
Singapore Management University
Institutional Knowledge at Singapore Management University

SMU Research Data Schools

1-2012

Deckard - a tree-based, scalable, and accurate code
clone detection tool (version 1.2.3)
Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Ghassan MISHERGHI

Zhendong SU

Stephane GLONDU

Follow this and additional works at: https://ink.library.smu.edu.sg/researchdata

Part of the Computer Sciences Commons

This Software is brought to you for free and open access by the Schools at Institutional Knowledge at Singapore Management University. It has been
accepted for inclusion in SMU Research Data by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email libIR@smu.edu.sg.

Citation
Lingxiao, J., Misherghi, G., Zhendong, S., & Glondu, S. (2007). DECKARD: Scalable and Accurate Tree-Based Detection of Code
Clones. Paper presented at the 29th International Conference on Software Engineering. ICSE 2007. DOI: 10.1109/ICSE.2007.30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35455202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fresearchdata%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/researchdata?utm_source=ink.library.smu.edu.sg%2Fresearchdata%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/schools_library?utm_source=ink.library.smu.edu.sg%2Fresearchdata%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/researchdata?utm_source=ink.library.smu.edu.sg%2Fresearchdata%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fresearchdata%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

This is a release package of Deckard -- a tree-based, scalable, and

accurate

code clone detection tool. It is also capable of reporting clone-related

bugs.

**

*

* LICENSE

*

**

Copyright (c) 2007-2012, University of California

 Lingxiao Jiang <lxjiang@ucdavis.edu>

 Ghassan Misherghi <ghassanm@ucdavis.edu>

 Zhendong Su <su@ucdavis.edu>

 Stephane Glondu <steph@glondu.net>

All rights reserved.

Three-clause BSD licence

**

*

* Version 1.2.3

* January 22, 2012

*

**

**

*

* Installation

*

**

In bash shell or cygwin, run the build script:

/path/to/src/main/build.sh

For convenience, add "src/main" into $PATH.

NOTE: Deckard's built-in parser for Java cannot handle Java 1.5 or later

features, which means when Deckard processes a Java 1.5 file, it is very

likely

there will be no vector generated.

NOTE: The compiled executables may not be "executable" (showing

"Permission

Denied") on Windows Vista/7 due to false alarms of UAC rules (based on

file

path/hash of a .exe). A simple (but may not be desirable) workaround is

to run

cygwin shell with elevated privileges before invoking the above scripts.

Also,

Deckard's performance may be tens of times slower when executed in cygwin

than

on Linux due to slow I/O operations.

To uninstall, simply

/path/to/src/main/clean.sh

*

* Usage

*

1. For clone detection (suppose the source code of your application is

in /path/to/app/src):

 - Specify the location of your source code, say /path/to/app/src.

 - Create a "config" file in /path/to/app/, following the sample "config"

in

 samples/ or the template "config-sample" in scripts/clonedetect/.

Make sure

 all paths are valid and the programming language is specified

correctly.

 - (Optional) create other three directories in /path/to/app/ for storing

 outputs (see what's in samples/). These directories may be

automatically

 created if specified in 'config'.

 - Batch mode run of clone detection (no bug detection by default):

 "/path/to/scripts/clonedetect/deckard.sh"

 An optional parameter to the script is 'clean', 'clean_all', or

'overwrite'

 - Instead of running 'deckard.sh', you may also run the scripts called

in

 'deckard.sh' step-by-step by yourself:

 -- Vector generation: from where "config" is, run

 "/path/to/scripts/clonedetect/vdbgen"

 An optional parameter to the script is 'clean', 'clean_all', or

'overwrite'

 -- Vector clustering (i.e., clone detection): from where "config" is,

run

 "/path/to/scripts/clonedetect/vertical-param-batch"

 An optional parameter to the script is 'clean', 'clean_all', or

'overwrite'

2. Vector generation for parts of a file:

 - Identify the source file name, say /path/to/src/filename.java and the

range

 [s, e] of line numbers you'd like to have a vector generated

 - Run "src/main/jvecgen [options] /path/to/src/filename.java --start-

line-number s --end-line-number e"

 Run "jvecgen -h" for more options. Note that different vecgen

(cvecgen,

 jvecgen, phpvecgen) should be used for files in different languages.

This vecgen command will generate a vector representing the code between

Line 's' and

'e' in the source file, and store the vector in "filename.java.vec" by

default.

3. Detection of clone-related bugs:

 - Invoke 'bugfiltering' on a clone report file with a specified

language, e.g.,

 /path/to/scripts/bugdetect/bugfiltering cluster_result c > bug_result

 - Optionally transform 'bug_result' to a html file for easier inspection

of

 the reported potentially buggy clones in a web browser:

 /path/to/src/main/out2html bug_result > bug_result.html

 - See 'deckard.sh' for how to run it in a batch mode (not enabled by

default).

*

* What are in the package

*

1. Organization

The whole package is organized according to the several components in

Deckard:

 - Parse tree generation

 -- src/include/ : a generic interface for trees

 -- src/ptgen/ : ANTLR parser generator

 -- src/ptgen/gcc : a grammar for C (GNU C extensions) and its parse

tree generator

 -- src/ptgen/java : a grammar for Java (<=1.4) and its parse tree

generator

 -- src/ptgen/php5 : a grammar for php5 and its parse tree generator

 - Vector generation

 -- src/vgen/treeTra/ : a generic tree traversal framework based on the

 generic tree interface in src/include, and vector generation based

on tree

 traversal, mostly C++.

 -- src/vgen/vgrouping/ : code for vector grouping (mix of

C,C++,python,bash)

 - Vector clustering

 -- src/lsh/ : the LSH package and an interface for Deckard to use

 (src/lsh/source/enumBuckets.cpp).

 - Main entrances

 -- src/main/ptree.cc : an implementation of the tree interface

 -- src/main/main.cc : entrance for vector generation

 -- src/main/parseTreeMain.cc : entrance for parse tree dumping, can be

 useful for inspecting detected clones, bugs, and their related

parse trees

 -- src/main/bugmain.cc : entrance for bug filtering

 -- src/main/out2html.C : entrance for adding html tags into clone/bug

reports

 - Scripts gluing things together

 -- scripts/clonedetect/ : bash and python scripts

 --- deckard.sh : batch-mode clone detection

 --- vdbgen : batch-mode vector generation

 --- vertical-param-batch : batch-mode vector clustering

 -- scripts/bugdetect/ : bash and python scripts

 -- various auxiliary scripts for simple statistics

 - Others

 -- README

 -- LICENSE

2. Details about the clone/bug detection algorithms can be found in these

two

papers:

 - DECKARD: Scalable and Accurate Tree-based Detection of Code Clones, by

 Lingxiao JIANG, Ghassan MISHERGHI, Zhendong SU, and Stephane GLONDU.

In the

 proceedings of 29th International Conference on Software Engineering

(ICSE

 '07), Minneapolis, Minnesota, USA, 2007.

 - Context-Based Detection of Clone-Related Bugs, by Lingxiao JIANG,

Zhendong

 SU, and Edwin CHIU. In the proceedings of the 6th joint meeting of the

 European Software Engineering Conference and the ACM SIGSOFT Symposium

on the

 Foundations of Software Engineering (ESEC/FSE'07), Dubrovnik, Croatia,

2007.

**

*

* How to programmably use the vectors and the clone reports?

*

**

1. How to get the subtree representing each clone?

Each clone in the reports has a TBID and a TEID, in addition to the file

name,

and line numbers. The TBID and TEID uniquely identify the IDs of the

first

token and the last token in the clone from the original file (possibly

containing parsing errors). To maintain consistent counting of the IDs,

you

should leave the work to "yyparse()" and Deckard's TokenCounter for how

the IDs

are calculated (see TraGenMain::run() for implementation details).

The following are the main steps for getting the subtree for a clone

(please

refer to "src/vgen/treeTra/token-tree-map.h" for more implementation

details):

 - Given a line from the clone report file, parse it to get file name,

line

 numbers, TBID, and TEID, etc. C.f. the function:

 bool parse(char * line, regex_t patterns[], int

dim=ENUM_CLONE_THE_END)

 - Call the following function (which calls "yyparse()" and a token

counter) to

 get a whole parse tree for the source file and the token IDs for every

node:

 ParseTree* TokenTreeMap::parseFile(const char * filename)

 - Call the following function to get the smallest tree that contains all

 tokens between TBID and TEID:

 Tree* tokenRange2Tree2(std::pair<long, long> tokenrange, ParseTree*

pt)

 - Then do whatever you'd like with the returned tree. Note that vectors

are

 NOT generated for this tree yet. If vectors are needed, do the

following:

 -- Create a new object of type TraGenMain and call "TraGenMain::run(0,

0)"

 (c.f., src/main/main.cc)

 -- Retrieve the vector for the tree:

 TreeVector* tv = TreeAccessor::get_node_vector(Tree*

tree_node_pointer)

 -- If you also want some merged vectors from the child nodes of this

tree,

 that would require calls to TraGenMain::run() with different

parameters

 or adjust the internals of TraGenMain::run(), depending on how you

want

 the vectors to be presented to you. Feel free to improve the

vector

 generation, both the core and its interface/APIs.

2. How to get the vector for a line or a sequence of lines from a file?

 - Option 1: See above: Use "vector generation for parts of a file" with

your

 scripts.

 - Option 2: Given the parse tree for a file (produced by

 TokenTreeMap::parseFile() and yyparse()) and the starting and ending

line

 numbers, do the following:

 -- (If not done before,) Call Deckard's vector generator on the parse

tree

 through TraGenMain::run, same as above. Please refer to

src/main/main.cc,

 TraGenMain::run(int startln, int endln), and

 VecGenerator::traverse(Tree* root, Tree* init).

 -- Call the following function (c.f. src/include/ptree.h,

src/main/ptree.cc) to

 return the smallest tree enclosing all elements from these lines:

 Tree* ParseTree::line2Tree(int startln, int endln)

 -- Then retrieve the vector (the actual vector generation is done

beforehand):

 TreeVector* tv = TreeAccessor::get_node_vector(tree_node_pointer)

Enjoy and Feedback :=)

@Deckard : Am I a clone?

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2012

	Deckard - a tree-based, scalable, and accurate code clone detection tool (version 1.2.3)
	Lingxiao JIANG
	Ghassan MISHERGHI
	Zhendong SU
	Stephane GLONDU
	Citation

	tmp.1416452921.pdf.JbhCr

