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Foreword 

This thesis is aimed at two different types of readers: those interested in shape 
grammars and those interested in urban design. The former will find extensive and 
detailed concepts that address (urban) design synthesis using shape grammars for 
design exploration. The latter will find the conceptual basis for the development of 
generative design tools for urban design. It encompasses a design method using 
design tools based on shape and description grammars as the generative formalism. 
The research was developed within the framework of a research project called City 
Induction (Duarte et al., 2012). The goal of the project is the integration of design 
support tools to formulate, generate and evaluate urban designs. This thesis focuses 
on the development of generation tools for urban design, corresponding to the more 
design-oriented component of City Induction. It defines the theoretical model for an 
urban design tool called CItyMaker and presents two prototype implementations as 
proof of concept. As such, urban designers will find the main contributions of this 
thesis in the discussion of design methods and conceptual tools to support an efficient, 
flexible, interactive, and responsive urban design process. Although integrated into the 
research, all the methods and tools developed in this thesis were designed to be 
autonomous, that is, to work and be used independently of the other City Induction 
modules. 

For those interested in shape grammars the thesis may represent a step forward 
towards a more extensive use of the generative properties of shape grammars in urban 
design. In particular, a method has been developed to implement shape grammar-
based codes embedding a conventional reflective design method. From the point of 
view of the urban designer, the thesis will provide a design method for urban design 
and a supporting generative tool with an interactive and responsive working 
environment. The approach shown here is responsible for creating an environment 
which enhances awareness of the effects of design decisions throughout a 
progressively evolving urban design process. 

José Nuno Beirão, Delft, May 2012 
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Summary 

Due to its complexity, the evolution of cities is something that is difficult to predict and 
planning new developments for cities is therefore a difficult task. This complexity can 
be identified on two levels: on a micro level, it emerges from the multiple relations 
between the many components and actors in cities, whereas on a macro level it stems 
from the geographical, social and economic relations between cities. However, many of 
these relations can be measured. 
The design of plans for cities can only be improved if designers are able to address 
measurements of some of the relationships between the components of cities during 
the design process. These measurements are called urban indicators. By calculating 
such measurements, designers can grasp the meaning of the changes being proposed, 
not just as simple alternative layouts, but also in terms of the changes in indicators 
adding a qualitative perception.  
This thesis presents a method and a set of tools to generate alternative solutions for an 
urban context. The method proposes the use of a combined set of design patterns 
encoding typical design moves used by urban designers. The combination of patterns 
generates different layouts which can be adjusted by manipulating several parameters 
in relation to updated urban indicators. The patterns were developed from observation 
of typical urban design procedures, first encoded as discursive grammars and later 
translated into parametric design patterns. The CItyMaker method and tools allows the 
designer to compose a design solution from a set of programmatic premises and fine-
tune it by pulling parameters whilst checking the changes in urban indicators. These 
tools improve the designer’s awareness of the consequences of their design moves. 
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Samenvatting 

Vanwege haar complexiteit, is de evolutie van steden moeilijk te voorspellen. Het 
plannen van nieuwe ontwikkelingen voor steden is dan ook een moeilijke taak. Deze 
complexiteit kan worden bevestigd op twee niveaus: op microniveau volgt de 
complexiteit uit de vele relaties tussen de vele componenten en actoren van de steden; 
op macroniveau volgt de complexiteit uit de geografische, sociale en economische 
betrekkingen tussen de steden. Echter, veel van die relaties kunnen worden gemeten. 
Het ontwerpen van plannen voor steden kan alleen worden verbeterd als ontwerpers in 
staat zijn om tijdens het ontwerpproces metingen over een aantal van de relaties 
tussen de componenten van steden aan te pakken. Deze metingen worden stedelijke 
indicatoren genoemd. Door deze metingen uit te voeren, kunnen ontwerpers de 
betekenis van de veranderingen die worden voorgesteld begrijpen, niet alleen als 
eenvoudige alternatieve indelingen, maar ook ten aanzien van de wijzigingen in de 
indicatoren. 
Dit proefschrift toont een methode en een reeks van tools om alternatieve oplossingen 
voor een stedelijke context te genereren. De methode stelt het gebruik voor van een 
combinatorische verzameling van ontwerppatronen die typische ontwerp-zetten die 
door stedenbouwkundigen gebruikt worden coderen. De combinatie van patronen 
genereert verschillende indelingen die kunnen worden afgestemd door het 
manipuleren van een aantal parameters in confrontatie met bijgewerkte stedelijke 
indicatoren. De patronen werden ontwikkeld na observatie van typische 
stedenbouwkundige procedures, eerst gecodeerd als discursieve grammatica's en 
vervolgens vertaald in parametrische ontwerppatronen. De CItyMaker methode en 
instrumenten laten een ontwerper toe een ontwerp-oplossing samen te stellen uit een 
reeks van programmatische vooronderstellingen en af te stemmen door het 
bewerkstelligen van de parameters tijdens het controleren van veranderingen in de 
stedelijke indicatoren. Deze instrumenten verbeteren de bewustwording van 
ontwerpers over de gevolgen van hun ontwerp-zetten. 
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1    Introduction 

This section provides an overview of the research topic addressed in this thesis. It starts 
with an introduction to the reasons for designing for the complexity of cities, 
presenting the idea of developing new tools and methods for designing flexible urban 
systems as a response to the problem of complexity. It then explains the context of the 
research, namely its role as part of a larger research project and provides a brief 
overview of the tools and methods proposed in the thesis to address the problem. 

§ 1.1      Flexibility in dealing with the complexity of cities 

Cities are dynamic systems. Their configuration, spatial and social characteristics are 
the result of a large number of factors that are in some way involved in, or influence, 
the way a settlement is built, as well as its dynamics. Many of these factors are difficult 
to control and some may be highlighted due to their relative importance in most urban 
contexts: topography; geographic location; climate; economic dynamics; social 
dynamics.  
The emergence of settlements and the growth of cities seem to be directly related to 
the economy of places (Jacobs, 1970). If the economic dynamics of a place is growing, 
the settlements supporting this economy are likely to grow too. During the 20th 
century such growth achieved proportions never experienced before by mankind and 
the beginning of the 21st century shows an even faster growth dynamic. 
What was in the past, especially in the Middle Ages, the common growth pattern, 
namely local self-organised growth defining what is usually known as an organic grid, 
can no longer accommodate the growth needs of the present day, at least with the 
minimum comfort and environmental conditions considered normal by current 
standards. The unfortunate examples of organic growth that we can see around the 
world involve extremely poor living conditions. Extensive areas of informal growth can 
be found, especially in developing countries, known as slums, favelas, barrios or other 
terms depending on the cultural context. Although lively places, in most cases these 
slums offer very degrading living conditions which quite clearly stress the need for 
developing new planning strategies (Acioly Jr., 2010). 
The need to respond to very extreme growth demands is also still valid in some 
developed countries, as is evident in the recently implemented Vinex programme in 
the case of the Netherlands (Boeijenga, Mensink, and Grootens, 2008). China is a very 
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specific case in which essentially top-down solutions are being applied. Whatever the 
context and the dichotomy between emerging (bottom-up) growth and planned top-
down growth, it is desirable to control the urban spaces resulting from this growth, as a 
large amount of research on the subject seems to suggest (Provoost, 2010). Moreover, 
something may be learned from both processes and used creatively in new designs. 
One thing is clear: the tradition of designing urban space by producing authoritarian 
layouts is no longer an efficient strategy. Several authors point towards the need for 
planning flexible solutions using flexible processes. Incrementality, flexibility, 
adaptability, individuality and freedom of choice have become the key words used to 
express new approaches and strategies for urban planning and design (Correa, 2000). 

At the end of his book Ascher (2001) identified the following as the new principles for 
urbanism: 

• urban planning involving mechanisms for negotiating and elaborating solutions 
instead of designing layouts; 

• reflexive urban planning, involving constant analysis; 

• informed urbanism, prepared for the demands of sustainable development; 

• participatory and flexible urbanism based on consensus; 

• heterogeneous urban planning composed of hybrid solutions and stylistic 
openness. 

Ascher suggests very generic approaches to urban design or planning which are 
radically different from the usual development of fixed layouts and certainly a 
departure from the typical aesthetically designed city of the modern era. Ascher also 
proposes negotiation as opposed to the traditional production of a fixed design. 
The traditional ways of planning and designing new urban areas do not respond 
efficiently to current needs. Contrary to the critical tendency directed towards planning 
methods, the majority of existing tools are still destined for the design of urban plans 
in the traditional layout. In all cases the aim is to produce a fixed layout for top-down 
implementation in a particular area. The object of the design is considered an isolated 
object instead of a complex, open system, which is what cities are (Portugali, 2009). 

§ 1.2      Flexibility and flexible design 

The term flexible design and, in particular, flexible urban design, although widely used 
by architects and urban designers (Gausa, Hammond, and Hammond, 1998), lacks a 
formal definition.  Flexibility is a term used in engineering systems design to refer to 
the ability of a production system to deal with uncertainty (Gupta and Goyal, 1989). 
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formal definition.  Flexibility is a term used in engineering systems design to refer to 
the ability of a production system to deal with uncertainty (Gupta and Goyal, 1989). 
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The term is used in many texts on architecture and urban design, especially those 
associated with the design of housing systems (Gausa and Salazar, 2002) (Bosma, Van 
Hoogstraten, and Vos, 2000). Whatever the specific form and context of the term, the 
concept of flexibility and flexible design features in the architects’ lexicon. Certain 
other approaches, although not directly addressing or defining this term, clearly use 
the concept as their main driving force. Some important publications clearly show this 
(e.g.: “A Pattern Language” (Alexander et al., 1977); “Supports” (Habraken, 1972); 
“Design for change” (Friedman 1997); shape grammar-based architectural research 
(Stiny and Mitchell, 1978) (Koning and Eizenberg, 1981); “Game Urbanism” 
(Venhuizen, 2010); urban grammars (Beirão and Duarte, 2005)). The common ground 
in all these approaches is the search for design systems which are able to deal with 
uncertainty and change in terms of problem definition. Most of them deal with rules 
and methods for providing systems of solutions rather than one single solution. A few 
approaches propose very detailed algorithmic formalisms to deal with the problem. 
Alexander et al’s Pattern Language, for instance, provides a generic algorithmic 
structure open to interpretation. Shape grammars (Stiny and Gips, 1972) provide 
rigorous algorithmic formalisms to generate variations on a design language (Koning 
and Eizenberg, 1981). 

Considering the above, the term flexible design can be defined as: 

• a set of design solutions for a specific design problem formulation, expressed 
through a specific set of design rules instead of the traditional fixed formal 
solution. 

This particular definition for flexible urban design refers exclusively to flexible design 
for urban planning. A flexible design therefore does not have a definitive shape until it 
is concluded and should not have one even on completion. A flexible design should 
respond to variations in needs. On an urban scale, however, flexibility can be addressed 
on two main levels: design flexibility and the flexibility of the design. The former refers 
to the capacity of the design method or process to adapt to changes in the problem 
formulation and the latter to the fact that a specific final design is still capable of 
accommodating change and evolving during and after implementation – that is, it 
refers to its adaptability over time. Flexible design, as defined above, represents a third 
level of flexibility. 
This thesis addresses the production of design tools and methods for flexible urban 
design considering both design flexibility and the flexibility of the design. The tools and 
methods are destined to be used by designers but the tool structure and methods are 
defined in ways that support easy visual interactivity in a collaborative environment 
involving stakeholder participation. In the thesis the term “designer” refers both to a 
single designer and a design team, the latter being likely to represent the most 
common situation in the case of urban design. 
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Flexible design is a complex approach, as it should be used in many possible contexts 
involving many different strategies in order to propose a plan.  Any kind of design task 
is developed by a process of negotiation between problem formulation and solution, 
making use of analysis, synthesis and evaluation (Lawson, 2006). In order to produce a 
design (whether flexible or not), the designer needs to carry out several analytical tasks, 
generate several solutions and evaluate several possible solutions before reaching a 
definitive one. The process is not sequential. The designer is likely to reformulate the 
problem several times when confronted with an unwanted design evolution or 
unwanted solutions. This thesis concentrates on the process of synthesis, attempting 
to understand the rules underlying the design moves (Schön, 1987) that progressively 
compose urban designs, in order to reuse them to generate new designs. 

§ 1.3      Tools and methods for urban design 

To date, several new planning processes and tools have been developed and 
implemented with the aim of improving the quality of the areas planned. In order to 
achieve this, urban designers have come up with two basic lines of action: 

1 Implementing changes to the traditional urban design process; 
 

2 Developing tools to support urban designers and improve the quality of designs. 

The first line of action involves changes in design practice, such as: 

1 Integrating all actors involved in the city development decision-making process by 
introducing participatory methods into standard procedures. (Arnstein, 1969) 
(Kunze and Schmitt, 2010) (Tan, 2009). 

2 Promoting diversity by subdividing the process into partial areas to be developed by 
different design teams collaboratively. This process can be subdivided many times 
on different levels of scale e.g. (Venema, 2000) (de Maar, 1999) and is already 
common practice in the Netherlands. 

3 Designing basic guidelines and generic rules, leaving local decisions to the 
stakeholders involved. (Habraken, 1980) (Friedman, 1997) (Beirão and Duarte, 
2009). 

4 Designing with patterns (Alexander et al., 1977) (Salingaros, 2000) or codes 
(Carmona, Marshall, and Stevens, 2006) to support design decisions. Rather than 
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being simply prescriptive, this idea is based on the principle that certain recurrent 
design problems provide efficient and already tested solutions that can 
subsequently be reapplied. 

 
This is not an extensive list but these approaches cover the most common strategies 
for changing the design process. With regard to the second line of action, many 
different kinds of tools have been developed to support urban design, which essentially 
fall into two main categories:  
 

1 tools used for enhancing information about the way cities grow and the processes 
involved in their growth, which are not directly involved in the design process, and  

2 tools used directly to improve the design practice.  

The tools in both categories can be said to be design support tools but only those in the 
second category are also design tools. The former are essentially analysis and 
simulation tools. 
Some approaches use analytical methods to improve the quality of information on the 
nature of cities and why certain phenomena occur in them. These are strictly analytical 
tools. Some common approaches focus on the behaviour of urban space, taking its 
topological structure or the topological structure of the street network into 
consideration, and these include space syntax (Hillier and Hanson, 1984), place syntax 
(Stahle, Marcus, and Karlström, 2005), and route structure analysis (Marshall, 2005). 
The use of simulation processes can enhance awareness of phenomena that may 
influence the evolution of certain urban contexts and provide insights into how 
alternative solutions may evolve over time or according to specific changing conditions. 
For instance, cellular automata have been used to define simulation models to explain 
urban sprawl, understanding the way it spreads and eventually predicting future 
expected developments (Batty, 2005). Both Batty (2005) and Portugali (2000) have 
dedicated extensive studies to understanding the complex behaviour of cities. 
However, Portugali cites the non-linear behaviour of cities to explain why certain urban 
phenomena cannot be predicted. 
Other approaches try to replicate the real conditions of unpredictability and multi-
agent participation by setting gaming environments to simulate these conditions, 
allowing several people to participate in city games. City games are set to replicate the 
main rules and conditions of a real-case scenario (Mayer et al., 2009) (Venhuizen, 
2010). “Serious game” strategies represent an ambiguous approach that lies between 
design and simulation.  In principle, the process is a simulation but, depending on the 
way the games are set and the context in which they are set, they may eventually end 
up with real propositions or simply supporting real propositions. “Serious games” 
focus on managing the growth process rather than design. They can also be used as 
negotiation platforms in which different stakeholders are the players. The gamming 
concept, or serious games as it is commonly called, may use computer game 
environments, but the concept can also be implemented with handmade game 
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environments. The important thing is really how the game is defined in terms of the 
required interaction between the participants and the goals of the game. Examples can 
be found in (Venhuizen, 2010), (Mayer et al., 2009) and (Tan, 2009) [WS1]. 
The book “Model Town” (Stolk and Brömmelstroet, 2009) shows, in ten chapters, 
different alternative models for urban simulation, urban design and their use in new 
town planning. Several approaches are explored in the book: models based on fractals 
and cellular automata presented to understand and describe urban sprawl (Batty 
2009); studies on self-organisation in the development of cities using cellular 
automata and agent-based models (Portugali, 2009); studies on urban dynamics 
using agent-based models (Timmermans, 2009); game-based models for urban 
simulation (Mayer et al., 2009); pattern and rule-based design approaches (Beirão and 
Duarte, 2009) and cellular automata (König, 2009) for designing new towns; space 
syntax for understanding the failures of English new towns (Karimi et al., 2009); design 
based on interactive negotiation platforms (Lehnerer, 2009); and studies on urban 
sprawl based on geographic information systems analysis (Bonfiglioli, Calza, and 
Stabilini, 2009). Except for the approaches in Chapters 7 (König, 2009), 8 (Lehnerer, 
2009) and 9 (Beirão and Duarte, 2009), all the other chapters essentially focus on 
understanding the complexity of city developments rather than designing cities. Some 
models presented in the book have been developed to enhance knowledge of urban 
behaviour, and others to directly support or inform design decisions or the design 
process. The book still stands as a good survey of the available tools and methods for 
urban design simulation. 
However important simulation tools and techniques may be in informing urban 
design, urban simulation should be regarded as having different goals to urban design. 
Design aims at reshaping or transforming the world by proposing a new state of things, 
envisaged as solving a problem by improving the existing conditions of a context in the 
initial state of the design (Cross, 2007). Analytical and simulation approaches may 
produce information that will enhance the designer’s awareness of the initial state of a 
design and its context, and also the consequences of design decisions, comparing 
them with known standards. In this sense, one important aim would appear to be 
integrating analytical methods and tools with design methods and tools. Simulation 
can be seen as a design support method, but not necessarily as design. 
Density indicators are some of the most commonly used devices to inform, analyse or 
establish goals in urban design. It is fairly common practice to develop plans by 
designing a layout for specific density goals and it is also common to establish the 
negotiation process with stakeholders based on a layout and the respective density 
indicators. The important role of urban indicators in urban design and planning was 
addressed in detail by Berghauser-Pont and Haupt in their book Spacematrix (2010). 
The first part of the book provides an extensive survey of the role of density measures in 
urban planning and design, the kind of indicators commonly used, their meanings and 
inconsistencies, and how designers have used and still use them. Beirão (2005) also 
produced a survey of the role of urban indicators in urban design and planning in the 
Portuguese context, where similar practices regarding the role of density measures and 
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indicators were encountered. The important thing to stress here is that density 
measures and other urban indicators play a very important role in the urban design 
process. They can be seen as constraints or design goals by either designers or 
stakeholders, and they can also be seen as planning or controlling devices by municipal 
planners or planners in general. In all cases, testing designs against density indicators 
is common practice on the part of all the actors involved in the urban design process 
and this is used, albeit for different purposes, at different levels of scale. 
Whatever tools are used for designing urban plans, a proposed urban morphology 
always needs to be tested against density measures and other analytical data, since in 
most circumstances the design goals are somehow expressed in this way. Furthermore, 
through density measures some of the qualities of the urban fabric can be understood, 
as the second half of Berghauser-Pont and Haupt’s book shows. However, the degree of 
complexity and unpredictability of the city implies the need for more design tools and 
methods. If we really want to learn how to design successful urban spaces, we also 
need tools and theories that define and evaluate what successful urban spaces are. 

§ 1.4      The research context and main goals 

This thesis addresses a specific part of a larger research project called City Induction 
(Duarte et al., 2012). 
As defined, City Induction [WS2] aimed to develop an urban design tool by integrating 
Computer Aided Design (CAD) into a Geographic Information System (GIS) 
environment. The main idea was to take advantage of the existing tools for urban 
analysis and use them directly in conjunction with generative design tools for design 
synthesis. The City Induction project aims to formulate urban design briefs from an 
analysis of contextual data, generating design alternatives by following the design brief 
and evaluating the design against the specifications of the brief. To this end, the 
project includes three models that support the whole concept: (1) a model for 
formulating the specifications of the urban programme, taking the available data on 
the context into consideration (the formulation model – 4CityPlan); (2) a model for 
generating alternative urban designs based on shape grammars (the generation model 
– CItyMaker); and (3) a model for evaluating the designs in terms of sustainability and 
design performance (the evaluation model – EvModule). Nuno Montenegro and Jorge 
Gil are responsible for developing the formulation model and the evaluation model 
respectively. José Duarte is responsible for project coordination. This thesis concerns 
the development of the generation model – CItyMaker. 
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The theories supporting each model defined in the research project can be described as 
follows: 

• the formulation model bases the analytical functions on GIS assessment tools and 
a knowledge base – an ontology (Gruber, 1993) – from which a detailed description 
of programme specifications is defined as programming patterns (Alexander et al., 
1977) and formalised as description grammars (Stiny, 1981); 

• the generation model bases its generative qualities on the development of 
compound forms of description and shape grammars, also following pattern-like 
structures;     

• the evaluation model is responsible for the validation of the designs, using spatial 
and network analysis tools such as space syntax (Hillier and Hanson, 1984) to 
perform the assessment. 

The conceptual framework was based on Duarte’s concept of discursive grammars (2001). 
Independently of the larger research project, the focus of this thesis lies in the 
development of an urban design tool. Urban design is addressed in this thesis as 
having the following characteristics:  

• Urban design is a collaborative decision-making practice involving the 
transformation of territories from rural or urban to upgraded urbanised forms, 
taking sustainability into account1. 

• Urban design bases its decisions on territorial analysis, including context analysis, 
and on data derived from candidate design solutions. This should represent 
fundamental information for participatory decision-making.  

• The role of the urban designer or urban design team is to introduce expert vision 
and skills into the decision – making process. 

• The result of an urban design process is a system of solutions in formats that allow 
for easy visual assessment, supported by adequate tools. 

• The process of designing an urban system should be as interactive as possible, 
allowing for a bidirectional flow between problem formulation and solution.  

  
1  The term sustainability is used superficially and irresponsibly nowadays. It is not the goal of this thesis to 

address sustainability issues and define what this means in terms of the development of cities. However, it 
is expected that certain main driving forces behind sustainable urban design may be addressed in the 
methods and tools proposed in the thesis. The main area of reference for this is directly related to 
programme formulation and can be found in (Montenegro 2010)). In any case, the expression taking 
sustainability into account as used above means an uncompromising commitment to considering the 
incorporation of the means of addressing basic sustainable urban design criteria without claiming that the 
tool aims to design sustainable plans. Without involving building design, such a claim would be fraudulent. 
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The thesis proposes a generative formalism for developing compound forms of spatial 
grammars for urban design synthesis encompassing the reflective characteristics of the 
design process (Schön, 1983). These grammars were called Urban Grammars. In order 
to allow for a correct approach to their use, a supporting design method for urban 
design is proposed, based on an interactive rule-based approach. This theoretical 
framework defines urban grammars in a progressive fashion by gradually adding small 
grammars, each generating typical urban design instructions, or moves, to use Schön’s 
term. These small sets of design instructions are defined as design patterns (Gamma et 
al., 1995) for urban design. Technically, these design patterns are algorithms 
composed of discursive grammars encapsulating the behaviour of the design move. 
These generative design moves were called Urban Induction Patterns (UIPs). This 
thesis shows that urban designs are obtained from a full formulation-generation-
evaluation cycle of UIPs, each of which is also a limited formulation-generation-
evaluation cycle corresponding to a typical urban design move. It also shows that this 
structure is compatible with the reflective responsiveness that characterises design 
practice. This responsiveness is maintained by allowing the designer to interact in the 
generative process through interfaces which provide options and extensive parameter 
manipulation. The consequences of each design move are assessed by means of a 
geometrical model and data generated and expressed in terms of urban indicators and 
other properties of the urban fabric. 
Following this theoretical framework, the thesis presents two partial implementations 
of an urban design generation tool – CItyMaker. CItyMaker is defined as an 
autonomous urban design tool that can be used independently of the formulation and 
evaluation models being developed for the City Induction research project. In order to 
be used for design, the generation system (like any other design tool) should be used 
following a negotiation between problem and solution involving analysis, synthesis and 
evaluation. The design tool proposed in this thesis provides a means for entering the 
analytical data obtained by any means and methods available and also provides tools 
for outputting design solutions and the data derived in terms of urban density 
indicators and other derived properties, thus allowing for immediate visual evaluation 
of the solutions. The evaluation can be enhanced with any other available evaluation 
tools, namely GIS, space syntax, place syntax or tools being developed within the 
context of the City Induction evaluation model. In all cases, the designs are generated 
in formats that allow for their immediate insertion into a GIS environment. 
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§ 1.5      Contributions 

The main scientific contributions of the thesis are: 

1 A theoretical model for an urban design tool involving generative design 
capabilities and a design method for its use. The theoretical model provides a 
structure for urban design generation compatible with a GIS representational 
structure, including calculations for density based indicators. The model provides a 
flexible design platform for the production of flexible urban designs. The flexibility 
space is defined by a specific urban grammar that is synthesised during the design 
process. This topic contributes to the field of computational methods applied to 
urban design theory. 
 

2 An ontology describing the concepts involved in the urban design process, 
contributing to the development of knowledge bases for urban design. 
 

3 A shape grammar formalism for developing urban grammars, contributing to the 
field of shape grammar studies. 
 

4 A set of recommendations for developing software for urban design and city 
information modelling (CIM) software, with regard to how it should be structured 
to support GIS interoperability, thus contributing to the field of computational 
methods applied to urban design theory. 
 

5 A design method to enhance the quality of the information flow supporting design 
decisions in an urban design process, contributing to the field of computational 
methods applied to urban design theory and to urban design practice. The method 
enables design decisions to be based on better grounded information. 
 

6 A tool for supporting studies on the relationship between urban morphology and 
density, contributing towards improving designer awareness of such relations and 
eventually to devising more accurate links between these measures and the quality of 
urban space. 
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The contributions of this knowledge to design practice are likely to improve the quality 
of urban design, its management and its response to complexity. In other words, the 
abovementioned contributions will allow for improvements to flexibility in the urban 
design process on three levels: flexibility during the design process; the production of 
flexible designs, i.e. systems of solutions; greater adaptability in design. These qualities 
should, according to current theories, improve the quality of new urban developments, 
especially in terms of how they respond to the complexity of evolution. Without adding 
any other meaning to the term sustainability than the internationally accepted one, the 
new approaches proposed in this thesis will certainly represent a step forward towards 
the production of more sustainable cities, at least in the sense that they provide a 
greater capacity to design cities that are capable of adapting to evolving societies.  
The improvement in data flow during the design process is also likely to improve the 
efficiency of participatory processes, in the sense that the proposed systems will allow 
for alternative scenarios to be considered and supporting data to be provided for each 
scenario. The different stakeholders will therefore be able to evaluate decisions better, 
based on the improved information on the alternative scenarios. 
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2    Problem definition and research 
questions 

The research problem addressed in this thesis can be summarised as finding 
appropriate tools and methods to design efficient, flexible urban plans as a response to 
the problem of designing for the complex behaviour of cities. It addresses flexible 
urban design, considering both design flexibility and the flexibility of the design (see 
definitions in Chapter 1 and Appendix 1). In order to develop such design tools a 
proposal is presented based on compound forms of shape and description grammars. 
Shape grammars (Stiny and Gips, 1972) and description grammars (Stiny, 1981) are 
generative formalisms used to generate designs in a recursive fashion. The idea is to 
develop systems of solutions rather than one single solution, thus allowing the system 
to adapt to changes in the environment.  
However, specific technical problems emerge from the use of shape grammars 
regarding the construction of semantically appropriate designs. Therefore, this thesis 
will also present research into the use of shape grammars for designing. 

§ 2.1      The generic problem – the complexity of cities 

The main problem stemming from complexity theories of cities is that cities evolve in 
ways that are difficult to predict and that city developments, even when planned, tend 
to find patterns of organisation that were not previously defined in the plans. Portugali 
(2000) explains this behaviour by stating that cities are non-linear open systems 
subject to the behaviour of several other open systems. For instance, human social 
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final result. At any given moment a city is the result of global interactions, through top-
down decisions, and local interactions through bottom-up individual decisions. 
At this point a question emerges:  

How can we plan cities if their behaviour is so complex and unexpected? [1] 
This question clearly identifies the generic problem addressed in this thesis. Several 
authors have indicated various answers, presenting different strategies and viewpoints 
to address the problem. The strategies can be summarised as follows: 

1 Simulation techniques – some authors have proposed several different simulation 
techniques as a way of predicting future scenarios, but as we have seen in 
Portugali’s example this can be a misleading strategy. Typical examples include 
cellular automata techniques for simulating urban sprawl (Batty, 2005) or city 
games applied to specific contexts (Mayer et al., 2009). Despite Portugali’s 
remarks, these techniques allow us to foresee eventual future scenarios which may 
help the designer to reach better informed decisions. It is the role of the expert to 
judge the reliability of the predictions, their meanings and the extent to which such 
information will influence the outcome.  

2 The use of systems, patterns and types – some authors stress the value of 
historically accumulated knowledge, tradition or tacit knowledge which, with 
regard to architecture and cities, are values expressed or embedded in systems, 
patterns and types. Types are recurrent solutions bearing evidence of practical 
success from repeated use through time. Types offer an underlying social 
agreement on ways of living, building and behaving in society. Patterns have similar 
qualities, but they relate a problem occurrence in the environment to a typical 
solution supported by empirical, tacit, or scientific evidence. They are recipes for 
solving recurrent problems occurring in the environment. A system is generic; it 
embeds a set of constructive solutions that allow for a large amount of freedom in 
composition. A system defines constructive solutions and does not imply specific 
spatial organisation. Examples of an architectural system are the classical or the 
international style. (Alexander, 1964), (Habraken, 1988), (Alexander et al., 1977), 
(Habraken, 2000). 

3 The use of evaluation techniques – evaluation techniques propose theories and 
tools for analysing design propositions in particular contexts and comparing them 
with acceptable standards for validation. Evaluation techniques, however, have two 
main problems. First they can only be performed after the design is finished and 
therefore do not help with the design decision-making process since they only either 
validate it or not. Secondly, the standards used for comparing the results also need 
to be validated. In this sense they are dependent on selection criteria, i.e. the 
definition of a system of values which can, in itself, be a research problem. However, 
resorting to accepted and well established types and patterns to select such criteria 
may be an efficient approach to defining valid quality standards for the purposes of 
comparison. Also, some criteria are essentially objective, for instance, determining, 
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whether something consumes energy or not. In such cases, a value can be 
measured. Nevertheless, the tangible meaning of these values, especially in relation 
to the context, is always a matter for interpretation (Gil and Duarte, 2008). Most 
evaluation techniques are supported by GIS analytical methods or spatial analysis, 
such as space syntax (Hillier, 1996) or place syntax (Stahle, Marcus, and Karlström, 
2007). The large number of evaluation studies using GIS and space syntax clearly 
shows the potential of these techniques but also stresses the need for expert 
interpretation of the analytical results obtained from GIS or space syntax analysis. 

4 Participatory decision-making – the main driving force behind participatory 
decision-making is democratic principles (Arnstein, 1969) but it is also a response 
to the complexity problem in the sense that it brings the agents of complexity into 
the decision-making process.  The agents of complexity are those (individuals or 
collectives) who can locally or globally influence urban environment developments. 
Participatory decision-making can also be supported by different methods and 
support tools used to inform or improve the quality of such decisions. Simulation 
interfaces and gaming interfaces are probably some of the most common strategies 
(Stolk and Brömmelstroet, 2009). Games can be set as participatory events in 
many different ways. Nowadays several different alternative methods and 
strategies can be found for implementing city games (Tan, 2009) (Venhuizen, 
2010). City games have to be adapted to the specific design problems being 
studied and should be defined in ways that simulate real conditions. They should 
also be goal oriented in the sense that if the output of the game can be considered 
close to a real design proposition, then the game becomes more than a simulation 
and turns into a design product. The game itself can also be set as an 
implementation process and, as such, can become a managing tool. The role of the 
computer tools in supporting this kind of approach still offers vast potential for 
exploring the interaction of different agents with the urban environment. Tools and 
methods are usually adapted to the subject in question, following specific 
procedures (Slocum, 2003). Furthermore, participatory decisions can be further 
improved if analytical support tools are used to inform the stakeholders 
participating in the events. However, the analytical results need to be interpreted 
and the interpretation can be aided by experts and visualisation tools.  

5 Flexibility and flexible design – flexibility is cited by several authors as a design 
strategy for dealing with complexity. Ascher (2001) talks about developing an 
urbanism of devices instead of designing plans and Friedman (1997) talks about 
designing for change, defining a development vision or code for particular contexts. 
Flexibility in engineering systems is generically defined as the capacity of a system 
to produce different kinds of solutions. More specifically, there are two different but 
complementary definitions: (1) the capability of a system to overcome known 
changes in the environment and (2) the capability of a system to cope with 
unpredictable changes (Gupta and Goyal, 1989). These definitions are both 
interesting and extendible to design. The second definition, however, involves the 
difficulty of dealing with the unexpected. Three main kinds of interpretation of the 
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term “flexibility” in the context of designing can be identified. (1) The first 
considers the capacity of the design method or process to adapt to changes in the 
programme of requirements (design flexibility). (2) The second considers the 
design of systems of solutions rather than one single solution (multiplicity – the 
design of systems; flexible design). (3) The third considers the design of solutions 
which are capable of adapting even after the implementation is finished (the 
flexibility of the design). The ideal approaches should embrace all three kinds of 
flexibility simultaneously. 

§ 2.2      Generative rules for design flexibility 

Considering the 5 strategies explained above for dealing with the complexity of cities, 
flexibility seems the most complete because in a certain way it can include the others. 
If the three stated kinds of flexibility are considered in a design process, the system 
designed should be able to produce many different solutions and respond to 
unexpected local changes. In this sense such a system is capable of simulating many 
alternative scenarios. There is also no reason for not using types and patterns to design 
flexible systems and thus select certain qualities attributed to those types and patterns 
in order to incorporate them into the flexible design. Evaluation techniques can be 
used to support the selection of solutions and inform decision makers about the 
relative qualities of the available solutions. It can also offer added value in terms of 
participatory urban design by proposing systems of solutions with associated analytical 
data and evaluation results that the participants can discuss and decide upon.  
Considering the above, flexibility has been chosen in this thesis as the main approach 
for dealing with the generic research question [1] of designing for the complexity of 
cities. 
 
A more specific question emerges from the former: 

What tools and methods can be used to develop flexible urban design solutions, 
simultaneously embedding the five-point strategy for dealing with complexity? And 
what are the characteristics of such tools? [2] 

Partial answers to this question are provided by previous work. 
In urban design, the design process usually flows through three separate processes: 
analysis, synthesis and evaluation. The processes involve different experts and tools, 
and are different in terms of their nature and goals: 
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• Analysis involves geographic contextual analysis using GIS and aims to establish a 
consensual and clear view of the contextual requirements. Analysis may involve all 
kinds of experts. 

• Synthesis aims at developing possible plans for future scenarios responding to the 
requirements identified using visualisations, plan representations and an output of 
related data. Representations and visualisations are usually produced by designers, 
typically using CAD software but also other supporting software. 

• Evaluation aims to validate a selected solution, usually through plan 
representations inserted into the existing context again using a GIS environment in 
which the solutions can be tested and validated. 

These characteristics of the urban design process are particularly important because 
they usually involve separate procedures and separate tools. The structure of the urban 
design process tends to adopt a linear strategy addressing the three activities in the 
stated order. However, design synthesis, according to Lawson (2006), incorporates the 
three activities in a design process and they are usually implemented in any order. 
Lawson explains the design activity as a problem and solution negotiation process 
using analysis, synthesis and evaluation, in which the order is not really mandatory but 
depends on the designer’s personal methods. He states that the design process can 
actually begin with a hypothetical solution – a primary generator (Darke, 1979) – 
which is then evaluated in order to better inform the problem description. In 
conclusion, whatever the regular workflow of an urban design process may be, 
synthesis, i.e. the plan design, should always involve the three activities as much as 
possible. The better the analytical processes and the more integrated they are, the 
better the results of design synthesis will be in terms of urban design. Therefore, the 
integration of the analytical and synthesis tools should be improved, namely through 
better integration of the GIS and CAD tools in the urban design workflow. In particular, 
the importance of data flow – information support – should be stressed throughout 
the design process.  
Urban design involves specific differences in comparison to conventional design 
processes, in particular architectural design or product design. It starts with an 
important difference: the object of the design is never a single object but a system of 
complex objects, each of which is the object of a design process and all of which involve 
complex functional, economic and symbolic relationships. Another important 
difference is that the object is also shaped by many different stakeholders including the 
final users and in principle the design decisions should be open to all of them2. What is 
argued here is that these differences add one particularly difficult characteristic to 
urban design – unpredictability. 

  
2  Note that although a collective client or even a client association may be found in architectural design, this 

always involves a finite well-known number of actors, whereas in urban design this might be impossible to 
identify or predict in advance and may even change during the design process. 
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In a way the three activities - analysis, synthesis and evaluation - are a lot more 
complex in the case of urban design than in other design practices. Each activity will 
now be considered in detail. 

Analysis 
Essentially two analytical situations may be considered in relation to urban design: 
context analysis (prior to synthesis) and design analysis in context. In both situations 
the analytical process is complex and involves specific means and methods which are 
distinct from the typical design tools. For instance, analysis involves searching through 
large sets of data of many types (alphanumerical, vector and raster data). This 
information is sometimes stored in the databases of geographical information systems 
(GIS) and it addresses several kinds of data involving social, economic, and functional 
information complementing the vector or raster data. In simple terms, the analytical 
process essentially involves methods for pattern identification within the data, using 
data mining techniques, for instance (Witten and Frank, 2005), spatial analysis and 
other topology-based methods. The data is analysed by searching through the 
databases and the topological structure of the vector data. All these analytical 
processes involve very different tools from those typically used for design and usually 
supported by GIS. 
Essentially, analytical tools are supported by GIS whilst design tools operate in CAD 
systems. These two kinds of tools have many interoperability problems both on a 
technical and a methodological level. Technically both the data and the 
representations have to follow particular topological structures and relations which link 
the representations to their meaning. On a methodological level, data and 
representations in GIS systems are not supposed to be altered but simply queried. In 
the synthesis process designers actually aim to change the existing conditions, i.e. 
generate representations of new transformations proposed for the existing reality, and 
CAD tools are the best tools to accommodate such a process. In this sense, analytical 
processes and synthesis processes are separate, not only because of their different 
nature but also due to the technical incompatibility of the systems. In practice, each 
time an urban design is produced the representation and corresponding data needs to 
be translated or adapted to fit the GIS structure if it is to be analysed in a context using 
the tools provided in the GIS platform. GIS practitioners spend a lot of time working on 
this translation procedure. The design workflow which should move easily between the 
three activities is therefore broken and separated. In practice most analytical activities 
are performed by expert teams separate from those in charge of synthesis activities, 
usually because GIS tools and CAD tools have totally different usage paradigms. The 
synthesis process is therefore supported mainly by visual assessment rather than an 
integrative analysis of each design move. 
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Synthesis 
Synthesis is the generative process. It transforms the existing state of things into 
another state, solving a certain problem in the environment and satisfying certain 
previously defined goals. The synthesis process implies a profound knowledge of the 
conditions of the existing state (hence the need for analysis) and also the existence of 
design goals. The precision and detail of the goals is very much context-dependent. 
The definition of urban design goals is informed by several issues: those informed by 
the site and size of the intervention, by higher levels of urban regulations, by 
stakeholders, namely those who represent the investment power, by accepted 
sustainability indicators, standards or best practices and even those informed by 
hypothetical test solutions. Montenegro (2010) addresses strategies for the definition 
of urban design programmes in detail, identifying the main topics involved in the 
formulation of sustainable urban design briefs3. 
However independent the synthesis process is, the interoperability problem between 
GIS and CAD actually interferes negatively in the design process. The fact is that the 
existing data has an influence. The design decisions and, similarly, the measurements 
of the designs developed are needed for the evaluation tasks or simply for analysing the 
solutions integrated within the context. In fact, the evaluation activity is basically the 
result of a set of analyses of candidate solutions placed in context and confronted with 
a set of pre-validated standards. 
Considering the above, it would appear evident that the whole design process would 
profit from better interoperability between GIS and CAD and that CAD tools would 
clearly support the synthesis process better if they were capable of reading data directly 
from the GIS database and generating new data relating to the designs generated in 
the GIS database in order to allow for further analysis in context. On the other hand, in 
product and architectural design the creative process essentially (and maybe desirably) 
lies in the hands of one designer or one decision-maker. In the case of urban design, 
decisions should be made by as many stakeholders as possible and therefore the 
normal characteristics of the decision-making process in design are subverted. Adding 
to these complications, stakeholders are sometimes interested in visualising a design 
proposal and alter it and at other times they are interested in visualising data or 
analytical results and altering them. These latter needs clearly show the advantage of 
combining analysis and synthesis by overcoming the CAD-GIS interoperability 
problems and allowing for simultaneous visualisation of solutions and data 
throughout the synthesis process. 

  
3  The extent in which these goals are known at the beginning of the synthesis process depends on how much 

information is available as a result of the analytical procedures. However, goals, such as those informed by 
stakeholders, may change in the light of certain visualisations or intermediate proposals. This reinforces 
Lawson’s view of design as a negotiation process. 
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Evaluation 
Evaluation is based on analytical procedures but compares the results of these 
procedures with a previously validated system of values that is set as a benchmark. The 
problem regarding evaluation in urban design is that it is difficult to establish a globally 
valid system of values to use as benchmark. Most authors agree that urban design is 
very much dependent on contextual issues, whether morphological, geographical, 
cultural or social. Establishing urban design benchmarks is, in itself, a difficult problem 
which involves specific and localised research and participatory decision-making, not 
to mention sometimes conflicting economic interests. To add to these complications, 
benchmarks are also related to the programmatic goals of the design and, as already 
mentioned, problem formulation in design evolves through negotiation with the 
design solution. Thus the definition of benchmarks can become caught up in a closed 
circle. In any case, once an evaluation is made, it can be a great help for those involved 
in the design process to be able to visualise the results easily. Furthermore, a single 
solution or visualisation is often considered not conclusive enough and therefore the 
possibility of interactive models or multiple solutions is usually appreciated by the 
agents involved. 

To conclude, due to the complexity of cities, and in terms of administrative procedures, 
several countries tend to separate these activities since involving several different 
teams in the decision-making process is seen as a positive practice. The reason for this 
is simple. This practice allows for democratic decisions involving shared responsibility 
and avoids assigning too much power to one decision-maker. However, this has 
fostered the separate development of tools for the three activities, creating specialised 
tools for the different activities. This is particularly evident in the case of England where 
it is common practice to subdivide decisions and specialised studies are frequently 
requested to support the decision-making process. When developed in this specialised 
format, the tools may sometimes be incompatible with the regular design practice 
workflow. 
While designing, designers effectively approach their decision-making process by 
following a practice, as explained in Lawson’s design model (2006). This means that as 
part of the design activity they analyse existing situations taking different kinds of 
geographical data into consideration, and gradually test different moves by defining 
incremental transformations for the existing conditions which are always confronted 
with some system of values or derived information that allows for an evaluation of the 
proposed transformations. Therefore it seems reasonable to say that any tools that aim 
to support design practice, even in urban design, need to provide as much access as 
possible to the available data and analytical procedures in order to support decisions 
regarding the existing conditions and how to transform them. Furthermore, in urban 
design, the designs need to be presented in ways that allow for a good understanding 
and visualisation of the proposed transformations for a given context but also maintain 
the flexibility needed to adapt to the various requirements of the stakeholders involved 
in decision-making. 
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Mayer et al. (2009), whilst supporting the use of serious games in urban planning and 
simulation, point out that tools and methods to support participation should be: 

• Integrative, considering holistic and systemically different levels of design and 
decision-making.  

• Dynamic, showing the performance of alternatives in relation to the behaviour and 
preferences of the participants. 

• Interactive, supporting negotiation between stakeholders. 

• Transparent, producing clear results which all participants can understand. 

• Flexible, reusable and adaptable, therefore capable of adjusting to different design 
contexts and their subsequent evolution. 

• Fast and easy to use. 

• Communicative and educational, providing insight into the problem structure, 
alternatives and their particular perspectives. 

• Authoritative, meeting analytical standards and political standards for validity in 
order to increase the possibilities of success. 

At this point, the research question [2] could be reformulated as:  

What is the structure of an urban design tool that is capable of generating flexible 
urban designs for a given context and providing data that improves understanding of 
the design? [3] 

There is a technical question embedded in this: 

How can we link GIS tools to CAD tools to obtain designs that contain some analytical 
results? [4] 

Or in a simplified form: 

How can we link analytical tools to design tools interactively? [5] 

The main incompatibility problem between GIS analytical tools and CAD design tools is 
related to the topological structure of representations found in GIS environments. 
Most of the time consumed by GIS users is spent converting data into compatible 
standard formats. In most cases this task implies data transformation and in  the 
specific case of representations (of a new plan, for instance), these need to be 
converted into a topologically correct structure thematically separating  
representations that consider theme and basic geometry simultaneously, i.e. in 
addition to thematic layering, the representations need to be separated into the basic 
geometric types, namely layers represented by points, layers represented by lines and 
layers represented by polygons.  
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The main concept proposed in this research is that if generative algorithms are used to 
generate design representations they can be programmed in such a way that the 
outputs fit into correctly structured representations. Shape grammars (Stiny and Gips, 
1972), specifically compound forms of shape and description grammars (Stiny, 1981), 
can be used to define the generative algorithms needed for such a purpose. Shape 
grammars are a well known formalism for encoding the rules underlying design 
languages. They are both analytical and synthetic in the sense that they allow rules to 
be inferred in a language from a sample of designs in that language and also generate 
new designs within the language by applying the inferred rules. These rules are 
transformation rules that apply recursively to an initial shape to generate designs. A 
particular set of rules defines a shape grammar. A description grammar operates with 
design characteristics other than shape, for instance, name, use, street type, square 
type, material, or other. By using compound forms of these grammars, designs can be 
generated in a pre-defined structure, for instance, one which is compatible with the 
pre-requisites of GIS representation. The designs generated can therefore be easily 
integrated into the analytical procedures provided by the GIS platform. 
This is the main computational formalism supporting the model for the urban design 
generator presented in this thesis. This formalism uses a set of parallel discursive 
grammars (Duarte, 2001) which are compound forms of shape and description 
grammars enhanced with some heuristics to reduce the computational resources. The 
discursive grammars define simple codes replicating urban design moves used 
recurrently by urban designers during the design process. The shapes and descriptions 
used by the grammars are representations of urban concepts expressing relationships 
previously defined in an ontology. 
 
This thesis proposes the development of design support tools based on the 
abovementioned formalism. The contribution of this hypothetical tool to design 
practice is envisaged as: 

• Providing the designer with the capacity to reflect on the morphological 
arrangements of the urban components needed for a plan, whilst providing 
analytical data that complements the understanding of such arrangements or, in 
other words, providing a means for confronting solutions with goal descriptions.  

• Enhancing the designer’s awareness of the meaning and consequences of their 
design decisions. This awareness is built up gradually throughout the design 
process. 

On a technical level, shape grammars can provide a means of bridging the gap between 
GIS and CAD environments. However, there are technical difficulties relating to the 
development of shape grammar implementations which need to be addressed. 
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§ 2.3      Difficulties regarding the use of shape grammars 

The difficulties regarding the implementation of shape grammars and shape grammar 
interpreters are well known. The points most frequently indicated as typical shape 
grammar problems basically fall into three categories: 

1 matching parametric shapes; 
2 providing the means for a correct semantic interpretation of shapes and defining 

meaningful designs; 
3 defining grammars for design synthesis as a part of the design process without the 

constraints of using pre-defined languages. 

These three problems have already been identified in specialist literature, but most 
solutions are partial, unsatisfactory or difficult to implement in practical terms. 
Matching parametric shapes seems to be an ongoing unsolvable problem in shape 
grammar research, either because matching solutions cannot be found for every kind of 
shape or because shape grammar interpreters are rare and limited. Despite the large 
amount of interesting research into the development of algebras of shapes 
(Krishnamurti, 1980) (Stiny, 1991) (Stouffs, 1994), matching a shape can be subject to 
many kinds of ambiguities. In order to deal with such difficulties, several researchers 
have developed a substantial set of formalisms based on the mathematical foundations 
of shape grammars (Stiny, 1980) to tackle the matching problem (Krishnamurti and 
Earl, 1992) (Liew, 2003). Likewise, a vast collection of papers can be found on the uses 
of shape grammars in design analysis, which seems to be the most successful field in 
shape grammar research. Less work has been produced on their use in design synthesis 
and even less on the implementation of shape grammar interpreters.  
Each new design problem addressed with shape grammars seems to need new 
formalisms or adjustments to supplement the existing ones. It seems that shape 
grammars will never be able to solve design problems without the need for new research. 
In addition, due to the matching problem, the implementation of shape grammar 
interpreters is still work in progress and there is no single shape grammar interpreter 
capable of implementing the shape grammar design potential in a satisfactory way. 
The second problem, which will be termed the problem of semantics, deals with the 
meaning of shapes. The problem of semantics involves the various ways in which the 
meaning of shapes (or combined shapes) plays a role in seeing and deciding. Consider 
Figure 1, for example: if an urban designer was asked which rectangles represented 
buildings, which represented plots and which represented blocks, they would be able 
to answer immediately without any need for further information. However, in a shape 
grammar if the rule for adding a porch to the main façade applies to a building, as in 
Figure 2-a, how can we guarantee that the absurd design in Figure 2-b is not 
produced?  
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There are several ways of addressing this problem when developing a grammar. We can 
use labels for classifying shapes, parallel grammars with independent rules for each 
kind of representation, description grammars computing other meanings of shapes, 
colours, etc. However, even though these formalisms are already used to solve a great 
number of representation issues, a substantial number of design situations involving 
semantics still cannot be solved. 

     

Figure 1  
Urban block 

Figure 2 
a) Rule for adding a porch to a building; b) Misinterpretation of the rule 

However, the worst aspect of using shape grammars in a design synthesis process is 
that the design language needs to be known in order to apply a grammar, i.e. we need 
to know the rules in advance. Yet in any creative design process it is impossible to know 
the correct language to apply in advance. In fact, a design problem is likely to have 
many possible answers, each using different design languages depending on the 
design team involved in the process. This is the reason why competitions are common 
practice in architecture and urban design. A design language is not a premise of the 
design process; on the contrary, it is also one of the products of the design process. This 
problem is a consequence of the fact that shape grammars were inspired by the 
generative grammars of linguistics (Chomsky, 1957). Fleisher (1992) has already 
identified these flaws in shape grammars. Comparing them to natural languages, 
Fleisher points out that in natural languages the grammar is the set of syntactic rules 
that allows people to communicate in a common language. The syntactic rules are the 
result of a process of self organisation. The users of a language are willing to follow the 
grammar rules fully in order to communicate on the basis of clear, shared 
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understanding. Designers, on the other hand, want to affirm their own design language 
or at least allow it to evolve from some previously defined personal one. In natural 
languages, a grammar is an existing protocol shared by a community. In design, 
language is one of the products of the designer’s work. It is an individual synthesis 
proposed to a community for discussion. This inversion explains why most uses of 
shape grammars relate to analytical research, that is, work in which the main goal is to 
infer the set of rules underlying the generation of a family of designs. The Palladian 
grammar (Stiny and Mitchell, 1978) and the Prairie House grammar (Koning and 
Eizenberg, 1981) fall into this category. However, it seems clear at this point that in 
terms of designing a flexible system, the production of a language of designs, i.e. the 
design of a grammar, is a possible approach to this goal. In other words, if a designer 
designs the rules of a system, for instance, a housing system or an urban system, rather 
than defining a single design they are, in fact, proposing a system of solutions 
corresponding to the solution space defined by the grammar. 
Shape grammars also allow us to predefine the way shapes are generated. For instance, 
if we separate into different parallel grammars those which generate things (or 
themes) represented by lines, from things (or themes) represented by polygons, such 
as lines representing street centre lines and polygons representing plots, buildings or 
blocks, we can ensure that each separate grammar always generates correct 
representations of each theme. This structure approximates the representations 
generated to those of typical geographic information systems. Description grammars 
can also compute aspects related to design features other than shapes. 
As such, the core argument in this thesis is that a design system based on compound 
forms of grammars can be used to design urban systems and simultaneously bridge 
the gap between CAD and GIS environments by providing the means for improving the 
analytical capacities of the design system. This integrated process is envisaged as 
allowing designers to have an enhanced perception of the quality of their proposals, 
due to the analytical data produced by the generation system. 
Developing a design tool involves solving the problem of using predefined design 
languages, namely the shape recognition and semantic difficulties. As such, this thesis 
also involves three technical research questions derived from the hypothesis of using 
shape grammars to develop an urban design generation tool. 

How can we always guarantee a correct shape match in the design tool? [6] 

How can we guarantee that designs are built meaningfully and in a GIS compatible format? [7] 

How can we implement a grammar-based design tool without imposing a pre-defined 
grammar on designers? [8] 

In order to solve the problems embedded in the previous research questions, a 
hypothetical technical structure for the urban generation tool may be supported by 
several grammar formalisms and an ontology. The grammar formalisms involve the 
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use of parallel compound forms of shape and description grammars to generate design 
moves, i.e. design actions which urban designers perform recurrently while designing. 
Designs are obtained by combining these design moves. The ontology provides the 
semantic structure. An ontology, according to Gruber (1993), is a formalisation of a 
shared conceptualisation. In this case the conceptualisation addresses the urban 
domain. In formal ontologies a specific domain can be described by object classes 
containing objects or concepts from that domain, moving from generic to detailed 
concepts and including a specification of the relations between object classes. It is the 
hierarchy of relations between object classes that builds up the semantics of the 
knowledge domain in question.  In this case, the object classes correspond to 
representations (shapes and descriptions) of components or elements of the urban 
space. The representations found in the object classes constitute the description and 
shape sets of the grammars. The semantic structure of the ontology is therefore 
transferred to the grammars, creating more meaningful behaviour in the generation 
process. To be more precise, the ontology defines the relations between city 
representations by providing an overall semantic structure for representing cities, 
whilst grammar formalisms such as labels (Stiny, 1980), weights (Stiny, 1992) and 
colours (Knight, 1993)  may be used to control the more localised or contextualised 
details of the generation process.  The details of this structure will be explained in 
Chapters 5 and 6 of this thesis. 

§ 2.4      Hypothesis 

The main driving force behind this research addresses the problem of planning and 
designing for the complex behaviour of cities. 
Flexibility is proposed as the means of dealing with the problem of flexibility in the 
design process and the design of flexible systems. 
The research concentrates on the development of tools for designing flexible and 
adaptable urban systems. 
To this end, a hypothesis has been formulated: 

A generative urban design tool can be defined using parallel compound forms of shape 
and description grammars that will be able to: 
• Generate alternative urban designs according to a set of predefined goals; 

• Generate designs in formats which are compatible with a GIS environment; 

• Generate descriptions of the designs in terms that complete the understanding of 
the design (e.g. functional descriptions, density indicators, hierarchical 
descriptions of streets or other urban elements). 
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The flexibility of designs is therefore defined by the rule set used for the generation of 
alternative solutions instead of the typical single layout. 

The technical structure of the urban design generation tool required to solve the latter 
technical issues encompasses the following structure: 

1 The definition of parallel compound forms of shape and description grammars 
encoding algorithms in the form of reusable design patterns replicating typical 
design moves. Designs can be customised by combining design moves in different 
sequences and arrangements. 

2 An ontology containing concepts describing the urban space and the urban design 
process, establishing the semantic structure of the design tool through their 
expressed relations. The design patterns capture the semantic structure of the 
ontology by using the shapes and descriptions representing the concepts found in 
the ontology.   

If a complete solution is provided to the problems posed by the three questions stated 
above, this thesis will have contributed to shape grammar studies in the following ways: 

• By contributing an additional formalism or a device to solve the matching problem 
for urban design purposes in GIS compatible formats; 

• By contributing to the definition of shape grammar-based design tools which are 
able to generate semantically meaningful designs; 

• By contributing to the development of grammar-based generation tools that allow 
for the synthesis of personal design languages without imposing predefinitions. 

The theoretical model and its prototype implementations will be called CItyMaker and 
will constitute the generation module for the City Induction research project. 
CItyMaker contains the acronym CI for City Induction and the acronym CIM for City 
Information Modelling. The purpose of the latter will become apparent from reading 
the thesis. 
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3    Research methodology 

The previous chapter presented the research problem addressed in this thesis. To 
summarise, the research aims to find appropriate tools and methods for designing 
efficient and flexible urban plans as a response to the unpredictability of city 
development. As previously explained, flexibility is cited by many authors as a strategy 
for addressing the complexity of city development. The main idea is to produce flexible 
designs developed through an interactive design process. Flexibility is envisaged on 
three levels: the capacity to accommodate changes in the programme of requirements 
(design flexibility); designing systems of solutions (flexible designs); the capacity of 
these systems to adapt during its life span (flexibility of the design). 
This chapter explains the research methodology used to solve the research problems 
identified in the previous section. After the main problem had been identified, the 
work was divided into five phases: the analytical phase, involving a literature review; 
hypothesis formulation, in which the knowledge gathered was used to formulate a 
hypothetical solution; the synthesis phase, in which the theoretical model and design 
method was developed, based on an analysis of case studies; the implementation 
phase when two prototype implementations were developed as proof of concept of the 
theoretical model; and the reflection phase, in which  critical reflection on the results of 
the conceptual model and prototypes provided a set of recommendations for the 
implementation of software tools for urban design.  
The following diagram provides an overview of the research workflow showing the five 
phases defined above. 
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1 Analytical Phase – during the analytical phase an extensive literature review was 
carried out in order to gather enough supporting information on the research 
problem. 

2 From this information the Hypothesis was formulated: an urban design tool using 
grammar-based design patterns replicating typical design moves could be used to 
generate flexible plan layouts. 

3 The Synthesis Phase involved developing the theoretical model to support the 
definition of a design method and the structure of the supporting design tools. This 
phase followed a three step sequence: 

• Analysis of a set of case studies in order to identify the design moves executed 
by the designers (a). 

• Encoding the design moves into Urban Induction Patterns (UIPs), a grammar-
based generative formalism for encoding urban design moves. The UIP 
formalism was defined as a way of building up designs in an iterative fashion, 
move by move, until the design is complete. UIPs compute city objects (shapes 
and descriptions) found in an ontology co-relating concepts describing cities. 
A formal definition of UIPs was synthesised as described in Section § 5.6       
(b). 
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• Validation of the concepts defined in the previous step. This was accomplished 
by showing that the UIPs developed were able to generate the plans on which 
they were based, to generate variations on those designs and to generate new 
urban designs for other contexts (c). 

 
4 In the Implementation Phase two alternative interpretations of the theoretical model 

were developed: Model A, a prototype developed in AutoCAD; and Model B, a 
parametric version developed in Rhinoceros and Grasshopper. The implementations 
were shown to the authors of the case studies for comments and critiques. 

5 The Reflection Phase involved critical reflection on the research achievements, 
identifying: 

• Reflections on the pros and cons of the design methods and tools developed, 
identifying their main achievements and shortcomings;  

• Recommendations for urban design software development; 

• Reflections on the scientific and social contributions of the research; 

• Identification of future work. 
 

§ 3.1      The analytical phase 

The analytical phase involved a knowledge survey and literature review of the research 
problem. The survey focused on the following themes: urbanism and the complexity of 
cities, design methods, urban design, geographical information systems (GIS), CAD and 
GIS software, computer science, pattern languages, shape grammars and description 
grammars, and ontologies and knowledge bases. Previous experience involving the use of 
patterns and shape grammars as described in (Beirão, 2005), (Beirão and Duarte, 2005), 
(Beirão and Duarte, 2009) was also considered significant knowledge at the beginning of 
the research, as well as information regarding the case studies used in this research. The 
analytical phase also encompassed the identification and selection of supporting case 
studies, including a data survey of the case studies selected to identify design moves used 
by urban designers. For this purpose the authors of the plans were also interviewed, with 
the aim of understanding their concerns and design intentions and, above all, their 
design moves, i.e. their sequence of individual design decisions, in order to understand 
how the plans had been synthesised. 

The analytical phase involved two main approaches: 
1 investigating the knowledge areas and all the technical details related to the 

research problem and sub-components of that problem; 
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2 capturing the knowledge embedded in the design process of the authors of the four 
case studies.  

3 The former provided an in-depth understanding of state of the art knowledge and 
the latter an insight into on the specificities of the design decisions taken by 
designers while designing their plans. 

§ 3.2      Hypothesis formulation 

The hypothesis was based on the information collected in the analytical phase. The 
hypothesis was built on the premise that all the research problems identified would be 
answered with the same solution, namely, that the hypothesis should respond: (1) to 
the complexity of urban design problems; (2) to the peculiarities of urban design, 
namely to an unpredictable phased and participatory process; (3) to the need to 
develop flexible urban systems, (4) to the technical constraints of the existing support 
systems, namely GIS environments for data analysis and CAD environments for design 
generation; (5) to an algorithmic structure that could be codified into generative codes; 
(6) to the reflective process in design; (7) to the need to interpret different types of data 
from an existing context, produce several types of data as part of design solutions and 
reinterpret the data generated within this context. Each of these problems was first 
identified with a research question for which a particular hypothetical solution was 
formulated. The partial solutions were then addressed as a whole to define one 
theoretical framework capable of answering the problems posed by the research. 

§ 3.3      The synthesis phase 

This phase encompassed three steps: 

1 Further analysis of the case studies in a rigorous detail in order to capture the 
details of design moves and translate them into shape and description grammars. 
This analysis provided the base knowledge for the development of the conceptual 
model and theoretical definitions. It included the development of an ontology 
describing the concepts involved in the urban design process, the structure of the 
generation model, including urban induction pattern and urban grammar formal 
definitions, typical design workflows and a design method to approach flexible 
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designs. The formal definitions provided a uniform structure for the design 
generation tool. 

2 Identification and development of formally defined urban induction patterns, using 
the case studies and information provided by the authors of the plans on their 
design methods. The patterns were captured from the case studies and encoded as 
discursive grammars. The goal was to define a library of urban induction patterns to 
compose an urban grammar large enough to support the generation of a wide 
variety of urban designs. The grammars were defined in ways that enable them to 
be reused for generic purposes rather than just for reproducing the design solutions 
that they originated from. When combined in various sequences by applying 
different parameters, they are able to generate a multitude of design solutions. 

3 Demonstration of the application of urban induction patterns, showing that they 
are able to generate the case studies, parametric variations and alternative 
solutions for the case studies, and new urban plans in different contexts. The 
demonstration was achieved by showing the design rules of UIPs (i.e. their 
grammars), different derivations of those rules and, essentially, how they can be 
applied in the generation of different plans. 

§ 3.4      The implementation phase 

The main goal of the implementation phase was to develop the prototype computer 
implementations of the concepts developed in the previous phase. Two different 
implementations were developed, illustrating different approaches and exploring 
separate aspects of the same theory: 

1 Model A, developed within the City Induction project framework, followed the 
previously defined conceptual structure rigorously. A software platform was chosen 
for this implementation, considering the best platform that could support the 
integration of the three modules in City Induction and the specific features needed 
by each module. At the end of each generation, the set of rules used defines the 
space solution and therefore, the flexibility space of the plan. This model is a rule-
based model generating consistent representations and data which can easily be 
used in a geographic information system to analyse the solutions. The ontology-
based representations and the parallel grammar structure guarantee GIS 
interoperability. Model A was developed with the help of grant holder Gelly 
Rodrigues at TU Lisbon. 

2 Model B followed a parametric approach to a similar way of addressing urban 
design but focused on exploring the best possible interaction between design 
generation and design information flow, expressed in terms of outputs from 
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density indicators and derived indicators. In this model there is continuous 
interactivity between the model and the designer. The interface is very dynamic but 
the model is essentially parametric. UIPs are defined as design patterns 
(Woodbury, 2010). Model B was started with Pirouz Nourian at TU Delft. The 
design pattern structure was later improved with the help of grant holder Pedro 
Arrobas at TU Lisbon. 

At the end of the implementation phase, the results were compared to identify the 
advantages and disadvantages of each approach. 

§ 3.5      The reflection phase 

The reflection phase provided the discussion and conclusion for the results of the 
research, focusing on its contribution to science and knowledge in the fields of urban 
design, design support tools, and shape grammars. 
As a concluding statement, the reflection phase provided results on three different 
levels: 

1 A set of recommendations for developing software for urban design, namely in 
terms of how it should be structured to support GIS interoperability.  

2 A design method to enhance the quality of information flow supporting design 
decisions in an urban design process and ultimately improving the overall quality of 
design decisions. This includes reflections on how the method and tools may be 
used in participatory processes. 

3 A tool to support studies on the relationship between urban morphology and 
density. 

The reflection phase included thoughts on how the proposed approaches would 
contribute to the development of more sustainable cities. 
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4    State of the art 

This chapter will address state of the art knowledge with regard to several themes 
involved in the research, providing an overview of all the subjects relating to the 
research topics, namely: 
 
 § 4.1       Previous work: the use of shape grammars in urban design 
describing previous experiences in the use of shape grammars in urban design studios;  
 
§ 4.2       The complexity of the urban environment; the role of participation and its methods 
providing an insight into how participation affects the urban design process and what 
urban design tools should do;  
 
§ 4.3       Patterns, Pattern Languages and Design Patterns 
surveying the concept of patterns, its use in design and how object oriented 
programming has adapted the concept to develop modular and reusable algorithms;  
 
§ 4.4       Shape Grammars, Description Grammars, Discursive Grammars and Semantics 
presenting these concepts and their generative properties and discussing the main 
achievements of grammars in design studies, focusing on their generative properties, 
namely their capacity to capture the design language underlying a particular set of rules;  
 
§ 4.5       Design machines and the design process 
explaining the structure of a design machine and comparing it with the design process 
in order to determine whether it is possible to integrate design machines into a creative 
design process; 
 
§ 4.6       Ontologies and CAD-GIS interoperability  
focussing on the role of ontologies in capturing the concepts underlying a particular 
domain and defining the relations between them; discussing how the specification of 
formal relationships between concepts can be used to promote efficient CAD-GIS 
interoperability;  
 
§ 4.7       Measuring the urban space – some thoughts on formulation and evaluation 
introducing objective methods for measuring density and calculating density-based 
indicators, and discussing how these indicators can be used to understand certain 
urban space properties. 
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§ 4.1      Previous work: the use of shape grammars in urban design 

The use of shape grammars in design has expanded in recent years, either adapting the 
original teaching methods of Knight (1999) or adapting them more or less freely to 
new types of design methods and problems. Shape grammars can already be found  in 
teaching programmes at ETH Zurich, in Switzerland; Unicamp, Campinas and UFRGS, 
Rio Grande do Sul, in Brazil; Carnagie Mellon University, Pittsburgh, Pennsylvania, MIT, 
Cambridge, Massachusetts, in the US; TU Lisbon, in Portugal; and Yildiz Technical 
University, Istanbul, in Turkey, to mention some of the best known examples. 
Regarding the use of grammars in urban design, a few research programmes should be 
mentioned: 

• CityEngine is a grammar-based software for generating cityscapes that was 
developed by researchers from ETH Zurich and is being used in their urban research 
programmes (Halatsch, Kunze, and Schmitt, 2008), (Jacobi et al., 2009). 
CityEngine is not shape grammar-based but considers a procedural grammar 
(Parish and Muller, 2001); (Muller, 2006). 

• At TU Lisbon a design studio programme has been running since 2001, involving 
the use of patterns and shape grammars. As this has been one of the main driving 
forces behind this present research, the following paragraphs will provide a detailed 
overview of the studio practices and the research based on the outcomes of these 
design studios (Beirão and Duarte, 2009) (Duarte and Beirão, 2011).   

Regarding the latter point, the papers cited provide a detailed survey of the work 
developed between 2002 and 2004. The papers focus on how patterns and shape rules 
were used together and the advantages of using the inherent algorithmic structure of 
patterns in the design process (Beirão and Duarte, 2009). The design studios were 
divided into two semesters, the first addressing urban design and the second the 
development of customisable housing systems. In the first semester, students were 
introduced to a design method using shape grammars and pattern languages as an 
approach to the challenge of designing urban space using adaptive and flexible 
systems as a means of tackling the problem of unpredictability in urban dynamics.  
The first design studio dealt with the creation of a planning strategy for a large 
development area in Portugal, with strong development expectations resulting from 
the construction of a dam. It was expected that this area would experience radical 
transformations in the coming years due to the potential economic development 
resulting from the very large artificial lake created by the dam. In this context, students 
chose whether to expand the existing villages or build a new town in a strategically 
chosen place. They were organised in teams and asked to use a design method 
involving the use of patterns and shape grammars as instruments for designing a 
flexible plan for 5,000 inhabitants. The pattern language was suggested as a tool for 
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developing the urban program. The proposed design method had been inferred from 
an analysis of urban plans produced by acclaimed designers and an analysis of their 
design methods (see Beirão, 2005). This method required a four-phase approach to 
urban design in which the design rules would be defined in four levels of detail. These 
levels involved (1) identification of territorial features that could establish the plan 
guidelines and the rules for producing them, (2) the rules for designing the urban grid 
or grids, (3) the rules for designing urban units, considering these to be identifiable 
units of urban elements from the neighbourhood to the urban block and (4) the 
definition of rules for designing the plan details. Shape grammars were presented as a 
possible formalism for expressing the design rules at any moment in the design 
process. The main idea was to foster a more conscious perception of the relevance of 
rules in planning the urban environment, rather than enforcing any commitment to a 
design layout. In other words, rules were used to design the desired flexibility of the 
plans, therefore expressing flexibility on four levels of detail. These four levels are also 
consistent with the normal stages in urban planning and their respective approval 
procedures. 
In the second design studio, in order to simulate real world conditions, in particular the 
role of phasing approval procedures, and to force students to consider urban planning 
and flexibility on different scales, the work was structured in four parts: acquisition of 
theoretical knowledge, urban analysis, urban plan design, and detailed plan design. In 
the first part, lectures were given on Alexander’s pattern language (1977), Stiny’s 
shape grammars (1980), and the four-phase design method. In the second part, they 
were asked to analyse the site, taking existing regulations into account. They were also 
asked to select a set of patterns from Alexander’s pattern language to guide their way 
through the design towards specific programmatic goals. In the third part, they were 
asked to design an urban plan for a large expansion area in the northern sector of a 
town with approximately 25,000 inhabitants by developing shape rules to use in the 
generation of the design. In the fourth part, the detailed plan was developed, based on 
an urban plan defined by a different group of students in the previous phase. A copy of 
the assigned urban plan, together with its rule set, was given to each group which they 
then used to design a layout using the rules. The idea was to generate detailed 
alternative solutions by exploring the underlying flexibility within the limits set by the 
larger scale plan, thus emulating a real design situation. 
The results proved that the rule-based design approach helped the students to deal 
with complexity and flexibility issues. Although the students did not use automated 
generation of the rules but rather basic ‘copy and paste’ manipulations of predefined 
blocks with some eventual additional routines, the approach had the advantage of 
avoiding the usual difficulties resulting from the technical implementation of shape 
grammars. Thus, although the generation process was slow, they could easily resolve 
gaps in the rule structure as well as transform the rules to explore design possibilities 
further. The process produced a high level of complexity in the proposed design 
solutions which would not have been possible in one semester without the aid of these 
design methods (see Figure 3).  There was underlying flexibility in both the urban plan 

 61 State of the art i



  

 
 

62 

and the detail plan, and it was also evident in the fact that most teams redesigned the 
urban plan following the design rules but proposing an alternative layout that would fit 
their detail plan intentions better.  

 

Figure 3 
Two examples of plans designed by students using a design method based on patterns and shape grammars. 

The two design studios involved a total of 19 teams – 9 in the first design studio and 
10 in the second – who produced the 19 urban plans that constituted the body of 
analysis supporting the research. 
In the majority of the plans, students resorted to Alexander’s Pattern Language. It 
became clear that one or two patterns played an important role in configuring and 
characterising the urban solution, both in morphological and social terms. Some 
patterns were recurrent and were used by almost every team, although only a few had a 
real recognisable impact on the proposal. The selection of a few patterns proved to 
create a strong sense of urban characterisation, giving the design proposal a clear 
identity. In addition, the patterns were open to designer interpretation. The students 
could later express the patterns through design rules explaining how to instantiate 
them. The recurrent patterns they used included: community of 7,000; identifiable 
neighbourhood; neighbourhood boundary; web of public transport; ring roads; network 
of learning; nine per cent parking; parallel roads; sacred sites; access to water; activity 
nodes; eccentric nucleus; promenade; shopping street. However, some students felt 
the need to define their own patterns, usually based on some recognisable feature 
found in the urban context that they could pinpoint as recurrent, traditional or simply 
local, that could provide some contextualised input into the design. In such situations, 
they provided an Alexander pattern-like structure to describe their new pattern before 
providing the design rules to develop the design. Patterns were used as programming 
statements before developing the design rules to generate them. Through the patterns, 
the teams were able to express their development vision for the area in very generic 
terms. This was proposed and applied in subsequent studios as a formal way of 
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defining a generic urban programme consistent with Friedman’s concept of 
development vision (1997). 
Some interesting conclusions were drawn from this research, which can be 
summarised in 4 points: 

1 A rule-based approach to urban design produces urban plans with implicit and 
explicit flexibility. Explicit flexibility is defined by the set of rules expressed to 
define the plan’s solution space. Implicit flexibility is not expressed formally but 
underlies the rules followed by the design team in designing the plan. 

2 Shape grammars and patterns contain the algorithmic qualities needed to develop 
formal generative systems for exploring urban design solutions. 

3 Any urban design defined by an urban grammar in a design context is just one 
potential acceptable solution defined by the grammar for that context. The 
feasibility of a design is only dependant on the contextual data that constrains the 
design rules. 

4 Designing with shape grammars and patterns leads to intentionally ordered 
principles in a planned area, whilst allowing for contained but wide freedom of 
design throughout the design process. The degree of flexibility corresponds to the 
design space defined by the rules. 

The results of these design studios were very promising regarding the use of shape 
grammars and patterns in urban design. The research clearly showed the advantages of 
using them in education to foster awareness in students of their own design rules, 
enhancing the understanding of a design language and how to use such knowledge in 
the development of flexible design proposals. However, their use in practice with real 
support tools involves additional difficulties, namely in relation to the use of shape 
grammars and the characteristics of urban design practice. 

§ 4.2      The complexity of the urban environment; the role of participation and 
its methods 

 
Uncertainty and complexity seem to be dominant paradigms in the growth of cities. 
The main problem is that, even when planned, the development of cities is difficult to 
predict. Designing cities involves the ability to deal with many simultaneous and 
complex development behaviours and the components involved in such 
developments, and predict desirable and reasonably controllable city developments. 
Predictability in terms of city development has been shown to be virtually impossible to 
achieve (see page 35), because in complex non-linear systems like cities, prediction 

 63 State of the art i



  

 
 

64 

and design are players in the system, changing its internal dynamics (Portugali, 2000). 
In a way, the assumptions that allow for any kind of prediction of a city’s behaviour are 
affected by the prediction itself affecting the real outcome, thereby potentially 
deviating from the prediction. In addition, the constantly changing city dynamics in 
contemporary society has led to the growing inefficiency of the traditional layout 
planning approach, which is incapable of dealing with the necessarily fast response 
demanded by such dynamics. Flexibility and adaptability have become imperative as 
ways of addressing urban design (Ascher, 2001). Correa (2000) speaks of malleability 
and incrementality, referring to ways of addressing city growth in developing countries. 
According to Friedman, (1997) plans should prescribe a clear development vision on a 
very general and broad scale, whilst remaining flexible in terms of the design of specific 
urban spaces. Ascher mentions that the new urbanism should be a flexible urbanism 
that is aesthetically open, reflexive, involves active participation and, formally 
speaking, an urbanism of devices able to elaborate and negotiate solutions rather than 
producing specific plans4. In the design studios referred to in the previous section, 
patterns were the devices used to define a development vision and establish the 
programmatic goals for site development. Shape rules were the devices used to express 
design flexibility. 
Traditionally, urban plans are developed using methods that aim to produce a single 
layout representing a rigid, definite solution. The plans are centred on the definition of 
tight and interdependent urban parameters that tend to reduce design to a direct 
formalisation of such parameters. However, legislation does not constrain design 
flexibility or the way in which it represents flexibility5. In fact, it does not impose 

  
4  Summarised from Ascher’s conclusion, page 85, Spanish edition (2001). My underlining. 

5  The Master’s thesis (Beirão, 2005) contains an entire chapter on the analysis of the Portuguese urban 
legislation. The conclusion of the analysis is consistent with this statement. However, the municipalities 
which are the main institutions responsible for planning and managing territory usually follow strict 
procedures and a common practice and do not explore the potential for designing more flexible approaches 
to urban design at all. Additionally, certain strictly administrative procedures such as statistics for taxation 
purposes impose specific ways of representing certain planned data; for instance, a precise number of 
dwellings needs to be declared. Therefore, although the legislation embeds potential flexibility and design 
freedom, some administrative procedures impose ways of presenting information that clash with certain 
expressions of flexibility. In my design practice, I have also experienced this kind of constraint a few times. 

 Some research was carried out into Dutch legislation and procedures regarding urban planning and urban 
design approval. However, it was decided not to include research on legislation. There were two reasons for 
this decision. The first concerns the fact that the research goals do not address specific contexts, but 
generic use for wide applicability. As such, legislation is considered a system of constraints which should 
work with an autonomous interface allowing a tool user to customise it according to the local regulations. 
The second reason concerns the fact that in many countries either the legislation or common practice 
might not be suitable for flexible approaches to urban design. The conclusion of such a study could be that 
the legislation is not adequate for the desired practice and needs to be corrected or rewritten. The first 
reason simply points out that a correctly developed design tool should be able to adapt to local conditions 
and the second that an extensive analysis of legislation concerns another line of research which, although 
interesting and useful, can be carried out independently of the present research. 
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specific representational devices, nor does it imply any specific way of designing. The 
usual rigidity derives from an unconscious repetition of procedures, probably because 
this makes it easier to design and to communicate design intentions. It may be added 
that this practice is also still tied to the old modernist design practice in which a plan 
layout was the artistic expression of an imposed formal approach based on the modern 
principles of functionalism. It can be argued that the current practice of urban design 
still lacks methods and tools to support flexible urban design.  
However, it should be stressed here that the Dutch already have a long tradition of 
trying to approach urban design in new ways and specifically applying innovative 
design strategies to foster diversity as a means of enriching the qualities of the urban 
space. Additionally, their work on housing customisation and diversity seems to 
propose strategies that link all levels of detail in neighbourhood development and 
involve the participation of all kinds of potential stakeholders. For quite some time 
these kinds of approaches have been the subject of research, starting with the work of 
Habraken (1972), (1976) and have definitely had an influence on Dutch architecture 
and urban planning since then, especially through the work of the SAR – Stichting 
Architecten Research (Bosma, Van Hoogstraten, and Vos, 2000). Practices involving or 
deriving from this knowledge in Dutch urban planning have been well-documented in 
several recent publications such as (de Maar, 1999), (Boeijenga, Mensink, and 
Grootens, 2008), and (Theunissen, 2009). Nevertheless, although successful in terms 
of achieving diversity, Habraken’s ambition to incorporate high levels of participation 
was never quite successful and is still a subject of research. The influence of the Dutch 
approach can still be seen in the work of many architects and urban designers (Gausa, 
Hammond, and Hammond, 1998).  
In a traditional top-down approach, municipalities control the planning process 
through their hierarchical power as representatives of the citizen interests. However, 
this representative system seems to have failed in terms of the development of the 
modern city, producing highly criticised results and leaving the citizen outside the 
decision-making process. Participation is considered by many authors to be the best 
and most democratic approach to planning urban environments, involving anyone 
interested in the development of their city or neighbourhood. According to Arnstein 
(1969), true democratic citizen participation should be based on citizen power. 
However, the decision should be based on qualitative information, meaning that all 
possible means should be used to make information available to citizens in an 
impartial but technically accurate way. This is where the main role of the designer lies – 
the designer is a technical interpreter and new advanced tools may be used to improve 
the quality of such interpretations. 
There are basically four kinds of agents involved in an urban design process: the design 
team, which will simply be called the designer; the local authorities, responsible for 
urban planning and management; the developers and stakeholders, who have 
legitimate interests in certain parts of the territory and represent the investment power 
and, finally, the citizens who are the users of the planned city. The citizens are the ones 
living the city, using it, benefiting from its improvements and complaining about its 
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failures and problems. They should be the most interested parties and therefore the 
most involved agents. Aware of this fact, most Western countries have been 
incorporating participatory procedures into their urban plan approval systems, but the 
real feedback from the population involved is usually very limited and viewed as a 
disturbance by the designers and urban management authorities.  
Friedman (1997) proposes a schematic sequence for the urban approval process, as 
shown in Figure 4. There are four stages in this process: the development vision and 
concept code; the neighbourhood code; neighbourhood design; and neighbourhood 
construction. The process provides more freedom through a large gain in flexibility, 
reducing the time consumed in the process and the gap between the definition of the 
final design and the completion of construction. Spaces for decision-making and 
control can be found between these levels of scale. The codes defined at city and 
neighbourhood level should be subject to democratic decision-making through 
participatory processes. As Friedman suggests, once approved the codes can be used 
for administrative appraisal. Nevertheless, the fourth stage may, and should, be further 
sub-divided at a lower level of detail in order to distribute the design interests further 
at building design level. Such strategies are actually common in European countries, as 
opposed to the Canadian environment to which Friedman’s work refers. The case of 
Holland, in particular, presents a very varied set of strategies for developing a greater 
degree of diversity in terms of building. This can be seen clearly in, for example, the 
Borneo-Sporenburg plan in Amsterdam (de Maar, 1999) or the Ypenburg plan in Delft 
(Venema, 2000).   
Five levels of decision-making can therefore be considered: 1) Development vision and 
concept code; 2) Neighbourhood code; 3) Neighbourhood design; 4) Building design; 
and 5) Housing customisation, as shown in Table 1. 
 

 

Figure 4  
The role of municipalities in the approval process, as envisaged by Avi Friedman. (Source: (Friedman, 1997)). 
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Figure 4  
The role of municipalities in the approval process, as envisaged by Avi Friedman. (Source: (Friedman, 1997)). 
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Construction is not considered a decision-making level but simply a process of 
execution. The building work essentially concerns the architectural decision-making 
level but the building design level is the transition point, as it establishes the 
relationship between the proximity of private spaces and the city (public space) and 
therefore should at least be considered in the urban design process6. Ideally, citizens 
should be involved in all levels of decision-making with increasing intensity. Level Five 
should ideally be almost totally in the hands of the final user if all the common points 
have been taken care of in the previous stages. This thesis will focus on Level 2, with 
particular reference to neighbourhood design. 

Level Description Scale 

1 Development vision and concept code Town / large district  

2 Neighbourhood code Neighbourhood  

3 Neighbourhood design (neighbourhood construction) Neighbourhood  

4 Building design Block to building  

5 Housing customisation (building construction) Dwelling 

   

Table 1 
Proposed levels of decision-making in urban design, based on Friedman’s work (1997) 

Urban design has certain specific features that differentiate it from other kinds of design:  

• The process involves a number of decision-makers and is sub-divided into several 
decision-making steps which are not entirely dependent on the designer’s 
decisions. This sub-division may occur for two different reasons: the scale of the 
design problem, and the particular requirements of participatory decision-making. 

• The context has a considerable influence on the output format of the design, and is 
again dependent on the scale of the problem. Several output formats can be 
identified: the development vision (Friedman, 1997), a master plan, regulations or 
regulatory protocols, and detailed layouts, and all of which have particular variations 
depending on the context, local procedural regulations, the country’s laws or local 
regulations. Most of these formats are expressed by communicating or restricting 
measures regarding the parameters of the urban space and urban indicators which, 
again, may involve particular contextual interpretations. As such, urban plans are 
expressed not just through layouts but also by urban indicators and measurements 

  
6  The relationships between private and public space are a fundamental topic in several studies on urban 

space and are a recurring theme in space syntax research (Hillier and Hanson, 1984). The permeability of 
façades is a key element that affects the qualification of public space and should therefore be borne in 
mind by urban designers and other decision-makers. 
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used as restrictions or as design goals. In using these features, urban plans tend to 
express qualitative goals more than formal (morphological) goals. 

• In architectural or industrial design clients may take the form of collective bodies or 
associations but they always involve a finite, well-defined number of actors, 
whereas in urban design they might be impossible to identify or predict in advance 
and might even change during the design process. As such, architectural design 
faces a well defined interlocutor whilst urban design has to deal with multiple and 
unpredictable interlocutors.  

Participation provides opportunities for the democratic involvement of citizens as well 
as other stakeholders in decision-making during the urban design process. Amongst 
other advantages, participation allows for the integration of stakeholder concerns, a 
diversity of viewpoints, and greater acceptability of projects, mutual learning and 
mutual respect (Lach and Hixson, 1996). If well-managed, participation can improve 
results and save time and money. Community visioning is a common technique for 
community participation. Using proper supporting interfaces it must be implemented 
with the aim of achieving genuine levels of citizen participation –  via partnership, 
delegated power or citizen control (Arnstein, 1969). Community visioning is achieved 
through open participation, which involves four steps called the visioning process 
(Steiner and Butler, 2007). These steps can be synthesised into four main questions: 
(1) where are we now? – defining the community profile from existing information and 
community values; (2) where are we going? – analysing probable trends and scenarios; 
(3) where do we want to be? – selecting the preferred scenarios for a community 
development vision; and (4) how do we get there? – plans, goals and strategies. The 
fourth question is the one that concerns the definition of the final design. However, the 
process of defining scenarios for questions (2) and (3) should be supported by at least 
a simulation procedure to help visualise the consequences of the decisions and should 
closely reflect real design procedures, focussing on exploring possibilities and therefore 
allowing for speculative, although grounded, approaches. 
As stated in Chapter 2, Mayer et al (2009) propose the use of serious games in urban 
planning and simulation, stressing that this kind of tool should be integrative, 
dynamic, interactive, transparent, flexible, reusable and adaptable, fast and easy to 
use, communicative, educational and authoritative. However, it should be noted that 
there are substantial differences between simulating and designing. A design tool does 
not need all these qualities but will probably need a few others. Nevertheless, the 
advantage of combining the two processes as much as possible is that it approximates 
the final proposed design to the approved simulated scenarios. This has been the main 
reason behind serious research into gaming (Habraken and Gross, 1987), (Brandt, 
2006), (Brandt and Messeter, 2004). The main difference between simulating and 
designing concerns the use of regulations supporting the urban plan. Regulations are 
simply a way of filtering out unwanted scenarios whilst designing. Simulation should, 
however, provide the possibility of assessing even absurd scenarios and as such, a 
simulation tool should be able to spot and check the limit conditions that determine 
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the shift between the acceptable and the unwanted. However, some authors say that 
working with physical objects engages participants more successfully in participatory 
activities (Moughtin, 2000), due to the size of the computer monitor or, if a projector is 
used, the distance created between the participants and the subject under discussion. 
To overcome this problem some researchers have developed games involving physical 
models as an approach to developing city simulation games for participatory meetings 
(Venhuizen, 2010) (Tan, 2009). Others have developed more immersive environments 
which allow for greater human-computer interaction (Kunze and Schmitt, 2010). 
Kunze and Schmitt present an unusual method for developing participatory vision. 
With the help of an interactive computer environment composed of large touch 
screens and tables, the participatory process involves two sequential procedures: 
context analysis to identify fact patterns (occurrences) and vision development to 
define concept patterns. The participatory process uses the interactive computer 
environment to enhance the analysis but most of the process is undertaken using pens 
and a card on which the participants record their patterns by writing and drawing 
simple schemas. The process is easy to run and can easily be understood by every 
participant.  
Procedures for participatory methods are extensively tested and documented. Several 
methods already exist, have clearly defined procedures and are adequate for specific 
types of participatory events. Adequacy, preparation, means and methods are 
accurately detailed in the “Participatory Methods Toolkit: A Practitioner’s Manual” 
which can be found online at [WS3]. 

§ 4.3      Patterns, Pattern Languages and Design Patterns  

 
The concept of patterns has become quite successful since ‘A Pattern Language’ 
(Alexander et al., 1977) was published in 1977. In a complementary book (1979) 
Alexander further explains their uses and the ideas underlying the concept.  Originally 
this concept proposed that typical problems occurring in the urban and architectural 
environment can be provided with a typical generic design solution, and that particular 
sets of patterns produce a design language for architecture and urban environments. 
The authors define a common structure for patterns in order to establish a standard 
format: an archetypal illustration; an introductory paragraph setting the context; a 
headline identifying the essence of the problem; a long section supporting the evidence 
for its validity; the solution description; the solution diagram; relations to other 
patterns. It has been pointed out that this structure facilitates a critical approach to 
content, allowing for refinement of the patterns and the creation of new patterns if the 
same structure is maintained. It provides an algorithmic structure for designing, due to 
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the fact that patterns in association with each other create a chain of interrelations as a 
result of their expressed relations to other patterns. The way the authors define the 
concept is abstract enough to be applicable in most circumstances and to be 
customised by the designers in order to adapt it to their personal design language. 
For communication purposes, the conditional predicate → consequent statement can 
be represented in a schema identifying the problem elements, their attributes and 
parameters in a schematic representation of the predicate, and the transformations to 
these elements, attributes and parameters in a schematic representation of the 
consequent. Patterns, as defined by Alexander et al, are algorithmic structures which 
can be used to generate design solutions. However, the use of the word pattern has led 
to some misunderstandings regarding the structure of patterns. In current language, a 
pattern is a regular form or sequence discernible in the way in which something 
happens, is shaped or carried out, but it can also be considered a model that can be 
followed7. In the work of Alexander et al, patterns encompass both definitions: the 
former as the predicate and the latter as the consequent. It is the composition of 
predicate and consequent that gives the pattern its algorithmic structure. Recognising 
a recurrent occurrence in the environment simply involves finding a predicate. A 
recurrent design solution is also a pattern, in the sense that it constitutes a model to be 
followed. In this case the pattern is simply the consequent. Alexander et al’s patterns 
imply establishing a relationship between predicate and consequent. The common 
misunderstandings involving the use of the term pattern stem from the fact that in 
Alexander et al the term pattern is used without any other adjective. This means that 
many people interpret it in a commonsensical way and use it simply for analytical 
pattern recognition, ignoring the algorithmic structure that gives rise to generative 
behaviour. Patterns, as defined in ‘A Pattern Language’, like shape grammars, can be 
used both for analytical and generative purposes. 
Patterns have had many different uses in many knowledge fields, and computer 
science perhaps represents one of the most successful achievements. Aware of the 
algorithmic structure of a pattern language, Gamma et al. (1995), also known as the 
Gang of Four (GoF), proposed to develop this concept in a software design 
methodology called design patterns. This concept adds accuracy to patterns by adding 
a code sample for solving typical software design problems which enables the 
algorithmic structure to become rigorous and effective. They proposed a refined 
pattern structure divided into 13 sections (Vlissides, 2000): Name / Intent / Also 
Known As / Motivation / Applicability / Structure / Participants / Collaborations / 
Consequences / Implementation / Sample Code / Known Uses / Related Patterns. This 
design pattern structure can solve specific software design problems and make object-
oriented programming more flexible and reusable. Their theory is cited as suitable for 
any object-oriented programming language. This upgrade to pattern language theory 

  
7  Most dictionaries will corroborate this statement. 
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indicates a way of linking the mostly semantic aspect of the pattern concept developed 
by Alexander et al to a precise structure, suitable for computational purposes. 
Several attempts have since been made to combine the formal approach presented in 
the Gamma et al design patterns with the Alexander et al patterns in order to develop 
computer aided design systems capable of generating design solutions based on the 
identification of a design problem (Salingaros, 2000) (Montenegro, 2010). However, 
architecture and urban design involve issues that are much too complex to be handled 
as linear tasks. In fact, these issues and problems are very much context dependent 
and many different formal solutions can be applied to solve a particular design 
problem. Therefore, the implication that something can actually be computationally 
generated implies assuming that there is a specific formal solution for a specific design 
problem, which was not entirely present in Alexander’s idea. In fact, Alexander avoids 
indicating specific formal approaches in order to free design space for designers and 
this is a consistent theme throughout his publications. We should therefore 
distinguish between the very generic and essentially conceptual patterns present in 
Alexander et al’s theory and the very specific problem solving patterns defined by the 
GoF.  We are in fact facing two similar concepts with different foci. Alexander’s 
concepts are generic, flexible, open to idiosyncratic interpretation, conceptual and 
defined on a high level of abstraction, whilst the GoF’s patterns are specific, directed 
towards problem solving and defined formally as algorithms with a code template that 
enables solutions to be generated for a locally specified problem. Both approaches to 
the concept of patterns can be useful in terms of defining an urban design tool. They 
may provide the formalisms to control a generation system from a high level of 
abstraction to a high level of detail.  

§ 4.4      Shape Grammars, Description Grammars, Discursive Grammars and 
Semantics 

A shape grammar is a set of shape transformation rules that are applied recursively to 
generate a set of designs (Stiny, 1980). Formally speaking, shape grammars are 
algebras of the form { , , , }S L R I where S is a finite set of shapes, L a finite set of labels, R 
a set of transformation rules and I the initial shape. The transformation rules have the 
form α→β in which α and β are labelled shapes from the set of shapes S and the set of 
labels L. The rule finds the occurrence of a transformation τ of the labelled shape α in a 
design δ and replaces it with a transformation τ of the labelled shape β as defined in 
the equation = − +' [ ( )] ( )δ δ τ α τ β , where δ’ is the resulting design after the rule 
iteration and – and + are the Boolean difference and union operations. To put it simply, 
a rule finds a subshape α in a design δ and replaces it with a new shape β. As Stiny has 
pointed out, subshape recognition is an ambiguous task (2005) and needs correctly 
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supported artificial intelligence to be effective in a computer-based implementation of 
shape grammars. Finding ( )τ α  can prove a very complex task when new shapes emerge 
during design generation. In addition, extending shape grammars to include 
parametric grammars, which are in fact used in most design situations, makes this 
even more difficult, as the recognition of a shape becomes the recognition of any 
assignment g of parameter values to a parametric labelled shape α, i.e. finding ( )g α   in 
a design δ to apply the rule schemata →( ) ( )g α g β . Matching the shape ( )g α  in the 
left-hand side of a rule in a design δ is hard to accomplish. Although the formalism has 
quite an accurate mathematical foundation, shape recognition in these terms is still 
computationally a very hard task and the use of shape grammars has been limited to 
date, due to the difficulties of implementing shape grammar interpreters.  However, 
shape grammars are a useful device for elucidating the composition of designs in 
terms of the spatial relations defined between their sub-shapes or sub-designs.   
Description grammars (Stiny, 1981) provide descriptions of designs in terms other 
than shapes, referring to purpose, function, meaning, type or other. A description 
grammar is defined in terms of a description function →: Gh L D , mapping designs in 
a language GL  defined by a grammar G to descriptions in a set D. The description 
function allows a shape to be associated with a description, for instance, its function, in 
such a way that it can provide a meaning for that shape. Stiny (1985) proposes using a 
combination of shape grammars and description functions for computing designs with 
form and meaning. The relationship between description and shape grammars is 
established by the use of compound or parallel grammars in which shape grammars 
produce recursive transformations of shapes generating more complex shapes, and 
description grammars produce recursive transformations of descriptions of designs 
which might correspond to changes in meaning, function, components or other 
elements in the descriptions set. The association of shapes and descriptions is usually 
established by the description rules. Excellent examples of the use of description 
grammars in parallel with shape grammars to control meaning in the generation of 
designs are given in (Duarte, 2001), (Li, 2001) and (Knight, 2003).    
Shape grammars have successively demonstrated a capacity to encode the design rules 
embedded in design languages with a rigorous technical formalism (e.g.: (Koning and 
Eizenberg, 1981); (Stiny and Mitchell, 1978); (Buelinckx, 1993) and their use in the 
analysis of design languages has proved quite efficient and accurate. However, 
semantic discourse in urban design is not only provided by shape transformations but 
also by political, social and territorial contexts, which are informed by features other 
than those of form. Shape transformations are, in fact, a result of reactions to the latter 
features rather than simple relationships between shapes. The failure of shape 
grammars to deal with semantics has been previously pointed out by Fleisher (1992). 
Fleisher’s argument is interesting and still valid in some aspects. All his criticisms 
concern issues of semantics. However, as previously mentioned, description grammars 
allow their users to deal with design languages in relation to features other than form. 
Duarte (2001) has addressed this kind of semantic issue, proposing the concept of 
discursive grammars, a combination of description grammars, shape grammars and 
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heuristics as a way of generating designs that are appropriate for a particular set of 
contextual features. The main concept is an adaptation of the design machine concept 
(Stiny and March, 1981). A discursive grammar is composed of a programming 
grammar and a designing grammar. The programming grammar finds the occurrence 
of particular features of a context and uses a set of description rules to generate the 
specifications of a design programme. These specifications are then used to trigger the 
application of the design grammar, which finds the correspondence between 
descriptions of solutions and the shape rules required to generate them. A set of 
heuristics is used to guide the generation into the solution space. Nevertheless, 
Fleisher’s main argument concerns a kind of inversion of the origin of creativity which 
underlies the origin of shape grammars. A shape grammar presupposes the existence 
of a language of designs. Its use for analytical purposes is therefore quite consistent as 
it enables the rules underlying design styles or languages to be understood. Fleisher 
says that grammars in natural languages are the result of analysing how grammars 
organise syntactic rules from self-organised natural languages. In the case of design, 
the language should be the result of designing, at least if we consider designing a 
creative act, whereas in natural languages, the language and therefore the grammar 
are the a priori accepted agreement that allows for communication. Therefore the idea 
of using grammars for design synthesis contains a consistency problem because during 
synthesis the design language is not a known premise but just one of the products of 
the design process. It is actually the one which allows the design to be explored even 
after the conceptual design is complete. This is probably also the reason for the lack of 
success of shape grammars amongst design practitioners. However, it should be said 
that the results of the design studios referred to in Section § 4.1       (page 60), and the 
students’ positive reaction to the use of shape grammars supports the belief that the 
concept could be used for designing and that some advantages can be derived from the 
generative features of shape grammars. What should be understood from Fleisher’s 
criticism is that there are still methodological issues to be solved regarding the use of 
grammars in creative design.    
Shape grammars, like description grammars and discursive grammars, are particular 
types of production systems (Gips and Stiny, 1980). The word ‘grammar’ as a 
mathematical construct was first used by Chomsky (1957) as a way of understanding 
and generating sentences in natural languages. The main misconception underlying 
the use of the term ‘grammar’ in the field of design concerns the notion that design is a 
problem-solving activity. Although consistent with many researchers (Newell and 
Simon 1972), from the time shape grammars were developed, this notion contradicts 
other viewpoints that focus much more on design practice, such as those of Donald 
Schön (1983) or Brian Lawson (2006) – see also Section § 4.5      , page 74. When 
confronted with design practice these models are much more consistent with common 
experience than the idea of problem solving. The problem with this misconception is 
that it is assumed that we can correctly describe the goals of a design by being able to 
correctly describe the problem that created the need for the design. However, as 
Lawson and Schön point out, designers often are not completely aware of the all the 
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components of the problem and their awareness is often based on trialling 
hypothetical solutions or individual design moves, through which they find substance 
for reflecting on the deeper hidden particulars of the design problem. It is this 
progressive structure that creates a progressive awareness of the design problem. If 
shape grammars have no way of dealing with this characteristic of the design process, 
they will be no use in supporting designers. Furthermore, one specific characteristic of 
creative design that is frequently cited is the notion that certain solutions emerge 
unexpectedly during some experimental move performed by designers in the course of 
exploratory procedures. How such emerging design qualities can be reorganised is, 
computationally speaking, an extremely difficult artificial intelligence problem to solve.  
However, as previously suggested, combining several kinds of production systems in 
parallel or compound rules can at least partially solve the semantic problems. The 
remaining semantic problems may be solved by allowing for human decision-making 
during the design process.  

§ 4.5      Design machines and the design process 

A design machine (Stiny and March, 1981) defines an algorithmic structure for design 
and it is composed of four parts: a receptor, an effector, a design language and a theory. 
The receptor establishes the relationship between the outside world or context and the 
system and is supposed to provide descriptions given by a finite sequence of symbols 
encoding information on the outside world. These descriptions are called design 
specifications or programmes. The effector produces an object or design according to a 
set of design specification descriptions. The design is generated using a design 
language which provides a set of candidate designs and a set of descriptions of the 
candidate designs. The theory establishes the relations through which our 
understanding of the context can be compared with the candidate designs and thus 
provides the link for fitting designs to specifications. It represents the value system in 
the design environment.  
A design machine implies a clear understanding of context, or, more precisely, that we 
know in detail which data the receptor should extract from the outside world and how 
to interpret that information. Although valid for problem-solving, this is not always the 
case with design. In a design process the understanding of the design context (the 
outside world) and even the specification of a design problem evolves throughout the 
design process as a continuous upgrade fostered by continuous reflective actions of the 
designer, his own analysis and moves. Every move implies an appreciation of the state 
of the design before and after the move, and a quality judgement on this (Schön, 
1987). Furthermore, design synthesis emerges from a progressive awareness of its 
rules, which means that a design language cannot be known at the beginning of the 
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components of the problem and their awareness is often based on trialling 
hypothetical solutions or individual design moves, through which they find substance 
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design process, at least if we accept that some creative decisions need to be made. On 
the contrary, the design language is built up during the design process. 
Donald Schön discusses the practice of architectural design as an arrangement of 
micro design decisions – moves, in his terms - following reflective see-move-see cycles 
(Schön and Wiggins, 1992). See-move-see cycles have certain implications: firstly, that 
a design is a sequence of reflective cycles, secondly, that each move is the consequence 
of some local evaluation and, thirdly, that each move is followed by a reflective action 
on the instantiation of that move, i.e. that there is some local evaluation of the 
instantiated design. Seeing implies an appreciation of the circumstances in a design 
for which the designer is able to recognise a mismatch with some design goal or 
contextual feature that enables him/her to react by applying a ‘move experiment’ to 
upgrade the quality of the evolving design. Therefore, an effective design system can 
only be created if it contains a reflective structure.  
As such, a design machine would appear to contradict the fundamental concept of the 
reflective design process unless we focus on the concepts that are able to clearly 
reproduce defined design actions in which premises (descriptions of the problem) and 
goals (descriptions of solutions) can be correctly formulated. Similarly, isolated see-
move-see cycles may have a structure compatible with that of a design machine if what 
we see in the beginning and what we see at the end can be predefined. This is 
equivalent to a design pattern in which a ‘move’ corresponds to a generative algorithm. 
The important thing to stress here is that these concepts are complementary.  
Whatever use may be made of the concepts of design machines and design patterns in 
computer science, their use in creative design may only be perceived as useful for this 
purpose if a reflective structure is maintained in their application. However, in order to 
do so there is a need for a detailed understanding of how creative design works and 
how it is distinctive from problem solving. 
Lawson (2006) proposes a very ingenious model for explaining the design process, 
stating that design is negotiation between problem and solution through analysis, 
synthesis and evaluation (Figure 5a). One particularly interesting idea in this concept is 
that analysis, synthesis and evaluation are not seen in any particular order, since 
feedback loops are likely to occur in any direction (Figure 5b). Another interesting 
aspect is the presence of a solution at any moment in the design process, incorporating 
the somewhat controversial concept of Jane Darke (1979) that a hypothetical solution, 
a primary generator, is put forward early in the design process as a beginning for a 
problem-solution negotiation process or simply as a way of restricting the design space 
to a manageable framework. It should be noted that this is consistent with Knight’s 
(1983a), (1983b) idea of transformations in design languages. The hypothetical 
solution can be expressed in terms of an initial incomplete hypothetical language of 
designs which needs to evolve by developing rule transformations as the awareness of 
the design problem is progressively enhanced by confronting the changes occurring in 
the language. Lawson’s definition seems to be very consistent with most situations 
involved in design practice but nevertheless focuses on architectural design, whereas 
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the concern of this thesis is urban design, which involves other aspects that impose 
particular workflows, methods and participants. Section § 2.2       explores this subject. 

 

Figure 5 
Design as negotiation between problem and solution through analysis, synthesis and evaluation (source: Lawson 
2006).  

In terms of the complete design process, a design system can be defined if the 
following principles are respected: 

• designs are obtained by applying a series of see-move-see design cycles that cover 
the full range of local design problems in which a whole design problem can be 
decomposed; 

• the application of a design move implies recognition of a particular set of features 
found in the design context; 

• agreements on generic goal concepts are available and the relationships between 
the generic goal concepts and the design moves are known. 

These principles follow a structure such as that of Alexander’s pattern language 
(1977), in which, although the patterns are arranged from general and large-scale 
down to detail and small-scale, their order of application is still not based on this top-
down structure but on the interpretation of context, allowing different scale patterns to 
be applied. It may be said that Alexander’s patterns are capable of capturing generic 
goal concepts by establishing the relationships between generic descriptions of design 
problems and generic descriptions of design solutions for the design problems. We can 
also understand design moves as patterns if we regard the concept as a see-move-see 
cycle. The best and most interesting aspect of patterns relies on the relationships 
expressed between the various patterns stated at the end section of each. They 
basically state that a certain pattern works much better in combination with certain 
others and the related patterns shown in the book are from both lower and higher 
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levels. This is responsible both for an algorithmic structure and for building up a 
system of relations.  
To summarise, the main goal of this sub-section is to present  the set of interrelated 
but still disconnected forms of knowledge required to automate the generation of 
designs: design machines, which postulate an algorithmic structure for the 
computational production of designs (Stiny and March, 1981), a model for the design 
process embedding a negotiation process involving subjective assumptions (Lawson, 
2006) and designs seen as arrangements of design decisions on two different levels of 
scale, conceptual decisions created by using patterns (Alexander et al., 1977), and 
locally evolving decisions made by using design moves (Schön, 1983). Finally, a 
structure similar to the design machine concept but occurring at micro level can be 
recognised in the design move cycle concept. In addition, shape grammars can be 
recognised as an available algorithmic formalism suitable for executing the 
transformations (synthesis) that constitute the design move.      

§ 4.6      Ontologies and CAD-GIS interoperability 

Geographic Information Systems (GIS) manage large amounts of geographical data in 
different formats – representational, either raster or vector, and alphanumeric data 
stored in several databases. All the data is linked together by means of a common 
geographical position. GIS platforms allow for complex analyses of territories by 
querying the databases to isolate particular aspects of this information and visualising 
them in several ways. In comparison with traditional maps, they work by accumulating 
all the maps and databases for a geographical area into a single compact platform in 
which all the data can be accessed and visualized separately using the interfaces 
provided by the GIS software. Common problems in GIS environments are related to 
the following issues: (1) data compatibility, (2) managing relations between different 
kinds of data, (3) maintaining links whilst performing design operations or, in other 
words, defining correct topologies with data representation, which is, to some extent, 
due to a further problem, (4) the lack of interoperability between CAD and GIS 
software. All four problems are related to the need for all the functions of both GIS and 
CAD software to operate using shared representations of the data being processed. 
Ontologies and knowledge bases are the most common computational devices used to 
deal with these problems. Both devices provide a way of organising data and retrieving 
knowledge related to the information stored. The term knowledge is used here, as the 
retrieved knowledge corresponding to the combined data obtained from relations 
specified in the database. The advantage of an ontology is that it enables relationships 
that have not been previously specified in the network of specified data to be inferred. 
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According to Gruber (1993), in computer science an ontology is a formal 
representation of shared concepts from a real or imagined domain and the 
specification of the relationships between them. Ontologies were developed as 
interoperability devices for sharing data. In the case of GIS ontologies they provide a 
protocol for a systematic classification of the concepts composing the geographic and 
urban environment. Ontologies aim for universal agreement within a particular 
knowledge domain (such as city or land use representation) and they are, by definition, 
always incomplete. From this point of view, an ontology is always an evolution of some 
knowledge domain and it is never finished but always available for further extension 
and refinement. However, the premises underlying the top level definitions of an 
ontology can sometimes be inadequate for modelling the structural concepts in the 
main concept domain of the ontology. If the top levels of an ontology do not describe 
the main components of a concept appropriately, the ontology will fail to perform its 
purpose and will have to be restructured from scratch because the main assumptions 
have not succeeded in structuring a correct description of the concept. However, 
replacing stems in an ontology with partial models allows new detail developments of 
the main concept to be defined. This means that, in general, ontologies are easy to 
develop and fine-tune in terms of detail levels but very difficult to work with if the core 
structure is found to be inadequate for specifying the concepts being modelled. 
Formally, ontologies establish a taxonomic hierarchy of the classes defining concepts 
in a domain, their attributes (properties or parameters) and the explicit relationships 
between them. 
In a GIS environment an ontology is responsible for formally defining the shared 
concepts associated with the description of geographical information. CityGML (Kolbe, 
n.d.) is one of the most commonly used standards for the representation of cities. 
Although quite extensive in its description of the urban environment, there still appear 
to be some mismatches in CityGML with regard to other classification systems for city 
concepts, such as the street classification examples that appear in Marshall’s “A First 
Theoretical Approach to Classification of Arterial Streets” (2002). Even though 
Marshall’s document focuses only on the classification of streets and does not cover 
other city components it clearly shows, firstly, that it is difficult to be conclusive about 
this subject and also that although CityGML offers a very extensive classification of city 
concepts, it is still limited and not completely in tune with state of the art studies on 
the classification of streets.  
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§ 4.7      Measuring the urban space – some thoughts on formulation and 
evaluation 

 
Understanding the urban space and the development of cities is in many ways related 
to understanding its measurements, the relationships between measurements and the 
relationships between measurements and corresponding morphologies. One common 
practice in urban planning is to explore the application of regulations based on 
different measurements of space. Density is probably one of the most commonly used 
measurements of urban space and in very general terms relates the amount of built 
space to the size (area) of a particular urban site. It is the ratio between the total 
amount of built area and the total site surface. In some cases density can also be 
defined as the number of people living and/or working in a particular area, but this 
definition is very ambiguous due to, for instance, variations in the average number of 
householders in a certain area as well as the size of the houses. Density measures give 
urban designers and analysts an approximate idea of the intensity of building work in 
an urban area. Conversely, the same measure can be used as a planning device to 
introduce specific building intensities into new proposed urban areas which are 
perceived of as beneficial for those particular contexts. This is because density is seen 
as providing a certain kind of qualitative information about an urban environment. 
However, as explained in Berghauser-Pont and Haupt (2010) density measures 
contain certain ambiguities and criticisms usually focus on two main aspects: (1) the 
scale of the urban area under consideration, and (2) the difficulty in pinpointing the 
relationship between density and urban morphology. The first criticism stresses that 
the scale of the area considered for analysis influences the density measurements. A 
large area measured might, for instance, contain green areas such as gardens and 
parks which will drastically reduce its density, whereas the density of even a low rise 
urban block might be very high in comparison. Another related point is that the 
definition of the boundary of an urban area is also ambiguous, as no conventions have 
been developed for this issue; if an area is bounded by a park, a street or a river, for 
instance, should it include their area, half of their area or simply consider the 
construction limits when making the calculations? Depending on the option chosen, 
the density measures will certainly be different. The second criticism is that a particular 
density value might have extremely different morphologies, as Martin (1972) has aptly 
demonstrated using the Fresnel diagram.  
Berghauser-Pont and Haupt solved these ambiguities by introducing a few conventions 
for the measurement of urban spaces. To solve the scale problem they introduced the 
concept of levels of aggregation. These provide density calculations at building, plot, 
block (island), fabric and district level. The differences between the calculations are due 
to the difference in land base area between levels, which is called tare space. This tare 
space allows for a distinction to be made, for instance, between the total area of plots 
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in a block and the area of a block, which might also contain public spaces within its 
limits. Some conventions were also developed to solve certain ambiguities regarding 
the definition of a boundary of an urban area. They propose the use of three alternative 
methods to define boundaries using (a) administrative boundaries, (b) projected 
boundaries or (c) generated boundaries. Even though these conventions help to solve 
the majority of boundary definition problems a few ambiguities may still emerge in 
specific situations. However, once the boundaries are set, the density can be calculated 
objectively and the analysis based on the measurements can be carried out without 
involving other ambiguities. 
Having set these calculation principles, Berghauser-Pont and Haupt developed some 
other urban indicators which together provide useful information for understanding 
urban morphology. They define a set of three basic indicators and a large set of derived 
ones. The basic indicators are: building intensity (FSI); coverage (GSI); and network 
density (N). FSI is a density value for a specific base land area and can therefore be 
calculated for any level of aggregation. GSI can also be calculated at any level of 
aggregation and refers to the amount of covered area in a site or, more precisely, the 
ratio between footprint and base land area. Network density calculates the ratio 
between the amount of construction area and the network length. One of the most 
interesting indicators derived is spaciousness (OSR), which calculates the amount of 
open space in terms of the amount of construction area. This provides some 
information on the intensity of usage of the open space.  
All the indicators are calculated from four basic measurements: base land area (A); 
network length (l); gross floor area (F); and built up area or footprint (B). 
Other indicators derived at fabric level provide information on parking performance or 
sunlight access for the fabric. The latter define average indicators providing 
information on the performance of the fabric and are only calculated at fabric level. 
However, spaciousness can be calculated at different levels of aggregation.  
In order to rely on objective measurements and urban indicators, this thesis follows the 
measuring conventions found in (Berghauser-Pont and Haupt, 2010). 
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5    Defining an Urban Pattern Grammar 

This thesis proposes a theoretical framework for developing urban design generation 
tools. The tool structure presented in the thesis is called CItyMaker and it was 
structured as an autonomous parametric and rule-based urban design tool. It is 
designed to establish a dynamic and interactive relationship with the user (designer). 
The tool was also designed as the generation module for the City Induction project, as 
mentioned in Chapter 1. This chapter defines the theoretical structure of CItyMaker: 
the ontology supporting the system and the definitions of the grammar formalism 
supporting the generative behaviour of the tool. Chapter 6 shows the methods 
involving their use and Chapter 7 shows two alternative computer implementations 
based on the same theoretical model.  
 

§ 5.1      Summarising the hypothesis statement  

 
The main driving force behind this research is the problem of planning and designing 
for the complex behaviour of cities. 
Flexibility is proposed as the means of dealing with the problem, involving flexibility in 
the design process and the design of flexible systems (see Section § 2.2      ). Previous 
work involving grammar-based design and pattern-based design suggests they should 
be used to support flexibility. However, new tools are needed to improve 
interoperability between the analysis, synthesis, and evaluation activities during the 
design process, whilst simultaneously taking advantage of the generative potential of 
pattern and grammar-based design. 
In order to maintain a regular design workflow, a design tool needs to maintain a high 
level of interactivity with the design team. Based on the observation that designers 
develop their designs in a progressive fashion, move by move, with each move a trial 
transformation of the existing conditions towards some improvement (Schön, 1987), 
this thesis proposes a design tool using a set of combinatorial algorithms – or design 
patterns – replicating the typical design moves that urban designers recurrently use. 
The proposed algorithms are defined in terms of parallel discursive grammars (Duarte, 
2001) which are compound forms of shape and description grammars. The algorithms 
replicate design moves that are meaningful because they are part of a common and 
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shared design language used by most urban designers. During the research, these 
algorithms were given the name Urban Induction Patterns (UIPs). Designs are 
obtained by progressively combining UIPs until an end state is reached. 
An ontology of the city and the urban design process was proposed to solve the 
technical semantic problems regarding the definition of the concepts used in urban 
design. An ontology is a formalisation of a shared conceptualisation (Gruber, 1993), in 
this case addressing the urban domain. In formal ontologies a specific domain can be 
described by object classes containing objects from that domain, moving from generic 
to detailed concepts including the specification of the relationships between object 
classes. The hierarchy of relationships between object classes builds up the semantics 
of the knowledge domain in question. In this case the object classes correspond to 
representations (shapes and descriptions) of components or elements of the urban 
space. The grammars use the representations found in object classes for their 
description or shape sets. The semantic structure of the ontology is therefore 
transferred to the grammars, creating more meaningful behaviour in terms of the 
generation process. To be more precise, the ontology defines the relationships between 
city representations, providing an overall semantic structure for representing cities, 
whilst grammar formalisms such as labels (Stiny, 1980), weights (Stiny, 1992) and 
colours (Knight, 1993) may be used to control more localised or contextualised details 
of the generation process.   
This thesis outlines the structure of the ontology needed to define the urban design 
generation system and the set of generative design moves (UIPs) that provide the tools 
for designing urban plans.  
The ontology is part of an ontology shared by the City Induction researchers. The shared 
ontology is being implemented within the City Induction group by Montenegro (2010) 
and it also contains the programme formulation model for the project. The ontology 
shown here was developed as part of the whole ontology and refers to the components 
found in the generation module. Parts of this ontology are shared with the formulation 
module. 
The core of this chapter focuses on the definition of grammar-based patterns for urban 
design. The details of the structure will be described in the following chapter, whilst 
also exemplifying its use. 
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§ 5.2      Using patterns in urban design – a method and 3 design machines 

 
The central concept of CItyMaker is the use of grammar-based patterns at different 
levels of abstraction. This section provides a brief overview of the proposed design 
system and how it is envisaged it should be applied in a regular participatory urban 
design process.  
Alexander et al’s (1977) pattern structure identifies descriptions of a design problem 
for which descriptions of a solution are proposed. If the descriptions of both problem 
and solution are formally translated into description grammars (Stiny, 1981), rigorous 
devices can be developed that are capable of reading formal descriptions of a context 
and generating descriptions of a solution in a similar formalism. The descriptions of 
solutions are obtained through a set of description rules. This can be achieved with the 
aid of a city ontology containing descriptions of the components of urban 
environments and specifications for the relationships between them. As previously 
stated, ontologies are suitable formalisms for this purpose. In this case, the ontology 
defines concepts describing the city, captured in object classes with particular 
attributes and parameters. The specification of relations between object classes 
defines the semantic relations between the components of cities. The object classes 
define the object sets (shapes or/and descriptions) which can be used by discursive 
grammars (Duarte, 2001) to generate urban programmes and urban designs. 
CItyMaker was planned to be used as an autonomous design tool within the context of 
a design workflow starting from a participatory process and evolving to the generation 
of alternative design solutions. The structure of the design workflow is captured in 
Figure 6. It describes the structure of a pattern-based design model whose input is 
data defined as a set of patterns during participatory workshops – fact and concept 
patterns. The model is defined at neighbourhood design level. The proposed design 
workflow shown in Figure 6 presents a participatory process and a semi-automated 
process for programme and design generation.  
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Figure 6 
Pattern-based design model. The model is defined by three theoretical design machines. Design machine 1 
corresponds to an entirely manual and interactive human procedure. Design machines 2 and 3 are semi-
automated. A design interface manipulates both the ontology and the patterns. 

Until the development vision is concluded, the design process is participatory, 
involving analytical and conceptual processes using fact and concept patterns. From 
programme formulation onwards, the processes are semi-automated. These semi-
automated systems are production systems (Gips and Stiny, 1980), or design 
machines (Stiny and March, 1981) to be more precise, and therefore the patterns used 
in them have a precise algorithmic structure which can be considered as design 
patterns. The design patterns are distinguished by dividing them into programming 
patterns for developing the urban programme and designing patterns for designing the 
solutions (see Figure 6). The model is composed of three theoretical design machines 
which perform vision development, programme formulation and design generation 
respectively. Design machine 1 corresponds to an entirely manual and interactive 
human procedure. Design machines 2 and 3 are semi-automated. 
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A design machine is composed of a receptor and an effector (and a theory). The receptor 
is responsible for the analysis and the effector for the synthesis. The theory is half 
embedded in the ontology defined in the relationships expressed between object 
classes. The other half of the theory is expressed through the designer interactivity 
provided by the interfaces (ontology interface + design interface) allowing the 
characteristic ambiguity of the design process to be expressed.  
Design machine 1 corresponds to a high level of abstraction in dealing with concepts 
which, although generic, are intelligible and usable by lay people. This process 
incorporates an analytical and a synthetic part. In the analytical part, the participants 
identify fact patterns or, in other words, context predicates. In the synthetic part, they 
build up concept patterns, or the desired consequents, which will be set as design 
goals. Both patterns are predicates that will be used in the programme formulation 
(Design machine 2). The rules that produce the concept patterns are implicit in the 
participatory process and do not need explicit translation. However, the predicates 
have to be inserted as input data through the ontology interface and this process is a 
matter for expert interpretation. The participatory process method is inspired by 
(Halatsch, Kunze, and Schmitt, 2009) and can be supported by several computational 
means, although decisions are basically made by the participants’8. 
The programme formulation machine contains programming patterns which are 
discursive grammars (description grammars + shape grammars + heuristics). The 
design generation machine contains design patterns which are also discursive 
grammars (description grammars + shape grammars + heuristics). The shape 
grammar part in the programme formulation part may be empty. 
Both patterns and grammar rules have a similar structure (predicate → consequent). In 
the case of programme formulation, the predicate is composed of a development 
vision: occurrences = fact patterns + vision = concept patterns. The consequent is an 
urban design brief made up of descriptions of occurrences + descriptions of solution 
components. Note that in design generation (Design machine 3) the consequent of the 
programme formulation machine (Design machine 2) becomes the predicate of the 
design generation machine + an initial shape for activating the initial patterns. The 
consequents in the design generation machine are designs. 
The level of abstraction is reduced from Design machine 1 to Design machine 3. 
Design machine 1 defines generic goals, Design machine 2 generates detailed 
descriptions of an urban programme, and Design machine 3 generates designs for the 
programme. The semi-automated processes benefit from designer interactivity, 
providing the characteristics for a reflective design practice as identified by Schön in his 
research on design methods and practice. Design machine 2 uses programming 
patterns defined by rules edited in the ontology and Design machine 3 uses designing 

  
8  The possibility of semi-automating this process – Design machine 1 – is an option but this has been 

reserved as a possible evolution of the system. 
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patterns defined as Urban Induction Patterns (UIPs) (see the formal definition in 
Section § 5.6      ). 
The following sections show how UIPs can be used to design urban plans and explore 
design flexibility. 
 

§ 5.3      Case Studies 

 
The urban design generation tool developed in this research bases its generative 
behaviour on the arrangement of sets of small design decisions, or trial moves, which 
progressively build up the whole design. It is understood that most designers use 
similar design moves to define their urban designs9. As such, in order to identify what 
these small common design moves are, some reverse engineering was required, using 
a set of urban plans as case studies. The design processes in these case studies were 
analysed, breaking them down into very small generic design moves. It was found that 
in the four case studies similar basic moves were used to generate the four different 
designs. After correctly understanding the structure of all the individual design moves, 
their parameters and design range, they were codified as urban induction patterns 
(UIPs) following the structure explained in Section § 5.6      .  
Furthermore, the analysis showed that in order to produce complete urban designs at 
least four sets of urban induction patterns have to be defined, relating to four different 
levels of design: (A) rules to define the compositional guidelines of the plan; (B) rules to 
define grids or the main street structure; (C) rules to define urban units, including 
squares and other public spaces; and (D) rules for designing details, such as the 
detailed design of street profiles and materiality (Beirão and Duarte, 2009). These 
levels are also close to the regular stages for planning approval by local authorities. The 
levels come from the previous work described in Section § 4.1      . 
  

  
9  Communication between designers illustrates this idea. Practitioners tend to develop a kind of personal 

slang which they use to communicate design concepts. Different levels of abstraction can even be 
identified in this slang. Some expressions are used only in a particular office and they have a meaning for 
the designers working there. Other expressions are common among designers sharing a particular design 
language. Moreover, all designers seem to be able to communicate with each other by referring to design 
moves which are common to the whole design community. 
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In order to define design moves in the form of UIPs, 4 urban plans were used as case 
studies (Figure 7). The 4 urban plans were: 1- The extension plan for Cidade da Praia in 
Cabo Verde by Chuva Gomes; 2 - Qta da Fonte da Prata, in Moita, Portugal by Chuva 
Gomes (QFP); 3 - IJburg/Haveneiland by Frits van Dongen, Felix Claus and Ton Schaap 
from a larger plan by Palmbout; and 4 - Ypenburg also by Palmbout (Palmboom and 
van den Bout). The case studies were used to frame the work within the scope of their 
design space.  
The main goal was to use the case studies as a repertoire of examples from which a 
library of design moves could be inferred in the form of UIPs that could then be reused 
to design new plans. 

 

Figure 7 
Plans for (1) Praia, Cape Verde and (2) Moita, Portugal (both by Chuva Gomes), (3) IJburg, Netherlands (by van 
Dongen, Claus and Schaap based on a master plan by Palmbout) and (4) Ypenburg, Netherlands (by Palmbout). 

The research started by analysing the first case study, inferring the design moves used 
by the urban designer and defining them as Urban Induction Patterns. In interviews he 
gave, Chuva Gomes clearly stated his design moves for both plans (case studies 1 and 
2). He even pointed out which moves were common and which were different in the 
two plans. Basic definitions of UIPs were developed, based on his moves in such a way 
that they would be valid for the four case studies or even for other well-known 
paradigmatic urban plans. Due to its simplicity, Plan 1 provides very basic rules for 

1 3 

2 4 
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designing an orthogonal grid-based plan. The patterns were developed in such a way 
that in order to obtain results similar to those in Plan 2 the same rules (UIPs) could 
simply be applied with a different sequential arrangement and different values for the 
parameters. Roughly speaking, it can easily be seen that Plan 2 uses similar rules to 
those in Plan 1 but applies them several times in 4 different areas with 4 different 
orientations and parameter values (Figure 8). Introducing more complexity into the 
plans is therefore the result of combining basic UIPs in more complex ways. However, 
the two Dutch plans introduce new features suitable for encoding other UIPs. For 
example, Plan 3 introduces a lot of variety into the definition of the urban block and a 
set of additional rules could therefore be defined from this case study (see Figure 22– 
page 154). Case study 4 introduces an even more complex variety of design 
transformations in comparison to the previous, less complex, case study. In this plan 
greater variety can be seen in terms of urban unit definition, but distortions in the 
orthogonal grid also become evident, implying the definition of rules to deal with grid 
distortions or irregular grids. 
The main approach was to start by inferring the design rules of the simpler case study 
and gradually address the more complex ones by exploring the parameters of the rules 
to their limits. The idea was to maintain the same UIPs as far as possible and simply 
relax the range of parameter application. In some cases, optional rules were introduced 
defining alternative solutions within a common algorithm. Options could be explained 
as alternative moves for a similar generic design instruction. In all cases, before 
developing a new UIP the range of use of the set of rules and their possible 
transformations within the pattern was tested in order to restrict the amount of 
patterns in the system to the minimum set required. This task proved hard, since it was 
possible to lose direction when considering valid variations simply due to the fact the 
design possibilities are infinite. To avoid this, the research remained focused within the 
scope of the case studies, aiming only to show that: (1) a minimum set of common 
UIPs could be used to generate the 4 case studies; (2) the same UIPs could produce 
new designs in other contexts. The generation of designs for other contexts uses the 
same set of UIPs. A specific language of designs can be composed from the set of 
available UIPs or, in other words, within the design space defined by the case studies. 
The additional capacities of UIPs outside this design space were considered only as 
additional qualities to support the concept, but were not established as a goal. The 
importance of this exploration could be verified by comparing the new design 
possibilities to patterns found in well-known acclaimed plans (for instance, Cerdá’s 
Barcelona plan – see Table 14, page 196, showing the patterns used to generate 
Cerdá’s plan), providing indications of how parameter manipulation of UIPs could be 
used to explore new design domains. Furthermore, if simple variations in UIPs easily 
suggested other possible design moves observed in well-known standard urban design 
procedures, these would be incorporated into the system as a way of extending the 
design space within a commonly accepted design practice. However, examples were 
always sought out to support such situations.  

 90 CItyMaker / Designing Grammars for Urban Design i



  

 
 

90 

designing an orthogonal grid-based plan. The patterns were developed in such a way 
that in order to obtain results similar to those in Plan 2 the same rules (UIPs) could 
simply be applied with a different sequential arrangement and different values for the 
parameters. Roughly speaking, it can easily be seen that Plan 2 uses similar rules to 
those in Plan 1 but applies them several times in 4 different areas with 4 different 
orientations and parameter values (Figure 8). Introducing more complexity into the 
plans is therefore the result of combining basic UIPs in more complex ways. However, 
the two Dutch plans introduce new features suitable for encoding other UIPs. For 
example, Plan 3 introduces a lot of variety into the definition of the urban block and a 
set of additional rules could therefore be defined from this case study (see Figure 22– 
page 154). Case study 4 introduces an even more complex variety of design 
transformations in comparison to the previous, less complex, case study. In this plan 
greater variety can be seen in terms of urban unit definition, but distortions in the 
orthogonal grid also become evident, implying the definition of rules to deal with grid 
distortions or irregular grids. 
The main approach was to start by inferring the design rules of the simpler case study 
and gradually address the more complex ones by exploring the parameters of the rules 
to their limits. The idea was to maintain the same UIPs as far as possible and simply 
relax the range of parameter application. In some cases, optional rules were introduced 
defining alternative solutions within a common algorithm. Options could be explained 
as alternative moves for a similar generic design instruction. In all cases, before 
developing a new UIP the range of use of the set of rules and their possible 
transformations within the pattern was tested in order to restrict the amount of 
patterns in the system to the minimum set required. This task proved hard, since it was 
possible to lose direction when considering valid variations simply due to the fact the 
design possibilities are infinite. To avoid this, the research remained focused within the 
scope of the case studies, aiming only to show that: (1) a minimum set of common 
UIPs could be used to generate the 4 case studies; (2) the same UIPs could produce 
new designs in other contexts. The generation of designs for other contexts uses the 
same set of UIPs. A specific language of designs can be composed from the set of 
available UIPs or, in other words, within the design space defined by the case studies. 
The additional capacities of UIPs outside this design space were considered only as 
additional qualities to support the concept, but were not established as a goal. The 
importance of this exploration could be verified by comparing the new design 
possibilities to patterns found in well-known acclaimed plans (for instance, Cerdá’s 
Barcelona plan – see Table 14, page 196, showing the patterns used to generate 
Cerdá’s plan), providing indications of how parameter manipulation of UIPs could be 
used to explore new design domains. Furthermore, if simple variations in UIPs easily 
suggested other possible design moves observed in well-known standard urban design 
procedures, these would be incorporated into the system as a way of extending the 
design space within a commonly accepted design practice. However, examples were 
always sought out to support such situations.  

  

 
 

91 

The information on the case studies was gathered from publications (Boeijenga, 
Mensink, and Grootens, 2008), (Mozas and Per, 2002), (Venema, 2000), online 
material (Projectbureau IJburg, 1996), (Den Haag, 2010), and elements and interviews 
that were kindly provided by the designers. The contribution of the case studies to the 
development of CItyMaker will become clear as the urban induction patterns are 
explained in the following sections of this thesis. Formal descriptions of UIPs including 
grammar rules can be found in Appendix 2 – A Library of Urban Induction Patterns. 
 

 

Figure 8 
Case study 2 – A sequence of 2 orthogonal axes and a rectangular grid is applied in several areas of the plan. 
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§ 5.4      An ontology for the urban design process – the detail of the street 
system 

 
Ontologies are formal representations of shared concepts from real or imagined 
domains and they include specifications of the relationships between the concepts. In 
the City Induction project, an ontology provides the definitions and relationships 
between the shared concepts needed to describe the city domain and the urban 
environment. This ontology defines and organises meaningful relationships between 
the various types of objects and features found in urban space and used in the urban 
design process. The city ontology is divided into sub-ontologies or systems, each one 
containing features from a specific domain of the city structure, namely ‘Networks’, 
‘Blocks’, ‘Zones’, ‘Landscapes’ and ‘Focal Points’. These 5 main classes define the top 
level of the ontology. It follows standard representations in geographical information 
systems that work with specific geometrical representations. ‘Networks’ are 
represented by lines, ‘Blocks’ and ‘Zones’ by polygons and ‘Focal Points’ by points. 
‘Landscapes’ represent natural features as opposed to the artificial components of the 
environment represented in the other classes. As such, the three types of 
representations appear in ‘Landscapes’, separated into sub-domains. This top level 
structure is consistent with most 3D virtual city representation standards [WS9] and 
can be found with similar approaches in software such as the types mentioned in 
Section § 7.1      , CityCAD, CityZoom and CityEngine.  
Regarding the vertical structure of a system or sub-ontology, ‘Networks’, for instance, 
describes the domain of connectivity and city morphology in which the street system 
may be identified. Systems in this context are autonomous semantic units within the 
ontology describing a well known sub-domain of the city. The street system is one such 
unit within the ‘Networks’ sub-ontology. Other systems can be considered in 
‘Networks’, such as ‘train networks’, ‘subway networks’ or ‘bicycle networks’. Some 
sub-domains may share some of their parts with other domains, for instance, the 
bicycle network shares most of its parts with the street network but they are definitely 
not coincident. Figure 9 shows the main structure of the city ontology, together with 
the basic classes and their relationships.  
Systems are subdivided into object classes: each class has object types and each object 
has a set of parameters and attributes. The object types are defined through their 
shape representation and shape description, and they are instances of their respective 
object classes. Classes are denoted by two bold capitals. The systems are part of the 
ontology, as branches or interlaced branches of it, depending on the specific 
relationships defined between classes. Each system has a particular meaning in terms 
of the understanding of cities. For instance, cities may be referred to as a complex 
network of streets, a street system, or a property system. Each system has a particular 
kind of representation associated with the kind of information being depicted.  
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The representations in each class can be geometrically defined by points, lines or 
polygons individually.  Figure 9 also indicates the primary and secondary relationships 
between object classes. These two kinds of relationship establish two levels of priority 
which can be used for semantic manipulation of design rules.  
As an example, the next section details the street system. The same principles may be 
used to define and detail the other sub-ontologies. 

 

 
Figure 9 
The main structure of the city ontology identifying the main systems and top level classes. Dashed lines indicate 
secondary relationships. 
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§ 5.4.1      An ontology for networks 

‘Networks’ are a first level branch of the ontology used in the City Induction project. The 
street system is a semantic unit within the ’Networks’ sub-ontology. The street system 
will now be used as a way of explaining the structure of the city ontology and its role in 
the generation model.  
Street configurations may vary according to many factors, ranging from cultural and 
social to topographic or functional. Some may not be found at all outside a particular 
cultural context. Many researchers have tried to define and classify such characteristics 
but it would appear difficult to achieve a universal consensus. Marshall (2002) 
developed an extensive survey of the different ways of classifying streets and identified 
several different themes that have been used in street classification (Figure 10). 
CItyMaker needed a simpler approach to the basic structure, an acceptable ontology for 
the street system that could be used for urban design to integrate concepts involved in 
the design process. In City Induction, the three modules imply different working 
platforms: formulation and evaluation are better executed in GIS whilst design 
performs better on CAD platforms. The underlying question concerns which 
descriptions and components of the street system should form part of a design tool 
integrating programme formulation, urban design generation, and urban evaluation. 
From the generation point of view, the ontology should additionally consider that 
representations of streets evolve in terms of detail and semantics throughout the 
design process, meaning that the ontology should contain classes that represent 
higher level abstract representations of streets before detailing them. The 
representation of streets should evolve from symbolic (axial, street centre lines with 
different hierarchies) to detailed representations by the gradual addition of meaning to 
the street classification until a detailed description of street components can be 
provided. Furthermore, the assessment of a street network in the early design stages 
should be an ongoing concern, as the street layout is probably the most permanent 
realisation of human artifice. As such, including different levels of abstraction in street 
representation should be a main feature of a design system and, in order to assess the 
network performance, all levels of detail should be amenable to use in a GIS 
environment. 
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The street system is divided into 5 major object classes involving a class of axial 
representations called Axial Network10 (AN) which are compositional representations, 
a Transportation Network (TN) for the hierarchical and functional system definition, 
Street Nomenclature (SN) for a common language cognitive classification of streets, 
Street Descriptions (SD), providing a set of descriptions of the components composing 
the street types and Street Components (SC), a finite set of profile components for 
designing streets. Table 2 shows the permitted relationships between object types 
found in classes AN, TN and SN. 

 

Figure 10 
Index of classification themes for Street Classification (source: Marshall, 2002). 

  
10  This should not be confused with the space syntax axial map. The axial network is defined by street centre 

lines and not axial lines, as defined by Hillier and Hanson (1984). However, the axial network creates a 
complete street topology and may be used for topological analysis using GIS tools, for instance. Whatever 
the tools used for analytical purposes, this is one of the main features that provides integration between 
the generation (synthesis) and evaluation activities. 
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§ 5.4.2      Axial Network (AN) – a hierarchy of compositional axes 

The axial network is a symbolic representation of the street structure or a 
representation of compositional directions. Although we know that every street has a 
particular width defined by the buildings bounding it, it is common to represent them 
as lines on large scales. On a territorial scale, the width becomes null compared to the 
length. These lines represent networks of connections and also, from the designer’s 
point of view, the composition lines defining the main guidelines and grids used to 
structure the design. The objects – lines – in AN are defined as compositional axes. a1 
to a4 is a hierarchy of compositional street axes used to define the street network (see 
Table 2). ab, ap, and atr and abu belong to a thematically independent domain partially 
overlapping the street network. The bicycle network, for instance, can be defined as a 
continuous independent system possibly using reserved parts of the traffic system. 
They can be represented as autonomous networks in separate layers.  
The objects belonging to AN can be further detailed in the design process, acquiring 
new meanings and roles in terms of defining the character of a street and the role it 
plays in characterising urban space. Depending on its role in the network composition, 
a street is further characterised by adding attributes which relate to its role in terms of 
a transport network or simply as an expression of city culture, defined in a word that 
identifies a particular type of street and its inherent street life. 

§ 5.4.3      Transportation Network (TN) – functional representation for streets 

 
It is common to find a hierarchical classification of street types defined in terms of 
traffic speed and other functional requirements. Marshall offers an extensive 
comparative study of this subject (2002), (2005). Despite the many different thematic 
approaches, it seems reasonable to say that when the classification is made exclusively 
from the point of view of traffic functionality it usually involves similar principles, 
although different names are used.   
Pedro (2002a) defines the objective design requirements for public spaces in housing 
developments on a neighbourhood scale, including street hierarchy, detailing the quality 
requirements for streets on this scale and defining their relationships within the overall 
street system and public transport system. He defines four types of streets: main streets, 
distribution streets, local distribution streets and local access streets. The definition of 
the design parameters in this street hierarchy is based on the restrictions resulting from 
the maximum speed limit attributed to each type. These are functional criteria. The main 
interest in his approach is that he accurately proposes and justifies specific parameters 
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§ 5.4.2      Axial Network (AN) – a hierarchy of compositional axes 
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for every type of street and always specifies them for three levels of quality. The three 
levels of quality can be very useful in terms of introducing evaluation criteria for the whole 
network and may even allow for a dynamic evaluation of design quality throughout the 
design process11. These criteria can also be cross-referenced with some network 
indicators developed by Berghauser-Pont and Haupt (2010) such as network density and 
parking performance index, which relate street width to network performance at fabric 
level. Parking performance, for instance, is dependent on street width. A comparative 
study of street width, quality and performance could be developed combining this 
information for a better assessment of network quality and performance. 

Axial Network (SN)  TN Classification  SN Classification 

Composition structure 

a1 R1, R2, S1, S2 av, bv, ms, pr, gr, rr  

a2 R2, S1, S2 st, av, bv, ms, pr, gr 

a3 R2, S1, S2 st, av, la 

a4 S1, S2, S3, B1 st, la, al, cu 

Interlaced (with traffic) networks Can be part of… 

ab      Bicycle network   B1 st, la, al, av, bv, ms, pr, gr, rr  

ap      Pedestrian network P1 st, la, al, av, bv, ms, pr, gr 

abu    Bus network B2 st, av, bv, ms, pr, gr 

atr     Tram network Tr st, av, bv, ms, pr, gr 

   

Table 2 
Relationships between AN, TN and SN classes 

R2, S1, S2 and S3 in Table 2, Table 3 and Table 4 correspond to Pedro’s classification: 
structural street, distribution, local distribution and local access, respectively. On a 
larger urban scale, the ontology needed to consider another street type above these 
offering long distance connections within the city, which we termed ring roads, 
following Alexander’s pattern, rr in the SN object class and R1 roads in the TN object 
class. Street types above this will not be considered here, although it is possible to 
discuss higher types for metropolitan interconnectivity. The equivalence between 
Pedro’s classification and Marshall’s stratification by speed (2005) is shown in Table 3. 

  
11  In any case, even if the quality of the parts does not guarantee the quality of the whole, having qualitative 

criteria for street types and their parameters can at least enhance the designer’s perception of the quality of 
the whole. However, the network qualities also depend on the topological relationships between the parts, 
which cannot be assessed in this way. 
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§ 5.4.4      Street Nomenclature (SN) – a cognitive classification of streets  

Table 3  
TN object class – a hierarchical classification of streets according to traffic flow and functional characteristics 
(contains a comparison with Marshall’s stratification by speed and connectivity route types). 

The ordinary citizen’s perception of streets is essentially made up of symbolic features 
found in streets or the continuity of street spaces. Dimension, continuity, symbols and 
use, including relationships to buildings and traffic use, classify the different types of 
streets. Consciously or unconsciously these qualities are embedded in the common 
nomenclature attributed to streets.  
  

Transporta-
tion Network 
(TN) 

Minimum requirements 
as a collection of profile 
components 
Street Descriptions (SD) 

Allowed additional profile  
components (variations) 

Stratification by 
speed (after 
Marshall) 

Connectivity 
route types 
according to 
structural 
role (after 
Marshall) 

Street types – transportation network 

R1 - High 
speed (ring 
roads) 

⑦|⑫|4x ⑤*|⑫|⑦      
* with central protection rail 
or green stripe 

[③* ④** ⑤ ⑧ ⑩ b or s ⑪***] 

* with protection from car lanes, 
either ⑥ or ⑫ 
** with no stops  

*** if protected from car lanes 

S5 / S4 Corridor 

Cantilever 

Collector 

R2 - Main 
Street / 
Structural 
Street 

②|⑥|2x ⑤|⑥|② [② ③* ④ ⑤ ⑥ ⑧ ⑨ ⑩ b or s ⑪*] 

* with protection from car lanes - ⑥ 
or ② if used for access to tram stops  

S3.5 Connector 

Spine 

Collector 

S1 –  
Distribution 

②|⑥|2x ⑤|⑥|② [② ③* ④ ⑤ ⑥ ⑧ ⑨ ⑩s ⑪**] S3 Connector 

Spine 

Collector 

Cantilever 

S2 – Local 
Distribution 

②|2x ⑤|② [① ③ ④ ⑤ ⑥ ⑧ ⑨ ⑩s ⑪**] S2.5 Cantilever 

Cross-
connector 

Stem 

S3 – Local 
Access 

②|⑤|② [① ③ ⑤ ⑥ ⑧ ⑩s] S2 Stem 

Cantilever 
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Street nomenclature uses words from current language to express the semantic and 
cognitive classification, that is, names that embed some cultural information about 
the street life of particular kinds of streets. The main idea is that many of the words 
used to name street types contain a lot of information on their spatial characteristics 
and role in city life. Nevertheless, different languages use slightly different names or 
concepts for streets, as they can be extremely context dependent. In this research, the 
English vocabulary was used to select terms that could apply to all the case studies 
involved in the three City Induction studies and were common to most European urban 
structures. Particular street types could be added later, customising the ontology to fit 
particular contexts that had not been defined before. 
 
The following words were considered representative of the different street types: street 
(st), avenue (av), boulevard (bv), promenade (pr), grove (gr), main street (ms), lane (la), 
alley (al) and cul-de-sac (cu) or impasse (Table 4)12.  
“street” is the most generic and abstract of these types, and is therefore considered 
separate from the others. “avenue”, “boulevard”, “promenade” and “grove” are 
defined as large thoroughfares with one or more lanes of trees or shrubs. The French 
terms “boulevard” and “promenade” used in several European countries tend to be 
associated with the largest streets. “promenade” is also defined as a leisure walkway 
usually including a large green area and leisure facilities. “grove” is usually associated 
with a greater densification of trees. A “main street” is essentially characterised by its 
social and commercial activity and therefore may have different configurations, often 
not planned at all due to informal development. The previous 6 types usually end in 
important public spaces such as main squares or junctions which may contain 
landmarks, buildings or other urban features such as monuments, statues or 
fountains. They correspond in most cases to higher hierarchies13. “Lanes” and “alleys” 
are small streets. “Lanes” might be associated with old rural paths embedded in the 
city street structure a long time ago. “Alleys” are more restricted streets, sometimes 
with dead ends, leading to interior neighbourhood spaces. The “cul-de-sac” or 
“impasse” concepts are dead ends with (or without) turning space. “Ring-roads” are 
usually perceived by people in more or less the same way as they are defined using the 

  
12  Several other terms can be found in English to refer to street types, which are usually more specific and 

culturally grounded than these. However, because the system rules were based on Portuguese and Dutch 
case studies the more generic and internationally accepted terms seemed more feasible for the purpose of 
developing an urban design system that could be used on an international level. Marshall (2002) provides 
an extensive list of common English words used in street toponymy. Among the typical English terms, 
names such as crescent, mews or manor may be found, which provide information on the origins or shape 
of the street type.    
 

13  Note that hierarchies a1 to a4 as defined for the axial network (Table 2) correspond to compositional 
hierarchies and do not necessarily have a direct correspondence to traffic use. The classification in the AN 
class attributes hierarchy to axes in terms of their compositional role in the design of the street network. 
The classification in the TN class is defined according to Pedro’s (2002b) classification plus the high speed 
roads. Traffic use is a matter for analysis. 
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functional criteria, i.e. as large distribution streets for high speed traffic connecting 
different areas of the town. No matter how complex the classification of streets may be, 
it is important to establish a consensual classification that embeds the perception of 
streets in a common language that captures a certain social perspective on street 
classification (Marshall, 2002). In addition it must be generic enough to adapt to most 
contexts. 
This classification can be used to provide some guidance for rule application in 
detailing the streets or (more interestingly) to provide information on functional 
distribution and the distribution of large public spaces in relation to other activities, 
mainly facilities and services. 

§ 5.4.5      Street Descriptions (SD) – describing the street composition 

The descriptions of streets found in the classes above are usually sufficient to provide 
an idea of the street layout, but not a detailed description. The generation module 
needs accurate descriptions to be able to generate detailed representations of different 
streets, even if their character can be generically described by the same word. Some 
interpretations of the same concept might have different representations within a valid 
range of parameters, which should reflect the designer’s freedom of choice. By 
breaking streets down into a finite set of profile components, each street can be 
defined as a different arrangement of these components. The street descriptions are 
defined in terms of the minimum arrangements of their components. The minimum 
arrangement considered both in terms of quality levels and available street width will 
determine its final profile. Table 4 shows the minimum requirements for SN street 
types defined in terms of their minimum profile components and their possible 
correspondence as a TN object type when considered part of the traffic system or 
transportation network. The street components are shown in Table 5. 
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Table 4  
SN object class – classification of streets in common language. Comparison between TN classification and 
Marshall’s stratification by speed and connectivity route types. 

  

Street  
Nomenclature 
(SN) – a collection 
of street concept 
patterns 

Minimum  
requirements as a 
collection of 
profile  
components 

Street  
Descriptions (SD) 

Possible relations 
to transportation 
network (TN) 

Stratification by 
speed (after  
Marshall) 

Connectivity route 
types according to 
structural role 
(after  
Marshall) 

st – street  ②|⑤|② R2; S1; S2; S3 S3.5 – S2  Collector 

Connector 

Spine 

Cantilever 

av – avenue ②|⑧|2x ⑤|⑧|② R2; S1;  

(S2 + S1 + S2);  

(S3 + S1 + S3);  

(S2 + R2 + S2) 

S3.5, S3 

With horizontal 
stratification 

S3.5 - S2.5 or S3 - S2 

bv – boulevard ②|⑤|②*|2x 
⑤|②*|⑤|② 

* with tree alignment 
or green stripe 

(S2 + S1 + S2);  

(S3 + S1 + S3);  

(S2 + R2 + S2) 

idem 

ms – main street ②|2x ⑤|② R2; S1; S2 S3.5 - S2.5 

pr – promenade (S2 +⑪+ S2);  

(S3 +⑪+ S3) 

(S2 +⑪+ S2);  

(S3 +⑪+ S3) 

S2.5, S2 

With horizontal 
stratification 

gr – grove (S2 or S3 + ⑪ + S2 

or S3);  

(S2 or S3 + ⑪)  

(S2 or S3 + ⑪ + S2 

or S3);  

(S2 or S3 + ⑪)  

idem 

la – lane ②|⑤|② S2; S3; P1; B1 S2.5 – S1 Stem 

Cross-connector 

Cantilever 
al  – alley ② ; ②|⑤|② S3; P1; B1 S2 – S1 

cs – cul-de-sac or 
impasse 

②|⑤|② S3; P1; B1 S2 – S1 Stem 

 

rr  – ring roads ⑦|⑫|4x ⑤*|⑫|⑦      
* with central protec-
tion rail or green 
stripe 

R1 S5 – S4 Corridor 
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§ 5.4.6      Street Components (SC) – a collection of street profile components 

 
The selection of components used in this object class is taken from the available 
technical literature, namely Pedro (2002a) and others (Marshall, 2002); (Steiner and 
Butler, 2007); (Burden et al., 2002); (Neufert, 2006), applied to the case studies used 
in the research in order to guarantee applicability. Curiously enough, the elemental 
components of streets are consistent in most of the technical literature and urban 
planning regulations, despite some insignificant variations in terminology. It is also 
relevant to point that the amount of minimal components is quite limited and 
common to most cultures, in spite of the fact that a component was needed to 
accommodate the Dutch canals that feature in the case studies. Table 5 shows the 
street profile components and how they can be used to define street sections. The 
parameters involved in the definition of each component are indicated, together with 
their range of variation and the relations that can be established with other 
components. The range of variation was taken from Pedro, considering his three quality 
level criterion to define the flexibility space for each parameter. Designers may, 
therefore, choose a target quality level by further constraining the flexibility space or 
explore different dimensions, receiving qualitative feedback in return. The values in a 
practical design system should be editable by the user, although the default values 
should provide a wide range of good standard solutions without the need to justify 
options outside the commonly used standards. The default level follows the 
intermediate quality level in Pedro’s classification. 
Finally, it is important to stress that the ontology shown here was developed to encode 
urban features within a design system or, in other words, was meant to encode urban 
structures for designing rather than describing the existing urban environment, and 
this may sometimes be inconsistent with the range of variation embedded in the 
qualitative definitions. However, the existing entities are accepted as existing 
representations with their own specific parameters and relationships, whereas designs, 
i.e. new representations, are constrained by the embedded pre-defined qualitative 
definitions, although they are still open to a wide range of parameter options and are, 
in general, editable. It is the role of the designer, through formulation and evaluation, 
to find the values that meet contextual needs, minimising the effect of pre-existing 
maladjustments. The main idea is not to over constrain the system and provide 
freedom to explore designs. 
Typical parameters of specific urban types can be captured using data mining. This 
information can also be inserted into the ontology, adapting it to local conditions (Gil 
et al., 2009). 
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Street Components 
(SC) – a collection of 
street profiles 

Profile schema – indicates profile parameters and possible adjacent profiles Profile parameters 

① - street parking 

 

Valid for  

S3 – S2 

 

Preferred for 

S2.5 – S2  

Parallel    Not parallel 

  

Parallel 

≤ ≤2.0 2.4w  

≤ ≤4.7 5.5l  

 

Not Parallel 

≤ ≤4.8 5.5w  

≤ ≤2.25 2.5l  

° ≤ ≤ °α45 90  

 

≤ ≤0 0.2h  

 

If ⑩  h = 0 

② - sidewalks 

 

S1 

 

 

 

 

Central sidewalks 

 

≤ ≤1.25 5.0w  

≥ 1.2s  

w = s + ⑧width + d 

≤ ≤0.3 0.75d  

e is an extra space 
for additional 
purposes. E.g. – 
esplanade, bench-
es, telephone 
booth, commercial 
activities, etc. 

≤ ≤0 2.5e  

And can be used 
also as tolerance 

The w value is 
further restricted 
depending on the 
street type to which 
it belongs. The 
values indicated 
here encompass all 
possiblities in the 
case of central 
sidewalks. 

 

For central side-
walks – 

≤ ≤1.25 2.0w  

w = sl + ⑧width + d 

≤ ≤0 0.2h  

h = 0 in the case of 
⑥,⑩ or ⑪ 
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③ - bicycle lanes 

 

S1.5 
 

 

One way 

 

≤ ≤1.0 1.5w  

 

Two ways 

 

≤ ≤2.5 3.0w  

 

Independent  

(not next to ④, ⑤ 
or ⑨) 

 

≤ ≤2.0 3.0w  

⑫ in the case of R1 

apply for only with 
⑥ 

④ - bus lanes 

 

S3.5 – S2.5 

 

w = 4.0 

⑦ and ⑫ apply 

only to R1 

≤ ≤0 0.2h  

h = 0 when next to 
① or ⑤ 

 

⑤ - car lanes 

 

Depending on 
relative position in 
cross-section 

S5 – S2  

 

≤ ≤2.5 3.75w  

Variations depend-
ing on street type 

 

⑦ and ⑫ apply 

only to R1 

≤ ≤0 0.2h  

h = 0 when next to 
①,④ or ⑤ 

 

⑥ - green stripes 

 

Can be placed next 
to any speed type  

≤ ≤0.8 4.0w  

 

⑦ and ⑫ apply 
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≤ ≤0 0.2h  
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Table 5  
SC object class – table with the profile components of streets 
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§ 5.4.7      Implementation of the ontology  

The ontology supporting the interoperability protocol between the modules in the City 
Induction project is also a main component of the programme formulation module. A 
prototype of the ontology was implemented by Montenegro et al. (2011), the 
researcher in charge of developing the formulation model in the project. The ontology 
was developed using Protegé, a computational ontology editor (Noy et al., 2001) which 
allows ontologies developed for a specific model or shared by the Web community to 
be imported, as well as for several ontologies to be merged from different sources into 
a more complex ontology or even for new ontologies to be edited from scratch. The 
ontology developed by Montenegro (2010) builds up an integrated and relational 
database of all the concepts involved in definitions of urban spaces. If additional rules 
are added to the ontology establishing regulations for mandatory dependencies 
between components of the urban space, it is then possible to obtain programmatic 
specifications for a particular context. The definition of this system, developed by 
Montenegro et al. (Forthcoming), constitutes the programme formulation module of 
City Induction, as well as the communication protocol between the three project 
modules. 

§ 5.5      Patterns 

The concept of patterns developed by Alexander et al (1977) in the book ‘A Pattern 
Language’ is particularly useful in terms of communicating design intentions. The key 
idea behind the concept is that typical problems occurring in the urban and 
architectural environment can be solved with a generic design solution, and that 
particular sets of patterns produce a language for designing architecture and urban 
environments. The concept provides an algorithmic structure for design based on 
associations of patterns that create a chain of interrelated decisions which can be 
applied in particular contexts. The way in which the authors define patterns is abstract 
enough to be applied in most circumstances and even to be customised to adapt to a 
designer’s personal language.  
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Patterns seem quite reasonable and efficient urban design and planning concepts that 
can be used for communicating with both experts and lay people. Their structure, as 
proposed in the book, can be summarised as: 

• a pattern name with an illustration of the pattern (an icon), 

• a description of the design problem and its context (predicate), 

• a description of the elements defining the design solution and their relationships 
(consequent), 

• a set of interrelated design problems, i.e. a set of interrelated patterns.  

Patterns are algorithmic structures that can be used to generate design solutions. The 
conditional predicate → consequent statement can be represented by a schema 
identifying the problem elements, their attributes and parameters (defined in a 
schematic representation of the predicate), and the transformations that will occur in 
these elements, attributes and parameters, (defined in a schematic representation of 
the consequent). In fact this is an identical structure to that of a shape rule in a shape 
grammar. The composition of predicate and consequent gives a pattern its algorithmic 
structure. However, the use of the word pattern has led to some misunderstandings 
regarding the structure of patterns. In current language, a pattern is a regular form or 
sequence discernible in the way in which something happens, is shaped or carried out, 
but it can also be considered a model that can be followed. Alexander’s patterns 
encompass both definitions, the former as the predicate and the latter as the 
consequent. Recognising a recurrent occurrence in the environment involves finding a 
predicate. A recurrent design solution is also a pattern, in the sense that it constitutes a 
model to be followed. In this case the pattern is the consequent. These characteristics 
of patterns, as defined in ‘A Pattern Language’, can be used both for analytical and 
generative purposes just as with shape grammars.   
Aware of the algorithmic structure of a pattern language, Gamma et al. (1995) 
proposed to develop this concept in a software design method called design patterns. 
This concept adds accuracy to patterns by adding a code sample for solving typical 
software design problems and making the algorithmic structure rigorous and effective 
and, more importantly, modular and reusable. Several attempts have been made since 
to combine both approaches in order to develop systems for generating urban design 
solutions on the basis of an identification of the design problem (Salingaros, 2000) 
(Montenegro, 2010). However, architecture and urban design involve issues that are 
much too complex to be handled as linear tasks, ranging from problem identification 
to solution generation. These issues are very much context-dependent and many 
different formal solutions can be applied to solve a particular design problem. 
Therefore patterns are reasonably abstract in order to keep a wide scope of application. 
In fact, Alexander et al avoid indicating specific formal approaches in order to free 
design space for designers. 
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However, at a micro level similar and typical design moves seem to recur in the work of 
designers, as can be seen in the four case studies used in this research. This 
characteristic is clearly present as a common language found in the discourse of urban 
designers. They all refer to starting with a definition of the main composition axis or 
main guidelines, then defining the grids (the orthogonal grid being the common 
denominator) and progressing towards the definition of urban units, such as 
neighbourhood requirements. Neighbourhoods contain a set of minimum 
components, such as the definition of public spaces, the definition of block types 
defining morphological regulations for specific block types and, finally, the definition of 
details for street profiles and other detailed aspects of public space such as materiality. 
This is absolutely consistent with the results of previous research developed by the 
author of this thesis focussing on other well known urban plans such as West 8’s 
Borneo-Sporenburg plan, Siza’s Malagueira plan (see (Beirão, 2005) and Manuel da 
Maia’s plan for the reconstruction of Lisbon in the 18th century (Beirão, 2002). The 
latter example stresses the consistency of these generic methods over time. These 
consistencies in the discourse of designers may be termed design patterns for urban 
design, due to their recurrent use. Designers apply them in similar ways but each 
designer interprets their variables in a different way. Moreover, because every designer 
understands what each design move means in terms of the design process, an 
algorithm can be defined for them. Such an algorithm would encode the rules for 
generating the common design moves found in the work of designers and the designs 
would be the result of combining these algorithms into a whole in a semi-constrained 
way. This is the main concept underlying the structure of the design system proposed 
in this thesis. Furthermore, the rules of the design moves can be defined in terms of 
discursive grammars. The main formal definitions of such a system are discussed in 
the next sub-section.    

§ 5.6      Urban Grammars and Urban Induction Patterns – definitions 

The city ontology shown in Figure 9 is responsible for supporting communication 
between the concepts involved in the generation of designs. It also plays a 
fundamental role in communicating between the three City Induction modules: 
4CityPlan (the formulation module), CItyMaker (the generation module) and EvModule 
(the evaluation module). 
The top level of the city ontology includes 5 object classes, namely networks, blocks, 
zones, landscapes and focal points (see the previous section). Each object class is a set 
of object types, each represented as geometry (shapes and parameterised shapes) and 
attributes (labels). The ontology defines a dependency structure for all the shape sets 
and label sets that compose an urban plan, enabling grammars to consider them as 
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parameterised shapes and labels for the application of rules to generate urban designs. 
Each set of parameterised shapes that is part of the ontology is noted with Si, in which 
the index i defines the position of the set in the ontology from 1, 2,…, n and n is the 
total number of shape sets in the ontology (see class numbers in Figure 9). 
As a broad definition, an urban induction pattern is a recurrent urban design move 
encoded into a small grammar γ that can be applied to replicate the design move in 
various contexts, and an urban grammar Γ is a specific arrangement of UIPs, i.e. a 
compound grammar of urban induction patterns.  
The model proposed here is shown in diagram form in Figure 11. The UIPs were 
defined on the basis of the four case studies shown in Figure 7 and the design moves 
explained and described by their designers. This simplified framework provides a 
manageable working design domain that is broad enough to develop proof of concept. 
However, the domain can be extended by (1) enlarging the city ontology and (2) 
increasing the set of available UIPs. Such a design model provides an ever extendible 
design model, or a potentially infinite urban pattern grammar – termed in Figure 11 
the ‘universal’ urban pattern grammar Γ∞ . 
The generation module contains all the urban grammars that can be defined through 
all the possible arrangements of UIPs and all their parameter variations. The urban 
pattern grammar set Γ  is a very generic grammar containing all the specific urban 
grammars Γ '  that can be defined by the Cartesian product of subsets of the UIPs 
available in the generation module (Figure 11). In short, Γ  grammars denote urban 
pattern grammars or urban grammars made up of patterns, and γ  grammars denote 
urban induction patterns or design moves.  
Formally, an urban grammar Γ '  is the Cartesian product of user-selected grammars 
γ γ γ γ× × × ×1 2 3 ... n   that take a set of parameterised shapes from the city ontology, 

1 2 3, , ,..., nS S S S , respectively, to design an urban plan. The urban grammar Γ '  is a subset 
of the Cartesian product of all grammars γ . A complete layout of an urban plan is 
defined in 4 design phases which produce 4 sub-designs with different levels of detail. 
γ  grammars are applied in parallel to generate layered representations. Each design 
phase uses some of the parallel grammars, γ1  to γn  of an urban grammar Γ '  to 
generate the several layers that define the sub-design produced in that design phase. 
Label sets 1 2 3, , ,..., nL L L L , are the label sets in grammars γ γ γ γ× × × ×1 2 3 ... n , respectively, 
and they correspond to the classes of attributes in the ontology. The structure is similar 
to the one presented by Li for the Yingzao Fashi grammar (Li, 2001) but enhanced with 
discursive grammars (Duarte, 2001), as suggested by Knight in (2003).  
Any urban grammar Γ '  is built up from a sequence of UIPs. It is a sequence of design 
decisions which in the end reflects the design language of the urban plan(ner) and any 
other decision-makers involved. The same urban grammar Γ '  can be used to produce 
different instantiations by applying different parameter values to the parametric shape 
rules or by applying the rules in different ways. The urban pattern grammar Γ  is, in 
fact, an algorithmic implementation of part of a Pattern Language as Alexander 
conceived it, but produced in a way that allows a designer to define his own pattern 
language Γ ' .  
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Figure 11 
Definitions 

Following the previous definitions, a UIP is a sub-grammar of Γ ' . A UIP uses some of the 
parallel grammars in Γ '  which are a subset γ  of Γ ' , namely some components of  
γ γ γ γ1 2 3{ , , ,..., }n . A UIP is a compound grammar γ composed of a set of parallel discursive 

grammars iγ  of the form { , , , , , , , , , }i i i iγ D U G H S L W R F I=  in which iS  is the set of 
parameterised shapes corresponding to the ith shape object class in the ontology, iL  is 
the set of labels corresponding to the ith attribute object class in the ontology and iI  is the 
initial shape. The initial shape iI  is always a shape in iS  generated by a previous UIP or a 
shape in I0  in the case of initial UIPs where I0  is the set of initial labelled shapes. These 
initial labelled shapes are existing objects found in the representations of the existing 
context used by the initial UIPs to start the design. There are only two types of initial 
shapes: sI , denotes the intervention site limit and Ref objects are labelled shapes 
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representing selected elements from the site context. The Ref objects are selected by the 
designer as referential elements in the design context and therefore the best candidates 
for defining the main guidelines of a plan. Each UIP addresses a goal G, which is to be 
achieved through a set of description rules D, starting from an initial description U. A set 
of heuristics H decides which of the rules in the set of rules R to apply at each stage of the 
design process. W is a set of weights and F a set of functions used to constrain the 
generation to comply with existing regulations and quality standards. Weights may also 
be used as a way of expressing the relative importance of elements in the design, allowing 
rules to be applied according to this relative importance.  

To sum up, the universal urban grammar Γ∞  represents the scope of tool’s application. 
UIPs are available and customisable generic design moves expressed through the γ   
grammars. The available set of UIPs can be extended by the designer by adding a new, 
customisable grammar 'γ  to complete the grammar Γ ' , thereby implicitly extending 
the grammar Γ  towards Γ∞ . Every generic design move or UIP can be further 
customised by the designer by constraining the range of parameters to be assigned to 
the rules defining the specific design moves which s/he considers most appropriate for 
the specific needs of the context. Any arrangement of specific design moves defines a 
specific grammar Γ '  corresponding to a designer’s language, which instantiates urban 
designs within the designer’s language through a specific assignment of parameters. 
The urban pattern grammar Γ  is a very generic grammar containing all the possible 
urban Γ '  grammars composed of arrangements of generic design moves (γ  and 'γ ), 
and corresponds to the available scope of the design tool. The universal urban 
grammar Γ∞  can always be extended by (1) adding new objects to the ontology and (2) 
creating new design moves (UIPs) operating with objects from the new object classes. 
The discursive grammar structure guarantees that each move follows Schön’s reflective 
structure, which corresponds to a formulation-generation-evaluation structure (see-
move-see, in Schön’s words).  
The distinction between the City Induction model and the UIP model should be made 
clear at this point. The City Induction model contains a formulation-generation-
evaluation structure in which the formulation sets an urban programme (a set of generic 
goals to be achieved by the final design), whilst a UIP, being a discursive grammar, 
contains a formulation-generation-evaluation structure that is locally applied if a set of 
circumstances is recognised in the design context for which a local set of goals is 
established for the design move. See(1) in the see(1)-move-see(2) cycle stands for: 
recognise context and formulate local goals. Move stands for: generate design move 
towards local goals. The generation follows the goals using specific heuristics. See(2) 
stands for: analyse generated move for validation.  
 The reader should be aware that this system was defined to produce representations of 
urban environments in a format that can be interpreted by a GIS platform. As such, the 
designs obtained are 2D layered representations of urban spaces. This particular detail 
introduces an important change to how shape grammar representations are usually 
treated. The maximal shape representation that allows for visual reasoning with 
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superimposed representations dealing with, for instance, two partially overlapping lines 
as a single line, can only be considered in each layered representation but never in 
combination involving lines from different layers. This is because GIS representations 
offer different overlapping thematic representations to describe the urban environment. 
For instance, a block representation can contain several plots which may coincide with 
buildings. In a geographic information system each of these representations is 
represented by closed polygons and separated in thematic layers, even if visually 
referring to the same polygon. This structure allows particular kinds of data to be 
associated with each kind of thematic representation. Moreover, in a GIS, each layer is 
either composed of points, lines or polygons. No mixed representations are allowed, in 
order to preserve the topological relationships between the thematic representations.  
However, despite this divergence from the traditional approach to shape grammars, the 
fact is that the rigorous formalism it provides allows precise types of representations to 
be generated and to fit GIS requirements. The parallel grammar structure always allows 
UIPs to generate representations per thematic layer in the correct format (points, lines 
or polygons) and with the associated data: axes, for instance, are generated with the 
associated hierarchy (a1, a2, a3 or a4). Streets can have associated street names and 
street descriptions, and blocks can have density regulations associated with them. This 
characteristic of the design system is what makes it possible to integrate the generation 
process with the GIS analytical tasks. Nevertheless, it should be stressed that full use of 
the potential of such integration may only be achieved by users with combined expertise 
in both CAD (design) and GIS (analysis), two tasks that have up to now essentially been 
separate and performed by different expert teams14.  
  

  
14  Many experts as well as stakeholders would argue that analysis, design and evaluation should always be 

separate and independent processes. The argument here is not that the urban design process should be 
integrated into a single process guided by a designer, but that it should instead provide the designer with 
tools that allow him/her to have upstream and downstream information on the design in order to gather as 
much information as possible to support design decisions. The fact that a tool can cover the overall process 
does not imply a single procedure; on the contrary, procedures should be separate but share as much 
information as possible. 
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§ 5.7      Conclusion 

This chapter defines the theoretical structure of CItyMaker – a design generation 
model for designing urban plans. 
 
The main scientific contributions of the model defined in this chapter are threefold: 

1 The definition of a generative formalism which produces designs (representations 
+ data) in formats suitable for GIS integration. 

2 The definition of a relational structure (an ontology) of urban concepts in terms of 
conventional design reasoning, that is, considering the role of concepts in the 
design process. 

3 Finally, and perhaps the most important contribution, the definition of a shape 
grammar formalism which allows for design synthesis without the need to 
predefine a design language. In fact, the proposed formalism allows the language 
and the design to be defined gradually (and reflectively). The design provides an 
illustrative solution and the language provides the solution space or, in other 
words, the flexibility of the design. 

 
These three contributions provide a design system which respects the typical reflective 
structure of the design process, manages semantic data, and generates 
representations for geographic information systems. The next chapter will present the 
methodological approach to using such a design system and the technical details of 
the urban induction patterns, showing some of their applications and examining the 
details of their discursive structure. 
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6    Designing with Urban Patterns 

The Urban Induction Pattern (UIP) formalism allows an algorithmic urban design 
system to be designed based on a progressive combination of typical design moves 
from which designers can build up their designs reflectively. The gradual definition of a 
design also involves the definition of the rules needed to generate the design, forming 
a pattern language in which patterns are design moves. The language also defines the 
flexibility space of the design. The main concepts described in the previous chapter 
now need to be examined in further detail to show: 

• The UIPs that compose  the design system; 

• The design method for using them; 

• The method for using CItyMaker and the UIP library available in the system; 

• That UIPs generative behaviour is based on discursive grammars, that is, shape 
grammars, description grammars and heuristics; 

• That this structure allows semantically sound designs to be generated; 

• That the system’s options (UIP selection, optional rules and parameter 
manipulation) allow for a large design exploration space. This will be illustrated 
with some examples – the UIPs used to generate the main case study, its derivation 
and the design variations that the system’s options allow; 

• That the UIPs defined allow for the generation of the plans from which they were 
inferred as well as the generation of other design solutions; 

• How UIPs make use of the concepts in the ontology by showing some details of 
their representation. 

§ 6.1      Using Urban Induction Patterns – a methodological approach 

In CItyMaker, the design language is synthesised throughout the design process 
through the progressive selection of UIPs, selecting their optional rules and 
constraining their rule parameters to customised values. A set of fixed constraints 
defines limits for the system components and rule applications within the 
prescriptions of regulations and quality standards. This set of constraints is defined a 
priori by the designer by introducing the applicable local regulations and standards. In 
the City Induction project, this information is managed in the ontology.  
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In order to establish the main structure for the implementation of CItyMaker a wide set 
of UIPs was defined, based on the 4 urban plans used as case studies (Figure 7). Each 
UIP captured the rules underlying the designers’ moves when designing their 
respective plans. The UIPs were codified very abstractly using a discursive grammar in 
such a way that they could produce different formalisations of the same basic move 
just by setting different values for the available rule parameters. In some cases the 
UIPs have other open options or, in other words, alternative subsets of rules that follow 
a common initial set of rules and a common concept. These subsets produce 
alternative solutions to the main problem addressed in the pattern. If no restriction or 
constraint is previously defined by the formulation module, the decision is up to the 
designer, who is therefore allowed to follow his/her design convictions. These optional 
subsets of rules within UIPs are evident in Table 6 in UIPs such as MainAxis or 
DefineUUnit where three optional output types can be chosen.  
The verification of this concept can be tested by checking the UIP application in the 
different plans. Each pattern can be used to explain the generation of certain design 
features in some of the case studies and even in other well-known urban plans such as 
Cerdá’s Barcelona plan (see Table 14 – page 196). Design diversity can be achieved by 
combining different design moves and manipulating the available parameter values. 
The main idea is that most urban designs are the result of different combinations of 
the same generic design moves.  
Table 6 shows the list of UIPs developed during the current research. The application 
sequence is not predetermined, but equally is not random. It is always based on the 
properties of the previous design iteration, which are recognised by the UIPs whether 
based on shape recognition or attribute (label) recognition. Whatever the sequence 
may be, several design levels are identified and separated by grey rows in which the 
main goals of these design levels are described. The icons in the table show the UIPs 
that have been, or are being, implemented as an AutoCad extension (Beirão et al., 
2010). The system can always be extended, although the amount of UIPs developed 
from the case studies is diverse enough to produce a very large number of design 
variations. 
In very general terms a design follows several cycles of formulation, generation and 
evaluation. Each of these cycles is preceded by an analytical phase and followed by 
some evaluation procedures (visual, data-based or tool-based evaluation). Design 
cycles usually end when the requirements of a design phase are completed. In detail, 
the regular design cycle workflow is based on the following sequence of procedures: 

1 context analysis – gathering and structuring data from the design context using  
GIS as the analytical platform (formulation) 

2 programme formulation – setting the goal specifications for the plan (formulation) 
3 preparation of the drawing base (the design generation base or initial design 

features) – the generation process starts with the definition of the intervention site, 
Is, represented as a polygon inside which the designs will be generated (as a manual 
procedure or imported from the GIS shape file – generation) 
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4 start – a kind of ‘Start Design’ button (generation) – prompts a table for checking 
the list of specifications defined by the formulation and allows the user to further 
customise, change or check the available parameters 

5 reference (Ref) selection – the selection of pre-existing elements that the designer 
wants to use as referential items to support the design guidelines (manual 
selection and automatic labelling of pre-existent elements – generation) 

6 UIP selection and generation (generation) – selection of design moves from a list of 
available UIPs and automatic generation until they prompt a request for:  

7 parameter assignments or optional rules – if these parameter assignments or 
optional rules have not already been defined by the formulation module  

8 looping back to redefine previous decisions or jumping to the next step – loop back 
to start (point 4) 

9 end of generation, with a plan layout output 
10 evaluation procedures – checking the design resulting from the generation process 

and feeding back information on the quality of the results (evaluation) 
11 looping back to programme formulation or any point in the generation process to 

redefine designs to meet redefined goals. 
 

Urban Induction Patterns – name  ▼  Urban Induction Patterns – short description ▼ 

A   .    Creating the Composition guidelines (part of phase 1) 

001- 

MainAxis  

 

MainAxistheLongerLine MainAxis generates the main axis of the urban design 
composition and has 3 options: MainAxistheLongerLine / 
Cardus / MIAxis. The latter is the Most Important Axis which 
is an axis that passes through the two most important Ref 
entities. The Cardus pattern may only be applied once. 

Cardus 

MIAxis  

(Most Important Axis) 

002- 

OrthogonalAxis  

(Decumanus)  

         

OrthobyMidPoint    Generates an axis passing through a Ref point which is 
orthogonal to any previously generated axis or to an existing 
axis. It can be applied as long as there are still Ref entities to 
use. If the existing axis is a Cardus the generated axis will be 
a Decumanus. A Decumanus can be generated only once. 

OrthobyLongerLine 

OrthobyMIAxis  

(Most Important Axis) 

003- Promenade 

         

Transforms an existing axis into a promenade. Adds com-
ponents to the street composition. 

004- CompositionAxis 

         

Generates a composition axis passing through one or two Ref 
points or as an extension of a Ref segment. It corresponds to 
other applications of MainAxis without the Cardus option. It 
can be applied as long as there are still Ref entities to use. It 
can only be used after MainAxis. 

005- AStA  (Assign Street type to Axis)  Assigns a particular street type to an axis attributing labels. 
The classification will later allow for the detailed definition 
of street properties. 

006- PZSubdiv (Property Zoning Subdivision) Property and zoning subdivision: determines all property 
subdivisions until block definitions are reached – urban 
plots surrounded by streets. 

007- RingRoads Draws a road circulating around a bounded area. 
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008- InsertFocalPoint 

         

Inserts a focal point. A point + the attribute Fp (focal point). 
Focal points can be placed in Ref s inside the Ua area or in 
places with privileged views. The user can also choose to 
manually position an extra focal point. 

B   .   Creating Grids (completing the street network) (part of phase 2) 

009- (grid by) AddingAxes 

         

Picks two orthogonal axes or two intersecting axes and 
offsets new axes (a4 axes) until a grid is completed inside 
the urbanizable area, Ua. If there are still Ref s or focal points 
available there is an option to generate a higher hierarchy 
street instead of just a4 axes.  

010- (grid by) AddingBlockCells 

  

Picks two orthogonal axes and adds block cells recursively 
until a bounded space is filled. This pattern contains some 
adjustment patterns that apply only if needed, usually due 
to greater variation in the parameter values. 

011- (grid by) RectangleDissection  Recursive subdivision of a zone until a stopping condition is 
reached. The stopping condition is a minimum block area. 
Another parameter constrains the rectangle proportion in 
the subdivision process. 

012- IcerayGrid  A similar recursive subdivision, but the subdivision may not 
be orthogonal. It follows rules similar to those of Stiny’s 
iceray grammar (Stiny, 1977). The angle of subdivision 
becomes an extra control parameter. 

013- RadialGrid Generates a radial grid from a focal point creating a plaza at 
the centre. It can only be applied if a focal point has already 
been used. 

014- AlignStreets Used to correct generation maladjustments in orthogonal 
grids. Aligns streets connecting to another street if their 
intersection points are closer than a certain predefined 
distance. The pattern applies automatically after patterns 
010 or 011 are applied. 

015- ConnectStreets Corrects unfinished generation details using patterns 010 
or 011 to connect streets left unconnected. This pattern 
applies automatically when patterns 010 or 011 are ap-
plied. 

C   .    Transformations to the street network (part of phase 2) 

016- AxisOverGrid 

         

Applies a new axis over a grid. This pattern contains ad-
justment patterns that are applied to solve some of the 
incongruous resulting shapes. 

017- RotateAxisbyNode 

         

Rotates an existing axis towards a Ref point using a node as 
rotation centre. 

018- MoveGridNode 

         

Moves a grid node to a new position according to specified 
parameters. 

019- ChangeStreetSegment Moves a street segment to a new position or erases it. 

D   .    Creating Public Space (available in phases 1 to 3) 

020- AddPlaza 

  

Places a marker in a two main street crossing or in a Ref 
point inside the Ua area. The GeneratePlaza pattern will 
replace the marker with a specific plaza type (always a Sq1 
type).  
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008- InsertFocalPoint 

         

Inserts a focal point. A point + the attribute Fp (focal point). 
Focal points can be placed in Ref s inside the Ua area or in 
places with privileged views. The user can also choose to 
manually position an extra focal point. 

B   .   Creating Grids (completing the street network) (part of phase 2) 

009- (grid by) AddingAxes 

         

Picks two orthogonal axes or two intersecting axes and 
offsets new axes (a4 axes) until a grid is completed inside 
the urbanizable area, Ua. If there are still Ref s or focal points 
available there is an option to generate a higher hierarchy 
street instead of just a4 axes.  

010- (grid by) AddingBlockCells 

  

Picks two orthogonal axes and adds block cells recursively 
until a bounded space is filled. This pattern contains some 
adjustment patterns that apply only if needed, usually due 
to greater variation in the parameter values. 

011- (grid by) RectangleDissection  Recursive subdivision of a zone until a stopping condition is 
reached. The stopping condition is a minimum block area. 
Another parameter constrains the rectangle proportion in 
the subdivision process. 

012- IcerayGrid  A similar recursive subdivision, but the subdivision may not 
be orthogonal. It follows rules similar to those of Stiny’s 
iceray grammar (Stiny, 1977). The angle of subdivision 
becomes an extra control parameter. 

013- RadialGrid Generates a radial grid from a focal point creating a plaza at 
the centre. It can only be applied if a focal point has already 
been used. 

014- AlignStreets Used to correct generation maladjustments in orthogonal 
grids. Aligns streets connecting to another street if their 
intersection points are closer than a certain predefined 
distance. The pattern applies automatically after patterns 
010 or 011 are applied. 

015- ConnectStreets Corrects unfinished generation details using patterns 010 
or 011 to connect streets left unconnected. This pattern 
applies automatically when patterns 010 or 011 are ap-
plied. 

C   .    Transformations to the street network (part of phase 2) 

016- AxisOverGrid 

         

Applies a new axis over a grid. This pattern contains ad-
justment patterns that are applied to solve some of the 
incongruous resulting shapes. 

017- RotateAxisbyNode 

         

Rotates an existing axis towards a Ref point using a node as 
rotation centre. 

018- MoveGridNode 

         

Moves a grid node to a new position according to specified 
parameters. 

019- ChangeStreetSegment Moves a street segment to a new position or erases it. 

D   .    Creating Public Space (available in phases 1 to 3) 

020- AddPlaza 

  

Places a marker in a two main street crossing or in a Ref 
point inside the Ua area. The GeneratePlaza pattern will 
replace the marker with a specific plaza type (always a Sq1 
type).  

  

 
 

119 

021- GeneratePlaza 

  

Replaces a plaza marker with a Sq1 square type. 

022- InsertPublicSpace  

 

Sq2 Inserts a public space (that is, a Sq2, Sq3, Sq4 or Sq5 square 
type) in a focal point or a Ref point or adds Sq2, Sq3, Sq4 or 
Sq5 labels to blocks or junctions in the case of Sq4.   

Sq3 

Sq4 

Sq5 

023- Square 

 

SquarefromBlockSubtraction 
(Sq2) 

Subtracts an island or a block unit and places an abstract 
square with the same geometry as the island. 

SquarefromBlockTrim (Sq3) Reduces the length of the longer side of the block creating a 
square (Sq4). 

SquarefromCornerTrim (Sq4) Trims the corners of blocks in a junction creating a small 
square. It can be used to create chamfers in corners, as in 
Barcelona.  

CutPublicSpaceinBlock (Sq5) Opens holes / subtracts parts of the island. Generates 
blocks similar to those found in the IJburg plan. 

E   .    Creating Urban Units (part of phase 3) 

024- AddBlocktoCells 

 

Adds an island (or urban unit) to a cell defined by a set of 
axes. A cell or block cell is a closed area defined by a closed 
set of street axes or by axes and part of a boundary of a zone 
(usually a Ua). 

025- AdjustingBlockCells 

  

Adjusts blocks overlapping the boundaries of the interven-
tion site or urbanisable area. Several operations are allowed 
to adjust designs along the border areas of the design. 

026- ClassifyUUnitCells 

  

According to their location within the intervention site and 
relationship to reference elements, some cells may be more 
suitable for certain block types than others. In addition, the 
designer’s style may be expressed by playing with different 
alternative block types. The UIP creates a label in each cell 
that states which block type or types are allowed to be 
created in that particular cell. 

027- DefineUUnit * 

 

Neighbourhood This is a rather complex pattern with an extensive algo-
rithm. It defines a set of requirements needed for a mini-
mum neighbourhood definition, sets the values for the 
available parameters and generates the neighbourhood 
parametric block with attributes to be used in bottom-up 
generation. An extensive list of specifications for a neigh-
bourhood programme is set here if no previous definitions 
were set by the formulation module.  

BlockType Defines a block type, sets the parameters and range of their 
variation and creates a block type attribute as an identifier 
to use in generation. 

Cluster Defines a cluster of buildings and/or private or public 
spaces, their parameters and relationships expressed 
through the range set for their accepted values, attributes, 
and the definition of a bounding box to be used later in the 
generation. 

028- InitialUUnit  

 

Places an urban unit in a Ref  or a Focal Point. Creates the 
initial labels for the recursive application of AddingUUnits. 
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029- AddUUnitbyLabel  

 

AddBlockType  

 

Replaces an island with a block type. 

AddCluster  

 

Replaces an island with a cluster of buildings. 

030- AddingUUnits   AddingNeighbourhoods  
(BU**)         

Recursive addition of neighbourhood units. Some rules 
create new labels to maintain generation; others erase the 
labels creating terminal conditions to stop generation. 

AddingBlockTypes  (BU) 

 

Recursive addition of block type units. Some rules create 
new labels to maintain generation; others erase the labels 
creating terminal conditions to stop generation. 

AddingClusters  (BU)  

 

Recursive addition of cluster units. Some rules create new 
labels to maintain generation; others erase the labels 
creating terminal conditions to stop generation. 

031- NeighbourhoodGeneration 

 

The algorithm starts by identifying the potential areas for 
neighbourhood definition according to a predefined range 
of values for the neighbourhood surface and a set of con-
straints for boundary definition, identifies the existing 
features in each area (blocks, functions, streets, public 
spaces) and, depending on the context, makes the neces-
sary adjustments to fit the required neighbourhood specifi-
cations. The final part actually performs several alternative 
routines depending on the context and specifications. The 
algorithm is rather complex and contains many sub-
routines from other patterns, such as AssignFunctions, 
InsertPublicBuilding or Square.  

032- InsertPublicBuilding  (public facilities) 

  

Inserts a public building in a Focal Point or in the centre of 
an activity zone.*** Alternatively, the designer is prompted 
to define a location. 

033- InsertBuilding 

 

Inserts a single building in a focal point. 

034- BuildingHeadingAxis  Inserts a single building in a position heading an existing 
axis. The algorithm breaks the existing axis, adds a hierar-
chic classification to both building and axes, and places a 
focal point. 

035- AddArches Adds an arch to a street. It can be applied at the end of two 
blocks assuming the appearance of an entrance, in the 
middle or at the centre of a square using one of the axes for 
orientation. 

F   .    Others – detailing patterns and managing functions (available in phases 3 to 4) 

036- AddAccessStreet 

 

Adds a local access street. 

037- AssignFunctions  

 

Assigns functions to blocks, buildings or floors or changes 
the functions of blocks, buildings or floors. 

038- ManageBuildingHeight 

 

Assigns or changes building height in terms of number of 
floors. Involves managing the following parameters: average 
number of floors (L), maximum number of floors allowed 
(H), maximum height allowed (maxHei), ground floor height 
(GroFH), floor height for all floors or per floor (FHei) and (FHeiFl) 

 120 CItyMaker / Designing Grammars for Urban Design i



  

 
 

120 
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AddCluster  

 

Replaces an island with a cluster of buildings. 

030- AddingUUnits   AddingNeighbourhoods  
(BU**)         

Recursive addition of neighbourhood units. Some rules 
create new labels to maintain generation; others erase the 
labels creating terminal conditions to stop generation. 

AddingBlockTypes  (BU) 

 

Recursive addition of block type units. Some rules create 
new labels to maintain generation; others erase the labels 
creating terminal conditions to stop generation. 

AddingClusters  (BU)  

 

Recursive addition of cluster units. Some rules create new 
labels to maintain generation; others erase the labels 
creating terminal conditions to stop generation. 

031- NeighbourhoodGeneration 

 

The algorithm starts by identifying the potential areas for 
neighbourhood definition according to a predefined range 
of values for the neighbourhood surface and a set of con-
straints for boundary definition, identifies the existing 
features in each area (blocks, functions, streets, public 
spaces) and, depending on the context, makes the neces-
sary adjustments to fit the required neighbourhood specifi-
cations. The final part actually performs several alternative 
routines depending on the context and specifications. The 
algorithm is rather complex and contains many sub-
routines from other patterns, such as AssignFunctions, 
InsertPublicBuilding or Square.  

032- InsertPublicBuilding  (public facilities) 

  

Inserts a public building in a Focal Point or in the centre of 
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orientation. 

F   .    Others – detailing patterns and managing functions (available in phases 3 to 4) 

036- AddAccessStreet 
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Table 6  
Table of urban induction patterns and brief description of their algorithms. 

These steps require further exploration.  

1/2 These two points concern the formulation module. However, the designer is 
supposed to have a list of specifications for the planning goals, for example, an 
Excel sheet with the necessary data derived from some analysis of the existing 
context. The designer is supposed to be able to fill in this information in the 
checklist mentioned in Point 4. The necessary information is a set of 
requirements or goal indicators which constitute the urban programme. The 
urban programme may be developed using traditional media or the tools 
developed by the formulation module. Depending on the availability of data, the 
process can be manual or semi-automated. A set of actors may be involved in 
filling in the programme requirements. 

3 The drawing preparation can be a manual or semi-automated procedure 
depending on the tools available upstream in the formulation / analysis process 
and also on the specific characteristics of the design context. For instance, the 
intervention site, Is, may be constrained by higher level regulations or topography, 
and therefore may not allow for construction on the entire intervention site 

039- JunctionTypeMarkers Creates a marker identifying a junction type. This is auto-
matically generated from the street classification. 

040- SubdivideBlockintoBuildings Subdivides a block type into buildings. The algorithm 
defines building regulations. 

041- SubdivideBlockPropertyintoPlots Subdivides a block type into plots. The algorithm defines 
plot regulations. 

042- StreetTypeComposition Manages the kind of street components used to compose a 
particular street type. See section § 5.4       in the thesis. 

043- StreetTypeDesign Designs the street according to predefined compositions 
previously attributed to street types. 

044- JunctionType Defines the junction type conjoining street types. 

045- JunctionTypeDesign Replaces the marker with a particular JunctionType design. 

UIPs for managing zone and landscape design are not defined here, nor most of the detailing level patterns. 

* DefineUUnit is a complex pattern. It has 3 options that are immediately prompted when chosen: Neighbourhood, BlockType 
and Cluster. BlockType can be used before (bottom-up) or after (top-down) the grid generation. The same applies to Cluster, but 
Neighbourhood as defined here is for bottom-up generation only. Another UIP, NeighbourhoodGeneration, defines neighbour-
hood requirements and adapts the features required to define a neighbourhood to the grid. The algorithm is different, although 
it pursues similar goals. Note that DefineUUnit does not generate units, but simply defines a base to be replaced later with other 
UIPs such as AddBlockType. 

** BU – Bottom-Up 

*** This concept is not explained here in detail and is still under development, but to keep the idea meaningful it may be said 
that each entity in the plan has a degree of attraction or repulsion to an activity (social activity). Activity areas can be mapped 
following the integration concept from space syntax (Hillier and Hanson, 1984). This is one of the concepts that need further 
integration into the work developed within the City Induction project. 
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surface. The resulting area available for construction can be called the 
urbanizable area, Ua. However, network connections (streets) may need to link 
isolated Ua areas. Thus, some rules apply to Is whilst others are operational only at 
Uas level. The main axes patterns, for instance, which are responsible for 
determining the design guidelines for the main elements of the street network, 
may apply to Is, whereas grid generation and block generation patterns may only 
apply to Uas. Is and Uas are defined in different design layers and the UIP rules 
respond differently to them. 

4 The ‘Start Button’ prompts a list of specifications to be fulfilled. The list may or 
may not be completed in its entirety. However, minimum requirements are 
mandatory; otherwise the list is returned when checked. During the generation 
process the UIPs seek information on the specifications available in this list. If 
some specific information is not available, the UIP prompts another request 
before continuing. There are 2 main types of specifications that may be needed 
for generation; firstly, generic specifications and goal indications (Table 7) 
concerning the urban parameters at district level and, secondly, design 
specifications concerning design components, such as street components or 
block size input specifications. For the street network generation, for instance, 
the system will need the street width input for each street hierarchy. For block 
generation it will need the maximum and minimum block size, maximum and 
minimum building depth, and maximum and minimum courtyard depth (Table 
8). Some generation goals can be set in terms of density indicators to be fulfilled. 
For instance, in some contexts the pre-existing general regulations might 
predetermine density goals set as maximum building intensity, whilst in other 
contexts they might be set as maximum coverage and maximum number of 
floors. Given that interdependent fields are linked by their mathematical 
relations, the designer only needs to fill in the known information and the linked 
fields will be automatically filled in. This provides the designer with new data on 
related factors. Nevertheless, the designer can change parameters at will, 
providing freedom to explore the design. Spacematrix (Berghauser-Pont and 
Haupt, 2010) density measures play a fundamental role here because they 
provide the model for calculating the density measures accurately. 

5 References (Ref) are points, lines or polygons selected from among pre-existing 
ones to act as referential elements for the design. The initial rules of the initial 
patterns available take these Ref entities as their initial shapes for the generation 
of designs. Some algorithms can be developed to prompt suggestions for Refs. 
However, because this procedure implies semantic interpretation of contexts 
involving great subjectivity it was decided that this should remain manual15. 

  
15 Subjectivity here refers to common designer idiosyncrasies, what Janssen calls designer preconceptions 

(2006) and Minsky calls default assumptions (1988). This kind of subjectivity contains two main 
characteristics: the designer’s personal approach to design and tacit knowledge. 
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Nevertheless, some UIPs can create new Refs although most of them erase the 
used Refs. Refs can be classified with different weights so that the rules can 
perform qualitative decisions distinguishing between very important references 
and less important ones. The rating criteria can be used by some UIPs to 
determine how the rules are used (e.g. the MIAxis option in MainAxis – Table 6). 
Weighting is essentially a manual procedure introducing a high level of 
subjectivity through designer interpretation.  

6/7 The UIPs search for parameter inputs in the list of specifications mentioned in 
Point 4. If a required specification is not found, the UIP prompts a request to fill 
in this information. The system was designed to allow programme information to 
be filled in at different stages of the design generation. As such, the design 
process becomes a more interactive but also a more reflective process. This 
characteristic generally reflects the existing literature on the design process 
(Schön, 1983); (Lawson, 2006); (de Jong, 2009). The generation system 
produces a record of the sequence of UIPs chosen, their options and the 
parameters applied, which can be used later for simple consultation or for re-
evaluating individual design options. 

8 This is a design loop, not exactly a feedback loop but a reflective loop, as it allows 
the designer to rethink his/her decisions. This process should occur at the end of 
each design level in order to provide a high degree of reflectivity.  

9 At a certain point the designer will be satisfied with a preliminary design output 
resulting from the generation sequence and be ready to evaluate the results in 
order to refine or even rethink them. This ‘output for evaluation’ is not necessarily 
a complete final design. Outputs for evaluation may be taken at the end of each 
design phase in order to allow for intermediate evaluation procedures. This is also 
important because usually local authority approval processes are also phased in 
several steps16. The main idea here is to use the relationships defined in the 
ontology to control this behaviour. Relationships between objects can be 
established on the basis of inherited properties, without which certain operations 
may not occur or may be needed in consequent steps of the design. In addition, a 
minimum set of specifications might be required for each design phase. For 
instance, a design phase may only be finished when an n number of 
specifications is fulfilled by generation, but a new phase can only start when a 
+n a   number of specifications is fulfilled, n and a being natural numbers  

( ∈ ∧ ≠•, , 0n a n a ).  

  
16  Approval procedures are similar in general terms in many countries regarding the levels of detail in each 

phase. The four design levels referred to on page 104 (Section § 5.3       Case Studies) were taken from 
(Beirão, 2005) following a study on urban design methods. The four levels indicated here are also shown to 
be consistent with regular approval procedures in Portugal. The same kind of consistency can be found in 
the Dutch case studies and a similar level subdivision is clearly found in the Ypenburg and IJburg plans. 
Beirão also shows the Borneo-Sporenburg case in Amsterdam, which again follows similar decision-
making levels. 
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Urban Parameters and Attributes 

Type of data Parameter / indicator / attribute variables Units 

Given data Intervention Site Area  (Is-area)  hect or m2 

Construction site or urbanizable area (area fit for construction) 
 (Ua) 

 hect or m2 

Quantities Number of households  (nh)  Integer  

Maximum Allowed Gross floor area  (maxAGFA)  m2 

Non-building areas (per type): 

Protected areas (ProtA) 

Parking areas (ParkA) 

Public Parks and Gardens (GardA) 

Private outside areas (PrivoA) 

Street areas (StreeA) 

Others public space areas (OthpsA) 

  

hect or m2 

hect or m2 

hect or m2 

hect or m2 

hect or m2 

hect or m2 

Gross floor area (Fd)  Footprint  x  nr of floors m2 

Maximum Allowed Footprint area   (maxAFA) Footprint  area hect or m2 

Network length (l):  

= +
2
e

i

l
l l

 (l) 

li – length of interior network 

le – length of exterior network 

 Real (in m) 

Footprint (Bd) Ground floor area m2 

Indicators Building Intensity (FSI)  (ratio) m2 / m2 

Density - Households / hectare(Dh)  (ratio) nh / 
hect 

Network Density:  
−= /d s areaN l I

(Nd)  m / m2 

Coverage (GSI)  (ratio) m2 / m2 

Spaciousness (OSR)  (ratio) m2 / m2 

Height Average number of floors (L) Above + Underground Real   

Maximum number of floors  (H) Above + Underground Integer 

Maximum Height  (maxHei)  Real   

Ground floor height (GroFH)  Real    

Floor height (all floors) (FHei)   Real   

Floor height (per floor)  (FHeiFl)  Real   

Uses Ground floor uses – mixed (Ug) Residential  

Commerce  

Offices  

Services and facilities  

Industry  

Others  

% 

% 

% 

% 

% 

% 

Upper floor uses – mixed (Uu) Idem % 
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% 

% 

% 

% 

% 

Upper floor uses – mixed (Uu) Idem % 
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Table 7  
Table of urban parameters and attributes – district scale 

10/11 These two points refer to evaluation procedures. The evaluation procedures 
maybe performed visually, based on the existing data provided by the generation 
system, or by using existing evaluation tools usually based on GIS platforms (e.g. 
space syntax (Hillier, 1996) / place syntax (Stahle, Marcus, and Karlström, 
2007)). In the context of the City Induction project, specific evaluation tools will 
be provided by the evaluation model. However, Point 10 concerns the real 
feedback loop where the information produced by the evaluation returns to 
formulation and generation in order to fine-tune the goals and designs. This is 
the point at which optimisation algorithms might be introduced into the system. 
Optimisation algorithms may be applied to a record of the sequence of UIPs, 
options and parameters, i.e. to a memory of all the steps in the generation of the 
design, and restructured according to the results of the evaluation. 

The above description can be considered a rough sketch of the design method for using 
the proposed urban design system and outlines its embedded algorithm. 
CItyMaker needs a set of databases to manage the data involved in the generation 
process. These data structures will be part of the City Induction ontology common to 
the three modules (formulation, generation and evaluation). The generation module, 
CItyMaker, deals with three kinds of databases: (1) existing data – on context, existing 
regulations and design standards; (2) goals and requirements; and (3) generated data 
– the data being generated step by step by the generation process, including a register 
of the design sequence (defined in terms of patterns, optional rules and parameters), 
and an update on the existing data. 

  

Exterior uses (Eu) Public space (total)  

Private space (total) 

Street areas  

Parking spaces  

Green Areas  

% 

% 

% 

% 

% 

Cost Requires specific model 

Sustainability 

criteria 

Requires specific model – this is being developed together with the formulation model (Montenegro, 2010). 
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Table 8  
User input parameters / control parameters – the image shows the window prompt already implemented in the 
prototype implementation; courtyard depth is not implemented in this window. 

An urban design is completed by generating solutions from a complete set of UIPs until 
the final required level of detail is achieved. A complete set of UIPs is defined as a set 
including UIPs for all four design levels. Each UIP follows an algorithm, i.e. a set of 
instructions to generate a typical design move. Table 6 gives a short description of what 
the patterns do. The developed patterns/algorithms are sufficient to provide an idea of 
how a complete design is reached. The solution space is limited, bounded by the 
design languages of the 4 case studies. However, the universe of design solutions 
provided by this set of UIPs is already way beyond the capacity of human prediction. 
Moreover, the system can be extended by defining new UIPs or by extending the 
ontology supporting the design system. 

Input Urban Parameters / Control Parameters   

 

Type of  
parameter 

Parameter / indicator / 
attribute 

Variables Units 

Street  

parameters 

 

 

Street hierarchies  
(definition of a range of 
values for street width for 
the complete set of street 
hierarchies – a1; a2; a3; a4) (Sw) 

Street width Real (in 
m) 

Block size variation  Range for parameters h and 
w. Discrete value or an 
interval for h and w 

< h , w > 

 

Integer 

Building depth Defines minimum and 
maximum building depth to 
control block generation 

< ta , tb , tc , td  
> 

 

Real (in 
m) 

Courtyard depth Defines minimum and 
maximum courtyard depth 
to control block generation 

< ia , ib > 

 

Real (in 
m) 
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§ 6.2      Generating urban designs with Urban Induction Patterns 

This section intends to demonstrate that the concept described above can be used to 
design urban plans and explore design spaces. Since it would be impossible to start 
with the aim of defining all possible urban design moves, the work focused on 
capturing UIPs only within the design space defined by the 4 case studies (Figure 7), 
attempting to define them in such generic terms that each UIP could be used as 
broadly as possible regardless of context. The UIPs were defined as far as possible as 
the smallest definable design moves so that most of the large design moves would 
already be a compilation of smaller UIPs. In fact, the analysis of the case studies 
demonstrated that although all the grids were quite different in terms of the final 
results, most of them were actually obtained from different arrangements of a 
minimum number of UIPs designed for this purpose.  
This section explains the approach used to infer UIPs, provides a summary of the UIPs 
inferred from the analysis and shows how these UIPs can be used (1) to replicate the 
case studies, (2) to generate alternative solutions by applying different instantiations 
of rule parameters and (3) to generate various designs for different contexts.   

§ 6.2.1      The common structure of Urban Induction Patterns 

Urban Induction Patterns compute objects found in the ontology (see Section § 5.4      , 
page 92). Objects have a specific meaning that can be understood by the urban 
designer. They represent meaningful parts of the city. These objects are used by 
CItyMaker as shapes manipulated by shape grammars or descriptions of concepts and 
designs manipulated by description grammars. The definition of a common structure 
for objects allows clear relationships to be defined between the elements in the 
ontology and for the generation module to recognise them, their meaning and, 
therefore, their semantic role in the shape rules.  
UIPs are based on Gamma et al’s design patterns (1995) and in basic terms 
correspond to generative urban design moves. For the sake of clarity, UIPs have a 
common structure composed of 10 parts, as explained below. However, the full UIP 
structure is extensive and would result in a very large document if this thesis were to 
include the complete list of UIPs described in detail according to the complete 
standard structure. To avoid this, Appendix 2 provides a library of urban induction 
patterns in 3 formats: 
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1 a table of all the UIPs developed during this research, including only a short 
description of the embedded algorithm; 

2 the complete structure (including the 10 parts); 
3 the simplified structure. 

1 - Table 
The table contains all the UIPs that were inferred from the case studies or from 
variations of the same basic design moves which may be found in recurrent design 
situations. Not all the described moves were developed into a complete standard UIP 
format. Some are simply a short description of a common design move observed within 
the design space of the case studies or other paradigmatic urban plans. Others had 
only outlined some shape grammars and never achieved the complete discursive 
grammar format. A few were developed in detail consist with the formal structure of 
UIPs. The table shows only the short descriptions, but provides a brief overview of the 
whole design system to facilitate an understanding of how this works. The table 
includes also an icon corresponding to the UIPs implemented in AutoCAD. 

2 - Complete structure 
Formally, an urban pattern is an adaption of the Alexander et al (1977) and Gamma et 
al (1995) concepts. Gamma et al propose that patterns should be composed of 13 
parts: Name / Intent / Also Known As / Motivation / Applicability / Structure / 
Participants / Collaborations / Consequences / Implementation / Sample Code / 
Known Uses / Related Patterns. It is recommended that their online book is consulted 
for detailed definitions 
(http://www.whigg.cas.cn/resource/program/CPP/201010/P0201010225621554
22801.pdf ): the definitions which follow indicate only the proposed adaptations. 
An urban induction pattern is composed of 10 parts: Name / Intent / Also Known As / 
Known Uses / Description / Structure / Predicate / Consequent / Discursive Grammar / 
Related Patterns.   
Name / Intent / Also Known As correspond to Gamma’s definition. Known Uses 
appears here because it corresponds, to a certain extent, to Alexander’s archetypal 
illustration, to which we have only added an explanatory caption. Description 
corresponds to a simplified description of the main algorithm and replaces Motivation 
/ Applicability. Structure includes a graphic representation of the classes used in the 
pattern and a pseudo algorithm defining how to generate variations of the pattern. 
Predicate defines the initial shapes and the objects used in the pattern, their 
relationships and parameters. These are the predicate conditions of the UIP and they 
replace Participants. Consequent corresponds to a description of expected results. The 
Predicate therefore contains the descriptions of the participant objects and active 
attributes which are used to define the matching function in the rules. Gamma’s 
Consequences / Implementation / Sample Code are replaced by a Discursive Grammar. 
The discursive grammar encodes the shape descriptions, shape rules, and parameters 
used to generate the pattern. It also contains additional heuristics to search for the 

 128 CItyMaker / Designing Grammars for Urban Design i



  

 
 

128 

1 a table of all the UIPs developed during this research, including only a short 
description of the embedded algorithm; 

2 the complete structure (including the 10 parts); 
3 the simplified structure. 

1 - Table 
The table contains all the UIPs that were inferred from the case studies or from 
variations of the same basic design moves which may be found in recurrent design 
situations. Not all the described moves were developed into a complete standard UIP 
format. Some are simply a short description of a common design move observed within 
the design space of the case studies or other paradigmatic urban plans. Others had 
only outlined some shape grammars and never achieved the complete discursive 
grammar format. A few were developed in detail consist with the formal structure of 
UIPs. The table shows only the short descriptions, but provides a brief overview of the 
whole design system to facilitate an understanding of how this works. The table 
includes also an icon corresponding to the UIPs implemented in AutoCAD. 

2 - Complete structure 
Formally, an urban pattern is an adaption of the Alexander et al (1977) and Gamma et 
al (1995) concepts. Gamma et al propose that patterns should be composed of 13 
parts: Name / Intent / Also Known As / Motivation / Applicability / Structure / 
Participants / Collaborations / Consequences / Implementation / Sample Code / 
Known Uses / Related Patterns. It is recommended that their online book is consulted 
for detailed definitions 
(http://www.whigg.cas.cn/resource/program/CPP/201010/P0201010225621554
22801.pdf ): the definitions which follow indicate only the proposed adaptations. 
An urban induction pattern is composed of 10 parts: Name / Intent / Also Known As / 
Known Uses / Description / Structure / Predicate / Consequent / Discursive Grammar / 
Related Patterns.   
Name / Intent / Also Known As correspond to Gamma’s definition. Known Uses 
appears here because it corresponds, to a certain extent, to Alexander’s archetypal 
illustration, to which we have only added an explanatory caption. Description 
corresponds to a simplified description of the main algorithm and replaces Motivation 
/ Applicability. Structure includes a graphic representation of the classes used in the 
pattern and a pseudo algorithm defining how to generate variations of the pattern. 
Predicate defines the initial shapes and the objects used in the pattern, their 
relationships and parameters. These are the predicate conditions of the UIP and they 
replace Participants. Consequent corresponds to a description of expected results. The 
Predicate therefore contains the descriptions of the participant objects and active 
attributes which are used to define the matching function in the rules. Gamma’s 
Consequences / Implementation / Sample Code are replaced by a Discursive Grammar. 
The discursive grammar encodes the shape descriptions, shape rules, and parameters 
used to generate the pattern. It also contains additional heuristics to search for the 

  

 
 

129 

best rule application in each iteration. Related Patterns follows the same logic as 
Alexander and Gamma, but in this case Related Patterns can be defined as the patterns 
that use objects belonging to an instantiated pattern as initial shapes. Related Patterns 
are constrained by the sublevels included in the IDCode of objects. These codes define 
the dependency structure and are managed through the ontology in which all these 
concepts and relations are stored. All instances in a design have an IDCode which has 
the following format: ObjectType, ObjectNumber, ClassName, Sublevels< >  in which 
ObjectType is a particular type of instance of a class, ObjectNumber is a counter or 
object identifier (integer), ObjectClass is taken from the ontology classification and 
Sublevels indicates the sublevel inheritance properties. Sublevels are the future 
available parts of predicates. Sublevels may indicate an object class, meaning that all 
the objects in that class are available for recognition by other UIPs, or may simply 
indicate a specific object type, meaning that the type is the only one responding to 
inheritance. In other words, Related Patterns indicate the patterns that are available for 
a subsequent step in the generation process.  
Objects in the ontology have a specific meaning that can be understood by the urban 
designer. They represent meaningful parts of the city. The objects are used by the 
generation module as shapes manipulated by shape grammars and descriptions 
manipulated by description grammars. The definition of a common structure for 
objects allows for a clear relationship between the elements in the ontology and for the 
generation module to recognise them, their meaning and, therefore, their role in the 
shape rules. Objects are defined by a Geometry, a set of coordinates assigned in a 
particular Coordinate System. The Geometry is a parametrical representation of a city 
feature with specific parameters and a position defined by the Coordinate System. The 
Coordinate System links to a specific coordinate system and enables a particular 
instantiation of the object to be linked to its representation in a GIS platform. 
Objects have Attributes and Properties. There are two types of attributes: quantitative 
and qualitative. Quantitative Attributes assign data values to objects (e.g., Volume, 
NumberOfFloors, ConstructionArea, BuildingAge, etc.). These values are directly linked 
to the Geometry. Qualitative Attributes assign a qualitative value to the urban entities 
(e.g., Function, HistoricalBuilding, Landmark, etc) or, in other words, these attributes 
are labels assigned to shapes. Properties are qualities of shapes that can be assessed 
during the design process; density measures, for instance, at block level are the 
properties of blocks. Similar properties can be assigned to zones. 

3 - Simplified structure 
The simplified structure of an urban induction pattern is composed of 6 parts: Name / 
Short Description / Predicate / Consequent / Diagram (illustration) / Related Patterns. 
The Name itself, as in Alexander and Gamma’s definition, should contain recognisable 
evidence of what the design move is, at least for an urban designer. The Short 
Description is the same as in the table. The Predicate is a simplified description of the 
predication conditions applicable in the pattern.  The Consequent is a simplified 
description of the pattern’s solution. The Diagram illustrates the main transformation 
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in a simplified diagram. It is not a formal grammar but a symbolic representation of 
one. The Related Patterns follow the same logic as the previous cases. Most patterns 
will be represented in this format. 

§ 6.2.2      Defining UIPs 

All the Urban Induction Patterns defined for CItyMaker produce designs of urban plans 
in typical plan representations. All the UIP rules are reproduced in Appendix 2 – A 
Library of Urban Induction Patterns.  
As previously stated, the first UIPs applied are the ones that take the intervention site 
limit Is (and/or urbanizable areas Ua) and elements selected as references, Ref, as their 
initial shapes. The first UIP used within the framework of the case studies was 
suggested by the explanation given by Frits Palmboom, the author of the Ypenburg 
plan, concerning his design methods. When explaining his first move in the design of 
the Ypenburg plan he said – “I always look for the longer line in the territory”, then 
showed a few examples of other plans following the same principle. This was clearly a 
pattern. Architect Chuva Gomes explained the same principle in different words. 
Taking this sentence as a byword, the first UIP was called MainAxisistheLongerLine. The 
algorithm generates all the lines that can be produced using all the referential 
elements (Ref) previously marked by the designer and selects the longest one. It is 
applied in all the case studies and takes the particular form of the Cardus in the case of 
Plan 1, selecting from the proposed long lines the one with the closest north-south 
orientation. The term Cardus, taken from classical urban planning, already 
demonstrates the possibility of applications in a wider design space than the one 
defined by the case studies, namely in the generation of classical plans. Following the 
first UIP, others were devised. OrthogonalAxis, or Decumanus if perpendicular to 
Cardus, represents another typical design move. In Plan 2 it can be seen that these two 
sequential UIPs are used differently in 4 different areas of the site – see Figure 8. All of 
these are particular cases of CompositionalAxis, a UIP that uses two references to draw 
a compositional axis, and they are all related to the first design level (A). The rules of 
Cardus and Decumanus are shown in Appendix 2. 
At the second design level (B) we considered two main Urban Induction Patterns to 
generate the grids and a few UIPs corresponding to complementary tasks that adapt 
the grid to predefined conditions, adjusting the results along the intervention 
boundaries or any other already existing element. The two UIPs generate grids by 
AddingAxes or by AddingBlockCells and have been used to reproduce the design of Plan 
1. The two different UIPs are able to generate Plan 1 because the parameters attributed 
to block length (h) and width (w) are discrete values (50m x 80m) as defined by Chuva 
Gomes. However, the two UIPs produce distinctive types of urban grids if the 
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parameters vary, for instance within a predefined interval at each step in the derivation. 
The nature of the designs obtained in this way is quite distinctive, as shown in Figure 
12. In the case of AddingBlockCells, some specific rules were needed in order to deal 
with the use of varying parameters. During the derivation with AddingAxes, third 
hierarchy axes were generated and adjusted using a set of optional rules (Rules 4c and 
6c - see Appendix 2). At the end of the grid derivation, two more UIPs were used – 
AddBlocktoCells and AdjustingBlockCells, to create islands (empty block structures 
within the street cells) and adjust blocks to the boundary conditions of the design 
respectively, adapting the generated grid to the boundaries of the site. In terms of the 
goal of defining a design tool, the difference between the two grid generation UIPs is 
viewed as an extremely positive quality because it encourages design exploration.  
The generation of a grid by AddingBlockCells also has the particular advantage of 
generating the grid progressively in a bottom-up fashion starting from two orthogonal 
axes. Bottom-up urban generation deserves some attention as the generative mode is 
consistent with the natural evolution of organic grids. There is no particular interest in 
generating grids in a bottom-up fashion if the final result is a layout presentation 
similar to current practices in a top-down mode except for the morphological 
exploration of other types of grids. However, if the bottom-up behaviour of the 
generation can be used as some kind of plan regulation, by which some qualities of the 
final grid can always be guaranteed through rule constraints embedded in the pattern, 
then bottom-up patterns definitely acquire a particular interest in the development of 
urban plans. Moreover, spatial analysis of organic grids (Hillier and Hanson 1984) has 
shown that there are morphological characteristics embedded in the topological 
structure of such grids which are responsible for the acclaimed qualities and positive 
social activity in this kind of urban fabric. Therefore, the morphological exploration of 
grids based on bottom-up generation alone can be a valid approach to improving the 
quality of planned grids, although in this case the analysis should be integrated into 
the synthesis process for validating solutions, due to the difficulty of making human 
decisions involving visually disorganised solutions as opposed to visually ordered ones.  
During the current research some UIPs were developed inspired by bottom-up 
behaviour (see UIP 030 and options in Appendix 2). Others were inspired by organic-
like grids. The RectangleDissection (UIP 011) grid is based on a recursive rectangle 
subdivision and was inspired by Marshall’s description of a characteristic route 
structure (2005)17 . It is also an orthogonal simplification of IcerayGrid (UIP 012), a 
grid inspired by Stiny’s iceray grammar (1977) which had already proved efficient in 
replicating traditional grids in the design studios mentioned in Section § 4.1      , page 
60 – see also (Beirão and Duarte, 2009) and Figure 3, page 62. However interesting 
the research on bottom-up generation may be, it was considered a specific line of 

  
17 RectangleDissection was used in the prototype implementation of Model B and three conference papers have 

already been written on this subject (Beirão, Nourian, and Mashhoodi, 2011), (Beirão, Nourian, and van 
Walderveen, 2011) and (Celani et al. 2011). 
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investigation within the research triggered by CItyMaker and UIP formalism. This line 
of investigation should be treated as autonomous (although related) research. Two 
main aspects need further investigation for validation and design exploration, namely: 

1 Bottom-up UIPs need to be further tested and explored, especially in a practical 
context. For instance, there are complex issues relating to recognition of 
neighbourhood structures which need specific research. 

2 Exploring the use of bottom-up UIPs as regulatory systems for designing / 
managing flexible urban plan implementations. 

 

 

Figure 12  
Design variations on Plan 1: 1- original plan; 2- varying h and w parameters with AddingAxes; 3- varying h and w 
parameters with AddingBlockCells. 
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§ 6.2.3      Applying UIPs to generate designs 

Exploring design possibilities in CItyMaker is based on freely sketching many different 
ways of applying design moves to selected references within a given context. Both the 
references and the design moves may vary, as may the parameters or variables in each 
design move. Although the designer pursues a specific goal there are many possible 
and even optimal solutions, and the design exploration simply needs to find a way 
towards a solution space. Bearing this in mind, the aim is not necessarily to 
demonstrate the tool’s capacity to find optimal solutions, although this may be 
achieved later when connecting formulation, generation and evaluation procedures, 
but to demonstrate the versatility of the design tool in exploring different design 
formalisations. In this sense, it is more important to show that, apart from being able 
to reproduce Chuva Gomes’ plan, the UIPs also enable many different solutions to be 
designed. In particular, it has to be demonstrated that different results can be obtained 
by (1) selecting different Ref references (2) applying different sequences of UIPs and (3) 
assigning different values to the parameters. These three optional manipulations 
provide the necessary space for design exploration allowing for: (1) designing the case 
studies; (2) designing plans with similar design languages for different places; and (3) 
designing different plans by developing other design languages, i.e. using the system in 
a creative way. 
Some automated analysis could be developed to find or suggest references in a design 
context. However, this first step has been considered a manual one18 . The designer 
selects elements of the available representations to define as references for the design. 
References (Ref) can be focal points (e.g. a hill top), lines or polylines (e.g. an existing 
street, a ridge, a water line) and polygons (e.g. a building). The concept of focal point is 
defined as a geometrical position with a tolerance corresponding to the tolerance used 
by designers when sketching ideas in pencil or using a freehand tool. This means that 
the rules are structured to accept a certain flexibility with regard to the geometric 
position of the focal point. A building selected as a referential element (e.g. a historical 
building) can be treated by the rules as a focal point corresponding to its geometrical 
centre or as a polygon in which the longer line is used either as an alignment or as the 
basis for establishing a perpendicular axis from its middle point. Different selections as 

  
18  In the context of the City Induction project some of the planned analytical procedures to be performed by 

the formulation model will be able to identify referential elements that the generation can use for 
designing plans. This feature is already available in 4CityPlan – the formulation module. However, there will 
always be a need to accept manually marked references to accommodate typical designer idiosyncrasies. As 
such, marking references was always considered from the viewpoint of generation as a manual procedure. 
This characteristic embeds interpretative subjectivity into the system in a very direct way, promoting a high 
level of flexibility and subjectivity in the generation of designs. These are the kind of decisions that should 
be left open to design experts. 
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well as different interpretations of the options will obviously produce different results. 
The options are therefore provided for the designer for disambiguation. 
To obtain Plan 1 (Figure 7) a particular sequence of UIPs is applied to the initial 
conditions (Is and Ref s). In addition, the parameters to be applied should follow some 
of Chuva Gomes’ design characteristics; in Plan 1, for instance, all blocks are the same 
size (50m x 80m). The sequence of urban induction patterns applied here is: Cardus (x 
1) => Decumanus (x 1) + Promenade (x 1) => AddingAxes (x 1) (applying the optional 
rule which creates a higher hierarchy axis each time the generated axis meets the 
region of an Ref point) (x 4) => AddBlocktoCells (adds islands) (x number of cells) => 
AdjustingBlockCells (x number of cells crossing the boundary) (x 1) => AddPlaza (x 1) 
=> GeneratePlaza (x 1) => InsertPublicSpace, option: Sq2 (x 3) => InsertPublicSpace, 
option: Sq3 (x 4) => InsertPublicSpace, option: Sq4 (x 6) => InsertPublicSpace, option: 
Sq5 (x 3) =>  Square, option: SquarefromBlockSubtraction (x 3) => Square, option:  
SquarefromBlockTrim (x 4) => Square, option: SquarefromCornerTrim (x 6) => Square, 
option: CutPublicSpaceinBlock (x 3) => BuildingHeadingAxis (x 5) . The integers in 
parentheses indicate how many times the UIP is applied to obtain Plan 1. Figure 13 
shows the derivation of Plan 1 following this sequence of UIPs. The reader should 
consult Appendix 2 to follow the rules. The derivation in Figure 13 was simplified to 
the main intermediate steps. 
MainAxis is an initial UIP containing three options as referred to in Table 6 – 
MainAxisistheLongerLine, MIAxis and Cardus. The initial UIPs are those able to 
recognise the available initial shapes, which are the Ref elements and the intervention 
site limit Is. The algorithm for the 3 options is basically the same and only the last step 
changes. They take all the selected Ref elements and draw all the possible axes based on 
these elements. These axes are trimmed outside Is. The longer axis defines the length 
lax, the longer axial length. Only the longer axes from the complete set of axes will be 
used in the next generation steps. The criterion for selecting the set of longer axes can 
be manipulated by the designer by changing the relative length of axes in comparison 
with the longer axis. From this set the designer is left with the 3 options: 
MainAxisistheLongerLine, Cardus and MIAxis (Most Important Axis). 
MainAxisistheLongerLine selects the longest available axis from the set of proposed 
axes. Cardus selects the one closest to a north-south direction. MIAxis selects the most 
important axis19 . References, Ref labels, used by the selected axes are erased so that a 
coinciding axis may not be generated. MainAxisistheLongerLine and Cardus can be 
applied only once. 

  
19 The use of weighted references has been considered as another possible way of selecting the axis instead of a 

random decision and it is closer to the real reasoning of a designer. The set of weights W is already 
considered for this purpose in the formal definition of a UIP. This principle is already being implemented in 
the software prototype. 
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random decision and it is closer to the real reasoning of a designer. The set of weights W is already 
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Figure 13  
Derivation of the plan for Praia using AddingAxes. The steps indicated here compress the application of several 
rules, as described in the text. 
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OrthogonalAxis and Decumanus correspond to a second stage in UIP applications. They 
are applicable only if there is a main axis a1 available or a cardus. Decumanus applies 
only if a cardus has been generated and only once in the whole design. OrthogonalAxis 
can be applied several times until there are no more references. 
CompositionalAxis can be applied as long as there are still references to be used by 
generating a2 axes following a similar algorithm as MIAxis (see rules in Appendix 2). 
CompositionalAxis can be used to generate non-orthogonal compositions. 
The first level representations generated by these UIPs are axial representations of 
streets belonging to the AN (Axial Network) object class in the ontology and they 
basically represent 4 types of axes a1, a2, a3 and a4 corresponding to four distinct 
hierarchies. Other classifications can be added to the streets, detailing the street 
characteristics throughout the generation by adding attributes that change their 
configuration. In Plan 1 the architect decides to define the decumanus as a promenade 
and this feature is applied to all the a2 axes in the plan, i.e. 3 times. 
The UIPs AddingBlockCells and AddingAxes can be applied as soon as there are two 
orthogonal axes in the design. The parameters h and w correspond to the length and 
width of the urban block respectively. These parameters can be set as a fixed value, as 
Chuva Gomes does in Praia ( = 80h m  and = 50w m ), but can also be set as an 
admissible range (for instance: ≤ ≤60 120m h m   and ≤ ≤40 100m w m ). In this case the 
results of applying these UIPs are different and their purpose becomes different in 
terms of design intentions. Although all the situations initially explored applied 
AddingAxes only to orthogonal axes, the rules can actually be applied to any two 
intersecting axes, generating regular grids following constant but non-orthogonal 
angles at junctions. 
The derivations shown in the next section as well as the UIP grammar rules have 
already been published in some conference and journal papers and the subsection was 
adapted from these papers. The generation of Plan 1 generating the grid by AddingAxes 
was published in (Beirão, Duarte, and Stouffs, 2009). A complete generation of the 
same plan showing all the applied UIPs until the end of the grid generation is shown in 
this paper, this time generating the grid by AddingBlockCells. (Beirão, Duarte, and 
Stouffs, 2011) shows variations on the same plans obtained only by applying variable 
parameters to the block length and block width instead of the 50m x 80m used in the 
Praia plan. This variation in parameters proves that even simple parameter variations 
allow for wide exploration of design spaces. Changing the UIP sequence and other 
parameters extends the exploratory space available even more, allowing designers to 
explore the design system in terms of their own design language, needs or design 
concerns (Janssen, 2006). Some aspects of this work are shown in this thesis, together 
with the application of some other UIPs, completing the overview of the possibilities of 
the design system. The UIPs are shown in Appendix 2. The main idea is to demonstrate 
that the design system as it is conceived is able to generate the plans used as case 
studies and variations on these plans for different contexts, supports an interactive 
reflective design practice and allows designers to explore their own design concerns or 
individual interests. However, it should be pointed out that this design space is finite 
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and bounded by the sum of all the possible combinations of UIPs available in the 
system’s pattern library (this library is reproduced in Appendix 2). Nevertheless, the 
system does not need to be infinite, just customisable so that designers feel that the 
tool allows them freedom to explore new design spaces. Some hints on how to achieve 
this are provided in this chapter in Section § 6.3      .  

§ 6.2.4      Exploring variations in designs 

At the beginning of the generation process, the designer is prompted to define a 
minimum set of values that are used by the generation module as input values for 
specific parameters in the Urban Induction Patterns. In terms of the generation 
module, these parameters can be set directly by the designer, although the formulation 
module is supposed to complete a table of specifications with such parameters as 
input data for the generation. In the next generation steps, in particular the exploration 
of grids, a few other parameters must be defined for the rules to use in AddingAxes and 
AddingBlockCells. These parameters are the block length h and width w, and the street 
width defined for the hierarchy of compositional axes, a1, a2, a3 and a4. The latter 
widths can be altered during generation if an axis is transformed into a specific street 
type, for instance a Promenade, such as the three promenades found in Plan 1. 
However, the street widths are set as fixed values, whilst h and w can be set as a range 
of values. It is this permitted variability that makes the grid generator UIPs so 
interesting to explore. 
AddingAxes will be examined first, as this is an easier example. Beirão et al (2009c) 
presents the rules and the derivation of Plan 1. The rules are reproduced in Appendix 2. 
The derivation shown in Figure 13 applies the same values for block length and block 
width. Figure 14 shows a different derivation by applying an admissible range for the 
parameters h and w, such as the ones suggested above, in which variations appear in 
the grid whilst the typical orthogonal grid appearance and street continuity is 
maintained. The derivation in Figure 14 shows one possible solution resulting from the 
use of different values assigned to h and w randomly chosen from the stated range of 
values. No other function constrains the rule application in this example. However, a 
specific function could be used to set specific criteria for defining the distances 
between axes. For instance, some plans have larger blocks in the centre and smaller 
ones in the periphery, as is the case with the IJburg plan20 . At the end of the 
generation sequence, squares are applied following different algorithms for the 
generation of public space. The last UIPs apply two different building typologies to 

  
20 This feature was implemented in Model B shown in Chapter 7. 
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blocks. These rules are not explained but their application is shown because it 
improves the legibility of the resulting urban plan. Apart from the fact that the rules 
were allowed to randomly assign the h and w parameters, all the other steps in the 
design attempt to produce a fair replication of the Praia plan, so that the result 
underlines the difference between using fixed or variable parameters to define block 
sizes. The derivation in Figure 14 was simplified to the essential steps.  
AddingAxes is a sub-grammar Γ '  of the generic urban grammar Γ  being used. Γ '  is 
composed of two parallel grammars, 1Γ  and 0Γ  – 0 1{Γ ,Γ }  – in which S1, L1 are the 
shape and label sets in 1Γ  respectively and both are objects of the AN class in the 
ontology. S0, L0 are the shape and label sets in 0Γ  respectively and they are both objects 
from set E0. E0 is the set of existing elements in the territory. 
The first step in the derivation already demonstrates the results of applying Cardus, 
Decumanus and a Promenade and shows all the Ref points still to be erased. These Ref 
points will be used to attribute a higher level of hierarchy to some of the axes 
generated. The second step starts the application of AddingAxes. Steps 4-5, 9-10, 15-
16 and 18-19 are the steps in which the Ref points change the hierarchy of the axis to a 
higher level. Steps 4-5 and 9-10 apply a new Promenade to the axes passing through 
the first two of these referential points. Due to space restrictions, some of the repetitive 
steps were condensed. The last steps apply the generic blocks (UIP - AddBlocktoCells, 
step 20), adjust the blocks to the site boundaries (UIP - AdjustingBlockCells, step 21), 
create squares by subtracting some of the blocks (step 22), create the main plaza (step 
23), create smaller squares by shrinking the block and reducing one of its parameters 
(step 24) or by subtracting some corners at a junction (step 25), and, finally, replace 
the generic blocks with two different types of building occupation, the closed block, 
composed of buildings surrounding the entire block, and a spine-like building 
occupation with the continuous side facing the main streets (step 26).  
Appendix 2 shows the UIP AddingAxes (UIP 009) with Rules 3a, 4a, 4c, 5a, 6a, 6c and 
8. Some rules are omitted because they are symmetrical to others, namely Rules 3b, 
4b, 4d, 5b, 6b and 6d, which are symmetrical to Rules 3a, 4a, 4c, 5a, 6a, and 6c 
respectively. AddBlocktoCells and AdjustingBlockCells are also reproduced in Appendix 
2 – UIPs 024 and 025. 
Rule 1 in the AddingAxes UIP maps a temporary coordinate system, x0y, into two 
perpendicular axes an and an’. In this case, the axes are the ones generated by the 
patterns Cardus and Decumanus. Rule 2 extracts the maximum and minimum 
coordinate values from Is taking the new coordinate system into account. The points 
are: maxx = maximum x value of Is in x0y; maxy = maximum y value of Is in x0y; minx = 
minimum x value of Is in x0y; and miny = minimum y value of Is in x0y. These values will 
be used to frame the generation within the space defined by these coordinates. 
Rule 3a adds a street axis - a4 - parallel to a1 or to the cardus. The labels ▲ and ▼ are 
used to define the recursive application of Rule 4 (a, b, c and/or d) and indicate the 
direction in which to apply the next rule. Rule 3b is symmetrical to Rule 3a and is 
applied in the negative y coordinate direction. Rule 4a adds a street axis - a4 - parallel 
to an a4 axis labelled with ▲, erases the label on the original a4 axis and creates a new 
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blocks. These rules are not explained but their application is shown because it 
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applied in the negative y coordinate direction. Rule 4a adds a street axis - a4 - parallel 
to an a4 axis labelled with ▲, erases the label on the original a4 axis and creates a new 
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▲ label on the new a4 axis. The rule applies recursively until it falls outside the 
intervention site, i.e. while y<maxy where y is the new a4 y coordinate referred to x0y. 
Rule 4b is symmetrical to Rule 4a and is applied recursively in a similar fashion. If a 
selected Ref point or element is within the region of a new axis, the designer is 
prompted to decide whether he wants to apply a new level of hierarchy to this new axis. 
This application is optional but if the designer does choose to use it, the axis is 
transformed into an axis of a higher level of hierarchy. Rule 4c applies this procedure 
and Rule 4d is symmetrical to it. Steps 2-11 in Figure 14 show the application of these 
rules. 
Similar rules apply to the orthogonal axis a2, or the decumanus to generate an array of 
perpendicular axes along the x coordinate. Rules 5a, 5b, 6a, 6b, 6c and 6d are used to 
generate these axes. Steps 12-19 in the derivation show the application of these rules.  
The rules shown here are exactly the same as those used to generate the Praia plan, 
except that the values given to the parameters h and w are different in each iteration. 
The parameter values were defined randomly merely to explore design variations. 
However, this input could be informed through the formulation module, with specific 
values taking contextual data extracted from the site into account. 
Rules 7a, 7b, 7c and 7d erase the ▲, ▼, ► and ◄ labels, respectively if they fall 
outside the framed area. Rule 8 trims the axes outside the Is limit and Rule 9 returns to 
the original coordinate system. 
AddingAxes works with variable parameters in more or less the same way as it does 
with fixed values. On the other hand, AddingBlockCells behaves in an entirely different 
way. Defining each cell in the generation with different parameters creates a huge 
range of possible variations and a lot of unpredictability throughout the different steps 
of the derivation. In order to deal with this complexity, the set of rules in this UIP had to 
be expanded in comparison with the ones previously shown in Beirão et al (2009), in 
which the goal of the grammar was the replication of the Praia plan. AddingBlockCells 
shows a series of adjusting rules to solve all the maladjustments resulting from 
parameter variation in the application of the main rules. 

Again assuming that the generation will use an admissible interval for setting the 
values for the length h and width w of the block (again: ≤ ≤60 120m h m  and 

≤ ≤40 100m w m ), the block cell is defined by the block parameters plus the streets 

confining the block, which may be all different in some extreme cases. All the 
situations can be seen in the adjustment rules shown in pattern 010 in Appendix 2. 
Figure 16, showing the derivation, helps illustrate these situations. Since each 
iteration can have different h and w values, the configurations of the design may 
contain many different variations, making recognition of the left-hand side of the rules 
extremely difficult to manage. Liew (2003) provides seven descriptors to be used in the 
rule application process to solve some problems regarding conditional matching in rule 
application. Specifically, with regard to contextual requirements he proposes the use of 
a descriptor ‘zone’ which associates an area in a schema with a predicate function. He 
gives the example of a void function which states that a certain area must be empty of 
all shapes for the rule to apply or specifies a conditional application when certain 
occurrences are detected in the ‘zone’ area. Because of the unpredictability of the 
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AddingBlockCells grammar a similar descriptor was used in its rules. The rule checks 
the context locally every time it is applied. The main rules for AddingBlockCells are 
basically the same six main rules in Beirão et al (2009) but the descriptor zone was 
added to three of them creating a set of adjustment rules which consider all possible 
occurrences during the generation.  
Rule 1 (see pattern 010 in Appendix 2) places 4 labels ● at the intersection of an a1 and 
an a2 axis or the intersection of a cardus and a decumanus. Rule 2 starts the cell 
derivation, erasing one of the labels ● and adding two orthogonal a4 axes. The cell 
width v and cell length u are defined by the values randomly chosen for w and h 
respectively, added to half the width of the streets that flank them. Rule 3 is applied 
recursively until all labels ● are erased. The values for w and h are randomly chosen 
from the admissible range in each iteration. To ensure recursive behaviour, Rule 3 
erases the original label ● and places another label ● next to the new a4 axis on the 
right-hand side of the cell so that it can be used by the same rule in the following 
iteration. The rule creates a second label ● in the top left corner of the cell above the 
new a4 axis, to be used later by Rule 5. Labels ● are only recognised by Rule 5 and their 
adjustment variations. To summarise, Rule 3 creates cells along the a1 axis or any an 
axis parallel to the x coordinate where ∈ {1,2,3}n , until a vertical axis an’ is found in the 
area checked by the void zone. The rule applies when the void predicate is true. There 
are 4 different situations that can occur if the void predicate is false. These 4 situations 
are the adjustment rules 3A_1, 3A_2, 3A_3 and 3A_4. Rules 3A_1 and 3A_2 adapt the 
size of the new cell or the previous cell to meet the an’ axis and create a new ● label on 
the right-hand side of an’ to allow a new generation sequence to start. Conversely, 
Rules 3A_3 and 3A_4 move the an’ axis until it fits the length u of the cell. These rules 
can be applied only if an is the main axis in the design or, in other words, if an was 
generated by Cardus or MainAxisistheLongerLine. This guarantees that an an’ axis will 
not be moved more than once. Once again, a new label ● is placed on the right-hand 
side of an’. 
Type A rules are all the adjustment rules that detect the presence of axes (objects from 
the AN object class) inside the void zone. Other types of adjustment rules react, for 
instance, to existing constructions, elements of set E0, which are either streets or 
buildings. However, these rules are not shown, as there are no existing buildings within 
the Praia site. The important point to make clear at this moment is to stress that the 
‘zone’ predicate can be used to add conditional behaviour to the design rules, 
developing automated reactions to different kinds of occurrences within the zone area. 
Thus, this mechanism can be used to add selective rules to respond to the existence of 
buildings, rivers, paths, trees or bushes, existing obstacles or even topographical 
deformations. The grammar of this pattern can be therefore extended to react to such 
occurrences. However, this requirement shows the importance of having customisable 
processes to extend rule application. Formalisms to develop customisable UIPs will be 
further discussed in the explanation of DefineUUnit and in the discussion chapter. 

Like the 3A rules, Rules 4A_1 and 4A_2 adapt the width v of the cell to meet the 
detected axis an’ parallel to the main axis or the cardus. A label ● is created at the top of 
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Type A rules are all the adjustment rules that detect the presence of axes (objects from 
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buildings. However, these rules are not shown, as there are no existing buildings within 
the Praia site. The important point to make clear at this moment is to stress that the 
‘zone’ predicate can be used to add conditional behaviour to the design rules, 
developing automated reactions to different kinds of occurrences within the zone area. 
Thus, this mechanism can be used to add selective rules to respond to the existence of 
buildings, rivers, paths, trees or bushes, existing obstacles or even topographical 
deformations. The grammar of this pattern can be therefore extended to react to such 
occurrences. However, this requirement shows the importance of having customisable 
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an’ to allow another generation sequence to start in another area of the plan (see 
derivation in Figure 16. If an is a decumanus or the first orthogonal axis applied in the 
derivation, Rules 4A_3 and 4A_4 can be applied alternatively to adjust the position of 
an’ to the cell size v. Like Rules 3A_3 and 3A_4, Rules 4A_3 and 4A_4 can be applied 
only once per axis. 
While applying Rule 5 several occurrences may be detected inside the void zone, 
namely: 

• Rule 5A_1 and Rule 5A_4 detect the presence of one a4 axis. 

• Rule 5A_2 and Rule 5A_3 detect the presence of one an axis. 

• Rule 5A_5 detects the presence of two an axes. 

• Rule 5A_6 and 5A_9 detect the presence of one a4 axis and one an axis. 

• Rule 5A_7 detects the presence of one a4 axis and two an axes. 

• Rule 5A_8 detects the presence of two a4 axes and one an axis. 

Rule 5A_1 detects the Δx length of penetration of an a4 axis inside the void zone and, 
depending on the value of Δx, produces two separate results. If ≤Δ / 2x u , Rule 5A_1a 
generates a new cell creating two axes reducing the cell length u to u’ so that  

= −' Δu u x . This rule creates a new ● label in the top left-hand corner of the cell. If 

>Δ / 2x u , Rule 5A_1b simply erases the existing ● label and creates a new one above it 
at a v distance in order to allow continuity of cell generation. 
Rule 5A_2 reduces the cell size u to u’ so that = − + +2 4' Δu u x d d  creates an a4 axis 
closing the cell and placing a new label ● in the top left-hand corner. The cell 
dimensions become ×'u v . Rule 5A_3 produces a similar result in the y coordinate 
direction, creating a cell with dimensions × 'u v  in which = − + +2 3' Δv v y d d . Note that 
this rule simply erases label ● and does not create a new one. 
Rule 5A_4 is similar to 5A_1 but it generates the reduced cell adjacent to the right side 
of the void zone instead of the left side. In fact, it is using the empty space left in the 
void zone. u is reduced to u’ through the relationship = −' Δu u x .  
Rules 5A_5 and 5A_7 simply erase the label ●. They are termination rules. Rules 5A_6 
and 5A_8 generate a new cell, shortening both parameters u and v to u’ and v’ 
respectively. They both create an a4 axis and do not create new ● labels. Rule 5A_9 
reduces the cell length u to u’ following the equation = − − + +1 2 2 4' Δ Δu u x x d d , 
producing a cell with dimensions ×'u v . 

The derivation in Figure 16 shows the generation of an urban plan using 
AddingBlockCells as the algorithm for grid generation. The derivation starts in Step 1, 
already demonstrating the result of applying Cardus + Decumanus + 4 × 
OrthogonalAxis + 3 × Promenade. Step 2 applies Rule 1 by placing 4 ● labels. Step 3 
applies Rule 2, generating the first cell, erasing one of the ● labels and creating two 
more, associated with each of the newly created a4 axes. Steps 4-6 apply Rule 3. Rule 
3A_3 is applied in step 7. Note that a new ● label is created on the right-hand side of 
the an’ axis. Step 8 applies Rule 4 and Step 9 applies Rule 4A_1, adapting the cell size v 
to the available circumstances. Steps 10 to 17 apply Rules 5 and 5A until all the ● 
labels are erased. Generation is then terminated in this section of the plan. The other 
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sections are generated in a similar fashion using the available ● labels, starting with 
Rule 2 and ending with the exhaustion of labels ● and ●. Note that every label falling 
outside Is is erased. Step 23 is the last cell creation step. 
The complete set of rules allows the urban grid to be generated without conflicts but 
the final results still need amendments, namely by aligning or connecting a few streets 
and placing blocks within cells. However, these amendments are produced by other 
UIPs. The derivation clearly shows some of these problems and how they are solved in 
Steps 23 to 26. 
In Step 24 the UIP AlignStreets is applied. The result of the generation using 
AddingBlockCells produces several situations in which a4 axes connect to an axes that 
are very close to each other but not actually aligned. These situations are a little 
unsound as they create unusual and probably unwanted junctions. An urban designer 
will probably want to have either a clear ‘X’ junction or a clear ‘T’ junction. This problem 
can be solved in two ways. One involves defining a minimum module for the varying 
parameters h and w: if the minimum variation is 10 meters, for instance, this will 
restrict the distance between street connections to 10 meters or multiples of 10 
meters. The other solution is to apply the AlignStreets pattern. AlignStreets takes two 
axes connecting a higher level of hierarchy axis at points closer than three halves of 
their width and moves one of the axes to align with the other, creating a ‘X’ junction 
instead of a ‘T’ junction. The choice of whether to move one or other of the a4 axes 
depends only on the degree of connectivity of the axes. The axis with the least 
connectivity is chosen as the one to be moved. The criteria for evaluating the degree of 
connectivity are as follows: (1) a4 connects with another a4 street, (2) a4 has a corner 
connection with another a4 and (3) a4 aligns with another a4 segment (see pattern 013 
in Appendix 2). The degree of connectivity increases from (1) to (3). 
In steps 25-26 all the axes falling outside Is are either trimmed (step 25) or erased 
(step 26). Very small bits of a4 axes are left from step 25. All those smaller than half of 
the lower value defined for h are erased – step 27. In this step it can be seen that some 
of the streets are still not connected and do not contribute to the consistency of the 
street network (see detail in Figure 17). ConnectStreets is used to correct some of these 
inconsistencies in the grid generation. Step 28 shows the result of applying 
ConnectStreets (see rules in Appendix 2 – UIP 015). In step 29 the cells are filled with 
abstract blocks using AddBlocktoCells (UIP 024 – Appendix 2). Step 30 adjusts or 
erases the blocks on the borders of the plan applying the pattern AdjustingBlockCells – 
UIP 025 in Appendix 2. Every block falling outside the Is area is erased. Step 31 shows 
the final result of applying several UIPs generating squares or public spaces. 
The generation model considers 6 types of squares which can be found in urban plans. 
This classification of squares is related to the way in which they are generated rather 
than the identification of a particular morphological type. 
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restrict the distance between street connections to 10 meters or multiples of 10 
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axes connecting a higher level of hierarchy axis at points closer than three halves of 
their width and moves one of the axes to align with the other, creating a ‘X’ junction 
instead of a ‘T’ junction. The choice of whether to move one or other of the a4 axes 
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connectivity is chosen as the one to be moved. The criteria for evaluating the degree of 
connectivity are as follows: (1) a4 connects with another a4 street, (2) a4 has a corner 
connection with another a4 and (3) a4 aligns with another a4 segment (see pattern 013 
in Appendix 2). The degree of connectivity increases from (1) to (3). 
In steps 25-26 all the axes falling outside Is are either trimmed (step 25) or erased 
(step 26). Very small bits of a4 axes are left from step 25. All those smaller than half of 
the lower value defined for h are erased – step 27. In this step it can be seen that some 
of the streets are still not connected and do not contribute to the consistency of the 
street network (see detail in Figure 17). ConnectStreets is used to correct some of these 
inconsistencies in the grid generation. Step 28 shows the result of applying 
ConnectStreets (see rules in Appendix 2 – UIP 015). In step 29 the cells are filled with 
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erases the blocks on the borders of the plan applying the pattern AdjustingBlockCells – 
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the final result of applying several UIPs generating squares or public spaces. 
The generation model considers 6 types of squares which can be found in urban plans. 
This classification of squares is related to the way in which they are generated rather 
than the identification of a particular morphological type. 
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The 6 types are: 

Sq1 A Plaza or a Main Square is a planned, closed and intentionally designed public 
space with typical applications in classical urban design. The round plazas found 
in Chuva Gomes’s plans are an example of this type. It is a structural element in 
urban design and may be applied before the grid is generated. Two UIPs are used 
for generating plazas – AddPlaza and GeneratePlaza (UIPs 020 and 021 
respectively in Appendix 2). 

Sq2 Corresponds to the subtraction of a block in a grid (e.g. as in Plan 1). Uses UIP 
022 InsertPublicSpace (option Sq2) and UIP 023 Square (option 
SquarefromBlockSubtraction). 

Sq3 A square resulting from the subtraction of part of a block in a grid (e.g. the public 
space in front of the Seagram Building in New York). Uses UIP 022 
InsertPublicSpace (option Sq3) and UIP 023 Square (option 
SquarefromBlockTrim). 

Sq4 A square produced by subtracting shapes from the corners of city blocks in a 
junction (e.g.: the Barcelona Cerdá plan squares). Uses UIP 022 InsertPublicSpace 
(option Sq4) and UIP 023 Square (option SquarefromCornerTrim). 

Sq5 A square that results from opening an inner courtyard in a block (e.g.: the Spanish 
Seville patios). Uses UIP 022 InsertPublicSpace (option Sq5) and UIP 023 Square 
(option CutPublicSpaceinBlock). 

Sq6  A public space formed out of a remaining open space in an irregular grid (e.g. the 
typical mediaeval square).  

Sq6 is not generated. It is a free space remaining from the intersections of a street 
crossing a grid. The recognition of such spaces involves some intelligence on the part of 
the system but it can be solved by filtering parts of blocks resulting from intersections 
or simply filtering the smaller blocks in an irregular grid generation. The main criterion 
is that Sq6 squares are usually small public spaces. 
The public space patterns work in two separate steps corresponding to two distinct 
procedures: the first step introduces a label for locating a square type (AddPlaza or 
InsertPublicSpace) – the location step, whereas the second step generates the square 
type (GeneratePlaza or Square) – the generation step. The location step is essentially a 
programming step which is fundamental to the generation of squares. Locating a 
square implies a thorough analysis of the design context and the identification of 
contextual needs before a decision on location is made. CItyMaker, as an urban 
generation system, keeps the location task manual for the designer to decide, based on 
the principle that the designer will perform the necessary analytical tasks before 
locating the squares. However, combined work on the location of squares has already 
been developed involving the collaboration of Montenegro, the researcher in charge of 
the City Induction formulation model. In fact, the programme formulation interface is 
based on the inference capabilities of ontologies. The ontology infers the 
programmatic needs by examining data on the existing context conditions, against the 
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needs resulting from an input of estimated population growth for the intervention site. 
The ontology contains rules relating specific types of public spaces to the populations 
they serve, taking the distance from public spaces to people’s dwellings into 
consideration. The system searches for optimal locations but also allows the designer 
to set the location of a particular public space if s/he so desires. This information can 
be inserted into CItyMaker to support the location step. However, it should always be 
possible to change the location manually. Both CItyMaker and 4CityPlan (the name 
given to the formulation model) have been developed following this concept. For 
details on the ontology implementation and regarding the management of public 
spaces, see Montenegro et al (2011). The generation step follows the rules shown in 
UIPs 021 and 023 in Appendix 2. The division of public space generation into two 
steps has two advantages: (1) it separates programming from generation and (2) 
allows for checks on whether all the predicate conditions for generation are fulfilled. 
The second advantage controls the system by preventing generation from starting if 
the predicate conditions (labels and shapes) are not totally fulfilled and erasing the 
previously defined label. 
Steps 32-33 replace the abstract block with a few different block types showing the 
different possibilities for building occupation within the block. The block types used in 
these rules are the same as the rules used by architect Chuva Gomes in Plan 1. 
It is important to stress that it is not the intrinsic qualities or weaknesses of the final 
plan that are the goal in the generation of variations, but rather a demonstration of the 
versatility of the UIP AddingBlockCells in generating different plans. This is 
accomplished by showing the results of randomly changing the h and w parameters for 
each iteration. The application of these parameters could be informed through other 
means, such as correctly formulated programming tools, in order to generate solutions 
following specific criteria. 
Finally, it should be pointed out that the different UIPs only use objects from specific 
classes in the ontology. Likewise, the elements generated also belong to specific 
classes in the ontology and constitute different layered representations in the drawing. 
In very general terms, all the axes belong to the AN object class, all the generic blocks 
belong to the BL object class and all ▲, ● and ● labels belong to the AN attribute class. 
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Figure 14  
Derivation of the plan for Praia using AddingAxes. The derivation is simplified to the essential steps. 
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Figure 15  
The block cell – parameters and labels 

  

u

v

h

w

d2d1

d4
d3

u

v

h

w

d2d1

d4
d3

 147 Designing with Urban Patterns i



  

 
 

148 

 

 
Figure 16  
AddingBlockCells – derivation including adjustment rules 
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Figure 16  
AddingBlockCells – derivation including adjustment rules 
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Figure 17  
Detail of Step 23 showing some inconsistencies in the generation which are corrected by the UIPs that follow. The 
circles indicate different kinds of inconsistencies. 

Design exploration with CItyMaker is guaranteed by a small set of characteristics 
defined in the system’s structure. The design exploration options are available due to: 

• differences in the context representations or changes in input geometries: different 
sites (Is) / different referential elements (Ref) / different classifications of existing 
elements / different weights attributed to elements; 

• differences in the chosen combination of UIPs; 

• differences in optional rules available in some UIPs (see Appendix 2); 

• differences in parameter inputs. 

In the derivations shown in this section, only the latter aspect – parameter input 
variation – was explored for producing design variation. However, all the other aspects 
can be used for this purpose. Varying all the options produces a great variety of 
solutions for a specific site. It also introduces an interactivity which allows the designer 
to express his/her interpretation of the design context, especially through the 
reference (Ref) classification procedure.   
Plan 2, for instance, shows a plan for a different location designed by Chuva Gomes, 
also the author of Plan 1. The design has a greater degree of complexity but the design 
moves used to generate it are more or less the same. The initial state of the design 
already reveals a higher level of complexity which to some extent explains the greater 
diversity of the plan. Figure 19 shows the guidelines and proportions for this design, as 
explained by the author. In Figure 18 it can be seen that at the beginning of the process 
the intervention site (Is) is already subdivided into several areas due to the presence of 
a railway line and a main distribution road connecting two small towns located a short 
distance away from each other. It shows intensive subdivision of the intervention site 
into a set of urbanizable areas (Ua). There are also six housing blocks isolated from any 
other settlement, a small train station and an old farm house representing a 
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reasonably large private property. This set of conditions created a few isolated areas 
separated by noise protection areas in which only a few connections could be made. It 
is fairly easy to understand that Chuva Gomes applies very similar composition 
principles in each of these areas, starting with two orthogonal axes and generating 
rectangular grids based on the two axes, applying a grid by AddingAxes. The size of the 
blocks changes in each area according to different programmatic goals. One of the 
main axes in each area connects with another main axis in another area creating some 
urban continuity in spite of the significant barriers that both the railway and the main 
road create. The public spaces created in this plan are also quite similar to those found 
in Plan 1. 

 

Figure 18  
Sketch by Chuva Gomes showing the urbanizable areas for Plan 2. 

The block shapes and sizes are obviously related to the housing types and programme 
proposed for each area. Housing types and urban morphology are related issues. 
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Although the relationship between type and morphology is not linear, Berghauser-Pont 
and Haupt present a very interesting study relating urban morphology and density 
measures. They compare a vast set of case studies by examining their density 
measures. This kind of study is able to accurately determine the sets of density 
measures that are related to certain morphological types. However, the study needs 
further development in order to relate building types to both density measures and 
urban morphology. If such relationships are correctly identified, at least establishing 
the average levels, valuable information may be obtained for automating some 
programmatic aspects of the generation. For instance, we may be able to develop 
either typology-oriented regulations for the grids generated or generate grids for 
specific typological goals. 

 

Figure 19  
Plan 2 – Qta da Fonte da Prata, Moita. Guidelines and proportions. 
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Block occupation / design can be rather complex to design as the IJburg plan blocks 
clearly shows. The next subsection focuses on urban induction patterns for generating 
block typology and shows the use of the discursive structure of UIPs. 

§ 6.3      Urban Induction Patterns are discursive grammars – designing with 
semantics 

Different types of urban blocks confer different appearances on urban spaces and are 
to some extent responsible for the type of social interactions that may emerge in 
specific formal environments. Most of the differences in character between the four 
case studies are due to the different block types used in each case. The two Chuva 
Gomes case studies (Plans 1 and 2 for Praia and Moita) are quite simple in terms of 
block types, whereas the two Dutch case studies show an extremely rich variety of block 
types. However, the IJburg plan (Plan 3) has a simpler approach to urban block typology 
than the Ypenburg plan, where blocks are complex compositions of buildings and 
public spaces. Apart from Ypenburg (Plan 4) all the other case studies have in common 
the fact that all the block types are transformations of a basic rectangular shape. This 
basic shape will be called the island. Islands are the empty spaces in the street network, 
or the negative of the street network. Islands are created in these spaces after grid 
generation by the UIP AddBlocktoCells. The island can later be replaced by a block type 
or subtracted (partially or totally) to create a square using the public space generation 
UIPs referred to in the previous subsection (see UIPs 020 to 023 in Appendix 2). 
Plan 1 uses only the 4 block types shown in Figure 20. Plan 2 uses the same types but 
with a larger range in terms of size variation. Block size is related to variations in the 
housing programme, thereby showing a clear relationship between certain housing 
types and urban morphology. Smaller blocks are used, for instance, for densely 
occupied single family rows of houses. In Plan 1, all the blocks are ×80 50m m , whilst in 
Plan 2 there are extreme variations from large to very small sizes containing just one 
row of houses (see Figure 8). Figure 21 shows the parametric rules used in Plan 2 
which apply the same block types as in Plan 1 but allow for variable parameter values 
instead of discrete values. In the IJburg plan (Plan 3), the blocks are of different sizes 
but they are all relatively large. This characteristic allows designers to explore different 
types of urban blocks, following different approaches for occupying the inner block 
spaces. Figure 22 reproduces some of the designers’ pictograms to show the concepts 
underlying the composition of morphological block types.  
The simplest case is the Praia plan – Plan 1. The generation of the grid was explained in 
the previous subsection; for the block generation, we will start with the output of the 
sequence of UIPs previously described. After the application of this sequence of UIPs, a 
point is reached in the generation where the plan assumes the appearance shown in 
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Figure 23a. Figure 23b compares this state with a drawing produced by the author of 
the plan as an explanation of his design procedure. 
At this point in the design the general layout of the plan is set at the level of network 
definition, together with some additional features relating to the definition of public 
spaces. The islands only provide an abstract mass occupation without any other 
morphological definition. However, if a goal density had been defined for the plan, the 
average goal density per block could have been calculated or, if some differentiation is 
intended for the plan, this difference could have been defined at the beginning of the 
design process, defining the specific density regulation for different urbanizable areas 
(Ua – see Section § 6.1      , page 115). In any case, much of the character of the plan is 
defined through the design of the urban blocks. 

 

Figure 20  
The 4 block types used in the Praia plan. The UIP AddBlockType replaces the island with one of the 4 types. (1) is a 
closed block, (2a) and (2b) are different versions of blocks of parallel buildings, the linear block, and (3) is a 
spine-shaped block. 

The following procedure replaces an island with one of the block types, as shown in 
Figure 20. It shows the formal rules for Plan 1 in which an island is replaced by one block 
type. In Plan 1 the designer uses always the same parameters, a ×80 50m m  block. The 
shape rules in Figure 20 are particular assignments of values for the variables h and w of 
the rule schemata in Figure 21. Generically, it can be said that the main rule in every case 
is a simple replacement rule in which the occurrence of the island appears on the left-
hand side and its replacement with a block-type schema on the right-hand side. 

 

 
Figure 21  
Rule schemata for the Moita plan block types – rectangular parametric blocks 

=> or oror

(1) (2a) (3) (2b)
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The generation of a block type follows a three-step procedure: (1) ClassifyUUnitCells; 
(2) DefineUUnit – option: BlockType; and (3) AddUUnitbyLabel – option: AddBlockType. 
 

1 A classification of block hierarchies in the grid which assigns different labels to the 
blocks depending on their position in the grid. The UIP applied here is called 
ClassifyUUnitCells and, as a result, it adds labels to the islands in order to guide the 
generation of block typology. Appendix 2 shows a simplified version of this UIP. The 
final product of applying ClassifyUUnitCells is a plan layout in which islands are 
added with a label identifying the block type that will replace the island (Figure 29). 
This label is basically an attribute which sets the priority for using a specific block 
type according to its particular location in the plan. The decision on the location of 
these priorities can be defined by the formulation module, or, in the absence of this 
input, directly by the designer. However, some alternative algorithms can be used 
to distribute the hierarchical values according to predefined criteria based on the 
characteristics of the elements already present in the design, for instance, placing 
specific block types next to promenades as seen in Plan 1 (Figure 7 and Figure 30). 
Blocks can also be distributed according to any other fixed criteria, for instance 
distributing density by applying higher densities close to promenades and lower 
densities in the peripheries. The distribution process can be based on assigning 
weights to specific components of the design and then distributing density 
throughout the blocks, increasing the density on the basis of the attraction of 
heavier locations21. 

 

Figure 22  
Block types in the IJburg plan, as defined in the architect’s presentation schema. 

  
21 This feature has already been implemented in Model B – see Chapter 7- CItyMaker 
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155 

2 This step consists of defining a fixed number of block types. In principle the 
number of types is the same as the number of different labels given to the islands 
but the types already stored in a reusable library of block types can also be used. 
The block type definition uses a specific option for the UIP DefineUUnit called 
BlockType (see Table 6 and Appendix 2). This complex UIP requests the designer to 
specify the instructions that generate a particular block type and records the design 
sequence needed to generate it. The design sequence records the primitive block 
types and the operation used to produce the block type based on a predefined 
sequence of instructions: Blt1→Blt2→Oper, in which Blt1 and Blt2 are primitive 
block types, namely a  closed block, linear block, punctual block (Pedro, 2001), 
matrix block (as found in IJburg plan – Figure 22) and an abstract block filling the 
entire island, and Oper is a binary operation in algebra 22U  of two-dimensional 
shapes in a two-dimensional space following the definitions found in Stouffs 
(1994). The binary operations are sum (+), difference (–), product (∙) and the 
symmetric difference (⊕ ) – see Figure 24. However, symmetric difference is not 
used here because it needs more complex control mechanisms (Figure 27); the 
distance between buildings and building depth, for instance, becomes difficult to 
control. The same criterion is used in the application of more than one operation. 
This is actually the reason why symmetric difference is not being used – it 
corresponds to a combination of the operations sum and difference expressed by 
the equation ⊕ = − + −( ) ( ) ( )A B A B B A . The formal exploratory potential increases 
but it becomes too difficult to control the generation in order to produce feasible 
results. Moreover, the operation product also presents particular difficulties 
involving similar problems. However, further work could be developed in this area. 
Some of the criteria established as generation goals can be determined in advance 
by the programme formulation as a set of requirements and constraints defined as 
description grammars and used to control the generation of designs. Additional 
heuristics may also help guide the generation towards suitable results. In any case, 
Figure 25 to Figure 28 show the potential of using multiple operations. Figure 25 
also shows the potential of generating quadrants of a block separately, considering 
blocks subdivided into four equal quadrants defined by their symmetry axes. 
BlockType records all the requirements for each particular block type and the 
sequence of instructions needed to generate it. In fact, BlockType produces and 
records the specific discursive grammars needed to generate a specific block type. It 
may be said that this UIP generates customised UIPs which will later be 
incorporated into the generic code of the UIP AddBlockType (see UIP 029 in 
Appendix 2). So far, BlockType has proved capable of generating most of the types 
found in case studies 1, 2 and 3 (Figure 7)22 . Skipping the details of the 
parameters involved in the operation, the spine-shaped block in Figure 20 (Rule 3) 

  
22  This feature was implemented in Model A – see Chapter 7- CItyMaker – Figure 39 shows some results of 

the implementation of this pattern. 

 155 Designing with Urban Patterns i



  

 
 

156 

can be obtained from the sum of one linear block containing four columns of 
parallel buildings and a row consisting of one linear block containing one building. 
It should be noted that the density indicators can only be known in advance if a 
type is applied to blocks with the same size and proportion. If there are variations in 
size, the density indicators will also vary. This is easy to visualise in the case of the 
closed block. Managing morphological types in terms of density criteria using the 
density indicators involves strategic options and extensive calculations which 
require further research. However, it should be borne in mind that these 
parameters play an important role in the definition of heuristics used by 
AddBlockType, especially if density goals are set as design goals. Chapter 7 will 
discuss this subject further whilst addressing aspects of the implementations. 

3 AddBlockType (which is an AddUUnitbyLabel option – see UIP 029 in Appendix 2) 
replaces a labelled island with a specific block type previously defined with 
DefineUUnit. The recorded block type is adapted to the size of the block which is 
being replaced. A set of constraints prevents the system from generating absurd 
results. To this end, designers must insert some control parameters into the 
system, recording for instance, the minimum and maximum building depth (set in 
terms of distinct orientations), minimum distance allowed between different 
buildings, minimum courtyard size and local access street width for the streets 
generated in the primitive matrix type. Different criteria can also be used for block 
type orientation when the island is replaced. The criterion used in implementation 
A (see Chapter 7) was to rotate the type towards the street with the highest 
hierarchy (see Figure 39). This feature is important when types are not symmetrical 
in relation to the island symmetry axes. 

 
From this point on, we focus on the discursive structure of UIPs using the simple 
example of the UIPs that create a type coincident with one primitive block type, for 
instance, a closed block. This is a simplification of the pattern AddBlockType into a UIP 
containing a simple shape grammar consisting of rule schema (1) shown in Figure 21. 
This rule, which is a parametric rule, shows the available parameters working as 
variables that can be explored to produce design variations. 

 

Figure 23  
On the left (a): Design state after the generation of squares and before the generation of block typology. On the 
right (b): the same state in the architect’s own drawing. 
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As previously stated, block types can have quite a high level of complexity and may 
involve several kinds of parameters and attributes. Parameters h and w are taken from 
the island being replaced whilst the other parameters are open variables, i.e. they are 
the open UIP options. The degree of freedom of the design is conditioned by the 
constraints developed upstream by the programme formulation, which may restrict the 
available range of values to a shorter interval or even further through direct designer 
input. 
 

 

Figure 24  
The 4 primitive block types: the island or abstract block (Ab), the closed block (Cl), the linear block (Li) and the 
punctual block (Pu). 
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Figure 25  
Block with 4 different quadrant configurations. 

 

Figure 26  
Transformation of a quadrant shape through a reflection of the shape using the 2 symmetry axes of the bounding 
box as the reflection axes. The second image shows a double reflection. The third shows the application of the 
same transformation to the 4 quadrants. The fourth shows the reflection of Q1 according to the horizontal 
symmetry axis.  

Quantitative parameters can be framed within a range or specified by a function. 
Attributes are qualitative and change the meaning of features in the block type 
definition. The parameters can, for instance, be block width (w) and block length (h), 
building depth (ta, tb, tc, td), distance between internal facades (ia, ib), number of 
floors, etc. The variables in parentheses are the ones found in rule schema (1) in Figure 
21. The attributes can be function, building type, or any kind of classifier relating a 
geometrical component to any non-geometrical feature. Other attributes concern 
block identification and placeholders for geo-referencing. Table 11 shows the 
parameters and attributes used in the block type in rule schema (1). Attributes that are 
not used in the example (e.g., function) were omitted in order to facilitate 
comprehension. 
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Figure 27  
Illustration of product and symmetric difference operations. Although the operations show great composition 
potential they also show the difficulties inherent in controlling the meaning of the operations; for instance, 
controlling building depth or the distance between building façades. 

At this point we turn to the discursive structure of UIPs. The generic structure of a UIP 
is defined as a discursive grammar of the form = { , , , , , , , , , }i i i iγ D U G H S L W R F I . In every 
discursive grammar, the set G contains the descriptions of the goals of the pattern 
defining its programming grammar and D contains the description rules for the 
generation defining the pattern’s designing grammar. The description rules in D use 
the same features as the ones in G but are labelled with the letter d instead of g. In 
order to distinguish the description features of each UIP, the features in 
ClassifyUUnitCells, ClosedBl and DefineUUnit (BlockType) are labelled with the letters α
, β  and δ   respectively. 
In the BlockType application, the initial shape Ii is a labelled island in which the label 
corresponds to the variables identifier and classification in Table 11. 
 

 

Figure 28  
The operation sum and a compound operation involving the previous sum and a symmetric difference. 
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We now consider as the initial state of the design generation a design state starting 
with the classification of all islands after applying ClassifyUUnitCells – the initial state 
of the design is shown in Figure 29, page 168. The initial description U is defined 
through the descriptions α10 to α56 (see Table 9). BlockType can only be applied when 
these descriptions are found in the design. After the application of ClassifyUUnitCells 
all islands will have descriptions of the form: 

< >10 :α ObjectType, ObjectNumber, ClassName, Sublevels  
Any particular island after the application of ClassifyUUnitCells will have the following 
format: 

< >10 : ,#, ,[ ]α island UuBltBL  
ObjectType is a particular instance of the class Block or BL (in this case an island), 
ObjectNumber is a counter (integer), ClassName is taken from the ontology (in this case 
BL), and Sublevels indicate the sublevel inheritance properties in the ontology (see 
Figure 9). Sublevels are future available parts of predicates. Sublevels may indicate an 
object class, meaning that all the objects in the class are available, or simply indicate 
specific object types within that class meaning that these types are the only ones 
responding to inheritance. For instance, if BL is indicated as a sublevel, any object in BL 
may be used by a rule. However, if UuBlt is indicated as a sublevel, only UuBlt object 
types can be used by future rules. 

< >20 : ,α h w  
< >30 : [ , ]α classification type  where type corresponds to a UuBlt (a block type) and 

classification represents a label Bi where i marks a specific classification with a 
capital letter A, B, … (it will be BA in our example) identifying the classification 
previously set by the application of the pattern ClassifyUUnitCells (see figure in 
Table 9).The format will be: 
 < >30 : ,Aα B UuBlt  

… placeholders which are geographic coordinates (α40 and α41) and a record of the 
neighbouring street hierarchy (α42). In addition, there are properties (α50 to α56). α50 
and α54 are fixed features of each island, whilst the others define the urban indicators 
to be achieved in the generation. 
Si is a set of parameterised blocks containing the 4 basic block types, the closed block, 
the linear block, the punctual block and the matrix block. This simplified version 
considers just the closed block - ClosedBl. ClosedBl is part of AddBlockType, as will 
become apparent later. 
Set R contains the rules found in Figure 21 or, in this simplified version of the pattern, 
only Rule (1). It should be noted that the labels are omitted in this representation. 
However, the label Bi identifying the block classification determines one of the 
matching conditions for the application of Rule (1). In other words, if an island is 
marked by ClassifyUUnitCells as, for example, BA, then only the block types defined by 
BlockType as type BA can be applied to this island. 
The BlockType pattern records the primitive blocks and operation used to generate a 
specific block type, as well as the parameters applied in each primitive block. BlockType 
involves only the features shown in Table 10. The behaviour of BlockType is synthesised 
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in the expression < Blt1, Blt2, Oper > where 
∈, { , , , , }Blt1 Blt2 island ClosedBl LinearBl PunctualBl MatrixBl  and ∈ + − ⋅ ⊕{ , , , }Oper . The 

generic descriptions of the primitive blocks are found in the ontology by requesting the 
pattern AddBlockType. Only  ClosedBl is considered as an example here – see Table 11. 
BlockType records which primitive blocks are assigned to Blt1 and Blt2, their respective 
parameters and which operation is assigned to Oper. There are only two possible 
design sequences, < Blt1, Blt2, Oper > or < Blt1 > when Blt2 and Oper are empty. The 
process is very interactive, as it basically requests input from the designer. BlockType 
involves only description rules defining design goals (from set G), therefore labelled 
with the letter g. 
Rule g1 assigns a name to the block type, for example block type BA, involving features 

δ10 and δ30. 
g1: 

←10 10δ δ   − < >,#, ,[? ]island UuBltBL    
    + < >,#, ,[ ]Aisland BBL  
 ←30 30δ δ    − < >? ,classification UuBlt  
   + < >,AB UuBlt , where classification is a user input. 

Rule g2 inquires which primitive block should be assigned to Blt1. 
g2: 

←60 60δ δ     − < >?Blt1  
   + < >Blt1 ,    
   ∈? , { , , , , }Blt1 Blt1 island ClosedBl LinearBl PunctualBl MatrixBl  

In this example, the feature δ60 becomes < >ClosedBl . The next step requests 
parameters for the closed block (ClosedBl), which will be applied in the generation. It 
involves the parameters found in Table 11 which refer to the features of the closed 
block. Parameters h and w are not requested as they will be assigned later by the 
pattern AddBlockType. 
 

g3: 
←21 21β β     − < >? ,? ,? ,?a b c dt t t t  

+ < >, , ,a b c dt t t t , ∈ ∧°, , ,a b c dt t t t ≤ ≤min , , , maxbdepth a b c d bdeptht t t t  
 (defines building depths) 
 ←22 22β β     − < >? ,?a bi i    
    + < >,a bi i ,   ∈ ∧ ≥°, , mina b a b inneri i i i  
(defines minimum courtyard depths). By default =, mina b inneri i  defined in a table 
of standards. 

 
Rule g4 requests which operation the user wants to use to generate block type BA. In this 
example the answer would be none (∅ ). However, the generic format of the rule is: 

g4: 
←60 60δ δ     − < >?Oper    

   + < >Oper ,  ∈ + − ⋅ ⊕ ∅{ , , , , }Oper   

 161 Designing with Urban Patterns i



  

 
 

162 

Rules g5 and g6 are identical to Rules g2 and g3 but refer to Blt2. However, an initial 
conditional statement for the empty Oper jumps directly to Rule g7 which stores the 
recorded actions and parameters under the block classification BA. This means that the 
block type BA has the following description: 

Table 9  
ClassifyUUnitCells – Urban Unit variables 

  

Variable description of the Urban Induction Pattern – ClassifyUUnitCells  

Features Sets of variables  Description 
notation a 

Variables 

ID 

Object Identifier 

Unique list per object a10 < ObjectType, ObjectNumber, ClassName, 
Sublevels >    

Parameters Block dimensions a20 < h , w >  

Attributes 

 

Typology: 

Neighbourhood UuNei 

BlockType UuBlt 

Cluster UuClu 

a30 < classification, type > 

where classification is marked with a label 
Bi and ∈ {A,B,C,...}i  

type ∈ { }UuNei, UuBlt, UuClu  

Geometry 

(coordinates) 

Block corners 

Street nodes 

 

 

 

Neighbouring streets  

 

a40 

a41 

 

 

 

a42 

 

< Bl1 , Bl2 , Bl3 , Bl4 > 

< 1 , 2 , 3 , 4 > 

The elements in the two sets,{ Bl1 , Bl2 , Bl3 , 
Bl4 } and { 1 , 2 , 3 , 4 }, represent geo-
graphic coordinates  

< sa , sb , sc , sd  > , records the street hierar-
chy of neighbouring streets 

Properties 

 

Area-island (Ai) 

 

Building intensity (FSI)* 

 

Coverage (GSI)* 

 

Spaciousness (OSR)* 

 

Area-cell (Ac) 

 

Building height (L)* 

 

Maximum Nr of Floors (NF) 

a50 

 

a51 

 

a52 

 

a53 

 

a54 

 

a55 

 

a56 

< Ai > a real number expressed in unit m2 

< FSI > a real number expressed in unit 
m2/m2  

< GSI > a real number expressed in unit 
m2/m2 

< OSR > a real number expressed in unit 
m2/m2 

< Ac > a real number expressed in unit m2 

< L > where L is a real number indicating 
the average nr of floors 

< NF > where NF is an integer indicating 
the number of floors 

* Properties follow the notations and definitions proposed by Berghauser-Pont and Haupt (2010). The block properties are 
calculated at block or island level. In order to avoid unit conversion the areas are expressed in m2 instead of hectares. 
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10 :δ < island, #, BL, [BA] > 

30 :δ < BA, UuBlt > 
< ∅∅ >60 : , ,δ Blt1  

where Blt1=ClosedBl  and has the features < >21 , , ,a b c dβ t t t t  and < >22 ,a bβ i i , all 
variables being defined by user input. 

Blt1 contains the descriptions that will be assigned to AddBlockType for the generation 
of the final block type. In detail, considering this simplified example, 

= [ ,( , , , ),( , )]a b c d a bBlt1 ClosedBl t t t t i i . The generic format describing Blt1 and Blt2 is 

21 22[ , , ]blocktype β β  where 21β  and 22β  represent the descriptions to assign to features 21β  
and 22β  of AddBlockType when generating Blt1. The full description of the design 
sequence in the example of Rule (1) (Figure 21) is 

=< ∅ ∅ >60 [ ,( , , , ),( , )], ,a b c d a bδ ClosedBl t t t t i i . 
AddBlockType automates the generation of block types. Its algorithm identifies islands 
and the classification BA attributed to the islands which are the matching conditions (g1), 
extracts the required data from the existing island (g2) according to the classification it 
identifies: the block type to apply and its respective design sequence (g3), the generic 
parameters to be applied to the first block type in the design sequence – Blt1 – (g4), the 
generic parameters to be applied to Blt2 – (g5), and the operation, Oper, to be applied to 
Blt1 and Blt2 (g6). The last rule erases the block type label BA (g7). 
In AddBlockType set G contains the following description rules defining the goals to be 
achieved in the generation of this pattern: 
 
Rule g1 – a matching rule: checks conditions in the existing island. 

< >10 :α ObjectType, ObjectNumber, ClassName, Sublevels  
= ∧ = ∧ ⊂ AObjectType island ClassName Sublevels BBL  

< >30 :α classification, type  
= ∧ =Aclassification B type UuBlt  

 

Rule g2 – the initial state: extracts data from the existing island and adds the 
applicable parameters to the descriptions. The data is extracted from the geometry, 
from the tables of requirements (Table 7 and Table 8), or from previously driven data 
recorded in the generation model’s database. 

←10 10β α     − < >,#, ,[ ]L Aisland B B   
   + < >,#, ,[ , , ]A L L D UB B P B L  

←20 20β α   i.e.,< h, w >  
←∅21β  
←∅22β   
←30 30β α    i.e., < classification, type > and in this case < BA, UuBlt > 
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←40 40β α    geographic coordinates for points <Bl1, Bl2, Bl3, Bl4> 
←41 41β α    geographic coordinates for points <1, 2, 3, 4> 

←42 42β α    indicates street hierarchy of neighbouring streets  
   < , , , >a b c ds s s s   

←50 50β α    area extracted from geometry <Ai> 
←51 51β α    indicator derived from table of requirements <FSI> 
←52 52β α   indicator derived from table of requirements <GSI> 
←53 53β α    indicator derived from table of requirements <OSR> 

←54 54β α    area extracted from geometry < Ac > 
←55 55β α    indicator derived from table of requirements <L> 
←56 56β α    – < ?NF > 

   + <NF>, an integer from user input or imported from the 
ontology based on programmatic definitions or available 
upstream regulations 

 ←∅57β   
 ←<>60β  

 

Rule g3 – imports the design sequence defined from user input using BlockType 
(feature 60δ  and assigns it to 60β ). 

←60 60β δ     − < >? ,? ,?Blt1 Blt2 Oper  
  + < ∅ ∅ >[ ,( , , , ),( , )], ,a b c d a bClosedBl t t t t i i  
This information allows rule g4 to assign the parameters recorded in the block type 
definition to the features 21β  and 22β , thereby defining the design goals for building 
depth and courtyard measures. 
 

Rule g4 – assigns parameters to a closed block: 
←21 21β β     − < >? ,? ,? ,?a b c dt t t t  

   + < >, , ,a b c dt t t t  where ∈, , ,a b c dt t t t Blt1  extracted from Blt1 
position in 60β . 

←22 22β β     − < >? ,?a bi i  
     + < >,a bi i  where ∈,a bi i Blt1  extracted from Blt1 

position in 60β . 
… and defines a temporary label for Blt1: 

←30 30β β     − < >,?AB type  
    + < >,AB Blt1   

The temporary label allows the algorithm to distinguish between the values assigned to 
parameters in Blt1 types and values assigned to parameters in Blt2 types. The 
complete set of design instructions considers the generation of a block type involving 
two primitive block types. Rule g5 executes the same procedures as Rule g4 for 
extracting parameter goals for Blt2. A single rule, g6, sets as a design goal the 
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application of the operation defined as Oper in 60β . The last Rule, g7, erases the 
temporary labels Blt1 and Blt2 and the block type label BA. 
The designing grammar in AddBlockType includes Rule (1) from Figure 21 and the 
description rules (d) from set D which essentially assign the parameter values and 
instructions captured by the rules (g) of the programming grammar to apply in the 
application of the shape rule (1). In other words, for each rule g1 to g7 in set G there is 
a rule d1 to d7 in set D which assigns the parameter values for the instantiation of 
shape rule (1). Rules d1 to d5 generate first Blt1 and then Blt2. Rule d6 applies the 
defined operation (Oper) between Blt1 and Blt2, and Rule d7 erases all labels assigned 
to the block. In the case of =∅Oper  the label Blt1 is erased, thereby ending that 
particular block design and proceeding to Rule d7 by erasing the label BA.  
The algorithm is recursive. The generation of block types starts with Rule g1 by 
checking the existence of label Bi classifying islands and then proceeds to Rule g7. It 
then generates the corresponding block type using the local h and w parameters (block 
size) applying all the design rules d1 to d7. The first rule g1 searches again for the 
matching conditions in the design. The generation stops when all Bi labels are erased. 

Variable description of the Urban Induction Pattern – DefineUUnit    

Features  Description 
notation d 

Variables 

ID 

Object 
Identifier 

 

10δ  

 

< ObjectType, ObjectNumber, ClassName, Sublevels >    

Attributes 

 
30δ  < classification, type > 

where classification is marked with a label Bi and ∈ {A,B,C,...}i  

type ∈ { }UuNei, UuBlt, UuClu  

Design 
sequence 

60δ  < Blt1, Oper, Blt2 > where 
∈, { , , , , }Blt1 Blt2 island ClosedBl LinearBl PunctualBl MatrixBl  and

∈ + − ⋅ ⊕{ , , , }Oper . Oper and Blt2 can also be ∅ . 

   

Table 10  
DefineUUnit  – Urban Unit variables 

The shape set Si in iγ  contains the primitive block shapes and the rule set R contains 
the shape rules shown in Figure 21. The reader is invited to infer the description rules 
for any application of the UIP AddBlockType including shape rules (2a), (2b) and (3) in 
Figure 21or any other block type resulting from a design sequence of  <Blt1,Blt2,Oper>.  
Set F contains the functions that establish relationships between some of the features 
describing the urban blocks; for instance, the functions that allow urban indicators to 
be calculated are defined in this set. More precisely, such functions update properties 
in the design.  
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Further details regarding the design workflow and the standard application of 
AddBlockType, rather than just one of its rules are needed to explain the use of H 
(heuristics) and W (weights) sets. So far, a design workflow has been presented that is 
based mainly on the designer’s interaction with the design tool, noting sometimes that 
some of the input may come from the programme formulation. Regardless of how the 
table of requirements (Table 7) is completed, there are considerable differences in the 
character of the urban environment defined by applying different block types. In this 
regard, the exploration and distribution of typology could follow specific heuristics or 
rules of thumb to achieve specific types.  
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Table 11  
AddBlockType – Closed block features and variables. Similar tables of features apply to the other primitive types. 

BL  – Blocks  Sets  of variables Description 
notation b  

Variables 

A1 – Closed block  ID   

 

The label Bi represents the variable 
classification 

Object Identifier b10 < ObjectType, ObjectNumber, ClassName, 
Sublevels > 

Parameters  Parameters* 

Block  
dimensions 

b20 < h , w > 

Building depth b21 < ta , tb , tc , td  > 

Inner courtyard 
dimensions 

b22 < ia , ib > 

 

Attributes  Attributes (labels)** 

Block type and 
Block classification 

b30 

 

< classification, type > 

where classification is marked with a label Bi 
and ∈ {A,B,C,...}i and type∈ { }UuBlt  

Geometry  Geometry (coordinate placeholders)  (labels)** 

Block corners b40 < Bl1 , Bl2 , Bl3 , Bl4 > 

Street nodes b41 < 1 , 2 , 3 , 4 > 

The elements in the two sets, { Bl1 , Bl2 , Bl3 , 
Bl4 } and { 1 , 2 , 3 , 4 }, represent geographic  
coordinates < sa , sb , sc , sd  > , records the street 
hierarchy of neighbouring streets 

Vicinity - streets  b42  

Properties  Properties 

Area-island (Ai)  b50 < Ai > a real number expressed in unit m2 

Building intensity 
(FSI)*** 

b51 

 

< FSI > a real number expressed in unit m2/m2  

 

Coverage (GSI)*** b52 < GSI > a real number expressed in unit m2/m2 

Spaciousness 
(OSR)*** 

b53 < OSR > a real number expressed in unit m2/m2 

Area-cell (Ac) b54 < Ac > a real number expressed in unit m2 

Building height 

(L)***  

b55 < L > where L is a real number indicating the 
average nr of floors 

Maximum Nr of 
Floors (NF) 

b56 < NF > where NF is an integer indicating the 
number of floors 

Footprint (Bd) b57 < Bd > a real number expressed in unit m2 

Design sequence  Design sequence 

 b60 < Blt1 > where Blt1 is a ClosedBl 

* It should be noted that a few more description notations should be added in the case of the linear block, the punctual block and the matrix block. 

** Attributes and geometry placeholders are the only variables represented with labels in the grammars. Eventually all variables can be 
labelled if any variable is needed for the definition of particular rules in the grammar. 

*** See note in Table 9 
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A similar comment can be made regarding the issue of density in relation to urban 
morphology. The two subjects are actually related, as can be seen in Spacematrix 
(Berghauser-Pont and Haupt, 2010). However, this theme is problematic because it 
involves subjectivity, which should be addressed by the designer. For instance, it can be 
easily understood from the model picture (Figure 30) that in Plan 1 the designer is 
trying to place specific block types next to the main streets. More precisely, closed 
blocks are placed along the central promenade and spine-shaped blocks are placed 
along the two parallel promenades. Instead of the designer intervening directly, this 
behaviour can be induced directly into the UIP by defining the heuristics that establish 
the conditions that distinguish which type to apply, depending on the position of the 
block type in the design. Weights could be provided to relate type to position or density 
distribution in order to manage building height. Although this kind of decision is seen 
clearly in the model – the buildings facing the promenades have two extra floors – the 
generation of these details involves additional rules which are set as options in the UIP 
ManageBuildingHeight. However, the most important aspect is to allow for the system 
to provide as much user interactivity as possible in order to offer some customisable 
features. The important aspect to stress here is that this mechanism allows a set of 
optional behaviours to be built into this UIP which can be based on calculations 
derived from the density indicators, thus introducing design decisions based on a 
‘spacematrix’ interpretation of available or user defined patterns. We will return to this 
subject in the discussion section. 
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Plan layout including the labelled islands after classification with ClassifyUUnitCells. 
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A similar comment can be made regarding the issue of density in relation to urban 
morphology. The two subjects are actually related, as can be seen in Spacematrix 
(Berghauser-Pont and Haupt, 2010). However, this theme is problematic because it 
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§ 6.4      Storing and using design data  

Two main difficulties had to be overcome in developing CItyMaker. The first was to 
define a system which would allow for creative design synthesis whilst maintaining 
standard reflective design practice, and the second involved data manipulation and 
data-based decision-making in the design process, as well as assigning generated data 
to existing or generated representations. In addition, all generated representations had 
to be generated in GIS-compatible formats in an appropriate layered structure. 

 

Figure 30  
The Praia plan model showing the closed blocks along the main promenade. 
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The ultimate goal of CItyMaker is to generate meaningful urban designs. However, 
computing meaningful designs involves conceptual difficulties of a semantic nature. 
Shape grammars, even when fully detailed, are not able to generate meaningful 
designs or, to put it more accurately, find the appropriate designs in the language for a 
particular context. The Prairie House grammar (Koning and Eizenberg, 1981), which is 
a very accurate grammar in terms of definition of language, does not contain a means 
for deciding which rule to apply in a particular context or the appropriate parameters 
for the design context. Although the designs in the solution space do fit the language of 
Frank Lloyd Wright there is no way of choosing which rules to apply at each step of the 
derivation process except through designer input. In an automated generative process 
an additional formalism is needed for this purpose. 
Stiny (1981) introduced description grammars to solve this problem. Description 
grammars provide rules relating other design features to the shapes in the design. With 
this formalism uses can, for instance, be assigned to rectangles representing buildings 
and consequently particular characteristics can be assigned to buildings according to 
their function and shapes can be transformed accordingly.  
Duarte (2001) improved this formalism by introducing heuristics to guide the 
generation towards given goals. The heuristics introduce some ‘rules of thumb’ 
relating formal options, for instance, to priorities in design requirements. In the case of 
Duarte’s Malagueira grammar, there is a specification that gives priority to certain 
proportions in the rectangle subdivision rules. However, in the previous (Prairie House 
and Malagueira House) grammars there is no real creative activity in the process and it 
can scarcely be called design. The design systems are in fact search systems which try 
to find adequate complex architectural solutions in a vast design space bounded by a 
predefined (or pre-designed) design language. The language is given; it is not the 
product of a process of synthesis. 
Synthesising a design language is a much more complex problem because it involves 
no knowledge of the design rules in the initial states of the design process. The 
traditional method of designing evolves through progressive steps (moves) of trial and 
partial solutions which are critically assessed before advancing to another move. 
Decisions, as well as decision-making criteria, are applied locally at each step in the 
design process and knowledge of the design problem evolves with the design. The 
main idea developed for CItyMaker applies the discursive grammar formalism to these 
local levels, i.e. to generic design moves. Creative design is therefore still possible 
following a standard reflective procedure, but the search is enhanced with the 
generative properties of design moves. This concept solves the problem of making 
creative design synthesis possible in CItyMaker. It also partially solves the generation 
of GIS compatible formats and data manipulation. However, in order to fully solve the 
two main problems as well as the layered representations, the ontology plays an 
essential role. 
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The ontology organises all the concepts involved in the description of the urban 
environment into a relational / hierarchical structure – see Figure 9. The ontology 
presents a structure of related concepts forming thematic systems to describe 
particular aspects of the urban environment: 

1 The city as a street system; 
2 The city as a built system 
3 The city as a property system 
4 The city as a natural system 
5 The city as a reference system 
6 The city as a public space system 
7 The city as an activity system 
8 The detail system (defining the city’s character) 

Each system (theme) is composed of several interrelated object classes in similar ways 
to the one showed in Subsection § 5.4      , page 92, where the ‘city as a street system’ is 
explained. Explicit relationships exist between the concepts of one system and the 
concepts of another, and there are primary and secondary relationships between 
classes, thereby introducing two levels of priority in inheritance relations. What the 
relationships predefine is part of the predicate conditions of patterns and some of their 
consequents. In other words, a pattern (UIP) can only be applied if the objects in the 
predicate belong to the object class that it is supposed to generate, or belong to their 
immediate upstream related classes. Similarly, UIPs generate designs only from 
objects belonging to the initial shape structures and/or from immediate downstream 
related classes. In both cases, primary and secondary relationships are considered and 
priorities established based on this criterion.  
As an example of the use of primary and secondary relationships, patterns generating 
grids also generate a structure of blocks defined in the BL class. Blocks (BL) are 
primarily developed into buildings (BD) and block parcels (BLP) into building plots 
(BP). However, depending on other features of the context, blocks can be transformed 
into squares (SQ). In such cases, the patterns transforming blocks into squares use the 
secondary relationships. 
The relational structure of concepts (classes) provides two important features of the 
system: 

1 The inheritance structure in the design system specifies  the design moves allowed 
in each step of the design generation process,  

2 The classes provide the layered structure. Each class generates objects belonging to 
specific layers according to the object types they generate and the particular type of 
geometry that makes up their representations (points, lines or polygons). 

Consider the pattern AddBlockType. In the initial shape set (Ii) the UIP contains the 
primitive shapes needed to generate block types and in the rule set (R) the 
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transformations needed to compose two primitive shapes into a specific block type. If a 
type is generated by adding a set of linear parallel buildings to another to form a spine-
shaped block as shown in Figure 21, Rule 3, the algorithm uses a primitive linear block 
with 4 parallel buildings and adds a perpendicular linear block with only one building 
using the operation addition23:   

                  Liev4   +  Lieh1 (see Figure 24) 

 

The ontology contains the definitions of the primitive blocks in the Blocks class BL, in 
this case the linear block, involving the variables and parameters shown in Figure 24. 
Some parameters may already be provided by the system – for instance, w and h are 
previously extracted from the island (rule g2: ←20 20β α ) – and others may be provided 
by user input or from existing functions or heuristics. As an example, if the linear block 
is chosen, a function might define the number of parallel buildings so that they always 
have a space between them that is larger than the user input (or regulation) defining 
the minimum distance allowed between two buildings. A heuristic might state that if 
the generation is conditioned by proximity to a main street (defined by a set of 
weights), (1) the block is rotated so that the continuous side of the spine faces the 
main street – see implementation A, Figure 39 – and (2) the building height is raised 
by one floor in the primitive type Lieh1, i.e. if Liev4 has, for example, 2 floors, Lieh1 is 
raised to 3 floors. This heuristic generates the spine blocks as defined in Plan 1 – see 
the model photo in Figure 30. In practical terms, the definitions of primitive blocks can 
be stored in the ontology as code including definitions of the primitive shape – 
geometry – and descriptions which include requests for the variables and parameters 
needed to instantiate a particular block. Therefore, the main code in CItyMaker 
searches the ontology each time a primitive type is used. Conversely, similar definitions 
(primitive object types) may be found in other classes in the ontology24. 
Height management in the system uses the UIP ManageBuildingHeight. 
ManageBuildingHeight is applied to the stored block types, applying a user defined 
number of floors to the primitive blocks. The first primitive block uses an input integer 
and the second is defined through a maximum difference between Blt1 and Blt2, also 
in terms of the number of floors. The generation of block types also requires some 
complex heuristics to manage the height differences between the two primitive blocks 

  
23  In implementation A the designer has the option of choosing the position of the building in the case of a 

linear block containing only one building – the designer chooses either one of the sides or a centred 
position. 

24  Only partially implemented. These features need to be implemented in collaboration with the formulation 
model. 

+ =
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in order to guarantee the generation of meaningful blocks. The height information is 
stored with the block type and applied in the generation of block types with 
AddBlockType. If the stored block type does not contain this information the pattern 
ManageBuildingHeight is activated to gather the missing information. 
The management of building height is a subject directly related to the management of 
plan density. It may be said that it defines a strategy linking construction footprint and 
building height. Due to the development of Model B (see the next chapter) in which 
density management is accomplished at district level leaving blocks with generic 
regulations for future design, research into the management of building height was left 
incomplete25. However, the main idea was to control the distribution of density using 
definitions of building types and attraction functions similar to those in Model B, which 
define a relationship between distance to the main urban features (main streets, main 
squares, centre) and block type. Two types of functions should be used to control 
density distribution behaviour in the design system. First, this involves the relationship 
between types and density, for which spacematrix research (Berghauser-Pont and 
Haupt, 2010) would provide some insights. Basically, certain heuristics would control 
which types are suitable for specific density measures. Secondly, the height of block 
types would also be affected by density goals. In this case, depending on the density 
goals, a function would change the block type definitions to fit the required density, 
which would always be constrained within meaningful boundaries. These concepts 
should be improved in future work.    
The parallel grammar structure of the system separating grammar by class and 
geometry type (points, lines or polygons) guarantees the generation of structured 
representations that are appropriate for geographical information systems. The 
ontology, whilst providing the inheritance structure, also guarantees a correct 
procedural structure for the system, i.e. it only allows UIPs to be displayed in a 
semantically correct order. Furthermore, the ontology plays an essential role in data-
based decisions and data generation. In fact, all the concepts in the ontology contain 
formal descriptions of the objects in each class. Properties are also included in these 
descriptions (see Table 9 and Table 11) containing measures and/or density goals. 
Table 9 shows the properties involved in the pattern ClassifyUUnitCells, and Table 11 
shows the properties involved in the pattern AddBlockType. As such, the former refer to 
density goals and the latter to density measures.  
To explain further, ClassifyUUnitCells is a pattern which allows for the semantic 
classification of urban units (in this case the units are blocks). The classification uses 
semantic information stored in the ontology, such as the street hierarchy, existing 
focal points and weights attributed to these elements. The system maps the weighted 

  
25 In Model B we agreed that planning on a district scale would end in a design layout containing regulations for 

block design rather than specific morphological types. This would leave scope for block design constrained 
only by generic regulations essentially based on density indicators. This is also consistent with common 
practice in terms of phase subdivision for large scale plans. This practice is clear in case studies 3 and 4 – 
IJburg and Ypenburg – see Figure 7.   
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elements defining an attraction ‘force field’. By default ClassifyUUnitCells distributes 
a user-defined number of block types, for example types {A, B, C, D}, assigning the 
denser ones to the areas with higher attraction. In this process, the density goals of 
the plan, previously defined in the tables of requirements (see Table 7 and Table 8) or 
by the programme formulation, are distributed to the islands in the grid using 
bounded distribution methods. Consequently, this distribution defines an uneven 
distribution of density per island which can be understood as occupation regulations 
for that island, expressed in terms of density measures defined at island level. The 
density properties in ClassifyUUnitCells correspond to density goals for block 
generation. AddBlockType uses these density goals, applying them to the assigned 
block type and generates the type according to the goals. The block type generated 
also has associated properties, as shown in Table 11 but this time they are facts, i.e. 
they are the density measures of blocks. 
In addition to the hierarchical structure defined by the explicit relationships between 
classes, the ontology also allows the rules defining conditional relations between the 
involved parameters to be edited. The ontology rules contain conditional statements. 
The semantic control of the design system is, therefore, divided by two controlling 
devices: the ontology and the UIP discursive formalism, which have different roles. The 
ontology controls generic and abstract relationships between concepts and 
representations describing the urban environment which are independent of the 
creative design process – e.g. regulations and design standards. The UIPs control 
meaningful relations which are intrinsic to the design process, such as the synthesis of 
a design language and achieving design goals. The ontology and programme 
formulation is implemented by Montenegro et al (2011) incorporating these concepts 
and others exclusively related to programme formulation. The outputs of the 
programme formulation correspond to most of the user inputs needed at the start of 
the generation process, for instance, data requested by the tables of requirements 
(Table 7 and Table 8) and a few geometrical inputs. Even references (Refs) and 
respective weights can be suggested by the programme formulation. Nevertheless, it 
was always the policy of both researchers to allow the designer the possibility of 
changing any of these definitions. This detail makes the tools extremely powerful, both 
individually and collectively. The main reason for including this editing feature is not 
simply to offer design freedom at whim, but is also a necessity if the design tool is 
aiming for universal usability. The impossibility of foretelling all possible design 
situations from all possible contexts creates the need for a user edit feature and 
customisation of the design system. CItyMaker is therefore an autonomous design tool 
for designing urban plans that includes an already vast set of assessment interfaces 
based on density indicators which help users determine whether their decisions are 
reaching the goals. 
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§ 6.5      Conclusion 

CItyMaker is an urban design generation tool which can be used autonomously as a 
design tool or as part of the City Induction design system in cyclical workflows of 
analysis – formulation – synthesis – evaluation. This workflow can be summarised in 
the following diagram: 

  

The main knowledge contributions found in this chapter are: 

• a design method; 

• a semantically controlled generative design formalism; 

• an ontology of the urban design process; 

• a system generating designs  in GIS compatible formats; 

• a grammar-based design system providing a means for developing customised 
design languages. 

This chapter starts with a description of a design workflow or method to be applied in 
the urban design process using the generative tool described in this Chapter. The 
workflow is suitable for a complete urban design process, starting with participatory 
decisions developed in the pre-design phase and evolving interactively until the goal-
based design solutions are produced. Given that practice tends to separate the vision 
development, programme formulation, design synthesis and evaluation processes, 
CItyMaker was developed to work as far as possible without the need for any of the 
specific City Induction tools used upstream or downstream in relation to the workflow 
showed above. In order to do so, the tool provides an interface for typical input data 
encompassing geometrical and geo-referenced information, generic goal inputs based 
on density indicators, and an interface for urban plan outputs defined in terms of a 
morphological output (a layout) and the corresponding density-based indicators. It 
may therefore be said that CItyMaker already displays the information needed for a 
visual but integrated evaluation of designs, including some performance indicators. 
The main contribution in terms of design methods is the possibility of assessing 
layouts and corresponding density indicators move by move, enhancing the designer’s 
awareness of the consequences of his/her design moves. 
Two devices – the ontology and the discursive UIP formalism – are proposed to control 
design semantics. Description grammars guide the design rules towards meaningful 

 175 Designing with Urban Patterns i



  

 
 

176 

design moves. Similarly, the information generated in a design move provides 
guidance for the application of the next design moves. The matching conditions of a 
UIP (the predicate) are defined through a set of descriptions and, as part of the 
consequent, the UIP also produces descriptions of the minimum set of design features 
that need to be recognised for the application of other UIPs. The patterns that match 
such conditions are the patterns available in the next step of the generation. The 
ontology provides most of this information and also the heuristics guiding the rules. 
The design system provides customisable features, the most important of which is the 
possibility of customising specific UIPs from a generic UIP structure. The example 
provided shows that the system can record a set of custom operations which, with the 
addition of the common pattern structure, can create a specific customised UIP to be 
stored in a personal library of design patterns for reuse in any generation context. 
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The design system provides customisable features, the most important of which is the 
possibility of customising specific UIPs from a generic UIP structure. The example 
provided shows that the system can record a set of custom operations which, with the 
addition of the common pattern structure, can create a specific customised UIP to be 
stored in a personal library of design patterns for reuse in any generation context. 
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7    CItyMaker – Implementing Urban 
Grammars – two prototypes 

The previous chapters described a theoretical model for developing a generative urban 
design system based on the generative properties of shape and description grammars. 
It aims to produce flexible urban systems in response to the need to improve flexibility 
in city planning. At the end of the design process the designer obtains a design 
language in the form of an urban grammar defining the flexibility space of the design 
and an illustrative layout. The generative urban design system allows for dynamic 
interaction between design exploration and data flow on density-based indicators in 
order to support design decisions and improve design quality. The system also aims to 
respond to input needs and provide dynamic information on the measurements and 
properties of the solutions being explored. The idea is that the quality of design 
decisions improves with the quality of the information flow. Methodologically 
speaking, integration with GIS environments is considered essential in order to 
accomplish this, as most procedures associated with pre-design analysis and design 
evaluation are performed in GIS platforms. In order to achieve the desired interactivity 
the generation system needs to: 

• easily input programmatic data resulting from analytical procedures performed in a 
design context; 

• dynamically provide data output for measurements and properties of plans, 
including density measures during the design exploration process, and dynamic 
comparison with the programme design goals; 

• allow the design goals to evolve dynamically in response to design exploration and 
the respective data feedback; 

Technically this means that the system needs to: 

• easily communicate and retrieve data from analytical and programming tools 
either by designer input or, preferably, by direct input from such tools, depending 
on the analysis; 

• easily communicate and dynamically feed data into analysis and evaluation tools. 

In the context of the City Induction research project, dynamically integrating these 
behaviours into formulation, generation, and evaluation is a main goal. By analogy with 
the concept of building information modelling (BIM), the project aims to develop the 
foundations of CIM, i.e. city information modelling, a tool for designing and supporting 
urban design decisions. Such a tool is also believed to provide a good platform for 
monitoring design implementation due to its integrated formulation, generation and 
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evaluation features as well as its capacity to update designs and information, but this, 
of course, needs specific applied research. However, from the point of view of an 
isolated generation and design exploration tool – CItyMaker – the most important 
aspect is that the system dynamically provides as much information on evolving design 
as possible, together with efficient visualisation of the evolving designs. Urban 
designers are usually quite proficient in interpreting data but due to human limitations 
in dynamically processing large amounts of data (Simon, 1981) it is not an easy task to 
process complex calculations whilst designing. The main idea is to be able to provide 
calculations move after move whilst designing, thus consolidating ideas in an iterative 
process (Moughtin, 2000). 
In this chapter, two different prototype implementations are presented and compared. 
The first implementation is more concerned with the correct generation of 
representations and data in GIS compatible formats as a means of promoting an 
integrated design workflow. The second implementation focuses on designer 
interaction, usability and real time dynamic data access. The first implementation will 
be called Model A and the second Model B. Generically speaking, the implementation 
of the City Induction generation model is called CItyMaker. 
This chapter is divided into six sections. Section a reports on the survey of software 
platforms carried out prior to the start of the first implementation (Model A). Section b 
presents Model A. Section c starts by explaining how a shape grammar model is 
converted into a parametric design model and then presents Model B. Section d 
compares the two models, highlighting the qualities and shortcomings of each model. 
Section e develops the discussion, providing some insight into the validity of the 
approach focusing essentially on the validation of the theoretical model. The concluding 
remarks in Section f offer some recommendations for the development of CIM software. 

§ 7.1      Existing tools and their limitations: CAD-GIS platforms and Shape 
Grammar interpreters 

Before starting the description of the implementations, this subsection surveys the 
existing tools that could be used to implement a generative urban design system. It 
does so from two different perspectives: the perspective of the City Induction research 
project in which integration of CAD and GIS interoperability is the main criterion, and 
the isolated perspective of the generation module which is envisaged as an 
autonomous urban design tool and needs to integrate algorithmic features, in 
particular a shape grammar interpretation environment. As such, this subsection is 
divided into two parts: the first considers the survey of a common (City Induction) 
design platform, and the second the survey of shape grammar interpreters and their 
connection with the project’s common design platform. 
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§ 7.1.1      Survey of a common City Induction design platform  

It was implicit in the City Induction project (see the end of Section § 1.4       - page 29) 
that to achieve the project’s main goals we would need to combine (at least at 
generation level), Computer Aided Design (CAD), Geographical Information Systems 
(GIS) and Shape Grammar software. In order to make a decision on this matter, the 
research team carried out a survey of the existing tools. 
Computer Aided Architectural Design (CAAD) software is well established within 
architectural practice and teaching, offering a wide range of tools for designing, 
drafting and modelling buildings. However, when it comes to dealing with urban 
design these tools do not seem to address most of the information regarding the urban 
environment adequately, as they lack the ability to manage the contextual and site 
information needed to support and describe an urban plan. Common CAD tools 
include software such as AutoCAD, Microstation, ArchiCad, Rhinoceros and 
Vectorworks. 
On the other hand, Geographic Information Systems (GIS) are able to manage huge 
amounts of geographical information in different formats – representational, either 
raster or vector, and linked data stored in several databases - linked by a common 
geographical position. However, they lack the design features and tools necessary for a 
creative design process. ArcGIS, MapInfo, Manifold, BentleyMaps and AutoCADMap are 
some of the most common GIS software packages. 
In order to integrate programme formulation, design generation and urban evaluation 
in a single design tool a shared analysis and design platform which can perform these 
three activities with maximum possible interoperability is needed. The City Induction 
research team started with the main consensus that the shared platform should 
integrate CAD and GIS capabilities in the best possible way.  Although, there was no 
completely integrated platform offering the necessary interoperability between CAD 
and GIS capabilities, the capacity to offer features from both types of software was the 
basis for defining a shortlist of platforms to select as candidates for supporting the City 
Induction implementation/s.  The shortlist included the following software: 

1 CityCAD version 1, by Holistic City [WS5] 
2 CityEngine 2009, by Procedural [WS6] 
3 CityZoom, by SIMMLAB [WS7] 
4 AutoCAD Civil 3D 2009, by Autodesk [WS8] 

CityCAD is a Microsoft Windows tool launched in June 2008, developed by the 
company Holistic City. Departing from a design oriented CAD paradigm, it focuses on 
the development of an interactive interface for urban design, incorporates an urban 
design ontology with attributes assigned to the design entities, and reports on a variety 
of design data analysis (Holistic City Software 2010; de Boer, 2009). Version 2.0 was 
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launched with new features soon after this survey was completed. The tool does not 
provide any programming interface for developing application extensions. 
CityEngine is a Microsoft Windows, Mac OS X and Linux tool stemming from research 
originally conducted at the ETH Zurich by Pascal Müller (Parish and Muller, 2001) 
(Müller et al., 2006) (Wonka, 2006) and subsequently launched by Procedural in 2008 
in Switzerland. Its primary target audience is the film and video games industries, 
focusing on the visualisation aspects of rich realistic cityscapes, but its generative 
features have attracted the interest of urban designers and features have been added 
to extend its use in this field. The generative features provide a programming interface 
for developing procedural grammars. However, the basic underlying structure for grid 
generation is not accessible for programming extension features at this level. The 
programming features address the development of grammars for designing building 
envelopes with particularly accurate detail on the design of façades. Although 
CityEngine was recently bought by ESRI there have been no major changes so far, at 
least in terms of integration with GIS software. 
CityZoom is a Microsoft Windows tool developed over 15 years at the SIMMLAB of the 
Universidade Federal de Rio Grande do Sul (UFRGS) in Brazil by Benamy Turkienicz and 
Pablo Grazziotin (Turkienicz, Gonçalves, and Grazziotin, 2008) (Grazziotin et al., 2004) 
as a product of academic research. It is not available as a commercial package but has 
been presented at various international conferences and workshops. It is presented as 
a design support platform that complements the use of CAD and GIS systems in some 
specific urban design tasks, in particular simulations based on urban design 
regulations and the sunlight exposure interface. The tool does not provide a 
programming interface for developing extension features.  
AutoCAD Civil 3D is a Microsoft Windows tool based on the popular CAD package from 
Autodesk, but extending it primarily with features specific to road and urban site 
design and several GIS features, in an attempt to merge both types of software 
package. This tool is freely available for academic use from the Autodesk website. 
Although the extensive amount of tools in this package makes this software one of the 
most complete commercial CAD tools, the CAD and GIS features are not integrated – 
they simply share the same working environment. However, AutoCAD has several 
programming interfaces using different programming languages which allow for great 
flexibility in terms of tool extendibility. The software package is provided with 
application programming interfaces (APIs) for two scripting languages – VBA and VLisp 
– allowing for tool extendibility. 
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The shortlist of software was then reviewed in the light of certain predefined criteria 
developed by the research team. The criteria for reviewing the shortlist of candidate 
software were defined by taking the three City Induction models into consideration (Gil 
et al., 2010) and considering what a CIM (city information model) should be. The 
software should: 

1 Incorporate or allow for the incorporation of an urban ontology;  
2 Respond to the planning regulations and strate¬gies defined for the site;  
3 Consider the context, holding information on both the site and population;  
4 Support the formulation of programs for urban intervention;  
5 Provide for the development of design patterns for designing the urban 

environment;  
6 Include a generative design model – a plug-in extension based on the application 

of shape grammars or other rule-based generative systems – or a shape grammar 
interpreter;  

7 Analyse sustainability indicators;  
8 Allow for interaction between data and design;  
9 Provide an interactive visualisation of data;  

10 Evaluate and rate different designs. 
11 Include one or more application programming interfaces (API) for tool 

development or extendibility. 

Table 12 shows a comparison of the four platforms in terms of these criteria. 
 There was no platform that included all the criteria we needed to make an objective 
assessment of the candidate software and it became almost crucial that the final 
choice should be based on the existence of APIs for tool extendibility. CityCAD, 
although possibly the most complete software, offers no means of creating new 
extensions. CityZoom is limited, both as a design tool and an analytical tool and lacks a 
GIS connection. CityEngine provides an interface for programming grammars for 
generating building envelopes. This interface enables extensive realistic details of 
façades to be generated but has major limitations in terms of higher levels of decision 
such as launching the main planning guidelines e.g. compositional axes as structural 
streets and squares. For this purpose, however, it can be used together with other CAD 
software such as AutoCAD. The problem with this platform is that the most structural 
and high level decisions in urban design are not controllable in this software and no 
programming tools are available at this level. AutoCAD Civil 3D has very good CAD and 
GIS platforms which are not really integrated in terms of CAD-GIS interoperability but 
both environments are quite generous in terms of providing programming 
environments for extending tool capabilities and customising their use. A paper 
written by the City Induction research team addresses this survey (Gil et al., 2010) and 
concludes by selecting AutoCAD Civil 3D as the platform most suitable for the common 
goals of the research. This subsection was based on this paper. 
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Table 12  
Features required for a city information model offered by each of the selected urban design tools, indicating 
whether a feature is A – built-in; B – built-in and customisable; C – partially implemented; D – not implemented 
but extendable. 

However, the detailed view of the generation module which is the subject of this thesis 
implies a detailed analysis of other tool functionalities regarded as necessary for 
automating the design generation. 

§ 7.1.2      Survey of shape grammar interpreters  

Shape grammar theory offers great potential for developing design systems capable of 
generating designs within some predefined formal world and exploring variations 
within this design world. The advantages of using shape grammars in design lie in the 
possibility of exploring and developing design languages from which a designer can 
select alternatives. The way a grammar is designed is analogous to any regular design 
process (Knight, 1999). The task of computing shapes, rules and grammars is reserved 
for the calculating capacities of the computer, leaving the designers free to consider 
design issues and the criteria for alternative shape, rule and design development or 

Feature CityCAD CityEngine CityZoom AutoCAD Civil 3D 

Incorporates an urban ontology A A A C 

Responds to the planning regulations 
and strategies defined for the site 

A B A D 

Considers the context, holding  
information on both site and population 

C B D D 

Supports the formulation of programs 
for urban intervention 

C - B D 

Provides for the development of urban 
design patterns 

B D - B 

Includes a generative design model C B C D 

Analyses sustainability indicators A - C D 

Allows for interaction between data and 
design 

C C C C 

Provides interactive visualisation of data B - B B 

Evaluates and rates different designs - - - - 

Includes one or more APIs for tool  
development or extendibility 

- yes - Yes 

 

 184 CItyMaker / Designing Grammars for Urban Design i



  

 
 

184 

 

Table 12  
Features required for a city information model offered by each of the selected urban design tools, indicating 
whether a feature is A – built-in; B – built-in and customisable; C – partially implemented; D – not implemented 
but extendable. 

However, the detailed view of the generation module which is the subject of this thesis 
implies a detailed analysis of other tool functionalities regarded as necessary for 
automating the design generation. 

§ 7.1.2      Survey of shape grammar interpreters  

Shape grammar theory offers great potential for developing design systems capable of 
generating designs within some predefined formal world and exploring variations 
within this design world. The advantages of using shape grammars in design lie in the 
possibility of exploring and developing design languages from which a designer can 
select alternatives. The way a grammar is designed is analogous to any regular design 
process (Knight, 1999). The task of computing shapes, rules and grammars is reserved 
for the calculating capacities of the computer, leaving the designers free to consider 
design issues and the criteria for alternative shape, rule and design development or 

Feature CityCAD CityEngine CityZoom AutoCAD Civil 3D 

Incorporates an urban ontology A A A C 

Responds to the planning regulations 
and strategies defined for the site 

A B A D 

Considers the context, holding  
information on both site and population 

C B D D 

Supports the formulation of programs 
for urban intervention 

C - B D 

Provides for the development of urban 
design patterns 

B D - B 

Includes a generative design model C B C D 

Analyses sustainability indicators A - C D 

Allows for interaction between data and 
design 

C C C C 

Provides interactive visualisation of data B - B B 

Evaluates and rates different designs - - - - 

Includes one or more APIs for tool  
development or extendibility 

- yes - Yes 

 

  

 
 

185 

selection. However, the implementation of shape grammars usually has to confront a 
paradigm: either a shape grammar implementation is started from scratch (1) or the 
shape grammar theory is adapted in order to implement it using the existing CAD 
software, taking advantage of the existing tools to avoid reinventing the wheel (2). The 
first approach allows for the correct orthodox implementation of shape grammars but 
it is not an easy task. In Section § 4.4       it was noted that subshape recognition is one 
of the main problems in shape grammar implementation. In order to deal with this 
problem, shape grammars are provided with the concept of maximal lines, which uses 
a particular algorithm to interpret two partially superposed lines as one line 
(Krishnamurti, 1992a). Conversely, when two lines cross each other they can be seen 
as four lines with a common starting point. The maximal line representation algorithm 
allows the user to work with shapes in very much the same way as they would do 
visually. Krishnamurti developed an extensive set of definitions for shape recognition 
dealing with maximal shapes, including algebras for lines, planes and 3D shapes 
(Krishnamurti, 1992b) (Krishnamurti, 1992a) (Krishnamurti and Earl, 1992). Stouffs 
(1994) summarises all the mathematical definitions involved in shape recognition for 
shape algebras in 0 to 3 dimensions. In any case, even given that the theory already 
solves many of the technical problems of subshape recognition mathematically, there 
are still problems regarding semantics. The recognition of a particular subshape in a 
design is not usually the main reason for applying a transformation to that subshape, 
but rather the meaning of that subshape in the context of the design. 
Nevertheless, the problem is that there is no CAD software based on this paradigm 
except for a few limited standalone applications and a few very limited plug-ins. There 
are some common limitations to shape grammar interpreters. Many of them only 
compute 2D shapes. In most cases it is not possible to return to a particular stage in 
the recursion to change the rules and the recursion needs to be restarted. This makes 
the software very unfriendly for design purposes. In addition, most do not apply 
subshape recognition and therefore it becomes impossible to compute their 
emergence. Furthermore, in a creative process a design emerges when the recognition 
of a shape involving a particular meaning associated with its partial components 
emerges from a particular set of design occurrences which might not be easy to predict. 
Therefore, in a real shape grammar implementation, the emergence and the semantics 
of the emerging form still have to be controlled. What is claimed to be the best feature 
of shape grammars can in fact become a major problem because of the need to apply 
some judgement process to the qualities of what emerges. This creates a paradox: the 
proclaimed virtue of the emerging shape is the fact that we cannot understand its 
inherent qualities from the qualities of its components, as their composed qualities 
transcend their simple summation and therefore can only be recognised after a 
particular composition provides the emerging shape and the semantic evidence of it. 
Therefore, no judgement criteria can be defined in advance. 
The second approach to shape grammar implementation has to confront the lack of 
any CAD software using the maximal line representation. However, given the 
difficulties involved in subshape recognition, adapting a shape grammar 
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implementation to the constraints of existing software is surely an easier option. This 
allows the implementation to make use of the existing drawing capabilities of the CAD 
software, although one can start from an existing shape grammar plug-in or from 
scratch on an existing CAD software. Furthermore, whatever the final choice, the 
platform needs to communicate as easily as possible with a geographical information 
system (GIS). Another important issue involved in evaluating the feasibility of a shape 
grammar interpreter is its ability to respect an acceptable design workflow.  
Regarding urban design, a 2D shape grammar interpreter was never seen as a 
constraint on the implementation of the generation module since large scale urban 
operations are essentially planned on a flat surface or using flattened topographical 
height information. In addition, dealing with this kind of topographical issue has 
already been addressed in GIS systems research, in which most information is also 
flattened. 
Gips (1999) made a detailed survey of the shape grammar interpreters developed up to 
1998. Within the survey, Krishnamurti’s pioneering work on implementing the first 
algorithms for 2D subshape recognition and rule application should be highlighted 
(Krishnamurti, 1981). Heisserman (1991) developed the first implementations of 3D 
shape grammars, using the topological structure of shapes to support subshape 
recognition. The main idea is that shapes are bounded by lower dimensional shapes;  
lines, for instance, are bounded by points, planes are bounded by lines and so on. 
These part relations are explored to find a subshape in a shape. In order to solve the 
technical problem of 3D subshape recognition, Stouffs’ (1994) pioneering work 
developed a complete algebra for calculating with 3D shapes. Unfortunately, no 
complete implementation was produced from this work. Furthermore, in each case the 
shape grammar implementations are very limited in terms of their functionalities and 
usability. 
After Gips’ paper some other shape grammar implementations were developed. In this 
survey on shape grammar interpreters a few other recent implementations were 
considered and tested. Table 13 shows a list of these implementations and some of 
their characteristics.  
The Yazar and Çolakoglu (2007) QShaper, a plug-in for 3DStudioMax, was the most 
designer-friendly shape grammar tool used and one of the first to be tested in this 
survey. The tests showed that 3D shape grammars could easily be implemented and 
reasonably complex 3D designs developed. As a test, a 3D implementation of a 
previously developed evolutionary housing system was used (see Figure 31, Figure 32 
and Figure 33). However, QShaper was soon abandoned due to City Induction’s 
requirement to select a CAD-GIS friendly platform, which was not the case with 
3DStudioMax. It is, nevertheless, a very interesting shape grammar tool because it 
makes use of the modelling tools provided by 3DStudioMax.  
With the exception of CityEngine, the other shape grammar interpreters in Table 13 
were implemented in AutoCAD or the generations were exported directly to AutoCAD. 
Therefore they could all gain from the fact that AutoCAD already provides a CAD-GIS 
environment in the AutoCADCivil3D platform, although with limited interoperability. 
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However, SGTools (Romão, 2005) is the only shape grammar interpreter built in the 
AutoCAD environment that makes use of the tools already provided by AutoCAD. This 
shape grammar interpreter provides a new set of toolbars containing tools for defining 
2D and 3D shape rules and tools for applying the defined rules. The software provides a 
virtual space defined in a hidden layer used as a reference for applying the rule 
transformations. The interesting thing about this shape grammar interpreter is that it 
allows the designer to use it according to his/her needs inside the CAD environment as 
an extra set of tools. Hence, the shape grammar functionalities extend the AutoCAD 
functionalities, maintaining the regular workflow of the software. However, once again 
the implementation does not allow for subshape recognition.  

Name  Reference  Tool(s)  Subshape  2D/3D 

QShaper (Yazar and Çolakoğlu, 2007)  No 3D 

City Engine (Parish and Muller, 2001) L-Systems No 3D 

SGI (Li and Kuen, 2004) Macromedia 
Flash 

Yes 2D/3D 

Shaper 2D (MCGILL, 2004) JAVA No 2D 

SGTools (Romão, 2005) AutoLisp No 2D/3D 

SGI (Trescak, Esteva, and Rodriguez, 
2009) 

JAVA Yes 2D 

     

Table 13  
Comparison of recent shape grammar interpreters or grammar-based interpreters. 

 

Figure 31  
Test implementation of a shape grammar using Qshaper: Vocabulary 
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Figure 32  
Test implementation of a shape grammar using Qshaper: Rules 
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The SGIs in Table 13 provide very correct interpreters in the sense that they follow the 
formal concepts of shape grammars quite accurately with regard to subshape 
recognition as the basis for rule application. However, the interfaces are limited in 
terms of usability and difficult to integrate with other CAD tools or with a GIS platform. 
Trescak’s interpreter, for instance, provides the most accurate implementation of 
shape grammars including subshape detection, but only exports image files. 
Furthermore, it is very difficult to integrate images into shape rules within a CAD 
environment. These interpreters may be considered very interesting for developing 
certain abstract grammars but need to confront the difficulties involving 
communication with common CAD software. 
 

 

Figure 33  
Test implementation of a shape grammar using Qshaper: Design 
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The generative algorithm in CityEngine is not exactly a shape grammar. The generative 
behaviour is based on L-Systems (Prusinkiewicz and Lindenmayer, 1991) as explained in 
their seminal paper (Parish and Muller, 2001). The term procedural grammar, used in 
some of their papers and website, better explains the concept which defines a tree of 
procedures by applying some customisable parametric rules to generate an extensive 
amount of building envelope designs starting from similar initial shapes. CityEngine has 
also a predefined set of procedures: first the generation of a grid from a set of input 
parameters, secondly the street profiles and the urban blocks using specific algorithms, 
thirdly the subdivision of blocks into plots, and finally the generation of realistic building 
envelopes. Only the latter allows for full customisation and rule development. The main 
parameter for initialising generation is the number of street segments, which is hardly a 
significant parameter for urban designers. However this procedural structure can be 
easily mapped into a data tree. Specifically, in CityEngine the descriptions of cities are 
clearly structured in a tree of components: the first level generates the network, the 
second level generates streets on one branch and blocks on another, and the third level 
details these two branches. The detailing part is similarly structured in a tree-like mode. 
The important thing to bear in mind here is that the complex structure of object classes 
seen in the ontology in Figure 9 is the one that urban designers manipulate while 
designing, rather than façades. Façades are actually one single object class occurring in 
the end branches of the ontology. The problem with CityEngine is that the first features 
are not detailed enough, nor are they available for manipulation. 
Very few shape grammar interpreters allow for the implementation of rules operating 
with symbols, which were always envisaged as necessary to define design moves based 
on the semantic properties of components of the urban environment. The most 
sophisticated interfaces allow for the use of labelled points to define spatial relations. In 
any case, still a geometrical approach. 
The main conclusion from this long survey of shape grammar interpreters is that it seems 
to be very difficult to develop shape grammar interpreters that respect the formal 
concepts of shape grammars. Additionally, the capacity of a shape grammar interpreter 
to compute emerging shapes plays an unclear role in design. Stiny (2005) and Knight 
(2003) say that shape grammar emergence emulates the designer’s creative behaviour. 
However, before embedding emergent behaviour in a shape grammar interpreter a 
question should be asked: who needs to be creative – the tool or the user of the tool? If 
the answer is the user then emergence just becomes a disturbance within the overall 
process. Some people may argue that a system working with emergence may suggest 
unpredictable solutions, but this is likely to occur randomly unless some system of values 
immediately evaluates the emerging shape. This is problematic since, according to 
Lawson’s design model (2006), the designer’s perception of a design problem evolves 
along with the evolution of the design solution and this means that the system of values 
on which the designer bases his/her judgements also evolves throughout the design 
process. Donald Schön stresses the same behaviour when he refers to the designer’s ways 
of seeing and how seeing changes from one move to another, affected by the move itself. 
Therefore, if the system of values evolves simultaneously with the design it becomes 
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difficult to develop efficient systems to evaluate the semantic qualities of the emerging 
shape. The whole problem regarding the use of emergence in shape grammars simply 
concerns the distinction between developing tools for designers and developing tools for 
designing. The latter aims at replacing the designer by emulating the creative act26. 
Although, shape grammars in their formal definition constitute the foundations of what 
might be a creative design machine, we still do not have enough knowledge to solve all 
the semantic details involved in creative reasoning. Finally, it is not the purpose of this 
research to do so.   
This conclusion leaves us with shape grammar interpreters which still rely on designer 
interaction to make creative decisions. In this case, three typical situations occur. The 
first, and most common, involves a standalone interface with limited functionalities that 
is difficult to integrate into other CAD environments and does not integrate at all with GIS 
environments. The second situation presents shape grammar interpreters with an 
interface embedded in an existing CAD platform. These are definitely the most designer-
friendly shape grammar environments of all the shape grammar interpreters cited. 
SGTools is the only shape grammar interpreter which is integrated into a CAD software 
package that already has basic GIS interoperability – AutoCAD Civil3D. SGTools is also the 
only shape grammar interpreter which already provides for extending development of the 
same application programming interface that allows for its implementation. The third 
situation is CityEngine, a standalone autonomous software package with a procedural 
structure that implies a predefined method of use. The main limitation however, is the 
scarce means for controlling the first levels of the urban design process. 
To avoid the limitations resulting from subshape recognition and semantic problems 
resulting from the ambiguities of emergence, the best option was to adapt the grammars 
developed in the research to the characteristics of the chosen software platforms used to 
implement Models A and B. In this way it was possible to use the powerful interfaces of 
the selected CAD platforms and respective APIs and take advantage of all the existing 
CAD features without the need to set up a CAD system from scratch. In both Models, the 
generic urban grammar developed as foundation of CItyMaker’s theoretical framework 
was adapted to meet the available features of the CAD platforms. The adaptation of 
Model A is nevertheless very accurate and although it does not support emergence, it 
follows the theoretical model in detail.  

  
26  The nature of the creative act is still open to discussion. Taylor (1959) identifies five levels of creativity, the 

lower ones essentially identifying decisions at the level of productivity involving progressive steps in 
proficiency, and the higher levels of creativity, which he calls innovative creativity and emergent creativity, 
in which the former involves innovative transformations of the assumptions underlying the subject in 
question and the latter the creation of new paradigms involving changing the assumption that is the basis 
of some work or knowledge field. The higher level of creativity in particular implies an unpredictable change 
in the system of values underlying the subject of the creative act. To complicate things further, if 
Duchamp’s idea of the role of the spectator in forming the value of the artistic creation is taken into 
consideration (1957), then the possibility of predefining the production of a creative act becomes 
impossible using any available method or discipline. However, it does not seem correct to extend 
Duchamp’s idea of the creative act to urban design. The parallel is too imprecise. 
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§ 7.2      Model A – Implementation in AutoCad using VBA and VLisp APIs 

Moving from theory to practice, a computational prototype was developed using 
AutoCAD Civil3D. As explained in the previous section, this platform was selected by 
agreement by the City Induction researchers. 
AutoCADCivil3D was chosen because it combines the CAD features provided by the 
regular AutoCAD drawing and modelling tools with the GIS features provided by 
AutoCAD Map, along with the terrain modelling tools available in Civil3D. 
Representations can be accessed in these three workspaces as long as the designs 
generated are exported to the Map platform with the appropriate object 
representations following regular geo-referencing procedures. Designs and data can be 
accessed from within the GIS module. The evaluation routines can use most of the 
available GIS-based assessment tools during the evaluation procedures, as well as 
other tools developed specifically for this purpose. 
Model A was implemented using the AutoCAD Integrated Development Environment 
(IDE). Visual Basic for Application (VBA) and Visual LISP (VL) were the programming 
languages used. It was possible to use the AutoCAD Application Programming 
Interface (API) through the VBAIDE and VLIDE, as well as the graphic editor and the 
object structure already available in the tool, thereby facilitating the implementation 
process for the proof of concept prototype. 
The AutoCAD object model contains pre-defined methods and attributes, object 
classes that have inherited and extended functionalities from the standard API. This is 
similar to the structure of an object oriented programming language and the object 
structure is compatible with an ontology structure such as the one developed for the 
urban design process as shown in Section § 5.4       (see Figure 9). This means that 
object classes can be stored in the City Induction ontology. However, to maintain the 
autonomy of this prototype as an independent design tool the main features of this 
model were implemented with the VBA API, creating the object classes from scratch 
and making use of the object oriented structure of this environment. In using this 
process, the main concern was to associate metadata with the objects being generated, 
allowing the prototype to work with a semantic structure rather than just geometric 
and syntactic structures. For instance, the street axes representations use attached 
external data – a classification identifying the street hierarchy – which can be read by a 
rule predicate to apply a consequent transformation based on the street classification 
rather than its formal features27. Using these abilities, the elements generated in the 

  
27  This can be accomplished by using data links or XData in AutoCAD. Data links store data in files – excel files 

or access files, for instance. XData stores a limited amount of external data in the design entity itself. This 
data can be extracted at any time from the entity selection using the List XData command. Both strategies 
were used in the implementation of Model A. 
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design contain information about themselves and their relative position in the 
semantic data structure such as which object class they belong to. The object class 
structure developed allows for accurate correct communication between the CAD and 
GIS environments by establishing the direct translation of objects in the CAD structure 
into objects in the GIS structure. The most important detail is to guarantee that the 
objects generated are arranged in separate layers depending both on geometry type 
(point, line or polygon) and object class as defined in the ontology. Therefore, every 
class has, in principle, at least three separate layers, although thematic variations on 
this basic structure may be contemplated, for which new layers may be developed.  
Attaching metadata (XData or external data) to the AutoCAD objects allows for the 
possibility of using such data to control various semantic aspects of the design, for 
instance, by predefining parametric relations involving not just geometry but also the 
semantic qualities of the objects.  In addition, by linking object properties to data on a 
spreadsheet, it becomes possible to extend the control and use of external data during 
the design process. The use of XData and DataLinks28  in AutoCAD allows for two 
important aspects: firstly, it makes this the mechanism used in this environment to 
deal with the concepts used by the description grammars and, secondly, it is also the 
mechanism that allows information useful to the design process to be stored, such as 
calculations of density indicators. 
The implementation followed a well-known method in computer science called 
incremental development, which consists of starting with very simple routines and 
then progressively adding new expressions, variables, controls and functions to obtain 
complex programmes. The VBA implementation was developed with the help of VBA 
programmer Gelly Rodrigues and supervised by the author of this thesis. 
So far, patterns have been developed to generate the compositional axes of the urban 
plan, to generate grids, and to generate urban blocks. A list of some of these patterns is 
shown in Table 14. The icons found in Table 6 correspond to new tool buttons from a 
set of new toolbars that were added to the AutoCAD workspace. The complete set of 
new toolbars corresponds to the CItyMaker prototype Model A (see Figure 34). 
However, only a few of the tools have already been implemented in the model and they 
correspond to the ones in bold type in Table 14.  
Patterns can only be applied if certain features exist in the workspace. If such features 
do exist, the rules take them as their initial shapes or symbols and trigger the rules that 
are applied recursively until an end state occurs. The end states are defined within each 
pattern as a set of conditions that always occur within the application scope of the 
pattern. A UIP can create new elements in the design that might be read as initial 
features by other patterns activating new UIPs for application. Patterns are selected 

  
28  XData stores a limited amount of data in the AutoCAD entity (e.g. a line with a number, class identification, 

a name – for instance, Main Street – and a street hierarchy – for instance, a2). Datalinks attach data to a 
file, for instance a spreadsheet or an excel file, allowing it to store and relate any information that may be 
associated with the entities in the plan (e.g. all islands can be stored in a table containing entname, block 
type classification, area, street type facing the sides of the block, density, etc). 
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from the available active UIPs. The common initial elements in any design derivation 
basically consist of two types: (1) the intervention site, an AcadPolyline entity, and (2) a 
set of urban design references, which are existing line or point entities selected by the 
designer from the existing environment to inform subsequent design decisions by the 
UIPs. These references are AcadEntitys, to which the attribute Ref is added so that they 
can be recognised and used by the first patterns.  
This section shows the application, using Model A, of the following small set of 
patterns: MainAxis, OrthogonalAxis, AddingAxes, a grid generation pattern and 
AddBlocktoCells, which inserts islands in the cells generated by the grid of axes 
resulting from the application of AddingAxes. The application of BlockType to replace 
islands by specific block types is also shown but it corresponds to an independent 
application developed with the VLisp API. 

§ 7.2.1      Preliminary implementation results  

The first step in the design process is provided by the programme formulation module 
and consists of an analysis of the design context, extracting and analysing the available 
information in order to produce a list of specifications - the urban programme - to be 
taken into account in generation. However, it might be difficult or virtually impossible 
to know all the inputs needed for the generation module in advance as some inputs 
might depend on the reaction to what is being generated. As such, the urban 
programme might be incomplete and might be continuously refined and updated. 
Considering this possibility, the design system is implemented in such way as to 
request data each time it is needed and not found in the available specifications. In the 
current prototype implementation, information is requested from the user (the 
designer) who should be able to fill in the gaps as needed. In addition, other 
information might be subjective and concern stakeholder expectations or idiosyncratic 
design options. The implementation is therefore open and interactive to accommodate 
such nuances. 
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Figure 34  
New toolbars with the CItyMaker tools.  

The number of patterns available for use in the design depends on the progress of the 
design itself. The first patterns available for application react only to two kinds of initial 
shapes, the intervention site border (Is) and elements selected by the designer as 
design references (Ref). These references can, in principle, be any elements of the 
design context that may be selected by the designer as referential guidelines for the 
design, such as landmarks and focal points. The current version of the implementation 
considers only weighted points in the design context marked by the designer to identify 
such design references. By connecting these reference points the system provides 
directions that can be used to trace compositional axes, much in the way designers 
usually do. 
When a pattern is applied, the result may turn existing patterns off and turn additional 
ones on. The available pool of patterns is thus constantly being updated. This 
behaviour is induced by the explicit relationships between object classes which are 
expressed in pattern predicate conditions and in indication of related patterns that is 
part of a pattern’s definition (see Appendix 2). The ontology in Figure 9 is in fact the 
schematic representation of the relationships expressed between objects used by 
patterns in the generation model. 
So far, only a few patterns have been implemented in Model A. The design options are 
mainly limited to exploring the parametric variations within each pattern. However, a 
larger set of patterns will extend the design options to encompass other morphological 
domains. At the moment, this is more perceptible at the level of block generation, 
where the differences between block types confer a different character on the grids 
generated. 
Figure 36 shows the application of the following sequence of patterns: Cardus (an 
option of MainAxis) + OrthogonalAxis + AddingAxes (grid definition by adding axes) + 
AddBlocktoCells (adding islands in the cells defined by the grid, considering the street 
width stored in street representations). 
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Urban Induction Patterns ▼Case studies ► 
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Creating the composition guidelines 

MainAxis MainAxistheLongerLine  ● ● ● ● 

Cardus ●     

MIAxis (Most Important Axis)      

OrthogonalAxis  OrthobyMidPoint     ●    

Decumanus ●     

MIAxis (Most Important Axis) ● ● ● ● ● 

InsertFocalPoint ● ●    

CompositionAxis  ●  ● ● 

Creating grids (completing the street network) 

(grid by) AddingAxes ● ● ● ● ● 

(grid by) AddingBlockCells  ● ●   ● 

Transformations to street network 

AxisOverGrid    ● ● 

MoveGridNode   ● ● ● 

Creating Public Space 

AddPlaza + GeneratePlaza ● ●    

InsertPublicSpace + 
Square 

Sq2 ● ● ● ● ● 

Sq3 ● ● ● ● ● 

Sq4 ● ●  ● ● 

Sq5   ● ● ● 

Creating Urban Units 

AddBlocktoCells   ● ● ● ● ● 

AdjustingBlockCells  ● ● ● ● ● 

ClassifyUUnitCells ● ● ● ● ● 

DefineUUnit BlockType ● ● ● ● ● 

Cluster   ● ●  

InitialUUnit    ● ● ● 

AddUUnitbyLabel AddBlockType ● ● ●  ● 

AddCluster   ● ●  

InsertPublicBuilding  (service buildings) ● ●  ● ● 

InsertBuilding   (inserts a building in a focal point) ● ●   ● 

Others – detailing patterns and assigning functions 

AddAccessStreet    ●  

AssignFunctions   ● ● ● ● ● 

ManageBuildingHeight  ● ● ● ● ● 

Table 14 
Table of urban induction patterns and their application in the case studies. The patterns in bold are the ones that 
have already been implemented. 
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The design workflow starts with the selection of referential elements for the design 
(Refs). This is done by manual selection (or by drawing points) in the existing 
representation of the intervention site Is and/or surrounding areas. Later the designer 
may specify the importance of the Ref elements by attributing different weights to each 
of them. Weights are attributed from 1 to 5 and are stored in a database along with an 
identifier (in this model, points are defined as Refs) and the geometry of the design 
entities – Figure 36 and Figure 37.  In brief, these urban induction patterns have the 
following generative behaviour: 

MainAxis - calculates all the possible axes inside Is that can be traced between all the 
selected Ref points and chooses the following criteria: the LongerLine, following the 
maxim of author of the Ypenburg plan, Frits Palmboom, - "I always look for the longer 
line in the territory"; the Cardus, which chooses from the candidate lines the one 
closest to the north-south orientation; MIAxis, which chooses the most important axes 
by considering the weights attributed to the Ref points. LongerLine and Cardus are 
objective options. There will be only one longest line and only one cardus. The Cardus is 
the line taken from the set of candidate axes that is closest to the south-north 
direction. The candidate axes are pre-selected considering two aspects of the lines 
generated: their length and their weight. The length is taken from the geometry and 
stored on a spreadsheet. The weights are the sum of the weights of the Refs that define 
the lines. The designer decides whether to place more relevance on the length of lines 
or their weight, thereby defining a relative percentage of incidence to apply to each 
criteria – length relevance (l%) and weight relevance (w%). This selection is made from a 
previous selection also controlled by the designer in which the smaller lines can be 
filtered out. The system always calculates the length of the longest line and the 
designer simply decides, based on a percentage of the longest line length, on the 
minimum length from which lines should be considered as candidate axes. The 
candidate axes are highlighted on the screen allowing for visualisation of the lines 
selected for the set of candidate axes. The lengths of the candidate lines are 
standardised to values between 10 and 2 – 10 for the longest line and 2 for the 
shortest one. The most important axis is calculated using the following equation: 

= ⋅ ⋅ ⋅% %( ) ( )IAxis xLgth xWeightM A l A w . The values for IAxisM  fall between 100 and 4. The algorithm 
chooses the line with the highest value as the main axis and attributes a label a1 to it 
identifying the corresponding street hierarchy. 
 
OrthogonalAxis - calculates all the possible axes that are perpendicular to a selected 
axis and pass through an Ref point and then selects one of two optional criteria: 
OrthobyMidPoint, which corresponds to the axis that passes through a point closest to 
the midpoint of the selected axis; OrthobyLongerLine, which corresponds to an 
algorithm similar to the one in LongerLine; and OrthobyMIAxis, following a similar 
algorithm to the one used in MainAxis. If the axis is perpendicular to a Cardus it will 
also be marked as a Decumanus and, like Cardus, can only be applied once. 
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AddingAxes - generates a grid of streets and blocks considering a user-defined block 
dimension. The implementation follows the rules for this pattern shown in Appendix 2 
– UIP 009. All the axes generated contain data on their hierarchical level (out of 4 
hierarchical levels, a1, a2, a3 or a4) to which a set of user-defined street widths will 
correspond. This programming information is inserted into the system in advance 
using a tool called Urban Parameters (see Figure 35).  

Figure 39 shows the final result of the application of a sequence of patterns to generate 
block types. It starts with a predefined orthogonal grid composed of a random number 
of streets with a random distribution of four hierarchical street levels, expressed in 
terms of street width, in which block cell dimensions vary randomly within a predefined 
interval. This set of patterns was implemented separately using the VLisp API. The 
main ideas behind this partial implementation were twofold: (1) to prepare the tools 
for generating block types based on the principle that the procedures previously shown 
would have already designed a grid of orthogonal streets with islands; and (2) to 
investigate the potential of storing metadata in AutoCAD entities instead of storing it 
in a spreadsheet. The main idea behind the last point was that this kind of procedure 
would result in a faster programme, that is, reading data in the entities would be faster 
than reading it from a spreadsheet. For the same purpose, we would then need a grid 
of islands containing information on the hierarchy of the streets surrounding them as 
metadata. To this end, an independent algorithm defined as a simplified version of 
AddingAxes generates a grid with a random number of rows and columns (the user 
defines a range, e.g. between 8 and 12), with blocks of random widths and lengths 
within a user-defined interval and a random distribution of street hierarchies for which 
the user sets the corresponding widths in advance. The result is a set of islands like the 
ones found in Figure 38.  Each island contains a list of the information needed to apply 
the following patterns: ClassifyUUnitCells – assigning different classifications to 
islands; DefineUUnits, option BlockType – defining a user-defined number of block 
types; and AddUUnitbyLabel, option AddBlockType - replacing the islands with the 
types that correspond to the predefined block classifications, adapting each type to the 
existing block dimensions (see Appendix 2, UIPs 027 and 030). 
List processing allows any kind of information that may be represented in the form of a 
list or a list of lists to be stored. Metadata can also be stored in AutoCAD entities in the 
form of a list of attributes or values. As such, the islands in the randomly generated grid 
in Figure 38 contain a list indicating the hierarchies of the streets surrounding them, 
ordered by their cardinal points: south-facing street, west-facing street, north-facing 
street and east-facing street. This list is actually added to a list containing the dxf code 
for the island. This allows the VisualLisp code to access any characteristic of an island in 
the design, as well as the selective processing of islands and their respective 
characteristics. 
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The patterns referred above execute the following procedures: 

ClassifyUUnitCells - the user defines how many different block types to assign to the 
islands in the grid and which types are to be generated in each island. This is done by 
user selection. The selection stores a string in the AutoCAD entities identifying the 
classification. In fact, it adds a string to the list already stored as metadata. The string is 
a block type classification. If four block types are supposed to be distributed, then the 
islands will be classified as BA, BB, BC or BD. 
 
DefineUUnits  is supposed to allow for the definition of urban types of different kinds 
(blocks, clusters of buildings and neighbourhoods) but BlockType is the only one that 
has been implemented so far. BlockType defines all the characteristics of a specific 
block type. The user defines the block by combining two primitive block types out of a 
set of five (island, closed block, linear block, punctual block and matrix block), by 
applying one of four available operations (subtraction, addition, product and 
symmetric difference) (Stouffs, 1994). In principle, the designer defines the same 
number of types as the number of type attributes assigned to the islands, although 
storing pre-defined types in a library is envisaged as a better practice because it allows 
types to be reused, thus saving the time spent recording their characteristics each time. 
A block type is defined in a default but customisable island (100m x 100m). The 
algorithm records the block type definitions (design sequence and parameters) in a list 
which will be called up by AddBlockType during the generation of the blocks in the grid. 

 

Figure 35  
Input for Urban Parameters. a5 is the street applied in the matrix primitive block. 
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Figure 36  
Grid generation: 1- Assigning weights to reference points; 2- Main axis selection interface; 3- MainAxis + 
OrthogonalAxis; 4- Grid by AddingAxes + AddBlocktoCells + AdjustingBlockCells.  
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Figure 36  
Grid generation: 1- Assigning weights to reference points; 2- Main axis selection interface; 3- MainAxis + 
OrthogonalAxis; 4- Grid by AddingAxes + AddBlocktoCells + AdjustingBlockCells.  
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Figure 37  
Generated data in the database. 

 

Figure 38  
Grid of islands for the generation of block types. 

AddBlockType replaces the islands in the grid with the corresponding block types, 
adapts the type to the island geometry and rotates it so that the front of the block faces 
the street with highest hierarchy. The pattern contains several routines that restrict the 
block structure and building sizes to reasonable and acceptable standards, for 
instance, constraining the bounding values for minimum and maximum building 
depth, minimum distance between the façades of separate buildings, etc. These values 
are set a priori in the design interface. 
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Figure 39  
AddBlockType - this pattern replaces predefined block typologies in a grid of blocks orientating the front of the 
block to the main street. The 4 user-defined block types can be seen on the right of the image. 

§ 7.2.2      Discussion and future work 

The computerised implementation of Model A confirmed that urban induction 
patterns have a very complex structure, which constitutes a challenge. As observed in 
Alexander's pattern language, many patterns are embedded in other patterns and 
every pattern calls for other patterns. Similar situations occur in this implementation. 
For instance, ClassifyUUnitCells calls for the application of BlockType to define which 
block types to apply to the islands classified. During the design process, defining a 
specific distribution of buildings in a block presupposes specific plot subdivisions and 
vice-versa. Therefore, a pattern for generating buildings should also call up and 
constrain the pattern rules for generating plots and vice-versa. Although the previous 
development of urban space ontology helped clarify the relationships between the 
various patterns, the computerised implementation added greater awareness on how 
to relate and build up these patterns. It also helped providing a deeper awareness of 
the difficulties involved in automating relationships between patterns.  
Developing an implementation is, in itself, a design act. In the case of a design tool, 
this means that we are confronted with different possibilities regarding which aspects 
to leave for user decisions and which to automate. An extensive list of possible 
improvements became clear during the work and the following are some examples of 
work planned for the future:  
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• Defining references to stimulate design options is a very important aspect of the 
design process and it is not only related to the position of the elements but also to 
their meaning and shape. Improvements include (1) creating linear or polygonal 
references (Refs assigned to lines or polygons) and (2) relating references to 
meanings (e.g. distinguishing references such as historical landmarks from natural 
features). Weights or priorities can also be assigned to meanings, for instance to 
define exclusions in certain contexts, such as excluding industry from historical 
sites. 

• Developing some automated approaches to the classification of islands according 
to urban design data and criteria such as density, street hierarchy, and weighted 
references which, in turn, will require the development of a multi-criteria weighted 
approach29. The criteria for classification and the distribution of classification 
should be established with the support of several appropriate case studies. 

• Automating plot subdivision following block design decisions. 

• Storing predefined types for reuse or transformation in other design contexts. 
Storing could also be useful in terms of retaining information on the context in 
which block types have been applied so that they are made available only when 
such contexts occur. This feature could introduce some artificial intelligence into 
the design system, improving its capacity to make solutions fit contexts. These 
situations could easily be developed by storage including the block type definitions 
and formal descriptions of the contexts for which a block type application is 
allowed. These are easy features to implement within the existing structure.  

• The grid generation needs to be improved in order to always obtain the correct topological 
structure for street segments and nodes. In the case of AddingBlockCells, despite the fact that 
the pattern is quite complicated in terms of rules, the structure of the rules actually facilitates 
this goal because streets are generated by segments. In the case of AddingAxes, additional rules 
are needed to capture all the segments resulting from street intersection30. The new rules could 
store all the street segments in the database, including street names and the coordinates of 
their end points, which would correspond to street nodes. This would provide a structure 
identical to GIS that would be available for design purposes. The main rules are already available 
and most of the information is already calculated and stored, but a few extra rules need to be 

  
29  These two first points could also be achieved by thoroughly integrating this system with the ontology being 

developed by Montenegro et al (2011) – most of these goals may be easily accomplished by editing rules 
directly in the ontology. In this case, the classification of design elements would be automated using 
information directly associated with the design entities in use. However, it should always be possible to 
manipulate weights because this is a common approach in design practice and designers feel that they can 
manipulate this kind of expression with the tool. 
 

30  This process was actually started, but has not yet been implemented in the main programme because it 
raised issues regarding the consistency of the whole programme due to the lack of a maximal line structure 
in the platform. However, these issues may be overcome by further work on the relations expressed 
between primitive representations defined in the ontology. 
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programmed. If this goal is achieved, we could explore the use of topology analysis methods in 
direct relation to design practice. The latter suggestion, however, is a vast research field in itself. 

• Developing a user-friendly data output interface showing only a synthesis of the 
useful data and eliminating information unnecessary for design purposes. The idea 
would be to provide an interface just for the purpose of informing designers about 
density-based indicators. 

• Implementing a larger number of UIPs. This should be done after fine-tuning some 
generic but more structural aspects of the system, such as some of those stated 
above. Such an extension would certainly provide a wider space for design 
exploration, enhancing the design capabilities of the tool and consequently its 
acceptance by designers. 

Two points should be further discussed before ending this section. 
 

1 The UIP formalism enhanced with customisable features such as those described 
in the example of block type generation seems quite a useful feature. In addition to 
the fact that it enables the system to be extended, it also allows for the 
customisation of UIPs, therefore improving its potential in terms of synthesising a 
design language. Judging from the previous experiences in design studios with 
shape grammars (see Section § 4.1      ) it is expected that this design tool will also 
enhance designers’ awareness about their own language convictions. The 
possibility of storing the customised UIPs is a very interesting issue for further 
exploration and is easy to implement. Firstly, the design tool with this feature is 
continuously being extended, thereby extending the design space to personal fields 
of design exploration. Secondly, every UIP could benefit from having customisable 
features. This means that designers would be able to customise every design move, 
not just through parametric variations but also by inserting features of their own 
creation. This approach needs further research, but should be considered an 
important goal for this particular implementation. 
 

2 The separation of block type generation from the main design model can also be 
justified from a procedural point of view, since the design of the plan guidelines, 
grids and blocks all correspond to different design phases. In most countries, 
regardless of the particular legal and regulatory framework, most planning 
procedures evolve through these distinct phases which are, or at least should be, 
submitted for (participatory) approval. As such, processes which are considered 
part of the same tool might be applied at different moments. In this sense, there is 
no objective need for all the tools to be fully integrated, as the output of one phase 
can be read as input in the following phase. Nevertheless, integrating all the tools 
offers the possibility of deciding when to stop and it can be a useful strategy for 
showing stakeholders some possible future scenarios before they approve a 
particular phase.  
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§ 7.3      Model B – Implementation in Rhinoceros using Grasshopper 

Model B was developed with Pirouz Nourian starting from the main theoretical 
framework developed in this thesis but defined using a parametric design platform and 
adapted to fully explore the possibilities of the said platform. The tool was deliberately 
created for design at district level and/or neighbourhood design. Later on, further 
developments of this tool were elaborated with the collaboration of Pedro Arrobas31. 

§ 7.3.1      Translating a shape grammar system into a parametric system  

Supporters of shape grammars will probably say that shape grammars embed almost 
all the known forms of generative design systems. They embed L-systems, fractals in 
general, cellular automata, and even parametric shape grammars can be said to embed 
a parametric design system (PDS). Theoretically, this is true, but the limitations on the 
implementation of shape grammar interpreters leave us with the unavoidable evidence 
that some specialised types of software such as parametric design software produces 
better and faster results than correctly implemented shape grammars. Additionally, 
PDS in general presents very user-friendly design environments which also explain the 
great success of PDSs in recent years, particularly Grasshopper which has recently 
caught the attention of most of the generative and parametric design communities. A 
simple search on the internet will reveal a large number of designers fully involved in 
these practices.  
During the research developed for this thesis and before the start of Model B, some 
investigation had already been undertaken into parametric design using Generative 
Components, a Bentley software [WS11], but, despite the interesting results, the 
system seemed too heavy to deal with large amounts of information and large plans.  
Figure 40 illustrates some of the results of this research. Later however, the Rhino – 
Grasshopper software offered much better potential and performance than Generative 
Components. Nourian’s suggestion of implementing CItyMaker as a PDS on 
Grasshopper was welcomed and work began in late 2010.  
Nevertheless, the shape grammar model had to be translated into a PDS. Shape 
grammar systems are defined by sets of shape transformation rules applied recursively 
from an initial shape to generate designs. These systems produce a family of solutions 
by recursively applying formal composition rules which simultaneously guarantee  

  
31  The results of these later developments have not yet been published. The model described in this thesis is 

mainly the outcome of the work developed with Pirouz Nourian. Recent results may be found at [WS12]. 
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formal coherence and diversity. In order to obtain semantic design coherence, shape 
grammars can be combined with description grammars and heuristics, as proposed by 
Duarte (2001) and also proposed in this thesis for the application of urban design 
systems. However, semantic coherence can only be achieved if the shapes and 
concepts used by the grammars are correctly structured into an ontology, as defined in 
Section § 5.4      , from page 92 onwards. 

 

 

Figure 40  
Trial implementation of Generative Components. The image shows two different results. 
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A parametric design system consists of a geometric model of formal elements which 
are common to a set of designs. The parametric model is built on the topological 
relations between formal design elements and their dimensional variations, expressed 
through a set of parameters assuming values within predefined ranges. Contrary to 
shape grammars, a PDS produces only one design solution with a large range of 
parametric variability. 
In order to translate the shape grammar model into a PDS whilst maintaining the 
possibility of defining a coherent and diverse set of solutions, the implementation of 
Model B, like the theoretical model, followed a design pattern structure slightly 
adapted to the characteristics of the Rhino – Grasshopper platform. 
In the theoretical model UIPs were arranged in thematic sets, as can be seen in Table 6.  
There is a set of UIPs (A) used for defining the composition guidelines of a plan, 
basically generating compositional axes. In addition, set B generates grids, set C 
transforms axes, set D generates public spaces, set E creates urban units, isolated 
exceptional buildings and in general manages the distribution of the built 
environment, and set F manages details of the plan with a particular focus on street 
design including the design of junctions. It is also stated in the theoretical model that a 
set of initial elements needs to be used to initiate the generation process, mainly the 
intervention site area and/or urbanizable areas represented by polygons, and the 
referential elements represented mainly by points, but which can in fact be 
represented by points, lines or polygons according to the design context. 
Therefore, after developing the first test models, the implementation of Model B has 
been progressively refined into a design pattern structure (Woodbury, 2010) following 
the structure defined in theoretical model, namely the main concepts defined in the 
structure of urban induction patterns. In order to obtain the maximum possible 
adaptability for different design problems and contexts, the PDS was structured as 
follows: 

1 A set of patterns to deal with the initial features – intervention site polygons and 
pre-existing elements defined by polygons representing sites, existing buildings 
represented by polygons, and existing streets or roads defined by lines. 

2 A set of patterns to define composition guidelines – lines representing new streets. 
3 A set of patterns to define grids – rectangular, radial and recursive grids32  – applied 

to one or multiple polygons. 
4 A set of patterns to define public spaces – filtered from a grid. 
5 A set of patterns to define exceptional buildings or public buildings – filtered  

from a grid. 

  
32  The concept of the recursive grid will become apparent in the description of Model B. Appendix 2 shows 

UIPs, RectangleDissection and IcerayGrid, which are two examples of a recursive grid. Other types of grid 
patterns were planned in some annotation sketches but have not yet been implemented. The recursive grid 
pattern corresponds exactly to RectangleDissection. 
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All these patterns use input geometries taken either from existing elements or 
proposed geometries drawn by the designer. An additional set of patterns manages 
other type of design input, namely: 

6 A set of patterns to manage density – including the input parameters for a desired 
maximum building height, and a desired value for minimum private open space 
(minimum OSR at island level). 

7 A set of patterns to manage land use distribution defined in terms of the 
distribution of residential uses, commerce, public facilities, workspaces and small 
industries. 

Other parts of the system are also defined as design patterns, since they are also 
repeated: 

8 Patterns calculating density indicators. 
9 Patterns filtering parts of a plan. The filtering process allows different design inputs 

to be applied to the filtered elements. The filtering process works by filtering an 
area by selection, placing a point or using a polygon, and filtering by proximity or by 
intersection. 

10 Patterns for data visualisation (e.g. pie charts, block indicators and colour gradients 
for blocks – see Figure 43). 

11 Patterns defining attraction fields for design elements. These patterns may be 
called attractors and are the main components of the patterns mentioned in Points 
6 and 7. 

The following parts of this section will describe Model B in detail, providing additional 
insight into the subject and showing how the structure was implemented. However, it 
should be noted that the system is still being improved, both in terms of the 
adaptability of the pattern structure and the development of new additional features 
(for instance, the implementation of patterns for designing street profiles following the 
structure shown in Table 5).  

§ 7.3.2      The problem of designing neighbourhoods  

Defining a neighbourhood and what a neighbourhood should contain is a common and 
controversial research topic. In the development of Model B we implemented the 
features that are generally considered common ground for planning neighbourhoods, 
based on consistencies found in the specialist literature. These consistencies were 
used to structure the implementation of Model B: 

• Many authors agree on a range of 5,000-10,000 people per neighbourhood / 
community as parts of districts with 20,000 to 100,000 people. 
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All these patterns use input geometries taken either from existing elements or 
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• This size contains enough critical mass to provide at least a school and a 
community building, a main street with shops, a central square and a local square. 

• The neighbourhood should have mixed uses, both vertically and horizontally. The 
mix increases as it comes closer to the neighbourhood centre.   

• Block size varies between 1 acre and 1 hectare. However, there are many successful 
alternative examples with bigger blocks (e.g., Berlin, Amsterdam). 

• Squares present even wider variations. Smaller squares seem to be more frequently 
associated with the unplanned (informal organic) city and bigger squares with the 
formally planned (authoritarian / imposed) development. Although the amount of 
alternative examples is considerably larger than in the case of blocks, the same 
range of between 1 acre and 1 hectare is still acceptable. 

(Alexander et al., 1977); (Barton, Grant, and Guise, 2003); (Marshall, 2005); 
(Moughtin, 2003); (Moughtin and Shirley, 2005); (Jacobs, 1961); (Steiner and Butler, 
2007). 

Marshall (2005) presents a large survey of urban grid types identified by several 
authors in their writings on urban morphology (see Appendix 4 to his book). The 
rectangular, radial and irregular (organic) grid patterns at least seem to be present 
almost everywhere in urban design literature. The two first were used as the main 
design drivers in Model B. The organic grid pattern should be regarded as an emerging 
pattern and therefore we did not use it as a design pattern. Marshall cites some 
characteristics of the common structure of street networks that are usually perceived of 
as pleasant urban environments. Such street structures have short and long routes, a 
relatively large number of ‘T’ junctions, some ‘X’ junctions and some cul-de-sacs. 
Marshall calls this the characteristic structure. In order to integrate these ideas, we 
added a third street pattern to our set of street grid types which we called the recursive 
street generator. This street pattern is described later and corresponds exactly to the 
UIP 011 – (grid by) RectangleDissection – see Appendix 2. 
How do urban designers make decisions? – The design process workflow 
As already addressed in this thesis, the design process proceeds through a series of 
reflective moves implying negotiation between the problem and the trial solutions 
using analysis, synthesis and evaluation. In developing Model B we tried to improve 
these characteristics in comparison with Model A. 
The structure of design problems contains determined components that can easily be 
computed and also undetermined and underdetermined ones which are intrinsic to 
design problems (Dorst, 2004). In urban design, density indicators (Berghauser-Pont 
and Haupt, 2010) fall into the category of determined components and can easily be 
incorporated into a design tool, thereby providing continuous updates on the measures 
as long as a consistent geometrical model is available. The main goal in this 
implementation was to support the reflective features of design practice by providing 
continuous calculations by computational means to update information on 
determined components of urban design problems after each design move. Such a 
system should offer the designer precise information on indicators and the properties 
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of the designs being produced, thereby allowing for the interactive manipulation of 
input as a reaction to output.  
 
On the basis of these considerations, Model B should: 

• be applicable, regardless of the design context and district size, to a fairly large 
variety of design programmes; 

• be interactive and responsive, providing good visualisation output both in terms of 
design layout and the associated analytical data (indicators, attributes, indices, 
etc); 

• be able to implement and design the main features that compose a 
neighbourhood; 

• provide data for the elaboration of the plan’s regulations.  
 
Taking these aspects into consideration we implemented a parametric urban design 
system using a NURBS-CAD environment and a parametric programming interface. 
The CAD environment was Rhinoceros® and the programming interface was 
Grasshopper®. The system aims to design urban plans at neighbourhood or district 
level, to use Berghauser-Pont and Haupt’s terminology (2010, page 103).  
A particular kind of urban design workflow was considered in this model, starting from 
a specific set of initial inputs (geometric and data inputs).  Figure 41 and Figure 42 
show the geometric and data inputs. Figure 43 shows the main outputs of the model. 
The design process follows a particular workflow organised as a specific set of 
procedures: 

1 preparation of the design base (the analytical phase developed on any preparatory 
platform, preferably a geographic information system) – this includes the 
identification of areas which present difficult topographies for design 
implementation; 

2 insertion of geometrical inputs, associating them with specific design patterns; 
3 insertion of data inputs, some of which can be considered goal inputs; 
4 design exploration by manipulating options, primitive geometry transformations 

and parameter inputs; 
5 confronting the modelled design with the generated data; 
6 distributing a programme of uses in an accepted layout; 
7 using the plan and the generated data to define regulations for the plan at island 

level; 
8 mapping the plan onto the topography. 
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There are two types of inputs – geometrical inputs and data inputs. Figure 41 shows 
the set of geometrical inputs, which is divided into 4 basic types: the site (defined by 
polygons); the composition elements, which are subdivided into main streets (defined 
by lines and curves) and focal points representing the location of the neighbourhood 
centre, local squares, public buildings and city objects in general; a vertical parameter 
to define the maximum number of floors; a set of grid types (rectangular, radial and 
recursive). Each of these inputs has a set of associated parameter inputs. A main street, 
for instance, has the attribute street width.  
 
The elements are located anywhere inside the site boundary by the designer and may 
be relocated at any time during the design process simply by dragging them elsewhere 
or changing them by moving their grip points. A selected grid type (rectangular, radial 
or recursive) is tailored to the site boundary and the algorithm combines the grids with 
other urban elements, filtering them out from the main grid geometry. The filtered 
parts may correspond to different components of the design (e.g. public buildings) and 
for this purpose the filtered geometry is manipulated with specific inputs which are 
associated with the filtered parts. Some inputs refer to options, which are defined as 
switches in the design interface that allow the designer to choose, for instance, which 
grid type to apply. The other input parameters allow the output appearance of each 
type to be changed. 

 

Figure 41  
Geometrical inputs. 
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Figure 42 
Data inputs. 

The data inputs are shown in Figure 42. There are 3 types of data inputs: goal 
indicators, which define the density goals or constraints of the urban programme, 
option switches, and context adjustments which are input parameters regarded as 
customisable parameters that can be manipulated by the designer to fine-tune the 
design. The designer explores the options and parameters following the workflow 
sketched in Figure 43. The designer considers the topography and the contextual 
conditions of the site at the beginning of the design process, extracts the areas that are 
considered too steep and eventually identifies zones to which different planning rules 
or strategies should be applied. This can be a traditional analytical process or it can be 
enhanced using GIS tools to provide the information required to set the primary 
elements of the design. As a final result a site area subdivided in several zones is 
obtained, to which different planning strategies may be applied (see also Figure 41). 
The site geometry is inserted into the design environment. The designer defines the 
position of the main composition elements of the design, namely a focal point, and the 
main streets within the site boundaries. This is drawn directly in the NURBS-CAD 
drawing environment. Accuracy in terms of the composition of elements is not an 
issue, as they may be moved or changed at any time during the design process. The 
designer then chooses between three available grid patterns (rectangular, radial and 
recursive) and explores variations with the available parameters. The selected grid is 
dynamically updated in the drawing interface. The orientation of the grid is a common 
parameter which allows the designer to change and fine-tune the grid orientation. 
The recursive street generator designs street grids based on a rectangle dissection rule 
(Figure 44). The rule applies if the area of the rectangle (i.e. the block) is bigger than a 
user-predefined minimum area and the block’s sides are constrained to be bigger than 
a minimum value that corresponds to a user-defined number of ‘pixels’ or basic 
modular unit. The ‘pixel’ size is also predefined by the designer to define the grain of 
the grid. ‘Pixel’ size plays an important role since it enables the chances of having more 
or fewer ‘T’ junctions to be controlled. Basically, the bigger the ‘pixel’, the greater the 
chances are of coinciding subdivisions in two neighbouring rectangles, therefore 
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reducing the number of ‘T’ junctions. Finally, the rectangle proportion is also 
controlled. The available parameters allow the grid character to be shaped. Examples of 
the three grids can be seen in Figure 43. 

 

Figure 43  
Outputs of Model B. The three images on the left show the three available grids. The upper right corner shows the 
data output interface in which density indicators are shown at district scale, block scale and per block. The lower 
right corner shows the distribution of commercial and residential use in the plan. 

The designer filters several areas out in the main model, to which exceptional rules or 
design goals can be assigned. For instance, certain blocks can be set to be small public 
squares and others to be filled with public buildings. The main process is defined as a 
filter, a design pattern that isolates particular sets of geometric features from the main 
geometry. Different parameters may be assigned to various sets of public buildings 
filtered in this way. The process can be replicated to create sets of geometry parts to 
which different generation rules can apply. 
The building height is managed by setting the maximum allowed number of floors. 
This value is used as input for the 3D representation of the maximum allowed building 
envelope. The number of floors is defined as a target number which is distributed 
throughout the grid as a simulation of land value. To simulate the effect of land value 
we defined the number of floors in a block as a function of the distance to a set of 
positive attractors – main square / main streets / the city centre – and a set of negative 
attractors (repulsion effect) – the site boundary. This function changes the number of 
floors depending on the resulting calculations. The distribution is determined using 
bounded distribution methods in which the bounding condition is a target density 
defined in the urban programme. The designer controls the intensity of the overall 
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attraction effect using a set of sliders. The indicators are calculated and provided in the 
interface, allowing for immediate empirical evaluation of the output. The evaluation 
can be further supported by hints provided by studies on morph-types such as the 
studies developed by Berghauser-Pont and Haupt (2010) on the relation between 
density and urban morph-types. The indicators also follow the conventions of 
Berghauser-Pont and Haupt (2010), allowing for rigorous application of their 
measuring theory. The basic indicators are: FSId – Building Intensity; GSId – Coverage; 
ND – Network Density; and OSRd – Spaciousness. The indicators are calculated at 
district level. 

 

Figure 44  
Rectangle dissection rule 

Following density distribution an uneven distribution of building intensity per block is 
obtained. The system also outputs block level calculations of density indicators, 
thereby providing the designer with extremely accurate information on density 
indicators, both at block and district level (see Figure 45 and Figure 46). 
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Figure 45  
Outputs at island (block) level. The shaded indicators are interpreted as defining the base for a regulation or 
implementation code at block level. 

 

Figure 46  
Outputs at district level  
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Typically, master plans use a density measure expressed in terms of the maximum 
allowed density (defined here as FSId), a maximum coverage, and quite often a 
maximum allowed height or number of floors (NF) as planning devices. In most 
situations, in order to foster design flexibility the values express maximum allowed 
limits which are set independently of each other. A minimum amount of free public 
space (minimum allowed OSR) can also be used as a planning device to express certain 
desired qualities for public space. Considering the given site area, the existence of a 
maximum allowed FSId provides for the calculation of a maximum allowed gross floor 
area (GFAd) for the district. The average number of floors, L, is calculated as an output 
at district and island (block) levels. The system outputs regulations defined at island 
level in terms of the maximum number of floors (NF), maximum FSI, maximum GSI or 
minimum OSR. Figure 45 shows all the system outputs at island level and Figure 46 
the outputs at district level. The 3D model shows the graphic outputs of the indicators 
for the designer’s visual assessment. Any change applied to the model, including 
filtering blocks to define squares, parks or public buildings, will automatically update 
the outputs for each block.  
Land use is addressed in the model as a simulation. It simulates the distribution of 
uses considering the same urban attractors cited before but using an independent 
interface. The idea is that attraction in terms of land use is influenced by different 
phenomena to density attraction and in any case responds differently, depending on 
the kind of use. For instance, the distribution of commerce behaves differently from 
small industry. The attraction/repulsion effect is set differently for each use, 
considering the land use programme in terms of the relative percentages of Housing, 
Commerce, Workspaces, Facilities and Small Industry. The model outputs a visually 
defined distribution of uses per block with a pie chart and a block indicator.  
The use of simulations in a real case scenario should be subject to critical 
interpretation. Planning mixed use is a complicated issue. It is consensual that the 
best urban areas have mixed uses. However, it is almost impossible to know the right 
proportions for each use, as this is context dependant and naturally dynamic over time. 
The goal of the system is to produce a regulation at district level and a regulation per 
block. In all cases, the regulatory system should include a means of managing the 
system dynamics. This can be achieved for instance by using the programme 
formulation interactively to set somewhat flexible goals indicating a range of solutions 
per use instead of rigid goals and single solutions. In scenarios like this, the 
implementation should be regulated in order to maintain its particular interactive 
dynamics but constraining it to guide solutions towards the desired goals. Allowing 
fluctuations within the defined range is one possible strategy. Allowing a trade-off 
between blocks is another possibility for maintaining the natural dynamics. 
Nevertheless, the simulations allow designers and stakeholders to be aware of possible 
scenarios and their characteristics in terms of the possible mix of uses.  
The design solution can be remapped onto the topography. The main principle is that 
there will not be any transformations in the grids because the extreme sloped areas 
were filtered out at the beginning of the design process. San Francisco was the main 
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driver behind this decision. However, the main streets may still be deformed and 
readapted to the topography following geodesic curves.  
The system provides a very empirical design interface which allows designers to see the 
consequences of the design moves in real time. As an added feature, the designer is 
able see the urban indicators shown in Figure 45 and Figure 46. The relationship 
between the design morphology and the urban indicators is therefore immediately 
available for designer control and reaction. The flowchart in Figure 47 summarises the 
system’s structure33. 

§ 7.3.3      Discussion and future work 

Model B is structured as a very interactive design system providing the most common 
features for designing neighbourhoods. The system allows for the parametric 
manipulation of a design whilst providing density measures for the outputs for a better 
assessment of the qualities of the proposed design. This assessment was based on 
commonly used urban indicators. The output is both visual and numerical, extending 
the designer’s awareness of the consequences of his/her design decisions. 
However, the tool still contains several limitations, most of which may be solved with 
further work or by developing the technology. The main tasks for future work are: 

• Adjusting the standard grid to an existing context, connecting new streets to 
existing ones, and connecting streets from the grids of two neighbouring zones. 

• Extending the possibilities of adjusting the design to the topography.  

• Improving environmental issues, even though the designer is able to assess 
daylight and parking performance indices and control the grid orientation.  

• Extending the tool to include property features, as an important upgrade. The 
parametric model has good potential for this purpose because it allows all related 
operations to be connected. Considering the output of Model B as a plan with 
regulations at block level, including property subdivision information would 
complete the information on regular urban design. 

 

  
33  The flowchart corresponds to the model defined up to April, 2011. The model has since evolved into a 

different structure. 
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Figure 47 
Flowchart of the urban design tool 
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Figure 47 
Flowchart of the urban design tool 
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• Integration with GIS tools or at least with GIS supported analytical routines. The 
advantage of the programming environment used is that there is no data loss. The 
parametric model contains all the data produced at any moment in the generation 
process and this data simply needs to be extracted. However, retrieving data from 
the GIS is also an important feature that should be improved in terms of directly 
inserting the results of analyses. 

• Finally, the system may be very slow if the geometrical operations become very 
complex. The method used to address this problem until now has been to limit the 
model structure to the lowest possible amount of geometric calculations. However, 
the amount of geometry involved is very much dependent on the particulars of the 
design context and it may not be entirely possible to reduce it to very short 
calculations. It is likely that complex designs may take a few minutes to update 
each design move.  

 

However difficult it might seem to solve some of these limitations, we should stress the 
positive achievements of the design system: 

• The system is able to accommodate typological solutions for neighbourhood design 
which respond to a large number of urban design problems of this nature. 

• The system is very dynamic and interactive, allowing for continuous design 
exploration by updating solutions which other inputs change. 

• Every design update is expressed both in terms of visual and numerical output 
(density measures and derived indicators) enabling designers (or any decision-
maker) to be aware of the implications and qualities of a particular solution option.  

The current approach focuses on the internal relationships between elements that 
compose neighbourhoods. The geographic information for the urban context is 
currently missing. An overall approach to urban design needs to take into account the 
spatial associations between the density and land use patterns of a neighbourhood and 
its context. In the next developments we plan to integrate geo-referenced analytical 
methods to include contextual information for integrated urban design decision-
making. In addition, the effects of the proposed design on other urban areas also need 
to be evaluated as part of the whole urban network.  
These goals are easily achievable in a design process that follows a sequence of analysis 
using a GIS, then imports the necessary data and geometry from the GIS into the 
design platform and undertakes parametric design exploration by comparing the 
design with density measures, and finally feeding the information back to the GIS to 
evaluate the results using GIS or GIS-based analytical tools. This sequence should be 
applied in cyclical procedures every time the evaluation is not satisfactory and feedback 
is needed in the form of new analytical information captured during the process. The 
best solution would be to develop extensions of this model to perform the equivalent 
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integrated analysis directly on the evolving model in order to maintain the best 
possible quality of design model. 
As an example of this kind of approach, a route structure analyser inspired by 
Marshall’s route structure analysis (2005) is being developed for incorporation into the 
regular design workflow. The analyser is already operative in the generation of the 
recursive grid, as the generation process directly builds a route structure. However, 
when the grid is inserted into the main geometry the route structure is subverted and 
immediately raises interpretation issues. In order to solve the interpretation problems 
identified by Marshall, an algorithm could be developed to provide optional 
interpretations which the designer can choose manually by selecting the desired 
interpretation. However, developing such algorithm involves specific research.  
In order to improve the usability and adaptability of the tool for specific practical 
situations most of the functions could be organised as design patterns, as proposed by 
Woodbury (2010). Figure 41 shows some concepts indicated in boxes framed with a 
thick borderline. The concepts in these boxes can all be defined as design patterns: an 
identical template code which can be reused for performing recurrent design 
operations. In Model B these design patterns correspond approximately to the urban 
induction patterns presented in the previous chapters.  
The use of design patterns is envisaged as follows. Consider a site involving two 
different polygons, for which different master plan regulations were defined upstream; 
one area, for instance, is high density and the other low density. A small area in one of 
the polygons is isolated in advance and delimited as having a steep topography. The 
designer identifies several important streets in neighbouring areas of the city that 
should connect to new streets in the intervention site, using the design pattern – Main 
Streets. If the streets are envisaged as having the same width (as well as other 
regulations) the same pattern can be used for all the streets. However, if the designer 
wants them to be different (for instance, because the streets they are connecting to are 
different), then s/he will need different Main Street patterns. The designer draws a 
curve in the drawing environment corresponding to the street centre line and assigns it 
to the pattern. A slider belonging to this pattern controls the street width. In the case of 
equal street widths, multiple geometries (curves) can be assigned to the pattern. A 
similar procedure can be used to define Local Squares, Public Buildings, or City Objects, 
although the input geometry in these cases is a point. However, these patterns can only 
be applied after the grid is generated because these elements of the design are applied 
to filtered parts of the grid. Grids also work as a design pattern. This pattern contains 
three options – the rectangular, radial and recursive grid – which can be selected with a 
switch. The pattern can be assigned to a polygon or to multiple polygons. However, 
when assigned to multiple polygons these areas will all have the same grid orientation 
and the same parameters. Conversely, a designer can assign a different grid to each 
area allowing for the use of different grid types or simply different grid parameters. The 
design can become quite complex in this way. The main operations for the grids (Main 
Streets, Local Squares, Public Buildings, or City Objects) all use a hidden design pattern 
which can be explained as a filter. The common part of these design patterns is a 
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smaller design pattern, a filter which extracts parts of the grid geometry and assigns 
different parametric rules to it. The filtering process is also the process which keeps 
track of changes and therefore continuously updates the density measures. 
The final version of the three modules in the City Induction project, namely the 
formulation, generation and evaluation modules will include some of the goals defined 
for future work. 
Finally, it should be noted that Model B does not implement block types. It was 
developed as a tool that designs large scale (district / neighbourhood level) urban 
plans designing the grids and the main features of a plan of this scale, and outputting 
solutions in which islands are the minimum elements. At this level the output takes 
the form of a regulation to be applied in more detailed developments. Such an output 
could then be provided for different designers to design the blocks or the buildings for 
the blocks, each following their own design convictions. For more accurate work with 
block regulations, a comparative study such as the morphological studies developed by 
Berghauser-Pont and Haupt relating density indicators and urban morph-types should 
be able to support decisions by establishing more accurate relationships between 
morph-types and density indicators. Furthermore, such a study could be further 
enhanced by establishing relationships between (A) building types, (B) their uses and 
(C) density indicators. If a broad sample is gathered using statistical methods such as 
data mining for pattern finding, it may be possible to find relationships between 
specific combinations of A, B and C variables and relate morph-types with qualitative 
behaviour. Such information, if inserted into the model, may give the designer real-
time values for his/her moves.   

§ 7.4      Comparing models 

Two different prototype models for urban design generation were presented in the 
previous sections. They are incomplete, but both show singular qualities intrinsic to 
the implementation approach followed in each case. In terms of conceptual approach, 
the two models can be summarised as follows. 

Model A – the implementation follows the theoretical model defined in Chapters 5 and 6 
quite accurately. The main concepts envisage the integration of programme 
formulation, generation and evaluation in the context of the City Induction project. As 
such, although working autonomously, it has been developed in such a way that the 
initial components of the design can be captured from the ontology being developed by 
Montenegro et al. (2011), including programmatic specifications. The design results 
would be generated in GIS compatible formats, i.e. thematically layered according to the 
ontology of the design process (see Figure 9 and section § 5.4      , page 92), with each 
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layer containing only geometry of the same kind, such as points, lines or polygons. The 
data generated is also stored in a database and can be reused in the GIS environment. 

Model B – takes advantage of the characteristics of a parametric NURBS-CAD 
environment and focuses on the tool’s usability and interactivity with the designer, in 
terms of both the geometric model and the data flow. The data flow considered in the 
model essentially involves density-related indicators which play a role in the decision-
making process, from both the designer’s and the stakeholder’s viewpoint (in fact from 
the viewpoint of any interested actor). Since ‘spacematrix’ theory (Berghauser-Pont 
and Haupt, 2010) provides many derived indicators that can easily be calculated from 
the geometric model, several qualitative indicators may be provided, allowing 
designers to improve their awareness of the results and consequences of their design 
moves. The main idea of Model B is to explore relationships between design and 
density indicators based on the concept that most of the information the designer 
needs can be captured directly from the geometrical model being designed.  

The following table establishes the main comparisons between the two models. 

Model A (CAD-GIS model) Model B (parametric model) 

Integrates CAD/GIS functionalities into a single design 
environment. The AutoCAD environment facilitates the 
import and export of designs and associated data. The model 
provides an accurately structured prototype for this purpose 
but the implementation is quite extensive, both in terms of 
complexity and the time consumed in programming tasks. 

 

Lacks integration with GIS platforms (can be linked, but using 
an external platform).The Grasshopper model keeps all the 
data that can be extracted or derived from the geometric 
model. It also allows this information to be stored in a data-
base or Excel sheets, as well as retrieving information from 
similar bases. This was actually the first solution applied in 
the development of the recursive pattern. As such, GIS inte-
gration may be accomplished in a similar way to Model A. 

It is extendible (extending the software using the API) – but 
this is hard. Extendibility in AutoCAD is extremely versatile 
due to its various APIs but depends essentially on hard coding 
regardless of the language/API in use. Programming and 
extending the model is very time-consuming but the devel-
opment is structured consistently if the theoretical model is 
respected. 

It is extendible (extending the program in Grasshopper) – and 
this is easy. This interface is extremely user-friendly in terms 
of extendibility and customisation. The results of what is 
being programmed are immediately shown on the drawing 
interface. This makes the system very easy to debug and test. 
The only problems regarding this environment are: (1) the 
lack of recursive functions in Grasshopper and (2) the amount 
of geometrical operations, which can make the system too 
slow. 

Stores data in a database / adds data to the GIS database.  Provides all the data generated (can be linked to a database) 

Feedback loops imply re-generation. It was planned in the 
theoretical model to register all actions in the database – as a 
history of actions (Beirão et al., 2009). However, this feature 
has not been implemented yet.  

All inputs can be changed at any moment (the model updates 
in real time). This is the main advantage of Model B over 
Model A. 

 

Easy integration with tools running in the GIS environment 
(any kind of assessment tool from simple queries to spatial 
analysis – e.g. space syntax, place syntax). However, GIS 
analytical processes and CAD changes are independent 
processes. Analysis can be performed only on finished de-
signs. 

Integration with analytical tools and GIS tools still needs to be 
developed. It is expected that there will be more difficulties 
when integrating the CAD model in the GIS environment. 
However, its practicality should be similar to Model A, unless 
specific analytical processes using the parametric model are 
developed for the same purpose. The model already performs 
some evaluation tasks, as some qualitative indicators are 
automatically calculated and constantly updated. 

 222 CItyMaker / Designing Grammars for Urban Design i



  

 
 

222 

layer containing only geometry of the same kind, such as points, lines or polygons. The 
data generated is also stored in a database and can be reused in the GIS environment. 

Model B – takes advantage of the characteristics of a parametric NURBS-CAD 
environment and focuses on the tool’s usability and interactivity with the designer, in 
terms of both the geometric model and the data flow. The data flow considered in the 
model essentially involves density-related indicators which play a role in the decision-
making process, from both the designer’s and the stakeholder’s viewpoint (in fact from 
the viewpoint of any interested actor). Since ‘spacematrix’ theory (Berghauser-Pont 
and Haupt, 2010) provides many derived indicators that can easily be calculated from 
the geometric model, several qualitative indicators may be provided, allowing 
designers to improve their awareness of the results and consequences of their design 
moves. The main idea of Model B is to explore relationships between design and 
density indicators based on the concept that most of the information the designer 
needs can be captured directly from the geometrical model being designed.  

The following table establishes the main comparisons between the two models. 

Model A (CAD-GIS model) Model B (parametric model) 

Integrates CAD/GIS functionalities into a single design 
environment. The AutoCAD environment facilitates the 
import and export of designs and associated data. The model 
provides an accurately structured prototype for this purpose 
but the implementation is quite extensive, both in terms of 
complexity and the time consumed in programming tasks. 

 

Lacks integration with GIS platforms (can be linked, but using 
an external platform).The Grasshopper model keeps all the 
data that can be extracted or derived from the geometric 
model. It also allows this information to be stored in a data-
base or Excel sheets, as well as retrieving information from 
similar bases. This was actually the first solution applied in 
the development of the recursive pattern. As such, GIS inte-
gration may be accomplished in a similar way to Model A. 

It is extendible (extending the software using the API) – but 
this is hard. Extendibility in AutoCAD is extremely versatile 
due to its various APIs but depends essentially on hard coding 
regardless of the language/API in use. Programming and 
extending the model is very time-consuming but the devel-
opment is structured consistently if the theoretical model is 
respected. 

It is extendible (extending the program in Grasshopper) – and 
this is easy. This interface is extremely user-friendly in terms 
of extendibility and customisation. The results of what is 
being programmed are immediately shown on the drawing 
interface. This makes the system very easy to debug and test. 
The only problems regarding this environment are: (1) the 
lack of recursive functions in Grasshopper and (2) the amount 
of geometrical operations, which can make the system too 
slow. 

Stores data in a database / adds data to the GIS database.  Provides all the data generated (can be linked to a database) 

Feedback loops imply re-generation. It was planned in the 
theoretical model to register all actions in the database – as a 
history of actions (Beirão et al., 2009). However, this feature 
has not been implemented yet.  

All inputs can be changed at any moment (the model updates 
in real time). This is the main advantage of Model B over 
Model A. 

 

Easy integration with tools running in the GIS environment 
(any kind of assessment tool from simple queries to spatial 
analysis – e.g. space syntax, place syntax). However, GIS 
analytical processes and CAD changes are independent 
processes. Analysis can be performed only on finished de-
signs. 

Integration with analytical tools and GIS tools still needs to be 
developed. It is expected that there will be more difficulties 
when integrating the CAD model in the GIS environment. 
However, its practicality should be similar to Model A, unless 
specific analytical processes using the parametric model are 
developed for the same purpose. The model already performs 
some evaluation tasks, as some qualitative indicators are 
automatically calculated and constantly updated. 

  

 
 

223 

§ 7.5      Discussion of results – validating the models 

 
The main practical differences between the two models become apparent when they 
are confronted with an objective validation procedure. A correctly structured validation 
should encompass the following goals: 

1 A demonstration that the theoretical model is adequate by showing that: 
a The grammars in the theoretical model are able to generate the case studies. 
b The grammars in the theoretical model generate many different plans for 

different contexts. 
 

2 The theoretical model is extendible and customisable. 
Evidence that the prototype implementations are able to: 
a Generate the case studies. 
b Generate other plans in other contexts. 

 
3 An appraisal of the prototype models by practitioners. 

 
4 Application of the prototype models in real case scenarios. 

These goals are discussed below. 

In theory the model can always be extended to widen its 
flexibility range. This process depends exclusively on the 
creation of new UIPs. The limitation regarding extendibility is 
the fact that the UIPs are hard coded and take a long time to 
programme. The development of a customisable meta pat-
tern structure would contribute greatly towards better per-
formance in terms of tool extendibility. 

The model can always be extended to widen its flexibility 
range and field of application. This process depends on the 
creation of new design patterns. The main limitations of 
model B regarding extendibility are related to its require-
ments in terms of computational power. If the geometric 
model becomes too complicated it is also likely to become too 
slow. 

The design space variability is dependent on the amount of 
possible UIP conditions, as well as their options and parame-
ter variability. Any specific urban grammar is capable of 
generating many solutions within the design space of the 
grammar.  

The design space variability is dependent on the amount of 
different available design patterns, as well as their options 
and parametric variability. Once the design patterns used in a 
design are set, the variability is limited to options and para-
metric variability. Although options and parameters can be 
changed at any time, the system produces only one solution. 
However, changes on the level of options and parameters can 
be effected almost in real time depending on the amount of 
geometrical operations. Fundamental changes based on 
changes to primary elements of the composition  – for in-
stance changing the number of main streets or number of 
zones - are difficult to accomplish.  
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1 – The first point is partially demonstrated in the thesis in Chapters 5 and 6 when 
describing the theoretical model. The argument regarding the broad application of the 
theoretical model is further supported by the examples shown in Appendix 3. The 
argument regarding extendibility is clear in the block type generation patterns, both in 
the theoretical model and in Model A (see Section § 6.3      , page 152, and Section § 
7.2      , page 192). Model B’s extendibility lies in the reusable design pattern structure 
of the system, which can be copied to adapt or extend the model as required by the 
complexity of the design problem. The design pattern structure can be improved and 
extended. Model B is currently being used and extended by a Masters student in a real 
case application, namely in the study of future alternative scenarios for an industrial 
area in the Sintra region in Portugal.  
 
2 – Demonstrations involving the prototypes are confronted with the prototype 
limitations. For instance, Model A does not generate squares yet. However, the features 
implemented so far generate the equivalent parts of the case studies and other plans, 
as shown in this chapter and in the examples in Appendix 3. The accurate structure of 
Model A requires a large team of professional programmers to achieve all the goals 
defined in the theoretical model. Most of the time consumed in programming Model A 
is spent writing instructions for storing and retrieving data from databases or simply 
managing the data in these bases, that is, clearing and updating attributes or variables 
changed by the rules or in programming adequate interfaces. In any case, in addition to 
this chapter, Appendix 3 shows some plans already generated by the two 
implementations. It should be noted that this does not simply involve the generation 
of geometrical models but also the generation of the semantic attributes of the 
geometry and density indicators for the generated design. Nevertheless, what Model A 
lacks in terms of density calculations and appropriate interfaces, Model B lacks in 
terms of the generation of semantic attributes. However, it should be stressed that the 
latter is compensated by the extensive designer interactivity of the model.  
Appendix 3 shows several applications of Model B, presenting the generation of design 
solutions for several different contexts. Most difficulties in the use of the model in real 
situations concern the adaptability of the main representations to the existing situations. 
For instance, linking an existing organic street structure to a new layout and maintaining 
street continuity can involve several problems. Likewise, the results of topographic 
analysis may need a specific method to incorporate them into the plan. However, 
although sometimes a little time consuming, most situations can be solved without great 
difficulty in Model B. Implementations using Model A frequently showed the need to 
develop new urban induction patterns which have to be encoded from scratch in VBA or 
VLisp. As such, Model A still reveals some difficulties in terms of practical use. 
Nevertheless, it should be stressed that its accurate structure, if further developed, seems 
to be a more adequate approach to the implementation of urban design software as an 
extension of AutoCAD Civil3D features. Model A therefore shows a simplified proof of 
concept of what an urban generation tool embedded in AutoCAD should be. 
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3 and 4 – The first confrontation of Model B with a real design problem was carried out by 
its co-author, Pirouz Nourian, a few months after the implementation had begun. 
Nourian tried to use the model that had been developed so far but found the software 
structure too rigid to adapt to the design problem he was facing. The entire software 
needed adjustments to solve the new design problem. However, the main concepts were 
not questioned, and specifically the real-time calculation of density indicators always 
seemed an important approach that called for the attention of a few researchers, 
including Meta Berghauser-Pont, one of the authors of Spacematrix (2010) which 
provided the theory for the calculation of such indicators. At the time, Nourian said that 
Model B should be restructured into a pattern-like structure as in Model A in order to 
improve the modularity of the system and therefore its usability. Such improvements 
were later introduced, following Woodbury’s design pattern concept34. 
The models have been shown to a few practitioners including Chuva Gomes, the author of 
Plans 1 and 2, and Frits Palmboom, the author of Plan 4. Pak and Verbeke (2011) cite 
questionnaires and interviews as some of the most common and cost effective approaches 
to tool assessment. Some interviews were carried out, including one questionnaire in 
which designers could offer their opinions on tool usability. The main idea was to identify 
the most important characteristics of the proposed models, their main qualities and their 
inadequacies by gathering criticisms and suggestions for future improvements.  
Both Chuva and Palmboom showed a greater interest in Model B than Model A. This 
was due to two factors: firstly, Model B is more developed and offers a larger amount of 
functionalities, and secondly, the interface and interactivity are a lot more user-
friendly, offering a better view of the concepts involved in the models. The best reaction 
of both designers was their astonishment at the continuous updating of density 
indicator calculations. Palmboom made an important comment to the effect that the 
calculations were not always needed but both agreed that it was useful to have them 
available for consultation. Many other designers have praised the calculation features 
and the possibility of continuous updating during design exploration35. Whether they 
are used or not in the decision process is a matter for the designer to decide. 

  
34  This part of the work is still in progress. Every pattern needs, on the one hand, to be simplified to the 

simplest possible structure in order to reduce computational resources and, on the other hand, to be as 
generic as possible, implying that it should support all the typical design decisions covered by the pattern 
as far as possible. Therefore, both implementations showed that this process implies a continuous 
improvement of patterns, by simplifying them whilst extending the range of their application. 
 

35  In addition to Chuva Gomes and Palmboom, Model B was also shown to Meta Berghauser-Pont, António 
Castel Branco, Cristina Cavaco, Patrick Schirmer, Burak Pak, Tiago Trigueiros, Paulo Pedro and Sónia 
Taborda. All of them are professional urban designers involved either in planning practice, research, or 
both. Each time Model B was shown to designers, their first reaction was usually sceptical and most 
questions tended to compare the model with traditional ways of drawing urban plans. However, in every 
presentation to designers, the moment they first saw the calculation update after a change in the design, 
their expression changed instantly, usually followed by a smile or an astonished look. Although some 
designers still identified some minor issues after reflection, the initial positive reaction was detected in 
every designer. 
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One of the most curious comments came from Frits Palmboom. In reference to the grid 
generation patterns, he said that he was not interested so much in the possibility of 
generating grids but in placing axes (or streets) one by one in meaningful places, even 
considering that they may in the end become a regular grid. From his point of view, the 
grid was not a goal in itself but a consequence of a set of individual design decisions 
that ended up forming a grid. After hearing this comment the importance of one 
already available feature became obvious: the possibility of generating a grid by 
accumulating individual UIPs that generate axes. Improvements made to the models 
after this interview included improving the possibilities of designing grids in a less 
automated way. The advantage of such a possibility is the gain in reflective action, 
which can be exercised move after move. This also allows the direction of some axes to 
be manipulated locally, for instance, by generating a quadrilateral grid with one or 
more axes slightly rotated or connecting two important landmarks. It also solves two 
main problems related to the automated grids: (1) linking two grids generated in two 
adjacent areas, and (2) eliminating the algorithms for deciding which parameters to 
apply at each iteration during grid generation. In each case, density measures are 
produced, enhancing the quality of the information available and therefore improving 
the designer’s awareness of his/her decisions. 
Chuva Gomes mentioned that the tools showed precise data for measurements that 
are usually perceived empirically by the designer. He said that most of the time an 
experienced designer might have quite an accurate perception of the measurements 
involved in the design problem. This argument was also supported by Palmboom who 
added that at the beginning of the design process his experience would be enough to 
provide him with information on generic measurements without deviating too much 
from reality. However, the tool seemed to be very helpful in fine-tuning the solution 
because it allowed for accurate measurements whilst maintaining the possibility of 
further manipulating the design solution. In addition, it can be argued that the 
calculation tools may be very helpful for less experienced designers, even in the early 
stages of the design process.  
 
Two important conclusions could be drawn from the interviews: 

• The clearer the involved processes are, the better. Designers want to understand 
what the tool is doing and react strongly to ‘black boxes’, especially when an 
automated decision seems to overlap with what is considered to be a typical 
designer decision.  

• However, having accurate information on the plan’s characteristics, namely density 
data, is seen as a positive feature of the design environment as it improves 
awareness of the properties of the proposed solution. The designers interviewed 
agreed that decision-making could be improved as a result of such awareness. 
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One of the questions included in the questionnaire asked for suggestions for improving 
the implementations. Palmboom commented that after fine-tuning a layout, a 
designer works on the street profiles and therefore suggested that it would be 
interesting to find similar features in the software. An identical suggestion came from 
the architect Paulo Pedro in Portugal. This suggestion is very interesting and easy to 
implement following the street description (SD) and street component (SC) classes in 
the ontology (see Table 4, page 101 and Table 5, page 105). It is already part of the 
planned future work and is reasonably easy to implement.  

§ 7.6      Recommendations for the development of City Information Models 
(CIM) 

The question of whether the concepts developed in this thesis are extendible to 
architectural design emerged frequently during this research. BIM is, in fact, the 
structure in question and as such the answer is yes. The argument of the City Induction 
research team is that the structure proposed at the level of the City Induction goals is, 
in fact, a City Information Model (CIM), for which CItyMaker represents the design 
environment. Whereas in BIM we find an ontology modelling concepts such as walls, 
windows, rooms and their components, in CIM we find an ontology modelling axes, 
streets, their components, blocks, buildings, plots, and so on. In CIM, in order to avoid 
the criticism of BIM objectors regarding the difficulties in dealing with the first steps of 
design decision, CItyMaker introduces axes as the first compositional elements, using 
an existing feature of geographic information systems. In GIS, axes are the 
representations of thoroughfares at the lower level of detail (LoD1). As structured in 
this thesis, the CIM design environment contains additional generative features that 
provide the design system with tools to deal with flexibility that are particularly apt for 
the design of flexible urban systems. 
The development of design environments for City Information Models aiming to create 
user-friendly urban design environments should encompass the following goals: 

1 Understanding the urban design process and how designers work; 
2 Compatibility with GIS systems; 
3 Retrieving information from GIS and storing designs and design driven information 

in GIS; 
4 Providing the maximum possible information, whether visual, qualitative or 

quantitative, in order to support design decisions. 
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Taking these goals into consideration, the following paragraphs define a set of 
recommendations for the development of design environments for City Information 
Models. 
 
Recommendation 1 – Define a GIS compatible ontology modelling the concepts 
involved in the urban design process. The structure of this ontology is shown in Figure 
9 and further developed with detailed insight into the street system described in 
Section § 5.4      , page 92. The ontology should contain the concepts involved in the 
urban design process and not simply a descriptive structure of the urban environment. 
Such concepts should also involve the base measurements for the calculation of 
indicators that might play a direct role in decision-making. 

Recommendation 2 – The design environment should be based on generative features. 
Shape and description grammars are particularly suitable for this purpose because they 
provide generative behaviour that maintains a representational structure compatible 
with GIS environments. In order to provide this compatibility, the design environment 
should be based on compound forms of shape and description grammars to compute 
concepts (shapes and other components of urban concepts) taken from a relational 
structure of urban concepts, that is, taken from the ontology. 

Recommendation 3 – Designers do not care about shape grammars or the related 
technical details. The generative features and design interface that concern them 
should hide those technical details and use a language common to urban designers. 
Therefore, design patterns should be used that encode urban design moves 
corresponding to common urban design instructions that can be understood by 
ordinary urban designers. The parameters and options available for each pattern 
should be also familiar to urban design practice and be meaningful in terms of design 
manipulation. The simplest way to present this idea is to call these design patterns 
typical urban design commands. In this thesis they have been called urban induction 
patterns to underline their generative properties. 

Recommendation 4 – Define patterns as abstractly as possible, allowing for 
customisation as the means of providing them with designer specific language and 
avoiding the imposition of a design language. Patterns should preferably be defined 
with a very high level set of instructions common to an abstract design move. Personal 
interpretations of the design move should be captured by storing a set of user-defined 
instructions to fill in the gaps in the generic shape grammar code. The instructions 
stored capture a customised interpretation of the generic design move. Therefore, the 
design system needs to have a library of custom patterns which a designer might reuse 
whenever the context offers the opportunity to do so. Such a design environment is 
customised gradually, capturing the design language of the designer and providing it 
for reuse in further designs. It should be always borne in mind that designs consist of 
an arrangement of design moves. 
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Recommendation 5 – Provide information that can be captured from the model (the 
geometrical and data model). Density-based indicators are particularly useful for 
supporting design decisions. Berghauser-Pont and Haupt provide the best theoretical 
calculation model to support such calculations and additionally a set of derived 
indicators which are very informative in terms of supporting design decisions. All the 
indicators defined by these authors can be calculated from the geometrical model 
generated with the methods defined in this thesis. 

Recommendation 6 – Provide a correct design environment, showing the geometrical 
model, visually processed information (e.g. colour coding for density), graphically 
processed information (e.g. the pie charts in Model B) and accurate calculations of all 
the useful indicators in an easy-to-read database. Provide fast access to the 
information, facilitating panning and zooming within the design interface and 
information queries.  

Recommendation 7 – Make the model as reactive and responsive as possible, updating 
information for designers as soon as it can be captured from the geometry generated. 

Recommendation 8 – The design environment should offer selectable design moves 
(UIPs) which progressively, move by move, form a design. Design moves should be 
programmed following the structure proposed in this thesis: moves are coded with 
compound forms of discursive grammars computing shapes and concepts found in the 
classes of an ontology describing the urban design process. 

To summarise, the generation system has the following structure: 

1 An ontology describes the concepts used in the urban design process. The ontology 
follows the structure indicated in Figure 9 and can be extended.  

2 The generation system is defined by a very generic and broad urban grammar Γ   
defined by all possible arrangements of UIPs. 

3 UIPs are compound forms of discursive grammars generating a design move. They 
contain grammars computing shapes and concepts found in some classes of the 
ontology. They are a sub-grammar γ  of a specific urban grammar Γ '  composed of a 
specific set of UIPs: 1 2 3Γ ' ... nγ γ γ γ= × × × ×  and  Γ 'γ ⊂  

4 A specific UIP uses only a few sub-grammars iγ  in which i refers the class in the 
ontology. A sub-grammar iγ  generates only one particular layer or type of 
representation related to the object class i, using a discursive grammar of the form: 

{ , , , , , , , , , }i i i iγ D U G H S L W R F I=   
5 The generation system generates representations of objects separated in layers. 

Each layer contains only one thematic representation (e.g. axes are generated by 
grammars computing shapes found in the ontology class AN) and one geometrical 
type only (points, lines or polygons). 
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The structure described above guarantees GIS compatibility and maintains the 
semantic structure of the system. 
The recommendations described above should be followed in the development of the 
design environments for City Information Models. They provide a correct structure for 
GIS compatibility, generative design capabilities for the design environment and an 
information flow on the properties of the design being developed, thus enhancing 
assessment. 
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8    Discussion 

The main driving force behind this research is the problem of planning and designing 
for the complex behaviour of cities. Flexibility is proposed as the means of dealing with 
complexity. The underlying concept is to promote flexibility in the design process and 
foster the design of flexible urban systems. This approach was suggested by several 
authors, as explained in Section § 4.2      - (Ascher, 2001); (Gausa, Hammond, and 
Hammond, 1998); (Friedman, 1997). The main idea is to abandon the traditional 
production of plan layouts, replacing this practice with the production of systems able 
to encompass changes in contextual conditions as well as changes in the 
implementation process. In other words, it should be able to support urban design as a 
negotiation process rather than a top-down decision process. Previous work involving 
shape grammar and pattern-based design suggested the use of such formalisms to 
support the goal of flexibility (Beirão and Duarte, 2009). This thesis presents a 
theoretical framework for urban design involving a design method and a 
computational tool based on the generative behaviour of shape and description 
grammars.  

The central research question is: what is the structure of an urban design tool that is 
capable of generating flexible urban designs for a given context and providing data that 
improves understanding of the design? 

As a response to this question the thesis develops the theoretical structure for an urban 
design tool based on compound forms of shape and description grammars that 
replicate urban design moves. The main concept is based on Schön’s observations of 
design practitioners, identifying design synthesis as a series of design moves 
interspersed with moments of reflection on the results of each move. The design 
system proposed in the thesis is built on the observation that practitioners in the field 
of urban design share a large amount of design moves. It was observed in a set of case 
studies that these could all be generated from a small set of design moves. From these 
observations it was possible to identify a set of common design moves used recurrently 
by urban designers and infer their respective generative rules. They were called Urban 
Induction Patterns and they contain a discursive grammar which replicates the design 
move in different contexts. UIPs are generic design moves with a template code. This 
structure can be exploited by the designer by manipulating the available parameters 
and options displayed by the UIP. In addition, some UIPs are customisable. They 
contain a set of common rules and instructions for recording a set of customised rules 
which are stored in a library of pattern types for future application. UIPs are selected 
progressively throughout the design process until a design is completed. A whole urban 
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grammar is therefore synthesised from parts of the grammars of UIPs. The result is a 
customised urban grammar defining the flexibility space of the urban plan. The plan 
layout generated is an illustrative instantiation of the urban grammar that better 
expresses the designer’s intentions.  
This theoretical model was called CItyMaker. It was designed to support the 
implementation of an urban design generation tool. It also constitutes the generation 
model for the City Induction research project which, together with other two models, 
defines a tool for formulating urban programmes, generating designs for the 
formulated programme and evaluating alternative designs. In order to guarantee its 
independent use, CItyMaker was developed as a practical tool capable of designing 
urban plans independently of the other two modules. This means that the 
programmatic data can be acquired by the designer using any common tools available 
or any traditional means. Such information is inserted into CItyMaker as input to 
produce a design. Geometrical data is imported and alphanumerical data is inserted 
through the available interfaces. However, the production of a design needs 
continuous reflective action on the results of trial moves. Moreover, such reflective 
action is based on data associated with a layout rather than simply the layout. As such, 
the tool prototypes were equipped with an interactive interface that combines visual 
information on formal composition with other information useful for decision-making, 
namely information on density indicators and some performance density-based 
indicators. This structure allows the designer to carry out ongoing evaluations of 
his/her design decisions before considering a solution for more extensive evaluation 
procedures.    

§ 8.1      Achievements and contributions 

The main scientific contributions of the thesis are: 

1 A theoretical model for an urban design tool involving generative design 
capabilities and an accompanying design method. The theoretical model provides a 
structure for urban design generation compatible with a GIS representational 
structure, including calculations on density-based indicators. The model provides a 
flexible design platform for the production of flexible urban designs. The flexibility 
space is defined by a specific urban grammar that is synthesised during the design 
process. Therefore, the thesis contributes to the field of computational methods 
applied to urban design theory. 

2 An ontology describing the concepts involved in the urban design process, which 
contributes to the development of knowledge bases for urban design. 
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3 A shape grammar formalism for developing urban grammars, which contributes to 
the field of shape grammar studies. 

4 A set of recommendations for developing software for urban design, namely in 
terms of how it should be structured to support GIS interoperability. This 
contributes to the field of computational methods applied to urban design. 

5 A design method to enhance the quality of the information flow supporting design 
decisions in urban design processes. This contributes to the field of computational 
methods applied to urban design theory and to urban design practice. The method 
enables design decisions to be rooted in better grounded information. 

6 A tool for supporting studies on the relationships between urban morphology and 
density. This contributes to urban morphology studies by improving awareness of 
the relationships between urban morphology and density. 

The contributions made by this knowledge to design practice are likely to improve the 
quality of urban design, its management and response to complexity. In other words, 
the above contributions will allow for improvements to flexibility in the urban design 
process. Without introducing any other meaning to the term sustainability than the 
internationally accepted one [WS10], the approach proposed in this thesis will 
certainly provide a step forward towards the production of more sustainable cities, at 
least in the sense that it provides a greater capacity for designing cities that are able to 
adapt to the evolution of societies36.   
The improvement in data flow during the design process is also likely to improve the 
efficiency of participatory processes, in the sense that the proposed systems allow for 
alternative scenarios to be considered and supporting data provided for each scenario. 
Based on the improved information on the alternative scenarios, the stakeholders 
involved are in a better position to evaluate the consequences of the available 
alternatives. This is likely to improve the quality of decisions on how to shape our cities. 
From a social point of view the process can be both better informed and more 
democratic. 
Regarding shape grammar studies, one of the main problems in research involving 
shape grammars is that it has failed to interest designers in using them in design 
practice. This is probably due to the fact that most research has focused on the use of 
shape grammars for analytical purposes and, in particular, the analysis of historical 
styles, e.g. (Stiny and Mitchell, 1978), (Buelinckx, 1993), (Flemming, 1987). Designers 
are usually interested in two things: (1) solving a design problem and (2) finding some 
innovative, expressive way of doing so. As such, a scientific domain that does not 
present strategies for producing creative design does not attract the attention of typical 
designers. In addition, with regard to problem solving, design problems may contain 
several determined components which are by definition computable components, but 

  
36  Note that references cannot be made to city sustainability without considering both building and urban 

planning sustainability. They are interdependent. 
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many components of design problems fall in the category of undetermined and 
underdetermined components (Dorst, 2004). The latter components tend to be 
stressed by most designers as the main characteristics of design as a creative activity, 
unlike engineering problems. Undetermined and underdetermined components of 
design problems are difficult and, in most cases, even impossible to compute. The 
understanding of design problems is, as pointed out by Lawson, built up progressively 
from a process of negotiation with evolving solutions. A grammar therefore also seems 
too definitive a formalism to deal with this problem. 
However, recurrent procedures can be identified in design practice and, in particular, in 
urban design practice. When interviewing Frits Palmboom, a brief summary of the 
research was given to him at the beginning of the interview including a short 
explanation of shape grammars. He was also told that the aim of the interview was to 
understand what his design rules were when designing Ypenburg. His first reaction was 
typical37. He immediately replied: ‘I do not use any rules.’ The question was then 
rephrased by inquiring about his design methods. Frits Palmboom proceeded to 
explain that he always followed a similar procedure, starting with a visit to the site. 
After a while, to explain his first design move, he said: ‘I always search for the longer 
line in the territory’.  He then, picked out some other designs to reinforce this 
statement and explained his interpretation of the same concept in other plans. 
Palmboom is absolutely aware of the recurring moves he makes. He sees them as a 
personal method but does not accept the use of the term ‘design rules’. This can 
perhaps be explained by the fact that methods are perceived of as flexible and open to 
personal interpretation whereas rules are perceived of as strict procedures. Shape 
grammar rules are, in fact, strict in the sense that each rule is bounded by the limits of 
their particular parameters. The freedom of a grammar, however, is essentially defined 
by its versatility in combining rules rather than their parametric freedom. Nevertheless, 
a grammar defines a design language of some kind and most examples found in 
scientific literature include examples of classical styles. Designers find two problems in 
this: (1) they are not interested in designing using an old-fashioned design language 
and (2) they are interested in developing their own language, which means defining 
their own design rules. Designing using a given language is simply rejected by most 
designers, even if they end up following some conventions. It is therefore necessary to 
allow designers to feel this freedom. 
The main perspective in this research is that if we provide the necessary space for 
designers to develop their design languages, assuming that they may be interested in 
exploring the generative potential of shape grammars, they may find new interests in 
their use. There are two interesting aspects to the use of shape grammars in design. 

  
37  Since I started working with shape grammars this has been a common reaction every time I explain the 

concepts involved in rule-based approaches. Due to the designer’s continuous quest for originality, they all 
want to affirm the uniqueness of their methods and design language. As such, the usual reaction is to say 
that they do not follow any rules, even if the rules might be of their own making. 
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The first is the possibility of exploring a world of potential solutions quite easily. The 
second is the possibility of designing systems of solutions rather than one single design 
solution. The latter is particularly interesting in the field of urban design because 
flexibility and a flexible space are part of the intended goal of an urban plan and 
grammar-based systems do respond to such needs. Another aspect of the problems of 
shape grammars is that the formal aspects of rules are not important at all to most 
designers, who are more interested in the meaning of particular shapes in particular 
contexts – semantics rather than formal composition. This is particularly significant in 
the case of urban design, as formal composition is far from being the most important 
aspect of the process. Description grammars, however, are capable of dealing with 
these aspects, as shown in this thesis. 
The urban induction pattern formalism presented in this thesis represents a step 
forward in terms of the use of shape grammars in design synthesis by providing an 
approach that respects typical design practice. The rules are more or less hidden from 
the designers, who are instead presented with optional moves using recognisable 
names for the moves themselves and for their parameters. The design, as well as the 
design language is built up progressively from individual decisions in similar ways to 
those found in traditional practice. By using UIPs, the designer deals with concepts 
s/he understands and only has an indirect relationship with the rules. Meaning is 
guaranteed by the use of discursive grammars operating with objects found in a 
relational structure – an ontology – for the concepts manipulated in the urban design 
process.  
Recently, in an eCAADe2009 keynote speech, Stiny argued that design is recursion + 
embedding, stressing what could be called the main properties of shape grammars. 
Such an argument concerns exclusively visual reasoning with shapes and excludes 
other meanings attached to shapes. It could be said that it is this lack of meaning that 
allows Stiny to include all the shapes in a design language so easily in a single shape set 
S. Considering the four components of shape grammars included in Stiny’s definition, 
a set of shapes (S), a set of symbols (L), a set of shape rules (R) and an initial shape (I), 
this thesis proposes replacing the set S by a relational structure of shape sets such as 
the ontology of the urban design process shown in this thesis. Therefore a single set of 
labelled shapes is replaced by a relational structure of sets of labelled shapes 
corresponding to the object classes in the city ontology. With such a structure a 
relational structure of shape grammars is obtained. However, designing also involves 
other concepts that cannot be represented by shapes. To deal with these concepts 
Stiny provided an additional formalism – description grammars (1991) – to provide 
additional design information related to those concepts which can be used to support 
the generation of design solutions. These concepts are not represented by shapes but 
can be attributes or properties of shapes and they are also part of the ontology. In 
short, this thesis proposes that design systems aiming to generate meaningful designs 
need to be structured as compound grammars, including shape and description 
grammars that are able to compute concepts taken from a relational structure of 
concepts within a particular design domain. 
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Regarding urban design, the thesis also contributes new propositions, namely a 
conceptual model for the development of flexible urban plans and a model for integrating 
design-related information into the design workflow, particularly the density-based 
indicators that are calculated parallel to the development of design solutions.  
As this thesis has shown, the proposed model contains or promotes the use of 
systems, types and patterns due to their ability to capture tacit knowledge 
accumulated from a long history of architectural experience. As demonstrated 
earlier, CItyMaker can deal with these concepts and seems an adequate approach to 
the problem of designing flexible urban plans. It is proposed that flexibility is 
expressed formally by an urban grammar defining the flexibility space of the plan. An 
instantiation of the grammar is proposed as an example of the system’s application. 
Therefore, the thesis proposes a formal structure for designing flexible urban plans 
and two prototype tools to support such a practice. However contradictory the two 
arguments may seem – originality versus the use of systems, types and patterns – it 
is important to argue here that both aspects are important in design practice and any 
design tool should be able to accommodate both characteristics. It should be 
sufficient to point out that even Le Corbusier, whose work is possibly the most radical 
example of breaking with history, is constantly supported by historical references. 
Design is always a compromise between a certain degree of experimentalism and 
some level of established cultural knowledge. The extent to which one dominates the 
other depends on the skills and responsibility of the designer. In CItyMaker, both 
approaches are available for designers to select. In all cases, the tools proposed here 
improve technical awareness regardless of the design options, due to the 
information displayed. The tool therefore provides the means to investigate the 
relationship between urban types and qualitative indicators further, thus 
contributing to future studies on urban typology and urban morphology. 
As an additional contribution, the model was prepared to interact easily with the 
most common analytical tools, namely geographic information systems. Analytical 
tasks are particularly important in urban design in comparison to architectural 
practice. The pre-design analysis of the context and related data, as well as the post-
design analysis of the plan integrated into the context usually involve complex 
analytical procedures and a large amount of geo-referenced information. Geographic 
information systems are particularly suitable for executing such analytical tasks or 
supporting the use of other analytical tools such as space syntax or place syntax, or 
any kind of topology-based spatial analysis. Given the importance of analytical tasks 
in urban design, the proposed design system is structured to receive processed data 
from a GIS-based analysis and generate designs in a GIS compatible format involving 
correctly structured representations and associated data. This feature of CItyMaker is 
due to the relational structure of grammars provided by the ontology which enables 
GIS compatible representations to be generated. Moreover, in order to enhance the 
designer’s awareness during the design process, the system was structured to inform 
designers about density-based indicators after each move. This addition is perhaps 
one of the most interesting features of the design model and it is particularly evident 
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in the Model B implementation. The important role of density-based indicators in 
the urban design and planning process was quite clearly stressed in Berghauser-Pont 
and Haupt (2010) and Model B follows its mathematical model accurately in 
calculating the indicators.   

§ 8.2      Limitations 

The main limitations of the CItyMaker model are related to the wide subject area and 
its integration within the City Induction project. The main limitations of CItyMaker are: 

Regarding the theoretical model: 

• The model still needs developing to enlarge the scope of its use. Although partially 
solved in Model B, there are no UIPs including grammars to deal with curved 
streets. The theoretical model would certainly be improved by the addition of new 
UIPs, in particular for dealing with curved streets. 

• The shape grammar formalism always implies some degree of language pre-
definition. However, the model could be improved if the overall structure was 
divided into two UIP levels: high level customisable (concept oriented) patterns and 
detail level patterns with a higher level of automation for production. 
 

Regarding model A: 

• Programming model A is a very time consuming task and therefore the 
implementation is still limited in terms of the scope of its results in comparison 
with the expectations created by the theoretical model. 

• Reflexivity depends on a history registry (not implemented yet) and in all cases 
implies returning to some previous stage of the design. 

• The interface is less appealing than the Model B interface. However, its integration 
within the AutoCAD environment clearly presents it as an extension of this 
platform’s capabilities. 

• Data is only available in the database. There is no graphic treatment of data to 
improve visualisation and data legibility, as in Model B. 

 
Regarding model B: 

• Although the data in the Grasshopper model is always available, no data has been 
exported to the City Induction database yet. 

• Due to the feed-forward characteristics of Grasshopper, the model has serious 
limitations in terms of the use of recursive functions. 

• The model becomes very slow if the geometrical features become too complicated, 
making the computation of large urban areas more difficult.  
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• Model B implies the simultaneous use of two software environments, the drawing 
platform and the programming platform, although this also makes Model B very 
interactive and legible in terms of the interaction between the geometric model 
and the database. 

 
Regarding the overall research: 

• The proposed models do not have enough integrated calculations or tools for 
topology-based assessment. Considering the extensive use of topology-based post-
design evaluation in urban design, the models could be greatly improved with the 
introduction of some real-time calculation of topology-based indicators. This, 
however, implies extensive research into the subject, namely cross-referencing 
state-of-the-art research on these topics with parametric urban design models. 

The limitations concerning the two prototypes are not particularly important in terms 
of the validity of the proposed methods and theoretical model. In principle, they can be 
overcome simply with more work. However, they would certainly profit from research 
focussing on interface development. Nevertheless, it should be said that Model A 
follows the theoretical model in detail and that this structure is particularly suitable for 
extending the AutoCAD Civil 3D platform into a CIM platform. Extensive development 
of this model would provide an efficient tool for urban design. The rule-based approach 
not only provides GIS compatibility and data on urban indicators, but also a tool for 
exploring alternative solutions. Model B approaches the theoretical concepts in a 
different way, taking advantage of the parametric properties of Grasshopper. This 
model shows a high level of usability in urban design due to its parametric flexibility, 
good interaction at the level of the geometrical model and user-friendly interface. 
However, despite its good parametric features, it has many limitations in terms of 
recursivity, which is the main property of shape grammars and definitely the main 
characteristic of the theoretical model. The lack of recursivity has been partially solved 
using two different approaches, as shown in Section § 7.3      , page 205. However, 
there is a difference in usability and interactivity in the Grasshopper models that 
include recursivity: the recursive behaviour is made possible due to a break imposed in 
the information flow allowing for feedback. This characteristic decreases the 
interactivity of the parametric model. In fact, Model B clearly works better without the 
use of recursive functions. In the end, it becomes evident that there are advantages 
and disadvantages to both models. 
The limitations regarding the theoretical model are substantially more important.  The 
first limitation cited above can (in theory) be overcome with more work on developing 
complementary UIPs to extend the scope of the tool application. However, the 
structure of shape grammars really creates limitations. The pre-definition of design 
languages has been clearly indicated from the beginning of this thesis as a limitation 
on shape grammars. Much of the work involved in developing the theoretical model 
concerned this aspect and led to the UIP concept. The problem was solved with the use 
of independent design moves (UIPs) which can be combined in different ways by 
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designers to form a customised design language. However, there are still limitations, 
due to certain shape grammar properties. There are essentially two difficulties that 
need to be solved: 

1 The generation of meaningful curved urban fabrics. Shape grammars computing 
curved shapes use very complex mathematics and face an added difficulty in terms 
of shape recognition. To overcome the latter, the development of shape grammars 
requires the development of very abstract grammars which creates extra difficulties 
regarding the semantic attributes of shapes. 

2 The use of more complex shapes, namely curved shapes, increases the difficulties 
concerning subshape recognition. However, it should be possible, with the same 
methodology used in this thesis, to find typical design moves using curved shapes 
and translate them into UIPs with reasonable accuracy without losing the required 
flexibility. As an example, recurrent ways can certainly be found for designing 
streets following the lowest slope to climb hills and therefore develop design rules 
for a generative pattern to design streets that adapt to topography. Another pattern 
could generate streets that follow the level along a hilly site. In addition, research 
into curved shape grammars has improved recently (Jowers and Earl, 2011) and 
may offer new answers to issues previously considered difficult to solve.    

It is not easy to fully integrate analytical tools, which are usually specific to each 
analytical phase, and is even questionable. Practice should be structured in such a way 
that those who decide what a site needs (the programmers) are not the same as those 
designing the formal expression of these needs (design generation) or the ones 
evaluating the proposals (the evaluators). The idea is to avoid corrupting each phase 
with conflicting interests from another phase. However, an awareness of all phases 
should improve decisions, since it provides more information to support decision-
making. Nowadays topological analysis of street networks is one of the most important 
analytical processes used in urban design, and in space syntax in particular. Due to the 
characteristics of the software and the analytical method, analysis is essentially a post-
design method38. In any case, because these techniques are capable of informing 
designers about several qualities of the street network it could be extremely useful to 
have intermediate analysis during the design process. This is perhaps the main 
limitation of CItyMaker, although the integration of CItyMaker within the City 
Induction model should partially overcome this problem. Nevertheless, this is still a 
partial solution in the sense that the analytical procedures are not directly integrated 
into CItyMaker but only complement it in the post-design phase – i.e. the analysis is 
still a post-design analysis. However, the recursive street grid shown in the 
development of prototype B includes the possibility of involving a partial route 
structure analysis which provides some insight into the qualities of the street network. 

  
38  It can also be used in the pre-design phase, but any analysis implies the existence of a finished design. 
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Although promising, this feature is not totally functional yet and needs further 
development. 
Before ending this section it should again be made clear that the scope of this thesis 
involves only the design phase and does not include programme formulation or design 
evaluation. Firstly, a designer can design urban plans with CItyMaker by informing the 
inputs with any means available. Independently of the City Induction components, 
inputs may come from any tools that a designer considers useful for the purpose and 
are subject to expert judgement. Secondly, CItyMaker provides the freedom to explore 
the available design space and produces related data which should be subject to critical 
judgement. This critical judgement is an evaluation process in which the criteria 
defining the benchmarks should be set by the appropriate means. CItyMaker only 
generates the data needed for evaluation and does not constrain design exploration in 
any way. This characteristic allows for generic application, whereas interpreting the 
information is still a task reserved for the designer. 
Typically, the communication of ideas and concepts in urban design is influenced by 
architectural forms of communication, namely through the development of 3D models 
for visualisation. This approach involves two dangerous aspects: firstly, it tends to make 
the urban dependant on the architectural image, and secondly, it imposes a definitive 
image on what should not have been defined yet. Additionally, for production reasons, 
these images tend to show a monotonous environment replicating the same 
architectural types ad infinitum. CItyMaker deliberately dispenses with the image of 
buildings to concentrate on the urban scale parameters, maintaining architectural 
image as a free design field. Therefore, the generation model was not structured to 
generate end result 3D images but rather to develop models that enhance the reading 
of design support data, namely density indicators or derived qualitative indicators. This 
is certainly a good structure for design tools to use during the first design steps. 
However, there are also setbacks to this structure. For instance, the architectural image 
or shape does have some influence on the formation of the urban environment and 
captures the attention of lay people. Normally, when shown to the public, rendered 
models tend to be preferred to abstract models even if the abstract models contain 
additional data to support the design options and have the advantage of maintaining 
architectural flexibility. Furthermore, there are important details in terms of the 
definition of urban spaces that have implications for architecture, such as the location 
of entrances, number of entrances or street-building permeability definitions, façade 
continuity, etc. These paradoxical aspects of design communication need to be 
managed in an ethical manner according to whom the design is being shown, but this 
is also, of course, an invitation to manipulation by marketing. Democracy imposes an 
open approach but underlines the importance of disclosing supporting information 
and the importance of the ethical use of information and the tools for visualising it.   
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§ 8.3      Potential developments and future work 

It is clear from the statements in the previous section that CItyMaker still contains 
quite extensive opportunities for future development. Three different kinds of possible 
future developments can be considered, first concerning the theoretical model and 
then the two prototype models. 
In terms of the theoretical model there are two main issues that need further 
development: the ontology needs further detailing and research still needs to be 
undertaken into the development of new UIPs. Both kinds of developments are 
concerned with the goal of extending the application scope of the system. 
Regarding the ontology development, further work should involve the representation of 
property and land use, specifically focusing on how such concepts and representations 
are used in the urban design process. The same could apply to the representation of 
landscape and natural features. However, because the ontology is a communication 
protocol common to the City Induction research project, future developments on this 
level should involve the whole research team. To be more precise, the work in question 
should involve integrating the ontology for the urban design process with the ontology 
developed for programme formulation (Montenegro, Beirão, and Duarte, 2011). This 
work is already in progress (Montenegro, Beirão, and Duarte, 2011) but will still take 
time to reach a satisfactory conclusion. Given the scope of CItyMaker, some ontology 
concepts should be detailed, comparing the existing land use standards with common 
design practice and, specifically, understanding how the design synthesis process uses 
and transforms property and land use concepts. This means not just detailing the 
ontology but also developing new UIPs for the synthesis of land use operations.  
There are two main kinds of design operations involving property and land use (i.e. 
involving zones): (1) those resulting from morphology-oriented design synthesis (2) 
those resulting from land use-oriented design synthesis. Design operations defining 
morphological synthesis have implications in terms of property definition. For 
instance, subdividing a site with two composition axes, e.g. a cardus and a decumanus, 
also defines a subdivision of the property structure into four partial subdivisions of the 
existing structure. This kind of operation corresponds to a type (1) property and land 
use oriented synthesis. However, some urban design strategies may be based on strict 
land use operations rather than morphological composition. This practice needs 
further investigation and consequently the development of UIPs for this design 
practice. A UIP has already been developed for operations resulting from morphology-
oriented design synthesis (1), specifically an automatic operation that is used each 
time a composition axis is applied to divide a zone into two parts. The UIP is PZSubdiv 
(Property Zoning Subdivision) – see Appendix 2. Basically, every time an axis is 
generated, this UIP is also applied in parallel, using the generated axis to subdivide the 
existing zone into two parts. In the case of AddingAxis the pattern is applied recursively, 
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axis after axis. However, the equivalent operation for the generation of grids by 
AddingBlockCells still needs to be developed.  
With regard to the development of new UIPs, a particular set of patterns should be 
further investigated and explored, specifically patterns involving bottom-up district 
generation. This research has already begun, as can be seen in the examples of the 
InitialUUnit, AddingBlockTypes, and AddingClusters UIPs (see Appendix 2). Some 
derivations were actually studied by testing trial grammars for the referred UIPs but at 
a certain point during the research process this was seen as diverting the research to 
another topic – the topic of emerging urbanism. This topic is definitely interesting and 
the examples from work by students found in (Beirão and Duarte, 2009) clearly show 
the value of the approach but the research should be developed within an appropriate 
framework. Specifically, it should start from a discussion on how a bottom-up 
approach should be framed in terms of design methods, planning methods and 
planning goals, classifying the concepts involved in these methods, their components 
and attributes. Only after such a classification can UIPs be developed objectively for 
this purpose, which was why this line of approach was temporarily abandoned – it 
requires specific research on purpose and methods. Taking this into consideration, the 
work concerning bottom-up generation developed so far should simply be seen as 
speculative, although indicative of a promising research field. Some information on the 
studies developed can be found in Appendix 3. 
Regarding the prototype models, there are still a large number of areas for future 
development. 
 
As it was stated in Chapter 7 as part of the conclusions regarding Model A, although 
following the theoretical model accurately, the model still needs further work to 
achieve all the intended goals. To summarise, the main features for future 
development are: 

• upgrading the use of references (Refs) by assigning them to lines and polygons; 

• cross-referencing references with weights and meanings (using labels) in order to 
establish priorities based on specific classifications of existing elements; 

• developing automated approaches for the classification of design elements, 
namely the classification of islands considering specific distribution criteria; 

• improving the use of heurists to filter the solution space better; 

• automating plot subdivision; 

• creating typology libraries for design reuse; 

• improving the network structure generated in an accurate GIS compatible format 
and integrating topology-based analysis; 

• developing a user-friendly data output interface; 

• implementing a larger number of UIPs in order to extend the design space to a 
widely acceptable space. 
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When comparing Model A with Model B it was said that the main characteristic of 
Model A was its accurate implementation of the theoretical model and the main 
characteristic of Model B was its parametric responsiveness. Improving responsiveness 
in Model A would certainly improve the value of the model in terms of design, data and 
visual interactivity. The best approach (planned in the theoretical model but not 
implemented) would be to keep a record of all the moves, options and parameters 
involved, allowing the designer to re-generate solutions from any point in the process 
or simply change the parameters involved. Recording options and parameters was 
actually the strategy used for developing customisable UIPs. What is proposed here is, 
in fact, to extend the possibilities of this procedure to the overall design process. From 
a theoretical point of view it is important to stress that the final set of UIPs defines an 
urban grammar which establishes the scope of the urban system for which a particular 
set of parameters instantiates an illustrative plan. In this sense it can be said that 
Model A preserves the idea presented in the theory that the flexibility of the plan relies 
on the flexibility of the grammar. The argument in terms of urban design is that the 
final implementation can be changed as needed during the process as long as the 
grammar remains unchanged. The grammar guarantees that the designs generated 
will fall within the design space of the language defined by the grammar. Consequently 
the urban system defined by the grammar provides a certain formal control for the plan 
without fixing a definitive layout. 
Model B presents a different paradigm. It does not have a rule-based structure. 
However, it contains most of the main elements found in the theoretical structure, 
namely main streets or guidelines, grids, squares, block exceptions defining public 
buildings or other city objects, height management and the distribution of land use. All 
these elements involve either numerical inputs or geometric inputs. All of them define 
a parametric model allowing for continuous adjustment of the design either by 
readjusting the position or reshaping geometries or by readjusting the numerical 
inputs. The system outputs density-based indicators following Berghauser-Pont and 
Haupt’s theory (2010).  
These characteristics make Model B an extremely dynamic and interactive design tool 
but it produces only one design solution. However, the flexibility lies in the ease with 
which the parametric model can be changed: the plan can be readjusted at any 
moment. 
It can also be said that Model B is not really a design tool in the sense that it implies 
readjusting a code based on design patterns to every new situation. For instance, if the 
aim is to design a plan with two sets of two main streets with different street widths, 
two design patterns will be needed  for main streets, two curves inserted as geometry 
inputs for each pattern and a different street width input assigned to each pattern. This 
process is nevertheless easy to manage. It may be said that it is more of a design 
method than a design tool. 
The best aspect of Model B is that it is extremely easy to extend the functionalities 
related to the calculation of density-based indicators. For instance, if all the input data 
and FSI and Network Density calculations are already available, only three additional 
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equations are needed to calculate the parking performance index: one to calculate the 
parking need, another to calculate the parking capacity and a third to calculate the ratio 
between the two. In fact, most of the calculations traditionally carried out in urban 
design can be very easily implemented. One of the designers interviewed mentioned 
that the parking performance index referred only to public parking and we also needed 
a control for private parking. He was right, but considering that the model already 
provides all the calculations for gross floor area distributed by use, private parking is 
not a problem to calculate. Again a few extra equations simply need to be added and 
the results displayed on a panel. Although a little more complex, the same kind of 
reasoning applies to the calculation of daylight performance39 .   
Considering the above, Model B can be very easily extended in terms of calculating 
density-based indicators and such calculations can be presented for three levels of 
aggregation: district, fabric, and block levels. 
A more fundamental task regarding Model B concerns fine-tuning the overall structure 
of the model, taking two things into consideration: 

• accurately structuring the code into sets of design patterns (Woodbury, 2010);  

• reducing the geometric operations as much as possible in order to reduce 
processing time. 

These two improvements and some extensions are already being implemented with 
the collaboration of City Induction grant holder Pedro Arrobas. 
Finally, it would be extremely useful to develop an analytical process within this system 
based on the topological characteristics of the grid. This is a very interesting approach 
and envisaged as very important since it may be able to offer topology-based spatial 
analysis during the design process. However, it involves an entire research field 
developing parametric-based methods for topological spatial analysis by adapting the 
existing theory (e.g., (Hillier, 1996), (Marshall, 2005), (Ståhle, Marcus, and Karlström, 
2007)). Another possible research field that could easily start with such a tool would be 
further morphological studies involving the relationship between urban form and 
density indicators and spatial analysis, providing useful continuity with the studies 
begun by Berghauser-Pont and Haupt. 
Testing the prototypes in real-case scenarios will generate new needs in terms of 
improvements. This may involve fine-tuning existing features or adding new ones and 
the work is already in progress. The municipality of Sintra in Portugal suggested using 
the CItyMaker tools and methods to address the study of alternative future 
developments in an industrial area within its jurisdiction. The stone transformation 
industry in this area had never been planned and the urban structure is now reaching 
chaotic proportions. The area includes three small villages with traditional architecture 
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(Berghauser-Pont and Haupt, 2010). 
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and a traditional structure full of urban features that could be rehabilitated. It is the 
aim of the municipality to study future scenarios for the area including, as main 
concepts, the rehabilitation of the industrial area to create an improved and qualified 
industrial park, rehabilitation of the existing urban centres to enhance their qualities, 
and an extension of the housing capacity in the area, introducing better housing and 
mixed use areas. The idea of the study is to envisage different development scenarios 
for the area, studying possible layouts and comparing them with urban indicators 
which may allow enough data to be produced to evaluate the likelihood of success for 
each scenario. In this work, the tools will be used to produce layouts and a set of pre-
defined measurements – the urban indicators already available in the tool and 
additional ones as needed. This work is being developed with a Masters student, Pedro 
Arrobas, and the outcomes will include his Master’s thesis. The work will be developed 
during the first semester of 2012.  When completed, the model is expected to have 
been tuned and an extended set of measuring tools added, providing additional urban 
indicators. 
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9    Conclusion 

This thesis addresses the problem of designing urban plans for dealing with the 
complex development of cities. It follows the suggestion made by several authors to 
define planning strategies based on flexibility. Flexibility is defined here as the capacity 
of a design system and method to adapt to unexpected changes in the design context 
or process. This definition embraces three applications of the term flexibility: (1) the 
design process should be flexible; (2) the resulting design (plan) should be flexible 
during implementation, and (3) flexible or easily adaptable throughout its existence. 
The thesis proposes a design method and a model for a design tool – CityMaker – 
aimed at designing flexible urban plans. The model was inspired by previous work 
using patterns and shape grammars to design urban plans (Beirão, 2005), (Beirão and 
Duarte 2009). Three main concepts were used to define the proposed model: (a) 
systems, (b) patterns, and (c) shape grammars, as detailed below. 

a System is quite a general concept involving the composition of thematic 
elements within a thematic context – in this case the thematic context is the 
design of urban plans and the elements are the urban elements from which they 
are composed, such as streets, squares, blocks, landmark buildings, etc. A system 
contains a certain number of selection rules and a definition of the relationships 
between elements defining the system structure. Any instantiation defines the 
system’s variant (Habraken, 2000).  

b Patterns are algorithmic structures involving the recognition of a common 
occurrence (in design practice) – the predicate condition – for which a common 
generic (design) solution is provided – the consequent. A combination of patterns 
defines a pattern language (Alexander et al., 1977). Patterns state when and how 
common design actions should be applied. 

c Shape grammars are also algorithmic structures involving shape transformations 
to generate designs. A shape grammar defines a set of transformation rules that 
apply step by step starting from an initial shape to generate designs (Stiny and 
Gips, 1972). Combined with description grammars (Stiny, 1981) and heuristics, 
they form discursive grammars (Duarte, 2005). This compound structure 
provides a rigorous formalism that is able to recognise descriptions of a 
contextual situation (or occurrence) – a predicate – and provides the 
transformation rules and descriptions of goals for a contextualised 
transformation providing a common solution to the recognised design problem. 
They are therefore an appropriate formalism for providing generative codes for 
patterns. 
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The proposed design model uses a concept called urban induction patterns (UIPs). 
UIPs are patterns replicating common generic design moves used by urban designers 
in their design practice. UIPs are provided with parallel compound forms of discursive 
grammars to replicate the design moves. A particular combination of UIPs defines an 
urban grammar or an urban design language. 
The model proposed in the thesis provides a large set of urban induction patterns 
encompassing the many phases of the urban design process – the main composition 
guidelines, grids, definition of urban units, transformations, public space 
management, building height and density management, street and public space 
detailing. Designers choose UIPs from the available set to generate their designs. A 
design is then progressively generated move by move (UIP by UIP) as in normal design 
practice, allowing for reflection between moves. The design space in CItyMaker is 
identified by a very generic grammar defined by all the possible combinations of all the 
available UIPs, their available options and parameter variability space. In addition, 
customisable UIPs provide the opportunity to extend the available grammar into more 
personalised areas of design. The design space becomes personal and unbounded. 
In theoretical terms, when using CItyMaker a designer develops an urban grammar and 
an instantiation of it. The former defines the flexibility space of the plan and the latter 
an illustrative plan layout. 
This thesis also proposes a methodological approach to urban design involving the use 
of various forms of patterns, as explained in Sections § 5.2       and § 6.2      . The 
method uses patterns with different levels of abstraction corresponding to the different 
phases in the design process (see Figure 6, page 86). It covers the entire design 
process, involving a participatory phase, a programming phase and a design generation 
phase (synthesis). Evaluation procedures are applied in every phase following any valid 
available methods and/or using any available tools. The participatory phase involves 
patterns used in a general sense, that is, the identification of recurring occurrences in 
the environment – fact patterns corresponding to predicates identified by participants 
– and the proposition of conceptual goals – concept patterns defined from standard 
solutions as a way of expressing a development vision. These patterns have a very high 
level of abstraction and represent very generic goals. The programme formulation is 
responsible for incorporating descriptions of the former patterns into the programme 
and others related to the application of regulations, quality standards, criteria for 
distributing facilities and other relevant particulars identified through a thorough 
analysis of the site context. This procedure provides detailed descriptions of the 
programme requirements which will be used in the design generation model to design 
the solutions. Programming patterns therefore represent an intermediate level of 
abstraction, formally defining design goals and urban induction patterns defined on a 
detailed level to instantiate design moves. This process should be as interactive as 
possible in order to maintain Lawson’s structure of the design process (see Figure 5, 
page 76). 
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Two prototype implementations were presented to illustrate the implementation of 
the theoretical model: Model A, implemented in AutoCAD, and Model B, implemented 
in Rhinoceros, using the Grasshopper programming interface. 
Model A represents an accurate implementation of the UIP structure presented in the 
theoretical model (see the pattern list in Appendix 2), but it is rather slow to 
implement and therefore the prototype is still quite incomplete. However, designs 
generated with this software follow the minimum requirements for supporting GIS 
interoperability: separating thematic representations and data, and further separating 
them into sets corresponding to different representation primitives – points, lines or 
polygons. 
Model B is an adaptation of the theoretical model to a parametric software 
environment, taking advantage of the interactivity and responsiveness of the software. 
Instead of following the UIP structure it follows a simplified structure of thematic 
components organised as design patterns. However, as shown in Section § 7.3      , page 
205, the patterns follow the same thematic structure defined in the theoretical model 
(see Table 6, page 121). During the development of this model, efforts were made to 
develop a user-friendly tool. The tool provides the opportunity to freely adjust the set of 
components and the respective parameters at any time, thereby allowing for a very 
interactive relationship with the designer. 
Both tools allow data to be extracted from any part of the geometric model. This 
enables a set of functions to be defined to calculate density-based indicators. The 
calculations progressively inform the designer about the consequences of his/her 
design moves in terms of density measures and density-based indicators. Any of the 
indicators shown in Figure 45 and Figure 46 can be calculated for any configuration of 
the plan. The meaning of such measurements is always context dependent but urban 
designers should be able to interpret this information and react to it according to 
contextual features. This information is, in any case, valuable because it quite often 
expresses planning objectives and information that need to be presented to 
stakeholders or planning authorities. If not for any of this purposes, it at least informs 
the designer about objective characteristics of the plan which cannot be directly 
perceived in the plan.  
The main scientific contributions of the thesis are: 

1 A theoretical model for an urban design tool involving generative design 
capabilities and a design method for its use. The theoretical model provides a 
structure for developing generative software for urban design compatible with a GIS 
representational structure. The model includes features providing automatic 
calculation of density-based indicators. It also provides a flexible design platform 
for the production of flexible urban designs. The flexibility space is defined by a 
specific urban grammar which is one of the products of the design process. This 
feature contributes to the field of computational methods applied to urban design 
theory. 
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An ontology describing the concepts involved in the urban design process. This 
feature contributes to the development of knowledge bases for urban design and 
the systematic description of cities. It is also part of the communication protocol 
between the three modules of City Induction and therefore its contributions extend 
to the contributions of this research project. 

2 A shape grammar formalism for developing urban grammars, or, in other words, a 
formal structure for developing grammars for urban design providing GIS 
interoperability. This contributes to the field of shape grammar studies.  

3 A set of recommendations for developing software for urban design and city 
information modelling, namely in terms of how it should be structured to support 
GIS interoperability. This contributes to the field of computational methods applied 
to urban design theory. 

4 A design method to enhance the quality of the information flow that supports 
design decisions in an urban design process. The method generates automatic 
calculations of density-based indicators providing more grounded information for 
decision-making. It contributes to the field of computational methods applied to 
urban design theory and practice.  

5 A tool for supporting studies on the relationships between urban morphology and 
density. It contributes towards improving awareness of the quantitative and 
qualitative characteristics of urban morphologies and urban types. 

 
The contributions made by this knowledge to design practice are likely to improve the 
quality of urban design, its management and response to the complexity of city 
dynamics. The improved data flow during the design process is also likely to improve 
the efficiency of participatory processes in the sense that the proposed system allows 
for comparison with alternative scenarios and provides data on each scenario to 
support decision-making. Stakeholders are therefore in a much better position to 
evaluate design scenarios and make decisions. From a social point of view, these 
features provide new grounds for opening up information to communities and 
stakeholders, thus fostering transparency. Communities may become better informed 
and objective, improving the outcomes of participatory events. The common criticism 
that participatory events, although more democratic are technically less reliable, may 
definitely be overcome. 
The new approach proposed in this thesis should help provide a step forward towards 
the production of more sustainable cities, at least in the sense that it offers a greater 
capacity for designing cities that can adapt to evolving societies. In other words, this 
thesis may contribute towards planning more responsive cities [WS1], by providing a 
set of tools and methods for this purpose. 
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Flowchart of the urban design tool	  
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 Invited lecturer – Parametric Urban Design - Interactive tools for supporting urban 
design decision making, April, 5th 2011, at ISCTE, Lisboa. 

 Invited lecturer – Strengths and opportunities for shape grammar approaches to 
urban design / the generation module for City Induction. November, 23rd 2009, 
at UniCamp, Campinas, Brasil. Lecture available online at: 
http://www.cameraweb.unicamp.br/midia=0500001 

 Invited lecturer at the Faculty of Architecture, Catholic University of Viseu,  
Portugal. Lecture entitled “Customized Architecture and Urban Design”. April, 
27th, 2009. 

 Invited lecturer at the Faculty of Architecture, TUDelft. Lecture entitled:  
“Customised Architectural and Urban Design”. April, 12th, 2007, at TUDelft. 

 Invited lecturer at the II International New Town Seminar, Almere,  
The Netherlands - 11-12, October, 2007. Lecture entitled: Urban Design with 
Patterns and Shape Rules. 

http://www.newtowninstitute.org/files/u8/summariesB.pdf 

   

 

Workshop and  
conference  
organisation 

 

Organisation of the workshop ‘Generative Urban Design’ for the Third Design 
Computing and Cognition Conference 08 in Atlanta on June 21st    

(workshop information and workshop proceedings available at 
http://mason.gmu.edu/~jgero/conferences/dcc08/ ). 

Beirão, J. N., Duarte, J. P., and Stouffs, R. (2008). Proceedings of Workshop 1 on 
Generative Urban Design. 3rd International Conference on Design Computing and 
Cognition. Georgia Tech, Atlanta, GA, U.S.A. 

  Workshop South Periphery: a house. With Manuel Gausa (Inst. de Arquitectura 
Avanzada de Catalunya).  FAUTL, 10th to 13th, March, 2005. Scientific Coordina-
tor – José Pinto Duarte. Organizors: José Nuno Beirão, Carlos P. Sant’Ana. 

 Workshop South Periphery: a territory. With Willy Muller (Inst. de Arquitectura 
Avanzada de Catalunya).  FAUTL, 9th to 12th, December, 2004. Scientific  
Coordinator – José Pinto Duarte. Organizors: José Nuno Beirão, Carlos P. Sant’Ana. 
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Exhibitions 

  Plug-n’-play House  

Exhibition ‘Uma Casa Portuguesa’, in Experimenta Design 2005,  Lisbon Art 
Bienal, Lisbon, September/October 2005. Exhibition showing proposals by 12 
Portuguese architect’s offices for the future Portuguese house. bquadrado  
arquitectos proposed the Plug-n’-play House, a customisable house with an 
autonomous additional nucleus plugged into a rigid common space. Bquadrado 
was one of the 12 invited architect’s offices. 

September 2005 

  Caldas da Rainha, Urban Lab  

Exhibition of student work developed at FAUTL showing the final projects by 
architecture graduates – supervised by José Pinto Duarte and José Nuno Beirão. 
Caldas da Rainha Town Hall, Caldas da Rainha, April 2004. 

  Commercial space architecture  

Exhibition at the António Arroio School of Arts, on built commercial spaces. This 
exhibition focused on shoe shop projects and showed photos and detailed  
drawings. Invited by the School Board.   

March 97 

  

Prizes (as architect) 

 1990 Public Competition for a university building - ISEG. Ajuda University Campus, 
Lisbon. 3rd prize. In collaboration with José António Martinez, Miguel Salgado Braz 
and Miguel Beleza in the second phase of the competition. 

1990 Public Competition – Ideas for the old wall of Óbidos (3rd prize). Honourable 
mention at the 1991 Évora Architecture Triennial,  (jury Álvaro Siza, João Luís 
Carrilho da Graça, Fernando Távora, João Vieira and Mário Barradas). 

1991 Limited Competition for ISCSP, Ajuda University Campus, Lisbon (4th prize).  
(Co-authored with architects Miguel Salgado Braz, José António Martinez and 
Miguel Beleza) 

1993 Limited Competition for the 2nd  Sintra  Triennial  (4th prize). 

1994 Public Competition for a monument to the city of Montijo (Secil – concrete  
sculpture) – 2nd prize. 

1998 Competition – Ideas for the Exposalão entrance hall. - 4th prize (Co-authored with 
architect Miguel Salgado Braz). 

2004 Public Competition for a Detail Plan for Rossio – S. Gonçalo – Amarante. 1st prize. 
(Co-authored with architect Miguel Salgado Braz). 

2004 Public Competition - Ideas for the Archaeological Area in the Ocreza Valley. 1st 
Honourable Mention. (Co-authored with architect Miguel Salgado Braz). 
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