due to their use of sequence representation model.

CluPaTra andSufTra may oversimplify the search trajectory and lose finer granular

details in some structural patterns.

75

1 2 3 4 5 1918

1210 11 13

16

179

25

20

24

1514

86 7

23

22

21

Figure 4.8: Flower Graph with stem, petals and thorns

To overcome this limitation, we introduceFloTra, a technique to uncover impor-

tant patterns from search trajectory graph for generic instance-specific automated pa-

rameter tuning.FloTra constructs a graph representation of the search trajectoryand

conducts a graph pattern mining to discover specific and important patterns in the

search trajectory. Using those patterns,FloTra then calculates instance-feature met-

ric.

In FloTra, we represent a search trajectory as a graph. Each solution in graph rep-

resentation is represented as symbol of two solution attributes: the position type and

its performance metric as described in subsection 3.2. A node is a solution and an

edge is the movement from one solution to another is presented as an edge as illus-

trated in Fig 4.8. A search trajectory graph is a special graph that has two distinctive

structures: (1) a long skinny path representing solution movement from initial solution

to end solution and (2) multiple short paths and loops representing the movement to

or from local optima. The more loops in the graph, the stronger the local optima are.

The search trajectory graph can be considered as a flower-shape graph where the

skinny long path is a stem and the short paths and loops are petals and thorns. In a

flower-shape graph, we define the stem, thorns and petal as follows. Given a flower-

shape graph, a stem is considered as a single long path from the initial node. An

example of this stem is the path from the initial node (node 1)to the end leaf node

(node 25) in Fig. 4.8. A petal is defined as a short path from anynode along the stem

that returns to the same node, while a thorn is a short path that does not return to the

same node. To differentiate petals and thorns from stems, weassume that petal and

thorn lengths should be shorter than stems. This is based on our observation of actual

search trajectory graphs where we find that petals and thornsare shorter than stems.

76

Table 4.1: Average length of Stem, Thorn and Petal
Parts Average Length

Stem 45
Petal 12
Thorn 6

The average length of stems and petals and thorns is shown in Table 4.1.

An example of a petal and thorn in Fig 4.8 is the path 8-9-8 and 17-18 respectively.

To efficiently mine frequent patterns (subgraphs) from search trajectory graphs and

calculate similarity scores for each pair of instances, we construct a feature extraction

and similarity calculation method that exploits the graph distinctive structures.

The aim ofFloTra is to find a set of frequent patterns (subgraphs) from a set of

search trajectory graphs. As described in Definition. 12,FloTra has two parameters:

minsize andminsupport. minsize determines the minimum subgraph length (which is

translated to the minimum length of a stem and the maximum length of thorns and

petals) whereasminsupport determines the minimum number of graphs that contains

a frequent subgraph. In this thesis, the values ofminsize and minsupport are fixed

beforehand.

FloTra works in four stages. It first mines short frequent paths (thorns and petals)

from all nodes, except the initial node. It then continues tomine long skinny paths

(long stems) from the initial node. After having a set of thorns, petals and stems,Flo-

Tra then assembles the thorns, petals and stems together and extracts these as features.

Finally, FloTra constructs the instance-feature metric. Details are as follows.

4.3.1 Stage 1: Mining Flower Thorns and Petals

To find petals and thorns, we only select nodes which are visited more than once in

the search process. Hence, the number of edges must be greater than one. We first

enumerate all the paths from the selected nodes using the Depth-First Search (DFS)

algorithm [32]. One node may have several different DFS paths as shown in Fig 4.9.

For paths with length less thanminsize, we construct a Suffix Tree structure as

77

6
M 9L 6

M

6
M 9L 6

M
7
M

6
M

6
M

6
M 9L 6

M
7
M

6
M

6
M 7L9L 8L 7L 7L 7L 7L 7

M
6
M

Figure 4.9: DFS Path for a particular node in search trajectory graph

in SufTra. This suffix tree is used to mine similar thorns and petals across different

instances. To avoid redundancy, we only insert the same pathonce and we run a

checking mechanism before inserting it. We then retrieve frequent substrings from

different search trajectory graphs that occur more thanminsupport as frequent patterns

for flower thorns and petals. The details of this method are shown in Fig 4.10.

Procedure createflower thorn petal
Inputs: G: Graph;

minsupport: min support;
csize: max cycle length;

Outputs: Pfreq: a set of frequent flower
thorn and petal;

Method:
1: LetS = ∅
2: For graphg ∈ G

3: Letn = node∈ g where edge> 2
4: For eachn ∈ g

5: LetP = generate path using DFS(n);
6: For each pathp ∈ P

7: if not check already exists(p, S)

8: insert to suffixtree(p, S);
9: LetPfreq = retrieve frequent substring(S, minsupport);
10: sort(Pfreq)
11: OutputPfreq;

Figure 4.10: Create Flower Thorns and Petals Procedure using Suffix Tree

4.3.2 Stage 2: Mining Long Stem

Aside from flower thorns and petals, another important structure that we want to re-

trieve is a long stem structure. The process is similar to stage 1. We first enumerate

all paths from the initial node using a DFS algorithm [32]. For paths with lengths

equal to or more thanminsize, we construct a Suffix Tree and find all frequent paths.

We retrieve the frequent substrings from different search trajectory graphs that occur

78

9L 8L 7L 7L 6
M

9L

8L

9L

9L

9L

8L7L

7L

7
M

7L

[1..5]

[5..10]

[1..4]

[2..6]

Figure 4.11: Example of frequent subgraph found byFloTra

more thanminsupport as frequent patterns for long stem.

4.3.3 Stage 3: Assembling the Flower

At this stage, we assemble the flower thorns and petals from stage 1 with the long

stem set from stage 2. For each long stem set that contains thenode in the flower

thorn and petal set, we attach the flower thorn and petal and consider it as a new can-

didate pattern. If the new candidate occurs no less thanminsupport times, we accept

it as a frequent pattern. Because frequent paths from both previous stages are gener-

ated from multiple segments in search trajectory, the assembling process may discover

some gaps among those frequent paths. We allow these gaps andcalculate the min-

imum number of gap and the maximum number of gap in between nodes as shown

in Fig 4.11. The solid edge represents a direct path while thedashed edge represents

a gap with the minimum and maximum number of nodes in between.After assem-

bling the flower, we set all the found frequent pattern features if it occurs in at least

minsupport number of graphs.

4.3.4 Stage 4: Instance-Feature Metric Calculation

After extracting the features, we calculate instance’s score for each feature and con-

struct an instance-feature metric by setting the score to 0 if the instance does not

contain the feature, or otherwise to 1.

79

4.4 Empirical Experiment Result

We conduct a series of experiments to investigate the performance ofCluPaTra-II

with SufTra andFloTra. We applyCluPaTra-II for three Combinatorial Optimization

Problems (COPs): Traveling Salesman Problem (TSP), Quadratic Assignment Prob-

lem (QAP) and Set Covering Problem (SCP). As inCluPaTra, we use the Iterated Lo-

cal Search (ILS) algorithm [49] for TSP, hybrid Simulated Annealing and Tabu Search

(SA-TS) algorithm [87] for QAP and tabu-search algorithm [85] for SCP. These three

algorithms have four parameters to tune. We use the same experiment measurement

and setting as inCluPaTra. The details of the target problem and the algorithm, ex-

perimental measurement and setting have been described in Chapter 3 (section 3.6).

We compare theCluPaTra-II experiment result toCluPaTra-Tran, the most ef-

ficient (with respect to time and quality) instantiation ofCluPaTra, and the ISAC

result. To investigate the effectiveness ofCluPaTra-II - FloTra in extracting features

from the search trajectory graph, we also compareCluPaTra-II - FloTra with a well-

known graph mining algorithm, gSpan [117]. We replace theFloTra feature extraction

method with gSpan and compare the results.

4.4.1 Cluster Analysis

We first compare the clusters created fromCluPaTra, ISAC, CluPaTra-II - SufTra,

CluPaTra-II - FloTra andCluPaTra-II - gSpan for QAP and SCP. We use the same

ground truthclusters as inCluPaTra. The cluster quality is shown in Table. 4.2.

Notice thatCluPaTra-II - FloTra has the highest cluster quality.

Next, we provide some insights on howCluPaTra-II generates a good feature from

the problem instances. For this purpose, we investigate thesignature features for each

cluster.

We runCluPaTra andCluPaTra-II usingFloTra to cluster 10 random instances of

QAP from the ground-truth clusters [105] (random and uniform distances and flows;

random flows on grids; and real-life problems). We then generate the features (sig-

80

Table 4.2:CluPaTra-II with SufTra andFloTra Cluster Analyses Comparison
QAP SCP

Technique Training Testing Training Testing

CluPaTra-Tran 0.68 0.70 0.75 0.60
CluPaTra-II - SufTra 0.90 0.93 0.85 0.78
CluPaTra-II - FloTra 0.95 0.96 0.86 0.79
CluPaTra-II - gSpan 0.92 0.94 0.86 0.78
ISAC 0.80 0.80 - -
Boldface indicates the best cluster quality.

natures) from each cluster. ForCluPaTra, we generate the signatures using sequence

alignment while forFloTra, we use the graph mining algorithm.

We illustrate the signatures in Fig. 4.12. InCluPaTra, cluster 1 has the smoothest

search trajectory signature compared with the other two clusters. In cluster 1, the local

search is able to guide the search towards a better solution without restarting which

is shown by the signature that moves from position ledge (L) to position ledge (L)

with lowerBest until it finds local minimum (P). The other two clusters have a more

rough search trajectory that makes the search harder. It is often trapped in a bad local

optimum (e.g.:08P and05P). Apart from theBest values, there seems to be no

significant difference between the signatures of these two clusters.

On the other hand, inFloTra, each cluster has unique features. Cluster 1 has a long

stem with a petal which indicates that the search landscape is smooth. Cluster 2 has a

long stem with more thorns and petals - which indicates that the instances have more

than one local optimum which the local search is able to escape from using restart.

Cluster 3 has a lot of thorns and petals from one node which indicates that this node

is a strong local optimum which trapped the local search.

Using this observation, we conclude thatCluPaTra is only able to differentiate

cluster 1 from cluster 2 and 3 and unable to differentiate clusters 2 and 3; whileFloTra

is able to capture different unique signatures for clusters1, 2 and 3. TheseFloTra’s

signatures are also consistent with the observation in [105]. Using these abilities to

capture better signatures,FloTra is able to create better (more similar and tighter)

81

Figure 4.12: Example of clusters’ signature for each cluster generated usingFloTra

clusters and hence generate a more suitable parameter configuration for each cluster.

4.4.2 Computational Time

Next, we report the time needed (in seconds) forCluPaTra, CluPaTra-II - SufTra,

CluPaTra-II - FloTra andCluPaTra-II - gSpan to form the clusters in training phase

for TSP, QAP and SCP. For QAP and SCP, we use generated instances (Set B) while

for TSP we use benchmark instances. Since we want to test the performance ofSufTra

andFloTra on long search trajectories and large sets of instances, we deliberately use

generated instances for QAP (Set B) because the training andtesting sets have large

numbers of instances (100 instances for training and 400 instances for testing) with

long search trajectories (average search trajectory = 15,536).

Table. 4.3 shows the result.SufTra is the fastest approach compared to other

82

Table 4.3:CluPaTra-II with SufTra andFloTra Computational Time Comparison

TSP QAP SCP
Technique Training Testing Training Testing Training Testing

CluPaTra-Trans 5.46 s 0.05 s 1,002 s 2,547 s 160 s 48 s
CluPaTra-II - SufTra 3.01 s 0.02 s 56 s 146 s 15 s 8 s
CluPaTra-II - FloTra 4.21 s 0.04 s 350 s 212 s 43 s 21 s
CluPaTra-II - gSpan 5.21 s 0.07 s 471 s 184 s 54 s 25 s
Boldface indicates the fastest approach.

Table 4.4:CluPaTra-II with SufTra andFloTra Performance Result Comparison

TSP QAP SCP
Technique Training Testing Training Testing Training Testing

CluPaTra-Trans 2.01 1.71∗ 1.87 2.08 0.78∗ 0.79
CluPaTra-II - SufTra 2.00 1.57∗ 0.83∗ 1.16∗ 0.35∗ 0.78
CluPaTra-II - FloTra 1.98 1.25∗ 0.78∗ 1.07∗ 0.27∗ 0.52∗

CluPaTra-II - gSpan 1.99 1.29∗ 0.80∗ 1.09∗ 0.31∗ 0.68∗

ISAC 2.02 1.88 1.98 2.15 1.12 0.77
* = statistically significant against ISAC.
Boldface indicates the best performance result.

approaches, especially for QAP whereSufTra is 18 times faster thanCluPaTra.

4.4.3 Performance Comparison

Finally, we compare the target algorithm performance usingparameter configurations

from CluPaTra, ISAC, CluPaTra-II - SufTra, CluPaTra-II - FloTra andCluPaTra-

II - gSpan. For QAP and SCP, we use generated instances (Set B) while for TSP

we use benchmark instances. For the five instance-specific methods CluPaTra,

ISAC, CluPaTra-II - SufTra, CluPaTra-II - FloTra andCluPaTra-II - gSpan, we use

ParamILS [60] as a one-size-fits-all configurator. We measure the performance using

performance metric as defined in Definition 3.

In Table. 4.4, we show the performance comparison results. Notice thatCluPaTra-

II - FloTra outperforms other methods in both training and testing instances.

Furthermore, depending on the structure of the search trajectory, the two meth-

83

Table 4.5:CluPaTra-II with SufTra andFloTra Comparison in Two Groups of Search
Trajectories

Group without Cycles and Restarts Group with Cycles and Restarts
Technique Quality Time (s) Performance Quality Time (s) Performance

CluPaTra-II - SufTra 0.87 34 0.97 0.86 40 0.94
CluPaTra-II - FloTra 0.91 163 1.03 0.63 182 0.74
Boldface indicates the best cluster’s quality/time/performance result.

ods ofCluPaTra-II may perform differently. To investigate the relative performance

of these two methods, we run them under two different treatment groups of search

trajectory structures. We retrieve the search trajectories from 20 QAP instances and

transform them to sequences/graphs. For the first group, we remove all the cycles and

restarts. For the second group, we retain them. Table. 4.5 shows the results of the two

methods in terms of cluster quality, time and overall performance.

Notice here thatSufTra performs slightly better thanFloTra for the first group

without cycles and restarts with much faster time. While in the group with cycles and

restarts, theFloTra results are better. From these results, we claim thatSufTra is best

suited for search trajectories without (or with less) cycles and restarts, whileFloTra is

best for search trajectories with cycles and restarts.

4.5 Discussion

From the experimental results, we verify the performance ofCluPaTra-II with Suf-

Tra andFloTra and observe a significant improvement in cluster quality, computa-

tional time and performance compared to its predecessorCluPaTra. CluPaTra-II with

SufTra andFloTra also perform better than the existing instance-specific automated

parameter tuning, ISAC.

On cluster quality, methods with the graph representation (CluPaTra-II withFlo-

Tra and gSpan) perform better than methods with sequence representation (CluPaTra

andCluPaTra-II with SufTra). This implies that the graph gives a better represen-

84

tation of the search trajectory compared to the sequence andprovides more reliable

features. Hence,CluPaTra-II with FloTra and gSpan produce improved clusters com-

pared toCluPaTra andCluPaTra-II - SufTra. We also notice thatFloTra slightly

outruns gSpan [117], a generic well-known graph mining method. This verifies that

our graph mining approach, which is designed by consideringspecific search trajec-

tory graph characteristics, is more suitable for search trajectory graph representation

compared to the generic graph mining methods. Similar to cluster quality, regarding

the performance result,CluPaTra-II - FloTra is also superior compared toCluPaTra

andCluPaTra-II - SufTra. This further reinforces our claim that having more sim-

ilar instances in smaller clusters eventually guides the tuning process to find better

parameter configuration for each cluster.

Regarding computational time,CluPaTra-II - SufTra runs faster than other ap-

proaches especially for longer search trajectories and larger sets of instances, as in

QAP. It is not surprising becauseCluPaTra-II - SufTra is naturally faster than any

CluPaTra andCluPaTra-II - FloTra because it has a linear time complexity.

Based on these results, we claim that: (1)CluPaTra-II is a suitable approach for

instance-specific configuration that significantly improves the performance with mi-

nor additional computational time; (2)CluPaTra-II - SufTra has overcomeCluPaTra

limitations in scalability and flexibility with a fast new efficient method for long search

trajectories and large sets of instances, by producing better and tighter clusters faster;

and (3)CluPaTra-II - FloTra overcomes theCluPaTra descriptiveness limitation by

employing search trajectory graph representation to better identify instance features

and produce better clusters compared toCluPaTra andCluPaTra-II - SufTra.

4.6 Chapter Summary

In this chapter, we discussCluPaTra-II, a new tuning framework using a pattern min-

ing technique as its feature extraction method. We introduce two new pattern mining

techniques (SufTra andFloTra) for this purposes.SufTra extracts features from the

85

search trajectory sequence whileFloTra, a more advanced technique, extracts features

from the search trajectory graph. We then calculate similarity scores using cosine sim-

ilarity calculation and cluster the instances using agglomerative clustering, AGNES.

We then tune each cluster with a one-size-fits-all configurator. For the testing phase,

we also construct a new mapping technique to find better clusters for each testing

instance in less computational time.

We performed experiments on three COPs: Traveling SalesmanProblem (TSP),

Quadratic Assignment Problem (QAP) and Set Covering Problem (SCP). From our

experimental results, we verify thatCluPaTra-II with SufTra andFloTra mines more

suitable features with less computation time compared toCluPaTra. With better fea-

tures,CluPaTra-II with SufTra andFloTra generate tighter clusters and thus result in

improved performance.

86

Chapter 5

Web-based Automated Parameter

Tuning Workbench

In the previous two chapters, we introduceCluPaTra andCluPaTra-II, frameworks

for instance-specific automated parameter tuning.CluPaTra is the earlier version that

relies on sequence alignment for similarity calculation, while CluPaTra-II overcomes

CluPaTra’s limitations on scalability, flexibility and descriptiveness by modeling the

feature extraction mechanism as a pattern mining problem tocapture compact and

meaningful features from a search trajectory. InCluPaTra-II, we design two tech-

niques for feature extraction:SufTra andFloTra. SufTra is a pattern mining tech-

nique which utilizes the Suffix Tree structure for search trajectory sequences while

FloTra is a graph mining technique based on search trajectory graphcharacteristics.

SufTra andFloTra extract meaningful features for tuning purposes.

In our empirical experiment result for three COPs: Traveling Salesman Problem

(TSP), Quadratic Assignment Problem (QAP) and Set CoveringProblem (SCP), we

show thatCluPaTra andCluPaTra-II give encouraging improvements in cluster qual-

ity, computational time and solution performance. We also notice that for a large

number of instances with long search trajectory, such as in QAP instances,CluPaTra-

II - SufTra provides the fastest computational time compared to other approaches with

comparable or even better performance.

87

To distribute and make this instance-specific tuning accessible, we design a web-

based workbench for automated parameter tuning. We integrate CluPaTra and

CluPaTra-II with parameter-space reduction method, Fact-RSM [45], andglobal

(one-size-fits-all) parameter tuning, ParamILS [60] and F-Race [10], and construct

AutoParTune. CluPaTra, CluPaTra-II and Fact-RSM are considered as preprocess-

ing components for global parameter tuning.

In this chapter, we’ll discussAutoParTune in detail. We will begin with an

overview ofAutoParTune, and followed by the description of variousAutoParTune

components. We then discuss the major challenges forAutoParTune and the tech-

niques to overcome these challenges. Next, we will describethe design architecture

of AutoParTune. We then present the experimental results usingAutoParTune in

two industrial case studies. Finally, we provide a summary of this chapter.

5.1 AutoParTune Overview

It is stated that an ideal automated parameter tuning shouldhave at least three charac-

teristics: scalability, instance-specificity and problemstructure exploration [71]. Scal-

ability focuses on enabling the configurator to handle largeparameter search spaces

while instance-specificity focuses on producing differentparameter configurations for

different problem instances by exploring the problem structure (i.e. features) of the

underlying problem instances.

Extending and implementing the work in [71], we designAutoParTune,

a web-based workbench for automated parameter tuning, which is hosted in

http://research.larc.smu.edu.sg/autopartune/index.aspx. AutoParTune consists of

three components : instance-specific tuning, parameter search space reduction and

global tuning.

• Instance-Specific Tuning

In instance-specific tuning, instances are clustered according to a generic fea-

ture, search trajectory prior to the tuning process. This isan important pre-

88

processing step that provides a better parameter configuration for each instance

while maintaining a minimum tuning time. To attain an instance-specific tuning

component, we implementCluPaTra andCluPaTra-II.

• Parameter Search Space Reduction

A large parameter search space uses a large amount of tuning time and some-

times misleads the tuning process. Reducing the parameter search space is a

very critical preprocessing step that will reduce the overall tuning process, yet

still provides a better parameter configuration. For parameter search space re-

duction, we apply the Fact-RSM technique, presented in [45], which is based

on design of experiment (DoE), a well-established statistical approach that in-

volves experiment designs for empirical modeling processes (see for example

[83]).

• Global Tuning

Global tuning is the kernel ofAutoParTune. It produces the best parameter

configuration for training and testing instances. As a global tuning component,

we embed ParamILS [60] and iterated F-Race [10].

With two preprocessing components (instance-specific and parameter search space

reduction) and global tuning component,AutoParTune is able to design five tuning

strategies as described in Table. 5.1. Due to instance-specific tuning method lim-

itations, which can only be implemented for local-search based target algorithms,

Strategy 3, 4 and 5 in Table. 5.1 can only be used for local-search based target al-

gorithms whereas Strategy 1 and 2 in Table. 5.1 can be used fora broader range of

meta-heuristic target algorithms. Fact-RSM can only be applied for numerical pa-

rameters. Hence, Strategy 2, 4 and 5 in Table. 5.1 can only be used for numerical

parameters.

AutoParTune is designed as a web-based workbench to address the needs

for easy access to automated parameter tuning algorithms. Although there

has been increasing interest for parameter tuning, an easy to use automated

89

Table 5.1: Five Tuning Strategies inAutoParTune
Strategy No. Instance-specific Search Space Reduction Global Tuning Process Order

(I) (2) (3)
1 No No Yes (3)

2+ No Yes Yes (2)-(3)
3∗ Yes No Yes (1)-(3)
4∗+ Yes Yes Yes (1)-(2)-(3)
5∗+ Yes Yes Yes (2)-(1)-(3)

* = Only for local-search based target algorithm.
+ = Only for numerical parameters.

parameter tuning algorithm is not yet available. Existing approaches such

as ParamILS (http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/) and CALIBRA

(coruxa.epsig.uniovi.es/ãdenso/filed.html) are publicly available, and these are usu-

ally compiled in an executable file (Windows or Linux compatible) along with how to

use documentation. To use these executable files for tuning,we need to configure sev-

eral settings by carefully reading their documentation. InAutoParTune, the tuning

complexity setting is replaced by an easy-to-use and interactive web interface which

makes it easier to understand and navigate.

One advantage ofAutoParTune is that the tuning workload is shifted to theAu-

toParTune server. Users are only required to upload the necessary filesand determine

the tuning option in order forAutoParTune to run the tuning process on its server.

This tuning process may require a lot of computational time and resources depending

on the speed of the target algorithm. Once the tuning processis completed, an email

message with the tuning result is sent to the requester. Hence, users ofAutoParTune

are freed from the complexity of the tuning process as well asthe CPU and memory

limitation of running the tuning process on their local machines which usually lacks

the required computational power.

Another advantage ofAutoParTune is its flexibility which allows for the addition

of new techniques for its three components. New techniques for instance-specific,

parameter search space reduction and global tuning can be added inAutoParTune

without additional modifications. The new techniques just need to follow theAu-

toParTune format as described in Table. 5.2.

90

5.2 AutoParTune Components

AutoParTune has three components, namely: (1) instance-specific tuning, (2) param-

eter search space reduction; and (3) global tuning. The details of these components

are discussed in the following subsections.

5.2.1 Instance-Specific Tuning

For instance-specific tuning, we implementCluPaTra and CluPaTra-II. CluPaTra

andCluPaTra-II are premised on the assumption that an algorithm configuration is

correlated with its fitness landscape, i.e. a configuration that performs well on a prob-

lem instance of a certain fitness landscape will also performwell on another instance

with similar topology [92]. Furthermore, since the fitness landscape is difficult to

compute, it can be approximated by a search trajectory [48, 49] which is deemed a

probe through the landscape under a given algorithm configuration.

CluPaTra works by transforming the search trajectory as a directed sequence and

uses sequence alignment to calculate similarity for each pair of instances. On the other

handCluPaTra-II is an extension ofCluPaTra that overcomes three major limitations

of CluPaTra: scalability, flexibility and descriptiveness.CluPaTra andCluPaTra-II

are described in detail in Chapter 3 and 4 respectively.

Up to this stage,CluPaTra andCluPaTra-II can only be applied on local-search

based target algorithms due to its reliance on search trajectory. A search trajectory

generator is required to performCluPaTra andCluPaTra-II.

5.2.2 Parameter Search Space Reduction

An often neglected preprocessing step in automated parameter tuning is to reduce the

parameter space into a specific favorable parameter range. Agood initial parameter

range is able toguidethe tuning process to provide a better parameter configuration

with shorter computation time.

For the parameter search space reduction component, we apply the Fact-RSM [45]

91

yz{ |}~����z{z�� ����z{���|��{��� �����������{���z� yz{ |}���|�{��{~����z{z��y��zz���� ~���z
���|�{��{~����z{z�����{��� ����z� ����z{���|��{��� �����������{���z� ���|�{��{~����z{z������� ����z����z���z�{�{�|� ~���z

Figure 5.1: Phases of Fact-RSM, Parameter Search Space Reduction Method using
DoE methodology

technique. Fact-RSM is a sequential experimental method for screening and reducing

a parameter space for numerical parameters. Fact-RSM is based on the DoE (Design

of Experiment) methodology as follows.

A full factorial experiment design is applied to first screenand rank the parame-

ters. Parameters which are determined to be unimportant (i.e. the solution quality is

insensitive to the values of these parameters) are set with constant values that reduce

the parameter space to be explored. A first-order polynomialmodel based on RSM

(Response Surface Methodology) is then built to define the promising initial range

for the important parameter values. For statistical calculation, we use a well-known

statistical software,R (http://www.r-project.org/).

Fact-RSM, as illustrated in Fig. 5.1, works in two phases: screening, and exper-

imentation. The screening phase identifies the important parameters using 2k full

factorial design, while the experimentation uses RSM to locate ”promising” regions

for important parameters. The details of the screening and experimentation phases are

as follows.

Screening Phase

A screening process is conducted to determine which parameters are significantly

more important to reduce the number of parameters under consideration. It applies

a 2k full factorial design which consists ofk parameters, where each parameterxi

92

���� ���
������������� �������������

�
¡¢£¤¥¦£§¥¨©ª«¬«¬ ­®̄®̄ °®®̄̄

Figure 5.2:2k Full Factorial Design for Fact-RSM

only has two levels (ai andbi) with ai as lower bound andbi as upper bound.

As an example, consider if there are two parameters, A and B. Fig. 5.2 shows

the22 design with treatment combinations represented as the corners of the squares.

The signs - and+ denote the values ofai andbi of each parameterxi, respectively.

Treatment combinations are the Cartesian product of the twoparameters values (ai

andbi). A treatment combination is represented by a series of lowercase letters. For

example, the treatment combinationa indicates that parametersA andB are set to

bA andaB, respectively. To estimate the treatment combination, we run the target

algorithm forn replicates for each treatment combination. A complete design requires

(2 x 2 x ... x 2) xn = n x 2k. For simplicity, we setn to 10.

Since the main focus in this phase is to determine the important parameters, the in-

teractions between parameters are ignored. The importanceof a particular parameter

is defined by conducting a significance test on the parameter’s main effect. A signif-

icant level is set to 5% (α = 5%). Parameters withp − value ≤ α are significantly

important. The important parameters are explored further in the next phase. On the

other hand, unimportant parameters are set to a constant value by looking at the main

effect value of the parameter. If the value is negative, it isset to its upper bound, if

otherwise, to its lower bound.

Experimentation Phase

This phase aims to find and locate ”promising” regions for important parameters by

using the Response Surface Methodology (RSM). RSM is a model-based approach

within DoE that can be used to quantify the importance of eachparameter, support

93

interpolation of performance between parameter settings as well as extrapolation to

previously-unseen regions of the parameter space [59]. RSMhas been used in the

parameter tuning scenario to finetune algorithm parameters[26, 27] and to identify

”promising” regions of a parameter search space [59].

The underlying assumption in this phase is that the region can be approximated by

a planar model (the first-order model). Since we might be at a region on the response

surface that is far from the optimum, we assume that there exists only a little curvature.

Hence a planar model would be appropriate. The planar model of the parameters is

approximated using the following function:

Y = β0 + β1x1 + ... + βmxm + ε (5.1)

whereβ0, β1, ..., βm are parameter coefficients,x1, ..., xm are parameters, andε is error

coefficient.

In order to move rapidly to the ”promising” regions, we applythe method of steep-

est descent (for a minimization problem). This method is a procedure for moving se-

quentially along the path of steepest descent, that is, in the direction of the maximum

decrease in response Y. For example, ifβ1 (coefficient of parameter 1) is the largest

absolute coefficient value compared against other coefficient values, the step size of

another parameteri is calculated byβ1/βi.

This phase is terminated when the local optimum region is found. From a sta-

tistical point of view, the local optimum can be indicated bythe existence of either

interaction or curvature. Interaction is tested using analysis of variance (ANOVA)

while curvature is tested using thet− test.

5.2.3 Global Tuning

As a global tuning component, we implement two efficient and well-established global

tunings: ParamILS [60] and F-Race [19]. ParamILS [60] utilizes Iterated Local Search

(ILS) to explore the parameter space in order to find a good parameter configuration

94

based on the given training instances. ParamILS has been very successfully applied to

tune a broad range of high-performing algorithms for several hard combinatorial prob-

lems with a large number of parameters. ParamILS is itself aniterated local search

algorithm used for tuning discrete parameters. Since ParamILS works only with dis-

crete parameters, inAutoParTune, we first discretize the values of the parameters if

the target algorithm has parameters that assume continuousvalues.

Iterated F-Race [19] is a racing algorithm for the task of automated parameter

tuning for categorical and numerical parameters. IteratedF-Race is an extension of

F-Race [17] which is based on a statistical approach for selecting the best parameter

configurations using stochastic evaluations.

5.3 AutoPartune Features

AutoParTune is designed as a web-based workbench that integrates three different

components of automated tuning to enable easy and flexible tuning. As a web-based

workbench,AutoParTune users are able to perform a parameter tuning by upload-

ing the necessary files, including the target algorithm (in Windows executables for-

mat) and selecting a tuning strategy from the fiveAutoParTune strategies.AutoPar-

Tune strategies are based on the three components (instance-specific tuning, param-

eter search space reduction, and global tuning) which are assumed to be independent

components. To fully implementAutoParTune as a web-based workbench, a number

of features are provided to make sure thatAutoParTune is working in a web environ-

ment.

5.3.1 Security Issue

To protectAutoParTune against web attacks, we implement two security mechanisms

that prevent automated-agent perpetrators and perform checks on the files uploaded for

virus and malicious codes. The details of this are as follows.

1. Email Authentication Mechanism

95

The purpose of email authentication is to validate the user’s email address and

prevent automated-agent perpetrators. After the user uploads the necessary files,

an email verification is sent to the user’s email account. Theuser needs to

verify the email by visiting the link attached with the emailbefore continuing

the tuning process. The tuning is run only after the verification is completed.

2. Antivirus Scanning Mechanism

An antivirus scanning mechanism is implemented inAutoParTune to check if

the uploaded files are clean from virus, malware or other malicious programs.

Before starting the tuning process,AutoParTune executes antivirus scanning on

uploaded files directory. This process is run automaticallyusing AVG Antivirus

(http://free.avg.com/ww-en/homepage) command-line interface. If one or more

uploaded files are considered as suspicious by the scanner, the tuning process

is stopped. The files will be deleted and the respective user will be notified by

email.

5.3.2 Integration Issue

Each component inAutoParTune is assumed as an independent component that adds

a specific feature to the existing workbench. The componentsare developed indepen-

dently using different platforms and programming languages, such as: C#, C++ and

Java. Integrating these components requires a common protocol for communicating

with each other.

To integrate these components and maintain communication between components,

AutoParTune designs a controller function, which is called theAutoParTune Con-

troller. Each component inAutoParTune is compiled as a Windows command-line

executable file with standard input and output formats to ensure the communication

connection toAutoParTune Controller. Some additional text files such as configura-

tion files may be required by these components.AutoParTune Controller runs each

component by calling a command-line executable syntax using its input format. After

96

±²³´µ¶·¸²¹º »´¹³·´¼¼º·»½»¼²µ¶¸·¶¾±µ¿»¼²µ¶¸·¶¾»½
¸ºÀ³ ´· ÁÂÃ ÄÅ¼ºÆ

Ç±µ¿Ç Ä¶È³ÉÇÊÂ±µ¿Ä¶È³ÉÇÊÂ»ËË µ¶·¶Ì¿ÃÊ¶¹Í ÄÉÇ¶Èº±µ¿¾¾ Î¶³¶Ï¶Æº±µ¿Î¶³¶Ï¶ÆºÊÐÃ Êº·Ñº·Òº¹º·¶³´·±µ¿Êº¶·ÈÓ¸·¶ÔºÈ³´·ÕÒº¹º·¶³´· ±¼Ö´·Å³ÓÌ±µ¿¸¶·Öº³±¼Ö´·Å³ÓÌ¾ × Ø´· »Ã²µ¶¸·¶ ¶¹Í »¼²µ¶¸·¶É¿¿Ù¾¾ × »´¹ÆÅÍº· ¶Æ Ú¼¶ÈÛ Ú´À Å¹ÜÅ¹Í´ÝÆ ÞÀºÈ²³¶Ï¼º
Figure 5.3:AutoParTune Components Communication Schema

the component execution is completed,AutoParTune Controller retrieves the result

from the output command-line or text file. The detailed format for each component is

shown in Table 5.2. TheAutoParTune Controller decides which components to call

based on the user’s tuning strategy. It also retrieves and stores the tuning setting to a

database.

For the target algorithm, the user needs to provide a Windowsexecutable file with

a standard input output format as described in Table 5.3.CluPaTra andCluPaTra-

II need to call the search trajectory generator executable fileto generate the search

trajectory for each instance. On the other hand Fact-RSM, ParamILS and F-Race

need to call the target algorithm executable file.

5.4 Application Architecture

We implementAutoParTune using a three-tier architecture, which is shown in

Fig. 5.4. The presentation layer is hosted on Microsoft IIS server and containsAu-

toParTune web interface. The user interface is easily navigated with astep-by-step

tuning upload process as described in theAutoParTune quick guide in Appendix A.

The application layer contains theAutoParTune tuning logic as shown in Fig. 5.3.

97

Table 5.2: AutoParTune Components Input Output Standard
Component Input and Output
CluPaTra and
CluPaTra-II

Input :
- trajectory generator executable
- training instance file name
- testing instance file name
- random parameter configuration
Output : instances’ clusters file
Additional Files:
- training instance file
- testing instance file
- instance files

Fact-RSM Input :
- target algorithm executable
- training instance list
- parameter search space file name
- training folder
Output : new parameter search space file
Additional Files:
- training instance file
- parameter search space file
- instance files

R Output : statistical result
Additional File : R command file consists of
data file name, anova test syntax, output file
name

ParamILS and F-
Race

Input : training folder
Output : best tuning configuration in the last
output line
Additional Files:
- scenario file for tuning setting
- parameter search space file
- instance files

98

Table 5.3: Search Trajectory Generator and Target Algorithm Standard for AutoPar-
Tune

Component Input and Output
Search Trajectory
Generator

Input :
- Instance file name
- seed
- random parameter configuration
Output : search trajectory file
Additional Files: instance file

Target Algorithm Input :
- Instance file name
- seed
- random parameter configuration
Output : best found objective value (displayed
in the last line of the screen output)
Additional Files: instance fileßàáâáãäåäæçã èåéáàêëëìæíåäæçã èåéáàîáï ðñòóãæãô èçôæíõåäå êííáââö÷÷øè õùõåäåïåâá èåéáà

Figure 5.4:AutoParTune Design Architecture

The database layer is hosted on Microsoft SQL Server 2008.AutoParTune uses 4

tables to store tuning settings, training instances, testing instances and tuning results.

The database design is shown in Fig. 5.5. For retrieving, inserting, updating and

deleting the database, we use database Stored Procedures (SP). SP is a database sub-

routine that accesses a database system, which performs intermediate processing on

the database server, without transmitting unnecessary data across the network. Using

SP,AutoParTune can reduce the network usage between the user machine and server.

5.5 Empirical Experiment Result

To demonstrate the effectiveness ofAutoParTune, we run a series of experiments

on three Combinatorial Optimization Problems (COPs), namely: Traveling Salesman

99

úûüúýþÿþ�üû��ý�úü��û���ú�û��	
�� �
���������	
�� ������
��������
�����
 úûüúýþÿþ�üû��ý�úüú��úÿþ�üÿþ�ú�þ�����	
�� �
��������� ������
��������������úûüúýþÿþ�üû��ý�úüúû�ÿþÿþ�üÿþ�ú�þ�����	
�� �
��������� ������
�������������� úûüúýþÿþ�ü��úúÿþ��� �
��������
������������� ��
��� ��
�����!"���������!"�����
�����

��������!#$��������
#$�������!%��&�''���
����������'!��#���������
�!
���(
��
Figure 5.5:AutoParTune Database Design

Problem (TSP), Quadratic Assignment Problem (QAP) and Set Covering Problem

(SCP) and two industrial problems, namely: the aircraft spares inventory optimization

problem and the theme park personalized intelligent route guidance problem.

We measure performance as the average of percentage deviation from the best

found solution (Definition 3) and compare our experimental results with the best

known values used by our industry partner. The cutoff time isset to 500 seconds

per run and each configuration process is allowed to call the target algorithm for a

maximum of 100 xn times, wheren is the number of instances. To compare the

significance of our result, we perform a t-test [83] and considerp−values below 0.05

to be statistically significant (α ≤ 5%).

5.5.1 Classical COPs

We compare the target algorithm performance using parameter configuration from

AutoParTune strategy 2, 4 and 5. We do not conduct the experiment using strategy 1

100

Table 5.4:AutoParTune Performance Result Comparison for Classical COPs

TSP QAP SCP
Technique Training Testing Training Testing Training Testing

Strategy 2 2.07 1.37 0.87 1.23 0.76 0.78
Strategy 4 1.88 1.13 0.71 1.06 0.22 0.49
Strategy 5 1.91 1.24 0.81 1.13 0.42 0.45
Boldface indicates the best performance result.

(global tuner only) and 3 (instance-specific only) because the result is already shown

in the respective chapter. We use the same experiment setting as inCluPaTra and

CluPaTra-II. For QAP and SCP, we use generate instances (Set B) while for TSP we

use benchmark instances. We measure the performance using performance metric as

defined in Definition 3. In Table. 5.4, we show the performancecomparison results.

Notice thatAutoParTune - Strategy 4 outperforms other methods in both training and

testing instances.

5.5.2 Aircraft Spares Inventory Optimization Problem

We implementAutoParTune to tune an algorithm for an aircraft spares inventory

optimization (minimization) problem of a large commercialaircraft maker based in

Europe. Aircraft spares inventory optimization problem isa maintenance, repair

and overhaul (MRO) operations problem faced by the aircrafttotal service support

provider to meet target service levels with customers basedon performance-based

contracts. It is operated out of a network of airports. The problem objective is to de-

termine the optimal inventory allocation strategy that canfulfill target services levels

where optimality is defined in terms of minimal total life cycle costs for spares com-

prising inventory holding cost, part purchasing and repaircost, logistics delivery cost,

while service levels are defined in terms of spares fill-rates.

This problem is solved using aSimulated Annealing(SA) algorithm [44], a local-

search based algorithm which has 8 parameters that are used to control SA behavior

as described in Table 5.5. The SA algorithm works as follows.It starts by creating one

101

Table 5.5: Parameters for SA on Aircraft Spares Inventory Optimization Problem
Parameter Description Range
maxSuccess Maximum number of successes within one temperature [100, 1000]
maxTries Maximum number of tries within one temperature [100, 1000]
maxComp Maximum number of solutions generated [1000,

50000]
maxConsReject Maximum number of consecutive rejections [100, 1000]
maxChangeG Maximum change in a variable value when generating a

new solution
[100, 1000]

maxTriesG Number of tries to generate a feasible solution [100, 1000]
coolingFactor Factor to reduce the temperature by during each Tempera-

ture change
[0.5, 1]

oracleStrictness A value to depict the strictness of the oracle function in ac-
cepting a new solution that has an objective value worse
than the current one. A higher value would result in a higher
rejection rate (e.g. a value of 100 would accept only better
solutions)

[0, 100]

feasible initial solution. A new solution is generated by swappingn number of variable

values wheren is determined bymaxChangeG parameter. If the new solution is

feasible, it computes the objective value and automatically accept it if the objective

value is better than current best solution, if it is worse, itdecides to accept or reject the

new solution based on theoracleStrictness parameter. It continues to generate a new

solution until one of the termination criteria (maxTriesG, minimum Temperature,

maxConsReject or maxTries) is violated.

We apply our approaches on 50 synthetic instances based on real industrial in-

stances. We randomly select 25 instances as training instances and the remaining 25

as testing instances. We compute the results using 5 strategies ofAutoParTune on Ta-

ble 5.6 and show the parameter configurations fromAutoParTune on Table 5.7. To

ease the experiment computation, we useCluPaTra-II - SufTra for instance-specific

tuning and F-Race for global tuning component. We present the average percentage

deviation value from the default (which is the best known value used by our industry

partner).

The result shows that 5 strategies ofAutoParTune give parameter configurations

that generate solutions with lower objective values compared to the solutions from

the default configuration (the percentage deviation valuesare negative). Most of the

102

Table 5.6: Aircraft Spares Inventory Optimization ProblemPerformance Result
Technique Training Testing

AutoParTune Strategy 1 -0.208 -0.375
AutoParTune Strategy 2 -0.569∗ -0.471∗

AutoParTune Strategy 3 -0.438 -0.557∗

AutoParTune Strategy 4 -0.898∗ -0.634∗

AutoParTune Strategy 5 -0.888∗ -0.676∗

* = statistically significant against Default Configuration.
Boldface indicates the best performance result.

Table 5.7: Parameter Configurations for Aircraft Spares Inventory Optimization Prob-
lem

Parameter Default Strategy 1 Strategy 2 Strategy 3 Strategy4 Strategy 5
maxSuccess 100 200 500 900 300 400
maxTries 100 300 400 600 500 500
maxComp 1000 1500 5000 3000 2000 1000
maxConsReject 100 900 400 500 300 100
maxChangeG 100 300 400 500 700 100
maxTriesG 100 400 500 700 900 200
coolingFactor 0.95 0.55 0.70 0.50 0.90 0.80
oracleStrictness 30 20 70 60 10 90

results are statistically significant compared to the default configuration result. Notice

that strategy 4 and 5 outperform other strategies and are statistically comparable to

one another in that the percentage deviation values in strategy 4 are slightly better

than those of strategy 5 in training instances and slightly worse in testing instances.

5.5.3 Theme Park Personalized Intelligent Route Guidance Prob-

lem

Our second industry problem is the theme park personalized intelligent route guid-

ance problem that aims to provide a personalized route that maximizes the patron’s

experiences in the theme park for a given time constraint. The patron’s experiences

are measured by an utility function that factor in the patron’s individual preferences

as well as the statuses of current attractions such as service operation status and queue

time. Hence, the objective of this problem is to maximize theutility function subject

to:

103

1. A set of patron’s attributes (attraction preferences, health issues and physical

limitations).

2. A set of attraction’s attributes (operation status, queue time, rank and accessi-

bility).

3. A time duration.

This problem is solved using a heuristic algorithm which consists of 2 steps: utility

mapping calculation and construction heuristic. Utility mapping calculation computes

the temporal utility of each attraction (dynamic value versus time) based on patron’s

preferences. For each patron profilep, the utilityUpit of an attractioni in time duration

t is a function of three subset factors, namely: critical subset (CSpit), quantitative

subset (QSpit), and subjective subset (SSpi), and could be expressed as:

Upit = CSpit[α × QSit + (1 − α) × SSpi] (5.2)

where

104

Notation Definition

CSpit Critical Subset Factor for attractioni and patronp on a specific time

window t. This factor represents the attraction’s restrictions, such as:

opening hours, maximum weight, minimum height, and health restric-

tion, that cannot be violated. The score is set to 1 if there isno violation,

otherwise to 0.

QSit Quantitative Subset Factor which is a linear weighted sum ofthe attrac-

tion i factors: rank, service time, and queue time score in a specific time

window t. It is calculated as:

QSit = wrranki + wsservicetimei + wqqueuetimeit

SSpi Subjective Subset Factor which is a linear weighted sum of the factors:

thrill, wet and dark suitability of patronp for attractioni. It is calculated

as:

SSpi = wtthrillpi + wddarkpi + wwwetpi

α, wr, ws, wq, wt, wd, ww weight coefficient that is set between 0 and 1.

Using that utility score, a route which maximizes the overall utility is generated

using the full-insertion construction heuristic. This heuristic inserts each unvisited

attraction into the route at each possible location and thenchooses the best insertion.

For calculating the utility score, there are 7 weight coefficients which we consider as

parameters that need to be set. We describe these parametersin Table 5.8.

To apply tuning on the theme park personalized intelligent route guidance prob-

lem, we designed two scenarios with two different data sets and tuned it separately.

The first scenario focused on the tuning patrons subjective subset factor weights

(wt, wd, ww) while the second on quantitative subset factor weights (wr, ws, wq). The

scenarios are as follows.

Scenario 1: Patron’s Subjective Subset Factor Weights

In this scenario, the tuning objective is to tuneSSpi weights such that the route, which

consists of a set of attractionsI , generated by personalized intelligent route guidance

105

Table 5.8: Parameters for Heuristic Algorithm on Theme ParkPersonalized Intelligent
Route Guidance Problem

Parameter Description Range
α weight coefficient for overall utility function [0, 1]
wr weight coefficient for rank factor [0, 1]
ws weight coefficient for service time factor [0, 1]
wq weight coefficient for queue time factor [0, 1]
wt weight coefficient for patron’s thrill tolerance factor [0,1]
wd weight coefficient for patron’s dark tolerance factor [0, 1]
ww weight coefficient for patron’s wet tolerance factor [0, 1]

algorithm for a specific patron, satisfies the preferences ofpatronp. We assume that

each patron decides to go to certain attractions based on thepatrons own preferences

(such as thrill, wet and dark preferences).

Given a set of patrons preferencesP , the personalized intelligent route guidance

algorithm generates the best routeRalgo which consists of a set of attractions that

match with preferencesP . For each set of patron preferencesP , there exists a set

of patron ”real” visited attractionsRvisit as a ”ground truth” set. The quality score is

measured by comparing the set of attractions generated by the algorithm inRalgo with

the ”ground truth” setRvisit. It is calculated as the size of set intersection between a

set of attractions generated by the algorithm and ”ground truth” set (|Ralgo ∩ Rvisit|).

The route with a higher quality score is the better one.

We modify the basic tuning scenario in Fig. 2.2 to meet our needs and design a

tuning scenario as illustrated in Fig. 5.6. The configuratorcalls the personalized in-

telligent route guidance algorithm (target algorithm) with a specific parameter config-

uration. The target algorithm generates a route for each patrons preference. ”Quality

Calculation method” compares the route with the ”ground truth” and returns the qual-

ity score to the configurator. The configurator saves and examines the route quality

for a given parameter configurator. The process continues until the configurator finds

the best parameter configuration.

We applyAutoParTune on this tuning scenario to tunewt, wd, ww. We set other

parameter to a fixed value. We use the preferences of 48 real patrons and visited

attractions gathered in a ground survey conducted on June 2012 at the largest theme

106

)*+,-./012*0)*+,-./012*0)*+,-./012*0 345+10-*)*+,-./012*0 345+10-*610.5278.*0-29:610.5278.*0-29:;/18-2<)184/812-*+:529*=;/18-2<)184/812-*+:529*=
>101:5250 3510493?145>101:5250 3510493?145 601-+-+. @+A21+45A601-+-+. @+A21+45A3*8B5A3*8B5A)188A C-29 1A?54-,-4?101:52504*+,-./012-*+)188A C-29 1A?54-,-4?101:52504*+,-./012-*+ D52/0+ D*/25D52/0+ D*/25D52/0+ 3*8/2-*+;/18-2<D52/0+ 3*8/2-*+;/18-2<

Figure 5.6: Tuning Scenario for Personalized Intelligent Route Guidance

Table 5.9: Parameters Configurations for Theme Park Personalized Intelligent Route
Guidance Problem

Parameter Default Strategy 1 Strategy 3
α 0.1 0.2 0.1
wr 0.2 0.4 0.5
ws 0.2 0.5 0.6
wq 0.2 0.6 0.4
wt 0.2 0.4 0.6
wd 0.2 0.6 0.5
ww 0.2 0.3 0.5

park in Singapore as a set of preferencesP and a set of visited attractionsRvisit. We

randomly select 24 instances as training instances and the remaining 24 as testing

instances. To ensure a unbiased result, we use attraction rank, service time and queue

time, as of June 2012.

We compute the results using 2 strategies ofAutoParTune, namely: strategy 1 and

3, on Table 5.10. We use F-Race as global tuning component. Wepresent the average

size of intersection and compare it with the result of the default parameter value used

by our industry partner. We show the default parameter configurations and parameter

configurations fromAutoParTune in Table 5.9 The results in Table 5.10 shows that 3

strategies ofAutoParTune are superior to the default. Strategy 3 outperforms strategy

1 in training and testing instances.

To test the effectiveness of our tuned weights in matching the patron and attraction

preferences, we run additional experiments for different preference factors. For thrill

preference, we generate the patron’s preferences with six different thrill values (1, 0.8,

0.6, 0.4, 0.2 and 0) and the other preference values are fixed to the same value. For

107

Table 5.10: Theme Park Personalized Intelligent Route Guidance Algorithm Perfor-
mance Result using Scenario 1

Technique Training Testing

Default 0.760 0.834
AutoParTune Strategy 1 0.773 0.917∗

AutoParTune Strategy 3 0.818∗ 0.919∗

* = statistically significant against Default Configuration.
Boldface indicates the best performance result.

Table 5.11: Routes from Default Configuration andAutoParTune Strategy 3

Default Configuration* AutoParTune Strategy 3*

CYLON (1) Magic Potion Spin (0.1)
HUMAN (0.8) Enchanted Airways (0.2)
Treasure Hunters (0) Dino-Soarin (0.2)
Canopy Flyer (0.3) Canopy Flyer (0.3)
Enchanted Airways (0.2) Jurassic Park Rapids Adventure (0.5)
* = Attractions (Attraction’s Thrill Factor).

this experiment, we do not compare the result to the ”ground truth”. We run the target

algorithm 100 times for each parameter configuration. We assume if the patron’s thrill

preference is decreasing, the occurrences of an attractionwith the highest thrill factor

should also decrease.

Table 5.11 shows an example of the routes generated using thedefault configu-

ration and the configuration fromAutoParTune Strategy 3. In this example, we set

patron’s thrill preference to 0.2. Notice that Cylon that has thrill factor of 1, should not

be included in the route because the patron’s thrill preference is low. In the route from

default configuration, Cylon is still appearing while in theroute fromAutoParTune

Strategy 3 is not.

We then calculate the occurrences of an attraction with the highest thrill factor

(thrilli=1) and present the result in Fig. 5.7(Thrill Response Effect). The result from

Strategy 1 and 3 configurations follow the natural assumption better than the result

from default configurations which shows a static value for almost all preference val-

ues. We run the same treatment for dark and wet preferences and show the result in

108

EFGHIJKL EHMNMHMJOML PNNMOG GI QIRGM SMJMHFGMT
UVUWUXUYUZUUZVU

Z U[Y U[X U[W U[V U\]̂_̀abcdb]èf ghijkk lmnopqnm
rstuvv wxyz{|yx }~~x�� UVUWUXUYUZUUZVU

Z U[Y U[X U[W U[V U\]̂_̀abcdb]èf ��i� lmnopqnm
��t� wxyz{|yx }~~x�� UVUWUXUYUZUU

Z U[Y U[X U[W U[V U\]̂_̀abcdb]èf �m� lmnopqnm
�x� wxyz{|yx }~~x��

Figure 5.7: Effect of Patron Preferences on Route Generatedfrom Personalized Intel-
ligent Route Guidance Algorithm

Fig. 5.7. The obtained behavior is similar as for thrill preference.

Scenario 2: Qualitative Subset Factor Weights

Other than patron preference, queue time is another important factor in maximizing

patron experience in the theme park. General survey resultsindicate a very high cus-

tomer dissatisfaction with relation to long queue times [9]. Therefore apersonalized

intelligent route guidance program should address this issue.

Taking the queue time into consideration, in this second tuning scenario, we set

the tuning objective as tuning qualitative subset factor weights such that the route gen-

erated by the algorithm has the lowest overall queue time. Weassume that the queue

time for each attraction changes while attraction rank and service time are always

fixed. Similar to the previous scenario, we use the tuning scenario as illustrated in

Fig. 5.6 but for ”Quality Calculation method” we simply calculate the overall queue

time for the top 5 attractions and return it to the configurator. We only study the top

ranked attractions because those attractions usually havea much higher queue time

compared to the less popular attractions. We applyAutoParTune on this tuning sce-

nario to tunewr, ws andwq. Forwt, wd andww, we use the best configuration from

the previous scenario.

We use 50 generated preferences and randomly select 25 instances as training

instances and the remaining 25 as testing instances. We compute the results using 2

strategies ofAutoParTune, namely: strategy 1 and 3, on Table 5.12. We present the

average of queue time and compare the result with the defaultparameter value used

109

Table 5.12: Theme Park Personalized Intelligent Route Guidance Algorithm Perfor-
mance Result using Scenario 2

Technique Training Testing

Default 18.416 17.958
AutoParTune Strategy 1 16.416∗ 15.100
AutoParTune Strategy 3 13.041∗ 14.016
* = statistically significant against Default Configuration.
Boldface indicates the best performance result.

by our industry partner. The result shows that solutions from AutoParTune strategies

reduce the overall queue time by 2-5 minutes.

5.6 Discussion

In dealing with the complex optimization problem for industrial problems, we show

that our approach provides better parameter configurationsthan the default manually

tuned parameters.AutoParTune for non-local search based target algorithm (Theme

Park Personalized Intelligent Route Guidance Problem) also shows a significant im-

provement compared to the default configuration. We claim that AutoParTune is

sufficient for automatically tuning the parameters of a target meta-heuristic algorithm

(local-search or non-local search based).

AutoParTune with preprocessing methods (strategy 2, 3, 4, 5 for AircraftSpares

Inventory Optimization Problem and strategy 2 for Theme Park Personalized Intelli-

gent Route Guidance Problem) perform significantly better thanAutoParTune with

only global tuner (strategy 1). Based on this result, we verify that using the prepro-

cessing method to guide the tuning process provides a betterparameter configuration

and significantly improves the overall performance.

Our experiments illustrate the practical impact of our proposed approach on tuning

local search algorithms. As meta-heuristic algorithms areused designed for solving

large complex optimization problems more than ever, our approach offers the ability

to produce effective parameter settings automatically in acomputationally efficient

110

manner, rather than relying on the tedious and mostly manualtuning.

5.7 Chapter Summary

AutoParTune, a web-based workbench for automated parameter tuning, is imple-

mented to facilitate an easy and reliable tuning process forusers. It combines two

preprocessing processes with a global tuning component to provide a more effective

and efficient automated tuning strategy. Two major challenges in implementingAu-

toParTune as a web-based workbench are security and integrity. We answer the secu-

rity concerns by adding two security mechanisms: email authentication and antivirus

scanning; whereas for integrity concerns, we develop the ”bridge” for each component

to maintain the communication to each other.AutoParTune provides users with five

tuning options.

We usedAutoParTune on two industry problems and applied differentAutoPar-

Tune strategies. The result shows encouraging superior performance as compared to

the default parameter configuration used by our industry partner.

111

Chapter 6

Instance-Specific Tuning: Extension to

Genetic Algorithms

In the previous chapters, we discussed two frameworks for instance-specific tuning,

CluPaTra (Chapter 3), andCluPaTra-II (Chapter 4). These two frameworks use

the local search trajectory as the generic feature for clustering. CluPaTra uses the

pair-wise sequence alignment method to calculate similarity scores whileCluPaTra-

II models its feature extraction as a pattern mining problem and designs novel tech-

niques to solve it. BothCluPaTra andCluPaTra-II show encouraging improvement

when compared to one-size-fits-all and existing instance-specific configurators for

three classical COPs: Travelling Salesman Problem (TSP), Quadratic Assignment

Problem (QAP) and Set Covering Problem (SCP).

We also discussCluPaTra andCluPaTra-II implementation onAutoParTune, a

web-based workbench, in Chapter 5, which integratesCluPaTra andCluPaTra-II

with Fact-RSM, a parameter search space reduction method, as well as ParamILS and

F-Race as global tuning components. This workbench offers the user five combi-

nations for performing tuning: (1) global tuning only; (2) parameter search space re-

duction and global tuning; (3) instance-specific tuning andglobal tuning; (4) instance-

specific tuning, parameter search space reduction and global tuning; and (5) parameter

search space reduction, instance-specific tuning and global tuning. We appliedAu-

112

toParTune to tune two industrial study cases and presented significantimprovements

in the overall performance result compared to the result of adefault configuration used

by our industry partners.

AlthoughCluPaTra andCluPaTra-II have shown promising results, there is still

one apparent drawback due to their scope in local-search-based algorithms. As an at-

tempt to extend these approaches to population-based algorithms, we investigate how

to generate clusters from population-based algorithm using generic features pertain-

ing to population dynamics. We propose in this chapter two unpublished preliminary

ideas (PeTra andPaRG) for tuning a Genetic Algorithm (GA).PeTra is an extension

of CluPaTra where we analyze similarity from GA’sPopulationEvolutionTra jectory

and represent it as a directed sequence, whereasPaRG is an extension ofCluPaTra-

II - FloTra where we investigate GA’sParent InheritanceRelationship similarity in

Graph representation.

We present the details ofPeTra andPaRG. We then describe experimental results

on tuning the Two Population Genetic Algorithm that is applied to solve the General-

ized Assignment Problem (GAP). Finally, we conclude by summarizing the chapter.

6.1 PeTra: Population Evolution Trajectory Similar-

ity

In PeTra, we focus on capturing population evolution movement from initial popu-

lation to the next until it reaches its final population to analyze its evaluation leap.

Evaluation leap has been used as a measurement for GA performance [103]. A gener-

ation is said to be an evaluation leap if the best solution produced at the generation is

better than those in previous generations. We assume that similar instances will have

similar evaluation leaps across their populations, such that clustering the instances

based on its evaluation leaps will create a set of thigh clusters for the purpose of

instance-specific tuning.

Following the work inCluPaTra, we transform the population evolution as a direct

113

sequence and use sequence alignment to calculate the similarity score for each pair

of instances. We consider each population as a node and arrange it according to its

generation order to form a directed path. Similar to search trajectory representation

in CluPaTra (see chapter 3), each node in the directed sequence is a symbol based

on two population properties: position type [55] and the percentage deviation of its

quality fromBest (as defined in Definition 3). Unlike in search trajectory, where each

node is a solution, inPeTra, we aggregate these position types and the percentage

deviation of quality to represent a population”snapshot”.

For position type, we focus on capturing LOCAL MAXIMUM (or MINIMUM).

Differing from CluPaTra, where we determine the position type based on the di-

rect neighborhood solutions, a local maximum (or minimum) in PeTra is determined

based on population topology by comparing each solution to others in the same pop-

ulation. We count the number of local maxima (or minima) in each population and

normalize the value by scaling it between 0 and 1. We then categorize the value in

three groups: HIGH (normalized value≥ 0.7), MEDIUM (normalized value≥ 0.4)

and LOW (normalized value< 0.4).

The percentage deviation of quality from each solution in a population is sum-

marized with three values: minimum, maximum and average. The values are then

compared with theBest and categorized in three groups: HIGH (percentage devia-

tion≤ 5%), MEDIUM (percentage deviation≤ 10%) and LOW (percentage deviation

> 10%).

These four properties (minimum, maximum, average, and local maximum) are

combined and hashed into a unique symbol. The population representation process is

illustrated in Fig. 6.1. Note that these population’s properties are generic which can be

easily retrieved or computed with little additional computation time from any Genetic

Algorithm albeit for different problems.

After transforming the populations as a directed sequence,we follow the steps in

CluPaTra framework. We calculate similarity using sequence alignment for each pair

of population evolution trajectory sequences and cluster the instances using AGNES

114

�� � �� �� ���� �� ����� � � � � � � � � ����������� ����������� � �� � �� �� ���� �� ����� � � � � � � � � ����������� ����������� � �� � �� �� ���� �� �� ��� � � � � � � � � ���������������������� ��������� ���������� � ������ �¡¢ ������� � ����£� ¡¤¥ ������� � ����¦� §¨©¡§ �¡¢ ª�« ���¬�� ���������� � ������ �¡¢ ������� � ����£� ¡¤¥ ������� � ����¦� §¨©¡§ �¡¢ ª�« ���¬­���®�®­���®�®
¯�°±�® ²�³���������� �¯�°±�® ²�³���������� �©�´����® ��®¯�°±�®©�´����® ��®¯�°±�® ¯�°±�® ²�³���������� �¯�°±�® ²�³���������� � ¯�°±�® ²�³�����������¯�°±�® ²�³���������� �������

Figure 6.1: Genetic Algorithm Population Presentation.

with L method. We finally tune each cluster to find a good parameter configuration.

For an arbitrary testing instance, we first map its population evolution trajectory to the

closest cluster. The tuned parameter configuration for thatcluster is then returned as

the parameter configuration for this instance.

6.2 PaRG: Parent Inheritance Relationship similarity

in Graph representation

In contrast withPeTra which investigates the population dynamic,PaRG focuses on

GA’s selection mechanism, an important operator in GA [82].Selection mechanism

chooses chromosomes from a population as parents using a certain selection crite-

ria based on its fitness value. On average the better chromosomes are more likely

to be selected than the poor ones. We explore the inheritancerelationship between

selected chromosomes (parents) and represent it as a graph.We extend the work on

CluPaTra-II - FloTra (Chapter 4) by replacing the search trajectory graph with a par-

ent inheritance relationship graph and running a pattern mining technique to retrieve

a set of features. We calculate instance’s similarity scoreusing these features and im-

plement AGNES withL method to cluster the instances based on its similarity score.

Finally we tune the clusters using one-size-fits-all configurator. The steps ofPaRG

are shown in Fig. 6.2.

115

µ¶·¸¹º»¼½ ·̧¾¼º¿µ¶·¸¹º»¼½ ·̧¾¼º¿ ÀÁÂÃ¹ÄÅÆÇ¹Äº¿È¼¹ÉÄ·¾¼º µ¶·¸¹ºÇ¹¶¶µ¶·¸¹ºÇ¹¶¶ ÀÊÂË¶Ä·¸¹¶ÌÍ·¹ÄÎ·¾¼º µ¶·¸¹ºË¶Ä·¸¹¶¿µ¶·¸¹ºË¶Ä·¸¹¶¿ÀÏÂ»¾É¾½Ä¹¾·ÐÑÄ½Î¸½Ä·¾¼ºµ¶·¸¹º»¾É¾½Ä¹¾·Ð»Î¼¹¶µ¶·¸¹º»¾É¾½Ä¹¾·Ð»Î¼¹¶ÀÒÂÑ½¸¿·¶¹¾ºÓÔ¶·Æ¼ÕÀÖÂ×º¶Ø¿¾Ù¶ØÈ¾·¿ØÄ½½Ñ¼ºÈ¾Ó¸¹Ä·¼¹
ÇÄ¹Ó¶·Ú½Ó¼¹¾·ÆÉ Ç¹Ä¾º¾ºÓ Ûº¿·ÄºÎ¶¿»¼½Ü¶¿ÀÝÂ »¼½ ·̧¾¼º¿ µ¶Î¼¹Õ¾ºÓ

µ¶·¸¹ºÑ½¸¿·¶¹µ¶·¸¹ºÑ½¸¿·¶¹µ¶·¸¹º Ñ¼ºÈ¾Ó¸¹Ä·¾¼ºÈ¼¹ ¶ÄÎÆ Ñ½¸¿·¶¹
Figure 6.2: Steps inPaRG: Parent InheritanceRelationship similarity inGraph rep-
resentation.

We follow theCluPaTra-II - FloTra framework and implement the same methods

for step 4, 5 and 6.PaRG uses cosine similarity as the method for similarity calcula-

tion (step 4) and AGNES withL method as the clustering method (step 5). In compar-

ison, for a one-size-fits-all configurator (step 6),PaRG uses existing approaches such

as ParamILS, CALIBRA or F-Race. Details on step 2 (graph transformation) and 3

(feature extraction) are as follows.

6.2.1 Graph Transformation

The Parent Inheritance Relationship graph is defined as an inter-parent relationship

where a node represents a parent chromosome and an edge represents the inheritance

relationship between chromosomes. If a chromosome is a parent of another chromo-

some, we put an edge on the two chromosomes. A dense graph represents highly

related parents where most of the parent chromosomes are thedescendants of other

parents in previous generations. This represents the existence of an elite group which

consists of good solutions in the population. The elite group dominates other solu-

tions in the selection mechanism and has a higher chance to carry over to subsequence

generations. In contrast, a sparse graph behaves differently and it represents the case

where most of the parent chromosomes do not have any relationship with each other,

which indicates the non-existence of elite groups.

The rationale of our feature is predicted on the relationship between the elite pop-

ulation and GA’s performance [34, 108]. Elitism, which is usually preserved using

116

ÞÞ Þ ÞÞ ßÞßÞàáâãäåæçáè éàáâãäåæçáè é ÞÞ Þ ÞÞ ßÞßÞàáâãäåæçáè êàáâãäåæçáè ê ÞÞ Þ ÞÞ ßÞßÞàáâãäåæçáè ëàáâãäåæçáè ëÞÞÞÞÞÞàåìíèæ é àåìíèæ ê
îïð îñà îñà îòð îêà îéàÞÞÞÞÞÞíóôí íóôííóôíéÞ àíìõíèæåôí óíöçåæçáè á÷ øãåäçæùêÞ àáúçæçáèûùâíéÞ àíìõíèæåôí óíöçåæçáè á÷ øãåäçæùêÞ àáúçæçáèûùâí

üíäíõæçáèüíäíõæçáèýèõáóíýèõáóíþáÿ�çèíóåèó�åú�íóþáÿ�çèíóåèó�åú�íó
Figure 6.3: Parent Inheritance Relationship Graph Representation.

simple or complex elitism strategy, improves considerablythe performance of GA in

single or multi objective optimization problems [34]. Given a fixed GA, our conjecture

is that similar instances will have similar elite groups under a fixed parameter setting;

and that there exists a parameter setting that will yield good solutions in instances with

a similar elite group.

We present the parent inheritance relationship graph as a undirected graph, where

each node represents a parent chromosome and each edge represents a inheritance re-

lationship between parents. As in a search trajectory graph, each node in the graph

encodes a combination of two solution attributes: positiontype and the percentage de-

viation of its quality. InPaRG, we determine position type by evaluating the solution

objective value with other solutions’ objective values in the same population - whether

it is better, worse or equal. The 7 positions types are shown in Table 3.2 (Chapter 3).

The deviation of solution quality is calculated by comparing the solution’s objective

value withBest (as defined in Definition 3). Position type and percentage deviation

of quality are then combined and hashed into a symbol. The graph representation of a

Parent Inheritance Relationship Graph is shown in Fig. 6.3.

117

Figure 6.4: Difference between the Search Trajectory Graphand Parent Inheritance
Relationship Graph.

6.2.2 Feature Extraction

After obtaining parent inheritance relationship graphs for each instance, we extract

meaningful features using pattern mining techniques. The graph structure for the

search trajectory graph and parent inheritance relationship graph are different, as il-

lustrated in Fig. 6.4. The search trajectory graph has a longstem and several thorns

and petals, while the parent inheritance relationship graph has a more complete graph.

Since the graph structures for the search trajectory graph and parent inheritance

relationship graph are not the same, we cannot use similar pattern mining technique

as inFloTra (Chapter 4) forPaRG. We turn to a well-established pattern mining

technique for generic graph, gSpan [117].

gSpan (or graph-based substructure pattern mining) is a frequent pattern mining

technique that uses theDepth First Search (DFS) algorithm to generate its subgraphs

for mining in a large graph database. It also introduces a newlexicographic ordering

system which is generated based on the DFS algorithm for efficient graph isomor-

phism tests. gSpan removes two most-time-and-memory-consuming tasks: candidate

generations and false positive pruning. In candidate generations, a pattern mining al-

gorithm creates sizek frequent subgraphs and increases the size gradually by adding

one node for each iteration. The generation of size (k + 1) subgraph candidates from

sizek frequent subgraphs is complex and costly. On the other hand,false positive

pruning is used to prune isomorphic candidates using a subgraph isomorphism test

which is also very costly. gSpan replaces these two tasks by combining the growing

118

and checking of frequent subgraphs into one procedure, thusaccelerating the mining

process.

gSpan works as follows. It first creates a set of minimum spanning trees (dfs-tree)

from the graphs using DFS which defines an order in which the edges are visited.

gSpan then construct a canonical representation in that order, called graphs dfs-code.

A growing technique is restricted by gSpan in two ways: first,a subgraph can only

be extended at nodes that lie on the rightmost path of the dfs-tree; and secondly, sub-

graph generation is guided by occurrences in the appearancelists. gSpan computes

the canonical (lexicographically smallest) dfs-code for each growing step in a series

of permutations. The growing process stops either when the support of a subgraph is

less thanminSup or its dfs-code is not a minimum code, which means this subgraph

and all its descendants have been generated and discovered previously. ForminSup

value, we need to set it beforehand.

6.3 Empirical Experiment Result

We perform the tuning of the Two Populations Genetic Algorithm for solving the

Generalized Assignment Problem (GAP). We measure the performance as the average

of the percentage deviation from the best found solutionBest (Definition 3) and

compare our experiment results with default configurationsand configurations from a

one-size-fits-all configurator. The details of the experiment are as follows.

6.3.1 Target Problem and Algorithm

The Generalized Assignment Problem (GAP) is a widely-studied COP with many

practical applications [66]. The GAP may be defined as follows. Givenm agents

(or processors) andn tasks (or jobs), the GAP aims at finding the maximum-profit

assignment of each task to exactly one agent, subject to the capacity of each agent. It

can be formulated as follows. LetI = 1, ..., m be the set of agents andJ = 1, ..., n

the set of jobs. A standard integer programming formulationfor GAP is given in

119

expression (6.1) wherepij is the profit from assigning jobj to agenti, aij the resource

required for processing jobj by agenti, andbi is the capacity of agenti. The decision

variablesxij are set to 1 if jobj is assigned to agenti, and 0 otherwise. The constraints,

including the integrality condition on the variables, state that each job is assigned to

exactly one agent, and that the resource availabilities of agents do not exceed [66, 80].

max z =
∑

i∈I

∑

j∈J

pijxij s.t.
∑

i∈I

xij = 1 ∀j ∈ J,
∑

j∈J

aijxij ≤ bi ∀i ∈ I, xij ∈ {0, 1}

(6.1)

The GAP is known to be an NP-hard problem. Exact approaches tosolve GAP

include branch-and-price [96], and branch-and-bound [86]while heuristic approaches

include tabu search [35], and path relinking with ejection chains [116]. Several Ge-

netic Algorithms have been proposed to the GAP [81], from a GAwith a problem

specific heuristic operator involving two local improvement steps after the regular

crossover [31] to a Guided GA that uses an extra weighting operation to identify which

genes in a chromosome are more susceptible to being changed during crossover and

mutation [72].

To solve the GAP problem, we construct the Two-Population Genetic Algorithm

(FI2PopGA) [67]. In FI2PopGA, the population is divided into feasible and infeasi-

ble populations. The feasible population is a group of solutions that do not violate

any constraints while the infeasible population is a group of solutions that violate at

least one constraint. This approach arises from an intuitive idea that if one can sep-

arate the measuring of performance and feasibility, there may be a better chance to

find optimal solutions that are located at the boundary from both the feasible and in-

feasible directions. FI2PopGA is an interesting target algorithm to tune because it

has similar parameters as in any well-known GA algorithm with one categorical pa-

rameter (i.e.: FitnessMethod) which gives FI2PopGA an option to explore different

calculation methods.

In FI2PopGA, feasible and infeasible populations are treated separately and dif-

120

Procedure for Two Populations Genetic Algorithm
Inputs: i: instance;
Method:
1: Initialize population for chromosomes (t)
2: Evaluate feasibility for each individual, separate it

into two groups (feasible and infeasible) (t)
3: Evaluate each chromosome in each population using fitnessfunction (t)
4: Repeat until a stopping criteria is satisfied

4.1: Select parents from population depending on selection
and reproduction criteria (t+1)

4.2: Perform crossover on parents and create new offsprings(t+1)
4.3: Perform mutation on new population (t+1)
4.4: Evaluate feasibility for each chromosome and saperateit into

two groups (feasibile and infeasibile)(t+1)
4.5: Evaluate each chromosome using fitness function (t+1)

Output: s: solution;

Figure 6.5: Two Populations Genetic Algorithm Procedure

ferently. The fitness function for the feasible population is the value of their objective

function; while for the infeasible population, the fitness function can be calculated

from their distance to the boundary of the feasible region orfrom their penalty func-

tion. In the selection stage, solutions are compared only with other solutions in its

own population. The selected chromosome mates with anotherchromosome in the

same population to generate offsprings. FI2PopGA is outlined in Fig. 6.5.

The genetic operators we implement are standard: single-point crossover, uniform

random mutation and tournament 2 selection. The single-point crossover uses one

point to exchange part of the solution string from two parents. The uniform random

mutation changes every number in the solution string with a given probability. The

tournament 2 selection chooses two parents randomly and compares their fitness score,

and the one with the higher fitness score gets to mate. The parameters to be tuned are

described in Table. 6.1.

We apply our target algorithm to 100 generated instances andrandomly choose 50

for training and the remaining for testing. The number of jobs and agents is set to 100.

For best known values, we use the best found solution.

121

Table 6.1: Parameters for Two Population Genetic Algorithmon Generalized Assign-
ment Problem

Parameter Description Range
numGeneration number of generation [100, 1000]
populationSize population size [100, 1000]
FitnessMethod fitness calculation method [0, 1]
MutationRate probability to run mutation for new offsprings [0, 1]
CrossOverPoint probability of cross over point [0, 100]
CandidateNum number of generated candidate parents for tourna-

ment selection
[1, 10]

6.3.2 Experiment Setting and Setup

As in CluPaTra-II - FloTra, we use ParamILS [60] as our one-size-fits-all configura-

tor. We discretize the continuous parameters to 20 possiblevalues by simple enumera-

tion from minimum to maximum value. All experiments are performed on a 3.30GHz

Intel Core machine running Windows 7. Cutoff times are set to500 seconds per run

and each configuration process is allowed to call the target algorithm for a maximum

of 100 xn times, wheren is the number of instances. To compare the significance of

our results, we perform a t-test [83]; and we consider p-values below 0.05 are taken

as statistically significant (α ≤ 5%).

6.3.3 Performance Comparison

We compare the target algorithm performance using parameter configurations from

PeTra andPaRG. We measure the performance using performance metrics as defined

in Definition 3. In Table. 6.2, we show the performance comparison results. Notice

that our approach outperforms the default configuration andconfigurations from the

one-size-fits-all configurator, ParamILS.

6.4 Discussion

The result of the experiments on the Two Population Genetic Algorithm for the Gen-

eralized Assignment Problem (GAP) verifies the performanceof PeTra andPaRG.

It shows an encouraging improvement in performance compared to that of the default

122

Table 6.2:PeTra andPaRG Performance Result
Technique Training Testing

Default 0.45 0.36
ParamILS 0.25∗ 0.14∗

PeTra 0.13∗ 0.09∗

PaRG 0.10∗ 0.08∗

* = statistically significant against Default parameter configuration.
Boldface indicates the best performance result.

configuration and configurations from one-size-fits-all configurator, ParamILS. Based

on this preliminary result, we verify thatPeTra andPaRG are viable extensions of

our instance-specific tuning approaches for population-based algorithms.

On the performance result, we notice thatPaRG outperformsPeTra. This may

indicate that the parent inheritance relationship graph describes GA’s characteristics

to be better than the population evolution trajectory. Thismay be caused by the popu-

lation evolution trajectory oversimplifying the population dynamic due to its aggrega-

tion mechanism that replaces individual solution properties with its population sum-

mary statistics (minimum, maximum, average and local maximum). It will be of in-

terest to implement other population properties to improvethe performance ofPeTra.

Based on these results, we claim that: (1)PeTra andPaRG are suitable extensions

of instance-specific tuning for population-based algorithms; and (2)PaRG which uses

the parent inheritance relationship graph is more superiorto PeTra that uses popula-

tion evolution trajectory.

6.5 Chapter Summary

In this chapter, we introduce ideas for extending instance-specific tuning to

population-based algorithm. We study the interaction and population dynamic in Ge-

netic Algorithm and propose two extensions:PeTra andPaRG. PeTra focuses on

population evolution trajectories and extends theCluPaTra framework. On the other

hand,PaRG explores the selection mechanism dynamic and constructs a parent in-

123

heritance relationship graph to represent it.PaRG extends the work inCluPaTra-II

- FloTra and uses gSpan to extract compact features from the parent inheritance rela-

tionship graph.

We appliedPeTra andPaRG in tuning the Two Population Genetic Algorithm

that has 6 parameters. The result shows encouraging improvement from the default

parameter configuration and vanilla global configurator, ParamILS.

124

Chapter 7

Conclusions

In the previous chapters, we have discussed our generic automated parameter tuning

methodology and shown experimentally its significant improvement over the existing

approaches. In this last chapter, we provide a summary of themain contributions of

this thesis, and provide a few pointers for future directions.

7.1 Contributions

Although there has recently been keen research interest in automated parameter tun-

ing, to date, there is no single approach that is clearly generic that provides instance-

specific parameter configuration. One-size-fits-all approaches are generic and may be

applied to tune various application in various COPs, but only provide one best param-

eter configuration for the entire set of problem instances. Instance-specific approaches

on the other hand, tend to use problem-specific features thatmake the approaches less

general. Thus, our major contributions are summarized as follows:

CluPaTra: Instance-specific Automated Parameter Tuning via Trajectory Clus-

tering (Chapter 3).

• We have constructed ageneric instance specific automated parameter tuning

framework by first performing a clustering of problem instances, and tuning the

target algorithms to derive the best parameter configurations for the respective

125

clusters. Subsequently, given an arbitrary instance, we map it to the closest

cluster. The tuned parameter configuration for that clusteris returned as the

parameter configuration for this instance.

• We have introduced the notion of an instances search trajectory as the problem-

independent feature. Search trajectory is defined as the path that a local search

algorithm follows as it searches from an initial solution toits neighbor from one

iteration to the next. The advantage of our approach lies in the fact that the

search trajectory may be computed from a local-search basedalgorithm. Hence

our feature is problem-independent and may be conceptuallyretrieved from any

local search-based algorithm.

• We have constructed a novel technique to extract problem-independent features

and calculate similarity based on them using a well-known machine learning

technique: sequence alignment. We have explored two different search trajec-

tory sequence representations and two sequence alignment implementations.

• We appliedCluPaTra on three classical COPs: Traveling Salesman Problem

(TSP), Quadratic Assignment Problem (QAP) and Set CoveringProblem (SCP)

and showed significant improvement toward existing one-size-fits-all configu-

rators.

CluPaTra-II: Pattern Mining Approaches for Instance-specific Automated Pa-

rameter Tuning (Chapter 4).

• We have overcomeCluPaTra’s limitations in scalability, flexibility and descrip-

tiveness by constructingCluPaTra-II where we add a feature extraction step and

replace the similarity calculation with a well-known method, cosine similarity.

• We have modeled feature extraction as a pattern mining problem and have de-

signed two new data mining techniques to boostCluPaTra computational speed

as well as to improve the cluster quality and the overall performance.

126

• We have presentedSufTra, a pattern mining technique to extract patterns from

sequence search trajectories based on Suffix Tree data structure. SufTra offers

a linear time algorithm to exact meaningful features.

• We have designedFloTra, a graph mining technique for search trajectory

graphs. FloTra offers a fast technique to extract compact features using spe-

cific characteristics of search trajectory graphs.

• We have appliedCluPaTra-II on three classical COPs as inCluPaTra and

showed improved results in terms of computation time, cluster quality and over-

all performance as compared toCluPaTra.

AutoParTune: Web-based Automated Parameter Tuning Workbench(Chapter

5).

• We have implemented our approaches for instance-specific automated parame-

ter tuning in a web-based automated parameter tuning workbench that integrates

our approaches with a method for parameter-space reductionand global (one-

size-fits-all) parameter tuning.

• We have applied two basic security mechanisms to protectAutoParTune

against Internet attacks from human and automated-agent perpetrators. We im-

plement email Authentication Mechanism to prevent automated-agent perpetra-

tors and anti-virus Scanning Mechanism to check files uploaded for malicious

codes.

• We have designed component communication schema to enable communica-

tions between each of the components inAutoParTune.

• We have appliedAutoParTune in two industrial cases: the Aircraft Spares

Inventory Optimization Problem and the Theme Park Personalized Intelligent

Route Guidance Problem and produced better overall performance results com-

pared to the default configuration used by our industry partners.

127

Instance-specific Tuning: Extension to Genetic Algorithms(Chapter 6).

• We have extended our approaches for instance-specific automated parameter

tuning to population-based algorithms. We analyze GeneticAlgorithm popula-

tion’s dynamic and design two new approaches:PeTra andPaRG.

• We have presentedPeTra, an extension ofCluPaTra for Genetic Algorithm.

PeTra is design to capture similarity from GA’s Population Evolution Trajectory

by representing it as a directed sequence and calculate the similarity using pair-

wise sequence alignment.

• We have introducedPaRG, an extension ofCluPaTra-II - FloTra where we

investigate GA’s Parent Inheritance Relationship similarity in Graph represen-

tative. We implement a well-known pattern mining technique, gSpan, as the

feature extraction method.

• We have implementedPeTra andPaRG on Generalized Assignment Problem

(GAP) using Two-Population Genetic Algorithm and producedencouraging re-

sults compared to the default configuration and vanilla one-size-fits-all configu-

rator.

7.2 Future Directions

There are a number of future directions that can be pursued toextend our work further,

and these are summarized as follows.

First, we discussAutoParTune’s scalability.AutoParTune is designed as a web-

based application that enables users to perform their tuning computation in the server.

As all tuning processes, which are computationally time consuming, are done in the

server,AutoParTune is not scalable for tuning large instances (which may require the

target algorithm to run for a long time). Furthermore, the ability to handle multiple

tuning processes concurrently poses a challenge in scalability for AutoParTune as

well.

128

To overcome the challenge of scalability, two approaches can be considered,

namely, process batch and peer-to-peer computing. First,AutoParTune may run the

tuning process in batches, i.e. users may upload tuning tasks anytime, butAutoPar-

Tune will process them in batches periodically. A queuing systemwill drastically

bring down computational load.

Second,AutoParTune may adopt a peer-to-peer (P2P) approach to distribute tun-

ing tasks between theAutoParTune server and the user machine. The idea of P2P is

to allow users to share resources, such as power, knowledge,disk storage and infor-

mation, between computers [76]. P2P has been used mostly in large scale data and

information sharing. Examples of well-known P2P applications are Napster and Ox-

ford anti-cancer projects [76]. In P2P design, computers can act as both clients and

servers, with the roles determined according to the requirements of the system at any

particular given time. Using P2P techniques, one may distribute the balance work-

load between theAutoParTune server and user machine for certain tuning processes

such as calling the target algorithm for different instances using different parameter

configurations.

A second future research direction can be conceived to explore techniques for

feature extraction inCluPaTra-II. In this thesis, we model instance-specific parameter

tuning as a frequent pattern mining problem and construct a sequential pattern mining

and a structural pattern mining algorithm to extract features from search trajectories.

Other than sequential and structural pattern mining, search trajectory similarity may

be computed using other methods such as time-series patternmining [118, 75].

In time-series pattern mining, one may consider the search trajectory as time se-

ries data and represent each solution in the search trajectory as one data point. This

technique is natural because the search trajectory has natural temporal ordering, where

each solution is found in a different algorithm step (or iteration), which can also be

constituted as a different time series. We then extract the features using a time-series

pattern mining technique such as [97]. In [97], the time series data are clustered by

constructing a spectra from the original time series data with the means adjusted to

129

zero and normalizing it by the differences with the largest peak (in terms of a search

trajectory, we can associate the peak with a local optimal solution). They then apply a

hierarchical clustering method to cluster the spectra.

One limitation in modeling instance-specific parameter tuning as a time series

mining problem is that it can only work for sequence search trajectories because the

time series data are assumed as a sequence of data points [5].It may not be suitable

for clustering search trajectories that have many cycles.

Other then time series pattern mining, search trajectory similarity may be com-

puted using other data mining techniques such as correlation mining [51] and associa-

tive classification [51].

Third, in this thesis, we only use one single generic feature(search trajectory)

to calculate similarity and cluster the instances. It will be of interest to investigate

how different possible features (generic or problem-specific) such as Fitness Distance

Correlation (FDC) and problem size, can be incorporated to improve the performance

of the clustering and the overall tuning result. However, adding different features

will increase the dimensionality of the data and make the clustering process more

challenging [24].

The common approach to deal with high dimensional data is to transform it into

lower dimensional data via Principal Component Analysis (PCA) [36]. PCA reduces

high dimensional data into a few dimensions regardless of the nature of the original

variables (i.e. ordinal, continues, categorical) [63]. Each dimension is called a Princi-

pal Component (PC) and represents a linear combination of the variables. The first PC

accounts for as much variation in the data as possible. Each succeeding PC accounts

for as much of the variation unaccounted for by preceding PCsas possible. PCs are

orthogonal and guaranteed to be perfectly independent of each other. PCs are found by

calculating the eigenvectors and eigenvalues of variable data. The eigenvector with the

largest eigenvalue is the direction of greatest variation,the one with the second largest

eigenvalue is the (orthogonal) direction with the next highest variation and so on. In

our clustering context for instance-specific parameter tuning using different features,

130

we can apply PCA to reduce the dimensionality of the data set prior to clustering. The

objective of using PCA prior to clustering is for the PC to extract the cluster structure

in the data set as in [119] where they use the first two PCs to cluster the data using a

variant of the hierarchical clustering.

131

Appendix A

Empirical Experiment Result

132

Table A.1: Performance Comparison on TSP
Approach #Fold Training Testing
ParamILS 1 2.56 2.01

2 2.86 2.11
3 2.76 1.92
4 2.55 1.93
5 2.62 2.13

CluPaTra Standard 1 2.33 2.04
2 2.18 2.01
3 2.05 1.93
4 2.14 1.91
5 2.41 1.78

CluPaTra Trans 1 1.97 1.85
2 2.18 1.77
3 2.16 1.23
4 1.97 2.03
5 1.78 1.71

CluPaTra Robust 1 2.08 2.03
2 2.11 1.71
3 2.32 1.91
4 2.11 1.58
5 1.87 1.81

CluPaTra Trans-Robust 1 2.11 2.02
2 1.98 2.09
3 1.76 1.87
4 2.45 1.67
5 1.99 1.99

ISAC 1 2.23 2.09
2 2.13 1.55
3 1.95 1.23
4 2.56 1.98
5 1.23 2.53

CluPaTra-II - SufTra 1 1.98 1.87
2 2.05 1.76
3 2.13 1.31
4 1.78 1.65
5 2.05 1.25

CluPaTra-II - FloTra 1 1.87 1.23
2 2.34 1.45
3 2.01 1.42
4 1.96 1.03
5 1.74 1.13

CluPaTra-II - gSpan 1 1.87 1.45
2 1.96 1.65
3 2.21 1.04
4 1.92 1.06
5 1.98 1.24

133

Table A.2: Performance Comparison on QAP
Approach #Fold Training Testing
ParamILS 1 2.03 2.48

2 2.43 2.33
3 2.55 2.01
4 2.01 2.43
5 2.05 2.12

CluPaTra Standard 1 1.92 2.13
2 1.99 2.12
3 1.98 2.17
4 2.02 2.21
5 2.04 2.32

CluPaTra Trans 1 1.87 2.13
2 1.85 2.11
3 1.96 2.04
4 1.88 2.09
5 1.84 2.04

CluPaTra Robust 1 1.89 2.14
2 1.86 2.12
3 2.01 2.11
4 1.87 2.09
5 1.82 2.06

CluPaTra Trans-Robust 1 1.91 2.19
2 1.88 2.32
3 1.97 1.99
4 1.89 2.05
5 1.87 2.39

ISAC 1 1.99 2.03
2 2.1 2.54
3 1.87 2.05
4 2.04 2.01
5 1.91 2.12

CluPaTra-II - SufTra 1 0.65 1.14
2 1.02 1.43
3 0.77 0.98
4 0.82 1.23
5 0.87 1.01

CluPaTra-II - FloTra 1 1.05 0.97
2 0.65 1.15
3 0.77 0.81
4 0.59 1.19
5 0.84 1.21

CluPaTra-II - gSpan 1 0.67 1.23
2 0.87 0.93
3 0.64 1.09
4 1.09 1.04
5 0.71 1.16

134

Table A.3: Performance Comparison on SCP
Approach #Fold Training Testing
ParamILS 1 1.72 0.98

2 1.67 0.88
3 1.16 0.71
4 1.54 0.65
5 1.57 0.89

CluPaTra Standard 1 1.31 0.76
2 1.22 0.56
3 1.01 0.82
4 1.23 0.93
5 1.43 0.98

CluPaTra Trans 1 1.09 0.76
2 0.77 0.77
3 0.56 0.69
4 0.91 0.81
5 0.56 0.98

CluPaTra Robust 1 1.01 0.95
2 1.04 1.18
3 1.19 0.99
4 0.91 0.89
5 0.91 0.87

CluPaTra Trans-Robust 1 0.54 0.75
2 0.55 0.88
3 0.81 0.64
4 0.81 0.76
5 0.65 0.87

ISAC 1 1.18 0.55
2 1.34 0.76
3 1.22 0.55
4 1.02 0.98
5 0.91 1.02

CluPaTra-II - SufTra 1 0.54 0.88
2 0.34 0.75
3 0.33 0.65
4 0.23 0.78
5 0.31 0.81

CluPaTra-II - FloTra 1 0.23 0.45
2 0.12 0.65
3 0.56 0.23
4 0.12 0.78
5 0.34 0.48

CluPaTra-II - gSpan 1 0.36 0.77
2 0.35 0.62
3 0.23 0.78
4 0.34 0.46
5 0.28 0.79

135

Appendix B

Quick Start Guide for AutoParTune

136

137

Quick Start Guide for AutoParTune

1. Introduction

AutoParTune (Automated Parameter Tuning Framework) is a framework for generic

automated parameter tuning for a given target algorithm (such as Tabu Search, Simulated

Annealing, GRASP). This framework is consisted of several parts, namely: parameter

space reduction, feature-based instances classification, and parameter tuning. The

framework is outlined in the picture below.

Figure 1. AutoParTune Framework

2. Input Files for AutoParTune

The user should provide:

• the target algorithm, which is compiled into Windows executable exe callable from

the DOS command line.

The target algorithm must be able to execute as follows:

algo-executable –I instance_file –S seed params

where:

if target algorithm is a Stochastic Local Search then the code for the target algorithm

need to be amended such that seed provides the value for the random seed used

within the algorithm; else ignore the seed.

params refers to the parameter values set for running the target algorithm

138

Example:

ils_tsp.exe –I kroa100.txt –S 2345 –P 10 –B 1

The output of the target algorithm is the best found objective value (displayed in the

last line of the screen output when running the algorithm).

• a set of training and testing instances – one file for each instance

• a list of training and testing instances file.

First line is a number of training or testing instances; and the rest are instance “file

name” [tab] “best known value”.

Example:

56

a280.tspx 2579

ch130.tspx 6110

• a txt file containing the parameter space.

The parameter space file format is one parameter per line. Each line contains:

parameter name, switch to pass the parameter to the algorithm, type of parameter

(i=integer, r=real and c=categorical), minimum and maximum value for integer and

real parameter or all possible parameter values for categorical parameter.

Example:

PERTURBATION_STRENGTH "-P " r [0.1, 10]

BETTER_ACCEPTANCE_CRITERIA "-B " i [0, 1]

NON_IMPROVING_MOVES_TOLERANCE "-N " c [1, 2, 3, 4]

OptChoose "-O " c [3, 4]

• For instance-specific tuning (CluPaTra and SufTra), please provide trajectory

generator target algorithm, which is compiled into Windows executable exe callable

from the DOS command line (similar to “target algorithm”).

The trajectory generator should produce a [instance file name].result2.RunLog

(example ch150.tspx.result1.RunLog) containing the instance’s search trajectory

obtained. The format of the file is:

139

Row Field Name Example

1 Instance’s name a280

2 Global optimal or best-found objective value 2579

3 Restart symbol -

4* Neighbor position, whether the solution has direct neighbor

that has same, better or worse objective value.

It is represented as 3 binary digits with 1 (yes) and 0 (no). -

first digit for same objective value, second digit for better

objective value and third digit for worse objective value.

1 0 1

5* Objective value of the solution found 3334

6* Solution found (sequence of nodes on the tour) 201,202,203,116,117,61,62,6

3,57,56,55,44,45,46,53,54,…

Last

row

BF OV=best found objective value BF OV=2911

*Rows 4-6 are repeated for each solution found by the target algorithm. Collectively,

it represents the search trajectory.

3. Running AutoParTune

140

Figure 2. AutoParTune Home

Click “Run AutoParTune” to run parameter configuration.

Figure 3. Run AutoParTune – File Input

Please input name of project, target algorithm (windows executable file), type of target

algorithm, training instance list (txt file), training instance files (zip file), testing instance

list (txt file), testing instance files (zip file), and parameter space (txt file).

141

Click “Next” to continue.

Figure 4. Run AutoParTune – File Input Confirmation

142

Click “Next” to continue.

Figure 5. Run AutoParTune – Tuning Method

Choose the tuning type and whether the tuning with or without Parameter Search Space

Reduction.

143

Click “Next” to continue.

Figure 6. Run AutoParTune – Tuning Instance-specific Method

If Tuning Type is Instance-Specific, choose the instance-specific method, input trajectory

generator (windows executable file).

144

Click “Next” to continue.

Figure 7. Run AutoParTune – Tuning Method Confirmation

145

Click “Next” to continue.

Figure 8. Run AutoParTune – Email Contact

Input the contact email address and click “Next” to finish the input process. Email

verification will be sent to the email account. Please use the link in the email to start the

tuning process. When the tuning process starts, an email notification will be sent.

146

Figure 9. Run AutoParTune – Email Verification

Figure 10. Run AutoParTune – Link from Email Verification

147

After the tuning process is done, an email with the result xml file will be sent to the email

address.

To check the tuning progress, click menu “Check Tuning Progress”. Fill in the project id

and click “Find Result”.

Figure 11. Check Tuning Progress

148

Figure 12. Tuning Result

149

Click menu “Documents” to view AutoParTune Documentation and related references.

Figure 13. AutoParTune Documents

150

Click menu “Terms and Conditions” to open AutoParTune terms and conditions.

Figure 14. AutoParTune Terms and Conditions

Bibliography

[1] The traveling salesman problem.http://www.tsp.gatech.edu/. Ac-
cessed: 2013-06-11.

[2] T. Abell, Y. Malitsky, and K. Tierney. Features for exploiting black-box opti-
mization problem structure. InProc. 7th Learning and Intelligent OptimizatioN
Conference (LION). To appear., 2013.

[3] B. Adenso-Dı́az and M. Laguna. Fine-tuning of algorithms using fractional ex-
perimental design and local search.Operations Research, 54(1):99–114, 2006.

[4] D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, and
K. Ryall. Human-guided simple search. InProc. 17th National Conference on
Artificial Intelligence, 2000.

[5] H. Andr-Jnsson and D.Z. Badal. Using signature files for querying time-series
data. InProc. Principles of Data Mining and Knowledge Discovery, pages
211–220, 1997.

[6] E. Angel and V. Zissimopoulos. On the hardness of the quadratic assignment
problem with metaheuristics.Journal of Heuristics, 8(4):399–414, 2002.

[7] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm
for the automatic configuration of algorithms. InProc. 15th International Con-
ference on Principles and Practice of Constraint Programming (CP), pages
142–157, 2009.

[8] T. Back, D.B. Fogel, and Z. Michalewicz.Handbook of Evolutionary Compu-
tation. IOP Publishing, Bristol, U.K., 1997.

[9] J. Baker and M. Cameron. The effects of the service environment on affect
and consumer perception of waiting time: An integrative review and research
propositions.Journal of the Academy of Marketing Science, 24:338–349, 1996.

[10] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the
f-race algorithm: Sampling design and iterative refinement. In Proc. 4th Inter-
national Workshop on Hybrid Metaheuristics, page 108122. Springer Verlag,
2007.

[11] E. Balas and M.C. Carrera. A dynamic subgradient-basedbranch and bound
procedure for set covering.Operations Research, 44:875–890, 1996.

[12] T. Bartz-Beielstein. Experimental research in evolutionary computation: The
new experimentalism.Natural Computing Series, 2006.

151

[13] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parameter opti-
mization. InProc. IEEE Congress on Evolutionary Computation, pages 773–
780. IEEE Press, 2005.

[14] R. Battiti, M. Brunato, and P. Campigotto. Learning while optimizing an un-
known fitness surface. InProc. 2nd Learning and Intelligent OptimizatioN
Conference (LION), pages 25–40, 2008.

[15] R. Battiti, M. Brunato, and F. Mascia. Reactive search and intelligent optimiza-
tion. Operations Research/Computer Science Interface, 45, 2008.

[16] M. Birattari. Tuning Metaheuristic: a Machine Learning Perspective. IOS
Press, 2005.

[17] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. InProc. Genetic and Evolutionary Computation
Conference (GECCO), pages 11–18, 2002.

[18] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.Automated algorithm
tuning using f-races: Recent development. InProc. 8th Metaheuristics Inter-
national Conference (MIC), 2009.

[19] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.F-race and Iterated F-
Race: An overview. Springer Verlag, 2010.

[20] C. Blum and A. Roli. Metaheuristcs in combinatorial optimization: Overview
and conceptual comparison.ACM Computing Surveys, 35(3):268–308, 2003.

[21] R.E. Burkard. Quadratic assignment problems.European Journal of Opera-
tional Research, 18:283–289, 1984.

[22] R.E. Burkard, S.E. Karisch, and F. Rendl. A quadratic assignment problem
library. European Journal of Operational Research, 55:115119, 1991.

[23] E. Burke and G. Kendall.Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. Springer, 2005.

[24] S. Girard C. Bouveyron and C. Schmid. High-dimensionaldata clustering.
Computational Statistics & Data Analysis, 52(1):502–519, 2007.

[25] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering
problem.Operations Research, 47:730–743, 1999.

[26] M. Caserta and S. Voss. Corridor selection and fine tuning for the corri-
dor method. InProc. 3rd Learning and Intelligent OptimizatioN Conference
(LION), pages 163–175, 2009.

[27] M. Caserta and S. Voss. A math-heuristic algorithm for the dna sequenc-
ing problem. InProc. 4th Learning and Intelligent OptimizatioN Conference
(LION), pages 25–36, 2010.

[28] D. G. Cattrysse and L.N.V. Wassenhove. A survey of algorithms for the general-
ized assignment problem.European Journal of Operational Research, 60:260–
272, 1992.

152

[29] V. Cerny. A thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm.Journal of Optimal Theory Application, 45:41–
51, 1985.

[30] M. Chiarandini, C. Fawcett, and H.H. Hoos. A modular multiphase heuristic
solver for post enrolment course timetabling. InProc. International Conference
on the Practice and Theory of Automated Timetabling (PATAT), 2008.

[31] P.C. Chu and J.E. Beasley. A genetic algorithm for the generalized assignment
problem.Computer Operational Research, 24:17–23, 1997.

[32] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.Introduction to Algo-
rithm. MIT Press, second edition edition, 2001.

[33] S.P. Coy, B.L. Golden, G.C. Runger, and E.A. Wasil. Using experimental de-
sign to find effective parameter setting for heuristics.Journal of Heuristics,
7(1):77–97, 2001.

[34] K. Deb and T. Goel. Controlled elitist non-dominated sorting genetic algo-
rithms for better convergence. In E. Zitzler, L. Thiele, K. Deb, C.A. Coello
Coello, and D. Corne, editors,Evolutionary Multi-Criterion Optimization, vol-
ume 1993 ofLecture Notes in Computer Science, pages 67–81. Springer Berlin
Heidelberg, 2001.

[35] J.A. Diaz and E. Fernandez. A tabu search heuristic for the generalized assign-
ment problem.European Journal of Operational Research, 132:22–38, 2001.

[36] C. Ding and X. He. K-means clustering via principal component analysis. In
Proc. 21th International Conference on Machine Learning, 2004.

[37] C. Fawcett, M. Helmert, H.H. Hoos, E. Karpas, G. Rger, and J. Seipp. Fd-
autotune: Domain-specific configuration using fast-downward. In Proc. of In-
ternational Conference on automated Planning and Scheduling - Planning and
Learning (ICAPS-PAL), 2011.

[38] M. Finger, T. Stützle, and H. Lourenço. Exploiting fitness distance correlation
of set covering problems. InLNCS: Applications of Evolutionary Computing,
2002.

[39] M. Gagliolo and J. Schmidhuber. Dynamic algorithm portfolio. In Proc. 9th
International Symposium on Artificial Intelligence and Mathematics (ISAIM),
2006.

[40] M.R. Garey and D.S. Johnson.Computer and Intractability: A Guide to the
Theory of NP-Completeness. William H. Freeman, 1979.

[41] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M.T. Schneider, and
S. Ziller. A portfolio solver for answer set programming: Preliminary report.
In Logic Programming and Nonmonotonic Reasoning, pages 352–357, 2011.

[42] F. Glover and M. Laguna.Tabu Search. Springer, 1997.

153

[43] C. Gomes and B. Selman. Algorithm portfolio.Artificial Intelligence, 126:43–
62, 2001.

[44] A. Gunawan, H. C. Lau, and E. Wong. Real-world parametertuning using
factorial design with parameter decomposition. InProc. 9th Metaheuristics
International Conference (MIC), 2011.

[45] A. Gunawan, Hoong Chuin Lau, and Lindawati. Fine-tuning algorithm param-
eters using the design of experiments approach. InProc. 5nd Learning and
Intelligent OptimizatioN Conference (LION), page 278292, 2011.

[46] D. Gusfield.Algorithms on Strings, Trees and Sequences. Cambridge Univer-
sity Press, 1997.

[47] S. Halim. An Integrated White+Black Box Approach for Designing and Tun-
ing Stochastic Local Search Algorithms. Ph.D. thesis, National University of
Singapore, Singapore, 2009.

[48] S. Halim, Y. Yap, and H.C. Lau. Viz: A visual analysis suite for explaining local
search behavior. InProc. 19th ACM symposium on User Interface Software and
Technology (UIST), pages 57–66, 2006.

[49] S. Halim, Y. Yap, and H.C. Lau. An integrated white+black box approach
for designing and tuning stochastic local search. InProc. 13th International
Conference on Principles and Practice of Constraint Programming (CP), pages
332–347, 2007.

[50] J. Han, H. Cheng, and D. Xin. Frequent pattern mining: current status and
future directions.Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

[51] J. Han and M. Kamber.Data Mining: Concept and Techniques, 2nd Edition.
Morgan Kaufman, San Francisco, 2006.

[52] K. Helsgaun. An effective implementation of the linkernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130,
2000.

[53] W. Herroelen and A. Van Gils. On the use of flow dominance in complex-
ity measures for facility layout problems.International Journal of Production
Research, 23:97–108, 1985.

[54] R.R. Hill and C.H. Reilly. The effects of coefficient correlation structure in
two-dimensional knapsack problems on solution procedure performance.Man-
agement Science, 46(2):302–317, 2000.

[55] H.H. Hoos and T. Stützle.Stochastic Local Search: Foundation and Applica-
tion. Morgan Kaufman, San Francisco, 2004.

[56] F. Hutter and Y. Hamadi. Parameter adjustment based on performance pre-
diction: Towards an instance-aware problem solver. InTechnical Report. Mi-
crosoft Research, 2005.

154

[57] F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown. Performance predic-
tion and automated tuning of randomized and parametric algorithms. InProc.
18th International Conference of Principles and Practice of Constraint Pro-
gramming (CP), pages 213–228, 2006.

[58] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. InProc. 5nd Learning and Intelligent
OptimizatioN Conference (LION), 2011.

[59] F. Hutter, H.H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded se-
quential parameter optimization. InProc. 4nd Learning and Intelligent Opti-
mizatioN Conference (LION), 2010.

[60] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle.Paramils: An automatic
algorithm configuration framework.Journal of Artificial Intelligence Research,
36:267–306, 2009.

[61] F. Hutter, H.H. Hoos, and T. Stützle. Automatic algorithm configuration based
on local search. InProc. 22nd AAAI Conference on Artificial Intelligence, pages
1152–1157. AAAI Press, 2007.

[62] D. S. Johnson and L. A. McGeoch. The traveling salesman problem - a case
study in local optimization.Local Search in Combinatorial Optimization, pages
215–310, 1997.

[63] I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[64] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac: Instance-specific
algorithm configuration. InProc. 19th European Conference on Artificial In-
telligence (ECAI), pages 751–756, 2010.

[65] L. Kaufman and P.J. Rousseeuw.Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley-Interscience, 1990.

[66] H. Kellerer, U. Pferschy, and D. Pisinger.Knapsack Problems. Springer, Berlin,
2004.

[67] S. Kimbrough, A. Kuo, H. C. Lau, Lindawati, and D. H. Wood. On using ge-
netic algorithms to support post-solution deliberation inthe generalized assign-
ment problem. InProc. 8th Metaheuristics International Conference (MIC),
2009.

[68] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-
nealing.Science, 4598:671–680, 1983.

[69] J. Knowles and D. Corne. Instance generators and test suites for the multiob-
jective quadratic assignment problem. InProc. Evolutionary Multi-Criterion
Optimization, 2003.

[70] C. Kroer and Y. Malitsky. Feature filtering for instance-specific algorithm con-
figuration. InProc. 23rd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pages 849–855, 2011.

155

[71] H.C. Lau and F. Xiao. Enhancing the speed and accuracy ofautomated pa-
rameter tuning in heuristic design. InProc. 8th Metaheuristics International
Conference (MIC), 2009.

[72] T.L. Lau and E.P.K. Tsang. The guided genetic algorithmand its application to
the generalised assignment problem. InProc. IEEE International Conference
on Evolutionary Programming, pages 135–155, 1995.

[73] E.L. Lawler. The quadratic assignment problem.Management Science, 9:586–
599, 1963.

[74] E.L. Lawler, J.K. Lestra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.).The
Traveling Salesman Problem: A guided Tour of CombinatorialOptimization.
John Wiley and Sons, 1983.

[75] T. Warren Liao. Clustering of time series dataa survey.Pattern Recognition,
38(11):1857–1874, 2005.

[76] A.W. Loo. Peer-to-Peer computing: building supercomputers with webtech-
nologies. Springer, 2007.

[77] H.R. Lourenço, O.C. Martin, and T. Stützle. Iteratedlocal search.Handbook
of Metaheuristics, International Series in Operations Research & Management
Science, 57:320–353, 2003.

[78] W. Macready and D. Wolpert. What makes an optimization problem hard.
Complexity, 5:40–46, 1996.

[79] Y. Malitsky and M. Sellmann. Stochastic offline programming. InProc. IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), pages
351–371, 2009.

[80] S. Martello and P. Toth.Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, New York, 1990.

[81] J. Martikainen and S.J. Ovaska. Hierarchical two-population genetic algorithm.
Proc. International Journal of Computational Intelligence Research (IJCIR),
2:367–380, 2006.

[82] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1999.

[83] D.C. Montgomery and G.C. Runger.Applied Statistics and Probability for
Engineers 2nd Edition. John Wiley & Son, 1999.

[84] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. InProc. International Conference on Computer Vision
Theory and Applications (VISAPP), pages 331–340, 2009.

[85] N. Musliu. Local search algorithm for unicost set covering problem. InLNCS:
Advances in Applied Artificial Intelligence, 2006.

[86] R.M. Nauss. Solving the generalized assignment problem: An optimizing and
heuristic approach.Informs Journal on Computing, 15:249–266, 2003.

156

[87] K.M. Ng, A. Gunawan, and K.L. Poh. A hybrid algorithm forthe quadratic as-
signment problem. InProc. International Conference on Scientific Computing,
pages 14–17, 2008.

[88] G. Ochoa, S. Verel, F. Daolio, and M. Tomassini. Clustering of local optima
in combinatorial fitness landscape. InProc. 5nd Learning and Intelligent Opti-
mizatioN Conference (LION), 2011.

[89] C.H. Papadimitriou and K. Steiglitz.Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, Mineola, N.Y., 1998.

[90] D.J. Patterson and H. Kautz. Auto-walksat: A self-tuning implementation of
walksat.Electronic Notes in Discrete Mathematics, 9:360–368, 2001.

[91] C.R. Reeves. Landscapes, operators and heuristic search. Annals of Operations
Research, 86(1):473–490, 1999.

[92] C.R. Reeves. Landscapes, operators and heuristic search. Annals of Operations
Research, 86(1):473–490, 1999.

[93] C.H. Reilly. Synthetic optimization problem generation: Show us the correla-
tions! INFORMS Journal on Computing, 21:458–467, 2009.

[94] F. Rossi, P.V. Beek, and T. Walsh.Handbook of Constraint Programming:
Foundations of Artificial Intelligence. Elsevier Science and Technology Books,
2006.

[95] S. Salvador and P. Chan. Determining the number of clusters/segments in hier-
archical clustering/segmentation algorithms. InProc. 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), pages 576–584, 2004.

[96] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment
problem.Operation Research, 45:831–841, 1997.

[97] C.T. Shaw and G. P. King. Using cluster analysis to classify time series.Physica
D: Nonlinear Phenomena, 58(1):288–298, 1992.

[98] S.N. Sivanandam and S.N. Deepa.Introduction to Genetic Algorithms.
Springer, 2008.

[99] K. Smith-Miles, J. Hemert, and X.Y. Lim. Understandingtsp difficulty by learn-
ing from evolved instances. InProc. 4th Learning and Intelligent OptimizatioN
Conference (LION), pages 266–280, 2010.

[100] K. Smith-Miles and L. Lopes. Measuring instance difficulty for combinato-
rial optimization problems.Computer and Operations Research, 39:875–889,
2012.

[101] T. Stützle. Iterated local search for the quadratic assignment problem.European
Journal of Operational Research, 174(3):1519–1539, 2006.

[102] T. Stützle and S. Fernandes. New benchmark instancesfor the qap and the
experimental analysis of algorithms. InLNCS: Evolutionary Computation In
Combinatorial Optimization, 2004.

157

[103] K. Sugihara. Measures for performance evaluation of genetic algorithms. In
Proc. 3rd Joint Conference on Information Sciences (JCIS), 1997.

[104] E.D. Taillard. Robust taboo search for the quadratic assignment problem.Par-
allel Computing, 17:443–455, 1991.

[105] É.D. Taillard. Comparison of iterative searches for the quadratic assignment
problem.Location Science, 3(2):87–105, 1995.

[106] J. Tavares, FB. Pereira, and E. Costa. Multidimensional knapsack problem: a
fitness landscape analysis.Proc. IEEE International Conference on Systems,
Man, and Cybernetics, 38(3):604–616, 2008.

[107] H. Terashima-Marı́n and P. Ross. Evolution of constraint satisfaction strategies
in examination timetabling. InProc. Genetic and Evolutionary Computation
Conference (GECCO), pages 635–642, 1999.

[108] J. A. Vasconcelos, J. A. Ramrez, R. H. C. Takahashi, andR. R. Saldanha. Im-
provements in genetic algorithms.Proc. IEEE Transactions aon Magnetics,
37:3414–3417, 2001.

[109] T.E. Vollmann and E.S. Buffa. The facilities layout problem in perspective.
Management Science, 12(10):450–468, 1966.

[110] W.L. Winston. Operations Research: Applications and Algorithms. Thomson
Brooks/Cole, 2004.

[111] D. H. Wolpert and W. G. Macready. No free lunch theoremsfor optimization.
Evolutionary Computation, 1(1):67–82, 1997.

[112] J. Xu, S.Y. Chiu, and F. Glover. Probabilistic tabu search for telecommuni-
cations network design.Combinatorial Optimization: Theory and Practice,
1(1):69–94, 1996.

[113] J. Xu, S.Y. Chiu, and F. Glover. Fine-tuning a tabu search algorithm with statis-
tical tests.International Transactions in Operational Research, 5(3):233–244,
1998.

[114] L. Xu, H.H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring
algorithms for portfolio-based selection. InProc. Conference of the Association
for the Advancement of Artificial Intelligence (AAAI-10), 2010.

[115] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for sat.Journal of Artificial Intelligence Research, 32:565–
606, 2008.

[116] M. Yagiura, T. T. Ibaraki, and F. Glover. A path relinking approach with ejec-
tion chains for the generalized assignment problem.European Journal of Op-
erational Research, 169:548–569, 2006.

[117] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. InProc.
IEEE International Conference on Data Mining (ICDM), page 721723, 2002.

158

[118] J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time
series data.IEEE Transactions on Knowledge and Data Engineering, 15:613–
628, 2003.

[119] K.Y. Yeung and W.L. Ruzzo. Principal component analysis for clustering gene
expression data.Bioinformatics, 17(9):763–774, 2001.

[120] Z. Yuan, K. Tierney, Lindawati, and H.C. Lau. Private Communication, March
2013.

159

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2014

	Generic Instance-Specific Automated Parameter Tuning Framework
	Linda LINDAWATI
	Citation

	Thesis.DVI

