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Abstract. On one hand, homomorphic encryption allows a cloud server
to perform computation on outsourced encrypted data but provides no
verifiability that the computation is correct. On the other hand, homo-
morphic authenticator, such as homomorphic signature with public ver-
ifiability and homomorphic MAC with private verifiability, guarantees
authenticity of computation over outsourced data but does not provide
data confidentiality. Since cloud servers are usually operated by third-
party providers which are almost certain to be outside the trust domain
of cloud users, neither homomorphic encryption nor homomorphic au-
thenticator suffices for verifiable computation on outsourced encrypted
data in the cloud. In this paper, we propose verifiable homomorphic
encryption (VHE), which enables verifiable computation on outsourced
encrypted data.

We first introduce a new cryptographic primitive called homomorphic
encrypted authenticator (HEA), which may be of independent interest.
Informally, HEA can be viewed as a homomorphic authenticator in which
the authenticator itself does not leak any information about the mes-
sage it authenticates. Next, we show that the fully homomorphic MAC
scheme, proposed by Gennaro and Wichs recently, is a fully HEA with
weak unforgeability in the sense that an adversary is not allowed to make
verification queries. We then propose a linearly HEA which can tolerate
any number of malicious verification queries, i.e., it achieves (strong) un-
forgeability. Finally, we define VHE formally, and give a generic construc-
tion of VHE based on homomorphic encryption and HEA. Instantiating
the generic construction, we derive a fully VHE with weak verifiability
as well as a linearly VHE with (strong) verifiability.

Keywords: Cloud Computing, Outsourced Encrypted Data, Verifiable
Homomorphic Encryption.
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1 Introduction

Cloud computing has become increasingly popular because it offers users the
illusion of having infinite computing resources, of which they can use as much
as they need, without having to worry about how those resources are provided
and managed. Since cloud servers are usually operated by third-party providers
which are almost certain to be outside the trust domain of cloud users, the cloud
computing paradigm raises many security and privacy concerns. One problem is
how can users securely outsource their data to the cloud, and later entrust it to
perform computation over the data. In a nutshell, this problem can be described
in the following scenario. A user Alice has a large collection of data m1, . . . ,mn

and intends to outsource her data to the cloud. In order to prevent leakage of
sensitive information to the cloud service provider, Alice first encrypts the data
to produce ciphertexts c1, . . . , cn, where ci is the encryption of mi. She then
uploads the ciphertexts to the cloud, without having to keep a copy of the data
due to her limited local storage capacity. At some later point, Alice wishes to
derive some information from her data, such as the sum or mean of m1, . . . ,mn.
For this purpose, Alice sends an instruction to the cloud server, specifying a
program P to be executed on her data. The cloud server executes P over the
ciphertexts and returns the result of the execution, c, to Alice. Alice then re-
trieves P(m1, . . . ,mn) from c. This problem has been addressed by the recent
ground-breaking development of fully homomorphic encryption [1], which allows
a cloud server to perform any computation over outsourced encrypted data.
Unfortunately, existing fully homomorphic encryption schemes provide no guar-
antee that the cloud server performed the computation correctly. In the cloud
computing setting, there may be incentives for a cloud server to try to cheat
and return an incorrect result to the client. This may be related to the nature of
the computation being performed, e.g., if the cloud server wants to convince the
client of a particular result because it will have beneficial consequences for the
server or the server may simply be minimizing the use of its own computational
overhead. Errors can also occur due to faulty algorithm implementation or sys-
tem failure. Thus, the client needs some guarantee that the result returned from
the server is correct. In particular, the cloud server needs to convince Alice that
c is the correct result of the computation P over ciphertexts c1, . . . , cn, i.e., the
ciphertext of P(m1, . . . ,mn).

Consider another scenario in cloud computing. Alice outsources her data
m1, . . . ,mn in plaintext to a cloud server, and later asks the server to run a pro-
gram P over the outsourced data (m1, . . . ,mn). The server computes P(m1, . . .,
mn) and sends the result m to Alice. The problem now is that Alice wants to
be sure that m = P(m1, . . . ,mn). Homomorphic authenticator, including ho-
momorphic signature [2–12] (for public verification) and homomorphic MAC
[13, 14] (for private verification), is the cryptographic primitive that addresses
this problem. Roughly speaking, a homomorphic authenticator scheme enables
Alice using her secret key to produce an authenticator (called signature in
homomorphic signature, or tag in homomorphic MAC) which authenticates a
data item so that later, given a set of data m1, . . . ,mn and the corresponding
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authenticators σ1, . . . , σn, anyone can perform a computation P over (σ1, . . . , σn)
to generate an authenticator σ that authenticates P(m1, . . . ,mn). However, ho-
momorphic authenticator does not maintain confidentiality of outsourced data.
That is, the cloud server has total access to user’s data since they are not
encrypted.

The above observations motivate us to consider verifiable homomorphic en-
cryption (VHE), which enables verifiable computation on outsourced encrypted
data. Informally, a VHE scheme allows a user using her secret key to encrypt
data m1, . . . ,mn and obtain independent ciphertexts c1, . . . , cn so that later,
given ciphertexts c1, . . . , cn, anyone can execute a program P over (c1, . . . , cn)
to generate a ciphertext c. The user using her secret key can then decrypt ci-
phertext c to obtain plaintext m and check whether m = P(m1, . . . ,mn). There
is a trivial solution to construct VHE in which the user authenticates the out-
put of a computation P over (c1, . . . , cn) by accessing all the ciphertexts, i.e.,
c1, . . . , cn. Thus, VHE is only interesting if authenticity of the output of P over
the ciphertexts c1, . . . , cn can be verified with significantly lower communication
cost than that of simply transmitting c1, . . . , cn to the user. This is particularly
important where the outsourced data are large in size.

A naive approach to construct VHE is to combine homomorphic encryption
and homomorphic authenticator directly. In the above cloud computing scenario,
before outsourcing her data m1, . . . ,mn to a cloud server, Alice first runs the
encryption algorithm of a homomorphic encryption scheme and the authentica-
tion algorithm of a homomorphic authenticator scheme on mi, i = 1, . . . , n, then
she uploads the ciphertext of mi, ci = (c̃i, σi), to the server, where c̃i and σi are
the outputs of the encryption and authentication algorithms, respectively. Later,
when the server is asked to execute a program P on the ciphertexts, it runs the
evaluation algorithms of the homomorphic encryption scheme and homomorphic
authenticator scheme on ((c̃1, . . . , c̃n),P) and ((σ1, . . . , σn),P), respectively, and
returns the result c = (c̃, σ) to Alice, where c̃ and σ are the outputs from the
evaluation algorithms of the homomorphic encryption scheme and homomorphic
authenticator scheme, respectively. The client decrypts c̃ to obtain message m
and checks that the server correctly applied P to the ciphertexts by verifying
that the authenticator σ authenticates the message m = P(m1, . . . ,mn). Un-
fortunately, homomorphic authenticator schemes provide no guarantee that the
authenticator σi on mi does not leak information about mi. Indeed, with a
homomorphic signature scheme, the signature σi on message mi always leaks
information about mi since, given a message m, anyone can check whether σi

is a valid signature on m. Thus, the above naive construction of VHE does not
guarantee that the outsourced data m1, . . . ,mn is semantically secure.
Our Contributions. We first introduce a new cryptographic primitive called
homomorphic encrypted authenticator (HEA), which may be of independent in-
terest, and formally define its semantic security and unforgeability. Informally, a
HEA can be viewed as a homomorphic authenticator in which the authenticator
does not leak any information about the message that it authenticates. Then,
we show that the fully homomorphic MAC scheme, proposed by Gennaro and
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Wichs [13] recently, is a fully HEA scheme with weak unforgeability, where the
adversary is not allowed to make verification queries. We emphasize that a ho-
momorphic MAC scheme is not necessarily a HEA scheme, since the tag in a
homomorphic MAC scheme may leak information about the message it authen-
ticates. For example, the homomorphic MAC schemes tolerating any number of
malicious verification queries, proposed by Catalano and Fiore [14] recently, are
not HEA schemes because anyone can retrieve the message from its tag in these
schemes. While a fully HEA scheme with weak unforgeability allows anyone to
perform any authenticated computation on authenticated data, it is only secure
in the setting where the adversary cannot make verification queries to test if a
maliciously constructed authenticator verifies correctly. In practice, this means
that the user needs to abort and completely stop using the scheme whenever she
gets the first authenticator that doesn’t verify correctly, and this motivates us
to seek HEA schemes with (strong) unforgeability which allows an adversary to
make arbitrarily many verification queries.

We observe that, in a homomorphic signature scheme, an adversary cannot
obtain any additional information by making verification queries since, given a
signature, anyone (including the adversary) can check whether it is a valid sig-
nature on a message. Thus, we resort to homomorphic signature for constructing
HEA schemes with (strong) unforgeability. As mentioned above, a homomorphic
signature scheme may not be a HEA scheme; so we have to adopt some tech-
niques to convert the former into the latter. Drawing on a linearly homomorphic
signature scheme proposed by Freeman [8], we propose a linearly HEA which can
tolerate any number of malicious verification queries, i.e., it achieves (strong)
unforgeability.

Finally, we formally introduce the notion and security requirements of VHE,
and provide a generic construction of VHE from homomorphic encryption and
HEA. Instantiating the generic construction, we obtain a fully VHE with weak
verifiability, which allows anyone to perform any verifiable computation on out-
sourced encrypted data but does not tolerate malicious verification queries, as
well as a linearly VHE with (strong) verifiability, which allows anyone to perform
linear verifiable computations on outsourced encrypted data and can tolerate any
number of malicious verification queries.
Organization. The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 provides some preliminaries. Section 4 introduces the new
cryptographic primitive HEA, shows that the fully homomorphic MAC scheme
proposed by Gennaro and Wichs [13] is a fully HEA in a weaker security model,
and proposes a linearly HEA scheme in a full security model. The formal defini-
tion of VHE and the generic construction of VHE from homomorphic encryption
and HEA are given in Section 5. Section 6 concludes the paper.

2 Related Work

We review related literature including non-interactive verifiable computation, fully
homomorphic encryption, homomorphic signature/MAC, linearly homomorphic
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structure-preserving signature and homomorphic authenticator-encryption. We
refer the reader to [15] for discussions on other related effort, such as succinct non-
interactive arguments of knowledge [16].

Non-Interactive Verifiable Computation. The notion of non-interactive verifiable
computation was introduced by Gennaro et al. [17]. Non-interactive verifiable
computation enables a computationally weak client to outsource the computa-
tion of a function to a server, which returns the result of the function evaluation
as well as a non-interactive proof that the computation was carried out correctly,
with the crucial requirement that verification of the proof needs substantially
less computational effort than computing the function by the client from scratch.
The existing non-interactive verifiable computation schemes [17–22] focus on
delegating general functions. In order to achieve higher efficiency, there exist
non-interactive verifiable computation schemes which permit only a very limited
class of functions, such as polynomials [23–26, 15, 22] and set operations [27].
Non-interactive verifiable computation schemes either do not protect privacy of
outsourced data from a malicious server, or the functions to be evaluated must
be known at system setup, or the outsourced data must be fixed a-priori (i.e., a
client cannot outsource her data incrementally). VHE does not suffer from any
of the limitations of non-interactive verifiable computation mentioned above.

Our goals are very different from non-interactive verifiable computation. We
seek to save the clients from storing large amount of data as well as to save
on communication cost. The key requirement that makes our definition of VHE
interesting is that the output of the program P over the ciphertexts c1, . . . , cn
be succinct ; otherwise, there is a trivial solution in which a client can verify
the output of a computation P by simply being provided with the ciphertexts
c1, . . . , cn. The succinctness requirement ensures that the client can verify the
output of a computation P over encrypted data with much smaller communi-
cation overhead than that of simply transmitting the encrypted data from the
server to the client. VHE is especially useful when verifying computations that
require a large amount of encrypted data as input but have a short output (e.g.,
computing the median in a large database).

Fully Homomorphic Encryption. The notion of fully homomorphic encryption
(FHE) was first put forward by Rivest et al. [28]. However, only in the past few
years have candidate FHE schemes been proposed. The first such scheme was
constructed by Gentry [1]; his work inspired a tremendous amount of research
effort on improving the efficiency of his scheme [29–35], realizations of FHE based
on different assumptions [36–39], and so on.

Homomorphic Signature and MAC. Homomorphic authenticator in both the
asymmetric setting (i.e., homomorphic signature) and the symmetric setting
(i.e., homomorphic MAC) has been considered in many prior works. The notion
of homomorphic signature was introduced by Johnson et al. [40]. Since then,
many homomorphic signature schemes [2–8] for linear functions have been pro-
posed, mainly because of the important application to network coding [41, 42].
Linearly homomorphic authenticator has also been considered in the context of
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proofs of data possession and retrievability [43–45]. The work of Ahn et al. [10]
and Attrapadung et al. [11, 12] considered a new security requirement of homo-
morphic signature, i.e., context hiding, which requires that a derived signature
be indistinguishable from a fresh signature on the same message. In a recent
breakthrough, Boneh and Freeman [9] showed how to use ideal lattices to con-
struct homomorphic signature for bounded degree polynomials; this scheme is
currently the only one that goes beyond linear functions.

Gennaro and Wichs [13] introduced fully homomorphic MAC (i.e., homo-
morphic MAC for any computation) and gave a concrete construction which is
only proven secure in a weaker model where an adversary cannot ask verifica-
tion queries. We will show later in the paper that the fully homomorphic MAC
scheme in [13] is in fact a fully HEA scheme. Catalano and Fiore [14] presented
efficient realizations of homomorphic MAC that tolerate verification queries, for
a restricted class of computations (i.e., arithmetic circuits with polynomially-
bounded degree). The homomorphic MAC schemes proposed in [14] are not
HEA schemes, and how to convert these schemes into HEA is an interesting
open problem.

Linearly Homomorphic Structure-Preserving Signatures. Structure-preserving
signatures (SPS) [46, 47] are signature schemes where public keys, messages
and signatures all consist of elements of a group over which a bilinear map is
efficiently computable. Recently, Libert et al. [48] introduced and realized the
notion of linearly homomorphic structure-preserving signature (LHSPS), which
is similar to SPS but equipped with a linearly homomorphic property. Catalano
et al. [49] followed their work and proposed some new methodologies. Libert
et al. [48] showed that LHSPS enables linear verifiable computations on out-
sourced encrypted data (i.e., linearly VHE), but their treatment is informal and
decryption in their system takes polynomial time in the size of the message space
(i.e., their system can only be used to encrypt short messages). In this paper,
we present the notion and security models of VHE formally, give a generic con-
struction for VHE, and derive a fully VHE scheme which is proven secure in a
weaker security model and a linearly VHE scheme which is proven secure in a
full security model.

Homomorphic Authenticator-Encryption. Gennaro and Wichs [13] showed
that their proposed homomorphic MAC can be extended to homomorphic
authenticator-encryption, also called homomorphic authenticated encryption in
[50]. A homomorphic authenticator-encryption scheme is a homomorphic au-
thenticator scheme with an additional decrypt algorithm, which allows a user
with a secret key to retrieve the authenticated message from an authenticator.
Our notion of HEA is different from homomorphic authenticator-encryption. A
HEA scheme only requires that an authenticator not leak information about
the authenticated message; thus HEA is a weaker cryptographic primitive than
homomorphic authenticator-encryption. In fact, homomorphic authenticator-
encryption, which also enables verifiable computation on outsourced encrypted
data, is similar to our notion of VHE. However, the schemes proposed in [13, 50]
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cannot tolerate malicious verification queries. Compared with their work, we
investigate the relationships among homomorphic encryption, homomorphic sig-
nature/MAC and VHE, and provide a general method to construct VHE. We
also propose a linearly VHE scheme which can tolerate any number of malicious
verification queries.

3 Preliminaries

If S is a set, then s
$← S denotes the operation of picking an element s uniformly

at random from S. Let N denote the set of natural numbers. If n ∈ N then [n]
denotes the set {1, . . . , n}. If λ ∈ N then 1λ denotes the string of λ ones. Let
z ← A(x, y, . . .) denote the operation of running an algorithm A with inputs
(x, y, . . .) and output z. A function f(λ) is negligible if for every c > 0 there
exists a λc such that f(λ) < 1/λc for all λ > λc.

3.1 Bilinear Groups

Let G be an algorithm that takes as input a security parameter λ and outputs
a tuple (p,G,GT , e), where G and GT are multiplicative cyclic groups of prime
order p, and e : G×G→ GT is a map that possesses the following properties:

1. Bilinearity: e(ga, hb) = e(g, h)ab for all g, h ∈ G and a, b ∈ Z
∗
p.

2. Non-degeneracy: e(g, h) �= 1 whenever g, h �= 1G.
3. Computable: efficient computability for any input pair.

We refer to the tuple (p,G,GT , e) as a bilinear group. We consider the following
problems in bilinear groups.
q-Strong Diffie-Hellman (q-SDH) Problem. The q-SDH problem in G is
defined as follows: Given a tuple (ḡ, ḡα, . . ., ḡα

q

) as input for randomly chosen

ḡ
$← G and α

$← Z
∗
p, output a pair (ḡ1/(α+ϑ), ϑ) where ϑ ∈ Z

∗
p. The advantage of

an algorithm A in solving q-SDH problem is defined as |Pr[A(ḡ, ḡα, . . . , ḡαq

) =
(ḡ1/(α+ϑ), ϑ)]|, where the probability is over the random choices of ḡ ∈ G, α ∈ Z

∗
p,

and the random bits of A.
Definition 1. We say that the q-SDH assumption holds in G if all probabilistic
polynomial time algorithms have at most a negligible advantage in solving the
q-SDH problem in G.

Decision Linear (DLN) Problem [51]. The DLN problem in G is defined
as follows: Given a tuple (ḡ, g̃, ĝ, ḡx, g̃y, ĝz) as input, output 1 if x + y = z
and 0 otherwise. The advantage of an algorithm A in solving the DLN prob-

lem is defined as |Pr[A(ḡ, g̃, ĝ, ḡx, g̃y, ĝz) = 1 : ḡ, g̃, ĝ
$← G, x, y, z

$← Z
∗
p] −

Pr[A(ḡ, g̃, ĝ, ḡx, g̃y, ĝx+y) = 1 : ḡ, g̃, ĝ
$← G, x, y

$← Z
∗
p]|, where the probability

is over the random choices of ḡ, g̃, ĝ ∈ G and x, y, z ∈ Z
∗
p, and the random bits

of A.
Definition 2. We say that the DLN assumption holds in G if all probabilistic
polynomial time algorithms have at most a negligible advantage in solving the
DLN problem in G.



8 J. Lai et al.

4 Homomorphic Encrypted Authenticator

Informally, a homomorphic encrypted authenticator (HEA) can be viewed as
a homomorphic authenticator, where the authenticator on a message does not
leak any information about the message. Before presenting the definition of HEA
formally, we need to establish some syntax for specifying which data is being
authenticated and over which data a program P should be evaluated. We recall
the notion of labeled data and programs introduced by Gennaro and Wichs in
[13].

Labeled Data and Programs. Whenever a user wants to authenticate some data
item, she chooses a label τ ∈ {0, 1}∗ for it, and the authentication algorithm
authenticates the data with respect to the label τ . A labeled program P consists
of a tuple (f, τ1, . . . , τk) where f : Fk → F is a circuit/function, and τ1, . . . , τk are
the labels of the input nodes of f . Given some labeled programs P1, . . . ,Pt and
a function g : Fk → F, the composed program, denoted by P∗ = g(P1, . . . ,Pk),
corresponds to evaluating g on the outputs of P1, . . . ,Pk. The labeled inputs of
P∗ are all the distinct labeled inputs of P1, . . . ,Pk. We denote by Iτ = (gid, τ)
the identity program with label τ where gid is the canonical identity function and
τ is some label. Notice that any program P = (f, τ1, . . . , τk) can be expressed as
the composition of identity programs P = f(Iτ1 , . . . , Iτk).
Homomorphic Encrypted Authenticator. A homomorphic encrypted authentica-
tor scheme consists of the following four algorithms:

Setup(1λ) takes as input a security parameter λ. It outputs a pair of public key
PK and secret key SK. The public key PK defines a message spaceM and a
set F of “admissible” functions f :Mk →M.

Auth(SK, τ,m) takes as input secret key SK, a label τ ∈ {0, 1}∗ and a message
m ∈M. It outputs an authenticator σ.

Ver(SK,m,P , σ) takes as input secret key SK, a message m ∈ M, a labeled
program P and an authenticator σ. It outputs either 0 (reject) or 1 (accept).

Eval(PK, f,σ) takes as input public key PK, a function f ∈ F and a vector of
authenticators σ = (σ1, . . . , σk). It outputs a new authenticator σ.

For correctness, we require that for each (PK, SK) output by Setup(1λ), the
following properties hold:

1. For all labels τ ∈ {0, 1}∗ and all m ∈ M, if σ ← Auth(SK, τ,m), then
Ver(SK,m, Iτ , σ) = 1.

2. Given an admissible function g :Mk ←M and any set of message/program/
authenticator triples {(mi,Pi, σi)}ki=1 such that Ver(SK,mi,Pi, σi) = 1, if
m = g(m1, . . . ,mk), P = g(P1, . . . ,Pk) and σ = Eval(PK, g, (σ1, . . . , σk)),
then Ver(SK,m,P , σ) = 1.

The above requirements capture the basic correctness of computing over freshly
authenticated data, as well as the composability of computing over the authen-
ticated outputs of prior computations. If the set of admissible functions F of a
HEA scheme consists of linear functions (resp. any functions) fromMk toM,
then we say that the HEA scheme is a linearly (resp. fully) HEA scheme.
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4.1 Security Model for Homomorphic Encrypted Authenticator

We now introduce the security requirements of HEA, including semantic security
and unforgeability. Informally, semantic security requires that an authenticator
σ of a message m with label τ should not leak any information about m. Let σi

be an authenticator on message mi with label τi for i = 1, . . . , k. Unforgeability
requires that given (σ1, . . . , σk), it should be impossible to output an authenti-
cator σ and an admissible function f such that σ is a valid authenticator on a
message-program pair (m,P = (f, τ1, . . . , τk)) and m �= f(m1, . . . ,mk).

The semantic security of HEA is defined in terms of the following game, played
between a challenger and an adversary A:
Setup. The challenger runs Setup(1λ) to obtain a pair of public key PK and

secret key SK. It gives the public key PK to adversary A and keeps SK to
itself. It also initializes a list T = ∅.

Authentication queries. The adversary A adaptively queries the challenger
for authenticators.A submits a messagem ∈M. If there exists a tuple (τ,m)
in T , the challenger computes σ ← Auth(SK, τ,m); otherwise, the challenger
chooses a fresh label τ ∈ {0, 1}∗, updates the list T = T∪(τ,m) and computes
σ ← Auth(SK, τ,m). Then, the challenger gives the authenticator σ to A.

Challenge. Adversary A submits a label τ∗ ∈ {0, 1}∗ and two messages
m0,m1 ∈ M. The challenger selects a random bit β ∈ {0, 1}, computes
σ∗ ← Auth(SK, τ∗, mβ) and sends σ∗ to the adversary.

Guess. Adversary A outputs its guess β′ ∈ {0, 1} for β and wins the game if
β = β′.

The advantage of the adversary in this game is defined as |Pr[β = β′]− 1
2 | where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 3. A HEA scheme is semantically secure if all probabilistic polyno-
mial time adversaries have at most a negligible advantage in this security game.

The unforgeability of HEA is defined in terms of the following game, played
between a challenger and an adversary A:
Setup. The challenger runs Setup(1λ) to obtain a pair of public key PK and

secret key SK. It gives the public key PK to adversary A and keeps SK to
itself. It also initializes a list T = ∅.

Queries. Adversary A adaptively issues the following queries:

– Authentication queries. Adversary A submits a messagem ∈ M. If there
exists a tuple (τ,m) in T , the challenger computes σ ← Auth(SK, τ,m);
otherwise, the challenger chooses a fresh label τ ∈ {0, 1}∗, updates the
list T = T ∪ (τ,m) and computes σ ← Auth(SK, τ,m). Then, the chal-
lenger gives the authenticator σ to A.

– Verification queries. Adversary A submits (m,P , σ) and the challenger
replies with the output of Ver(SK,m,P , σ).
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Output. Adversary A outputs a message m∗, a labeled program P∗ = (f∗, τ∗1 ,
. . . , τ∗k ) and an authenticator σ∗.
The adversary wins if Ver(SK,m∗,P∗, σ∗) = 1 and one of the following
conditions hold:
1. there exists i ∈ {1, . . . , k} such that (τ∗i , ·) /∈ T (a Type 1 forgery),
2. T contains tuples (τ∗1 ,m1), . . . , (τ

∗
k ,mk), for some message m1, . . . ,mk,

and m∗ �= f∗(m1, . . ., mk) (a Type 2 forgery).

Informally, in a Type 1 forgery the adversary produces a valid authenticator σ
on a message-program pair (m∗,P∗ = (f∗, τ∗1 , . . . , τ∗k )) where no message was
ever authenticated under the label τ∗i involved in the forgery, whereas in a Type
2 forgery the adversary produces a valid authenticator σ on a message-program
pair (m∗,P∗ = (f∗, τ∗1 , . . . , τ∗k )) wherem

∗ is not the correct output of the labeled
program P∗ when executed on previously authenticated message (m1, . . . ,mk).

The advantage of the adversary in this game is defined as |Pr[A wins]| where
the probability is taken over the random bits used by the challenger and the
adversary.

Definition 4. A HEA scheme is ( strongly) unforgeable, or simply unforgeable,
if all probabilistic polynomial time adversaries have at most a negligible advan-
tage in this security game.

We say that a HEA scheme is weakly unforgeable (or unforgeable without veri-
fication queries) if in the above security game the adversary cannot make veri-
fication queries.

4.2 Proposed HEA Constructions

In this subsection, we first show that the fully homomorphic authenticator
scheme proposed by Gennaro and Wichs [13] recently, is a secure fully HEA with
weak unforgeability. Drawing on the linearly homomorphic signature scheme pro-
posed by Freeman [8], we then present a secure linearly HEA scheme which can
tolerate any number of malicious verification queries, i.e., it achieves (strong)
unforgeability.

A Secure Fully HEA with Weak Unforgeability. In [13], Gennaro and
Wichs proposed a fully homomorphic authenticator scheme and proved that
it is unforgeable without verification queries. Observe that in an authenticator
σ = (c1, . . . , cλ, ν) on a message m with label τ , ν = FK(τ) is a value inde-
pendent of the message m and ci, i ∈ [λ], is a ciphertext of a homomorphic
encryption scheme HE. If the underlying fully homomorphic encryption scheme
HE is semantically secure, then for each i ∈ [λ], ci does not leak any informa-
tion about m, thus σ will not leak any information about m. That is, the fully
homomorphic authenticator proposed in [13] is also semantically secure. To sum
up, the fully homomorphic authenticator proposed by Gennaro and Wichs [13],
is a secure fully HEA with weak unforgeability.

As shown in [13], there is an efficient attack against the scheme in the setting
of security with verification queries. That is, the fully HEA scheme with weak
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unforgeability is only secure in the setting where the adversary cannot make
verification queries to test if a maliciously constructed authenticator verifies
correctly. In practice, this means that the user needs to abort and completely stop
using the scheme whenever she gets the first authenticator that doesn’t verify
correctly. This motivates the need for HEA schemes with (strong) unforgeability
that allow the adversary to make arbitrarily many verification queries.

A Secure Linearly HEA with (Strong) Unforgeability. Drawing on the
linearly homomorphic signature scheme proposed by Freeman [8], which is based
on the Boneh-Boyen (BB) signature scheme [52], we now show how to construct
a linearly HEA scheme which can tolerate any number of malicious verification
queries, i.e., it achieves (strong) unforgeability. We emphasize that a linearly
homomorphic signature scheme is not necessarily a linearly HEA scheme; so we
have to adopt some techniques to convert the former into the latter.

In the proposed linearly HEA construction, we also use the notion of “data
set” introduced in [8]. That is, each set of messages is grouped together into
a “data set” or ”file”, and each file is associated with a label τ that serves to
bind the messages together in that file. Therefore, in our proposed construction,
the algorithm Setup includes an additional input parameter, k, which indicates
the maximum data size of a file; and the algorithm Auth includes an additional
input parameter, an index i, which indicates that the authenticated message is
the ith message in the file. Verifiable homomorphic operations in our scheme
only apply to the data associated with the same label. That is, for an admissible
labeled program P = (f, τ1, . . . , τk), we require that τ1 = · · · = τk; thus, for
simplicity, we denote by (f, τ) a labeled program P . Since the client can group
as many related messages as possible into a file (i.e., associated with an identical
label), the requirement of the admissible labeled program should not constrain
the usability of a general storage service overly.

Concretely, the proposed linearly HEA scheme consists of the following algo-
rithms:

Setup(1λ, k) Given a security parameter λ and a maximum data size k, the
setup algorithm runs G(1λ) to obtain a bilinear group (p,G,GT , e). Next,
it chooses g, u, v1, . . . , vk, h, h0 ∈ G and α, a, b ∈ Z

∗
p uniformly at random.

Then, it sets g1 = gα, h1 = h
1/a
0 , h2 = h

1/b
0 (note that ha

1 = hb
2 = h0), and

chooses a collision-resistant hash function H : {0, 1}∗ → Z
∗
p. The public key

is published as PK = (g, g1, u, v1, . . . , vk, h, h0, h1, h2, H) and the secret key
is SK = (α, a, b).
The message space of our proposed scheme is Fp and the set of admissible
functions F is all Fp-linear functions from F

k
p to Fp. We represent a function

f ∈ F as the vector (c1, . . . , ck) ∈ F
k
p, i.e., f(m1, . . . ,mk) =

∑k
i=1 cimi.

Auth(SK, τ,m, i) Given secret key SK, a label τ ∈ {0, 1}∗, a message m ∈ Fp

and an index i ∈ {1, . . . , k}, it chooses r1, r2, s ∈ Z
∗
p uniformly at random.

Then, it outputs the authenticator σ = (C̃, C0, C1, C2, s), where

C̃ = g1/(α+H(τ)), C0 = hr1+r2
0 (hmusvi)

1/(α+H(τ)), C1 = hr1
1 , C2 = hr2

2 .



12 J. Lai et al.

Note that the index i indicates thatm is the ith message in the file associated
with label τ .

Ver(SK,m,P = (f, τ), σ) Given secret key SK, a message m ∈ Fp, a label τ , a

function f = (c1, . . . , ck) ∈ F
k
p and an authenticator σ = (C̃, C0, C1, C2, s), it

checks whether e(g1g
H(τ), C̃) = e(g, g) and e(C0/(C

a
1C

b
2), g) = e(C̃, hmus ·

(
∏k

i=1 v
ci
i )). If so, it outputs 1 (accept); otherwise it outputs 0 (reject).

Eval(PK, f,σ) Given public key PK, a function f = (c1, . . . , ck) ∈ F
k
p and a vec-

tor of authenticators σ = (σ1, . . . , σk) where σi = (C̃(i), C
(i)
0 , C

(i)
1 , C

(i)
2 , s(i))

for i = 1, . . . , k, it outputs a new authenticator σ = (C̃, C0, C1, C2, s) where

C̃= C̃(1), C0=

k∏

i=1

(C
(i)
0 )ci , C1=

k∏

i=1

(C
(i)
1 )ci , C2=

k∏

i=1

(C
(i)
2 )ci , s=

k∑

i=1

cis
(i).

Correctness. We show that the proposed homomorphic encrypted authenticator
scheme satisfies the correctness properties of HEA.

1. Let τ ∈ {0, 1}∗ be a label, m ∈ Fp be a message and i ∈ {1, . . . , k} be

an index. Suppose σ = (C̃, C0, C1, C2, s) ← Auth(SK, τ,m, i). We now show
that Ver(SK,m, Iτ , σ) = 1. Observe that C̃ = g1/(α+H(τ)), C0/(C

a
1C

b
2) =

hr1+r2
0 (hmusvi)

1/(α+H(τ))/(har1
1 hbr2

2 ) = (hmusvi)
1/(α+H(τ)).

Thus, we have e(g1g
H(τ), C̃) = e(g1g

H(τ), g1/(α+H(τ))) = e(g, g),

e(C0/(C
a
1C

b
2), g) = e((hmusvi)

1/(α+H(τ)), g) = e(hmusvi, g
1/(α+H(τ)))

= e(C̃, hmusvi).

It follows that Ver(SK,m, Iτ , σ) = 1.
2. Let τ ∈ {0, 1}∗ be a label, and f ′, f1, . . . , fk be linear functions repre-

sented as vectors in F
k
p, with f ′ = (c1, . . . , ck) and fi = (di1, . . . , dik) for

i = 1, . . . , k. Suppose σ = (σ1, . . . , σk) is a vector of authenticators with

σi = (C̃(i), C
(i)
0 , C

(i)
1 , C

(i)
2 , s(i)) for i = 1, . . . , k, such that Ver(SK,mi,Pi =

(fi, τ), σi) = 1 for some mi ∈ Fp. We show that Ver(SK, f ′(m1, . . . ,mk),P =
(f ′ ◦ f , τ),Eval(PK, f ′,σ)) = 1, where f ′ ◦f denotes the function that sends
x = (x1, . . . , xk) to f ′(f1(x), . . . , fk(x)). Note that f

′ ◦f can be represented

as a vector (d1, . . . , dk) ∈ F
k
p where di =

∑k
j=1 cjdji for i = 1, . . . , k.

Since Ver(SK,mi,Pi = (fi, τ), σi) = 1 for i = 1, . . . , k, we have

C̃(i) = g1/(α+H(τ)), C
(i)
0 = hri1+ri2

0 (hmius(i) ·∏k
j=1 v

dij

j )1/(α+H(τ)),

C
(i)
1 = hri1

1 , C
(i)
2 = hri2

2 ,

for some random ri1, ri2 ∈ Z
∗
p. Let Eval(PK, f

′,σ) = σ = (C̃, C0, C1, C2, s).

We have C̃ = g1/(α+H(τ)), C1 = hr1
1 , C

(i)
2 = hr2

2 , C0 = hr1+r2
0 (hmus ·

∏k
i=1 v

∑k
j=1 cjdji

i )1/(α+H(τ)) = hr1+r2
0 (hmus · ∏k

i=1 v
di

i )1/(α+H(τ)), where

m =
∑k

i=1 cimi, r1 =
∑k

i=1 ciri1, r2 =
∑k

i=1 ciri2 and s =
∑k

i=1 cis
(i). Observe that C0/(C

a
1C

b
2) = (hmus ·∏k

i=1 v
di

i )1/(α+H(τ)). Thus,



Verifiable Computation on Outsourced Encrypted Data 13 

e(g1g
H(τ), C̃) = e(g1g

H(τ), g1/(α+H(τ))) = e(g, g), and e(C0/(C
a
1C

b
2), g) =

e((hmus
∏k

i=1 v
di

i )1/(α+H(τ)), g) = e(C̃, hmus
∏k

i=1 v
di

i ). It follows that

Ver(SK,m,P = (f ′ ◦ f , τ), σ) = 1, where m =
∑k

i=1 cimi = f ′(m1, . . . ,mk)
and σ = Eval(PK, f ′,σ).

Security. We state the security theorems of our proposed scheme, including se-
mantic security and unforgeability. The proofs of the security theorems are given
in the full version of this paper.

Theorem 1. If the DLN assumption holds in G, then the proposed HEA scheme
is semantically secure.

Theorem 2. If the q-SDH assumption holds in G, the BB signature scheme is
strongly unforgeable against a weak chosen message attack and the hash function
H is collision-resistant, then the proposed HEA scheme is unforgeable.

5 Verifiable Homomorphic Encryption

Informally, a verifiable homomorphic encryption (VHE) is a symmetric-key ho-
momorphic encryption which enables verifiable computation on outsourced en-
crypted data. In a VHE scheme, a user with secret key SK can encrypt messages
m1, . . . ,mk to obtain k independent ciphertexts c1, . . . , ck. Given ciphertexts
c1, . . . , ck and an admissible function f , anyone can compute a ciphertext c on
the value f(m1, . . . ,mk). The user can then decrypt ciphertext c to obtain mes-
sage m with secret key SK, and check whether m = f(m1, . . . ,mk).

We also use the syntax of labeled data and programs for specifying which
data is being encrypted and which data a program P should be evaluated on.
Formally, a VHE scheme consists of the following four algorithms:

Setup(1λ) takes as input a security parameter λ. It outputs the public param-
eters PP and a secret key SK. The public parameters PP defines a message
spaceM and a set F of “admissible” functions f :Mk →M.

Enc(SK, τ,m) takes as input a secret key SK, a label τ ∈ {0, 1}∗ and a message
m ∈M. It outputs a ciphertext c.

Dec(SK,P , c) takes as input a secret key SK, a labeled program P and a ci-
phertext c. It outputs a message m ∈ M or an error symbol ⊥.

Eval(PP, f, c) takes as input the public parameters PP, a function f ∈ F and a
vector of ciphertexts c = (c1, . . . , ck). It outputs a new ciphertext c.

For correctness, we require that for each (PP, SK) output by Setup(1λ), the
following properties hold:

1. For all labels τ ∈ {0, 1}∗ and all m ∈ M, if c ← Enc(SK, τ,m) then
Dec(SK, Iτ , c) = m.

2. Given an admissible function g :Mk ←M and any set of message/program/
ciphertext triples {(mi,Pi, ci)}ki=1 such that Dec(SK,Pi, ci) = mi, if P =
g(P1, . . . ,Pk) and c = Eval(PP, g, (c1, . . ., ck)), then Dec(SK,P , c) = g(m1,
. . . ,mk).
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The above requirements capture the basic correctness of decrypting over freshly
encrypted data, as well as the composability of decrypting over the outputs of
prior computations. If the set of admissible functions F of a VHE scheme consists
of linear functions (resp. any functions) fromMk to M, then we say that the
VHE scheme is a linearly (resp. fully) VHE scheme.

The security requirements of VHE, including semantic security and verifiabil-
ity. Informally, semantic security requires that a ciphertext c of a messagem with
label τ should not leak any information aboutm. Let ci be a ciphertext on a mes-
sagemi with label τi for i = 1, . . . , k. Verifiability requires that given (c1, . . . , ck),
it should be impossible to output a ciphertext c and an admissible function f
such that m′ ← Dec(SK,P = (f, τ1, . . . , τk), c) and m′ �= {⊥, f(m1, . . . ,mk)}.
The formal definitions of the security requirements of VHE are given in the full
version of this paper.

5.1 Generic Construction of VHE from HE and HEA

Given a homomorphic encryption scheme HE = (HE.Setup,HE.Enc,HE.Dec,
HE.Eval) and a homomorphic encrypted authenticator scheme HEA =
(HEA.Setup,HEA.Auth, HEA.Ver,HEA.Eval), we define the 4-tuple algorithms of
a VHE scheme (Setup, Enc, Dec, Eval) as follows. (Notice that, both public-key
homomorphic encryption and secret-key homomorphic encryption can be used
in the following generic construction, although the description uses a public-key
homomorphic encryption scheme.)

Setup(1λ) Given a security parameter λ, the setup algorithm performs (PKHE,
SKHE) ← HE.Setup(1λ), (PKHEA, SKHEA) ← HEA.Setup(1λ). Then, it sets
the public parameters PP = (PKHE,PKHEA) and the secret key SK =
(SKHE, SKHEA). We assume that PKHE and PKHEA are defined over the same
message spaceM and the same set of admissible functions F .

Enc(SK, τ,m) Given the secret key, a label τ ∈ {0, 1}∗ and a message m ∈ M,
it runs cHE ← HE.Enc(PKHE,m), σHEA ← HEA.Auth(SKHEA, τ,m). Then, it
outputs the ciphertext c = (cHE, σHEA).

Dec(SK,P , c) Given the secret key, a labeled program P and a ciphertext
c = (cHE, σHEA), it runs m ← HE.Dec(SKHE, cHE). Then, it checks whether
HEA.Ver(SKHEA,m,P , σHEA) = 1. If so, it outputs the message m; otherwise,
it outputs ⊥.

Eval(PP, f, c) With the public parameters PP = (PKHE, PKHEA), a func-
tion f ∈ F and a vector of ciphertexts c = (c1, . . . , ck) where ci =
(cHEi , σHEA

i ) for i = 1, . . . , k, it runs cHE ← HE.Eval(PKHE, f, cHE), σHEA ←
HEA.Eval(PKHEA, f,σHEA), where cHE = (cHE1 , . . . , cHEk ) and σHEA =
(σHEA

1 , . . . , σHEA
k ). Then, it outputs a ciphertext c = (cHE, cHEA).

Obviously, the above scheme satisfies the correctness of VHE if the underly-
ing homomorphic encryption scheme and homomorphic encrypted authenticator
scheme are correct. Now, we state the security theorems of our proposed VHE
scheme.



Verifiable Computation on Outsourced Encrypted Data 15 

Theorem 3. If the homomorphic encryption scheme HE and homomorphic en-
crypted authenticator scheme HEA are semantically secure, then the proposed
VHE scheme is semantically secure.

Proof. Let c = (cHE, σHEA) be a ciphertext of message m. Since the underlying
homomorphic encryption scheme and homomorphic encrypted authenticator are
semantically secure, cHE and σHEA do not leak any information about m. Thus,
the proposed VHE scheme is also semantically secure.

Theorem 4. If the homomorphic encrypted authenticator scheme HEA is (resp.
weakly) unforgeable, then the proposed VHE scheme is (resp. weakly) verifiable.

Proof. Suppose there exists an adversary A that breaks the verifiability of the
proposed VHE scheme. We can build an algorithm B that breaks the unforgeabil-
ity of the underlying homomorphic encrypted authenticator scheme as follows.

Let C be the challenger corresponding to B in the unforgeability game of the
underlying HEA scheme. B is given the public key PKHEA of the underlying HEA
scheme and runs A executing the following steps.

Setup. B first runs (PKHE, SKHE) ← HE.Setup(1λ). Then, it sends the public
parameters PP = (PKHE,PKHEA) to adversary A.
Queries. Since B knows the secret key SKHE, with the help of the authentication
and verification oracles of HEA provided by C, it can answer A’s ciphertext and
verification queries.

Output. Finally, A outputs a labeled program P∗ and a ciphertext c∗ = (c∗HE,
σ∗HEA). B runs m∗ ← HE.Dec(SKHE, c∗HE) and outputs (m∗,P∗, σ∗HEA).

Obviously, if A breaks the verifiability of the proposed VHE scheme with non-
negligible advantage, B will win the unforgeable game of the underlying HEA
scheme with non-negligible advantage. This completes the proof of Theorem 4.

Instantiating the above generic construction with existing fully homomorphic
encryption (resp. linearly homomorphic encryption) and our proposed fully HEA
with weak unforgeability (resp. linearly HEA with unforgeability), it is straight-
forward to derive a fully VHE with weak verifiability (reps. linearly VHE with
verifiability); we omit the details of the constructions here in order to keep the
paper compact.

6 Conclusion

In this paper, we study verifiable homomorphic encryption (VHE) which enables
verifiable computation on outsourced encrypted data. In order to construct VHE
schemes, we introduce a new cryptographic primitive called homomorphic en-
crypted authenticator (HEA), and show that a VHE scheme can be built upon a
homomorphic encryption scheme and a HEA scheme. We observe that the fully
homomorphic MAC scheme, proposed by Gennaro and Wichs [13] recently, is a
fully HEA scheme in a weaker security model. Then, we present a linearly HEA
scheme which is proven secure in a full security model. Instantiating the generic
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construction of VHE, we can derive a fully VHE scheme which is secure in a
weaker security model, and a linearly VHE scheme which is secure in a full secu-
rity model. An open research problem is to find fully VHE constructions which
is secure in a full security model, i.e., it allows any verifiable computation over
outsourced encrypted data and tolerates any number of malicious verification
queries.
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