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Privacy-Preserving Ad-Hoc Equi-Join on Outsourced Data

HWEEHWA PANG and XUHUA DING, Singapore Management University

In IT outsourcing, a user may delegate the data storage and query processing functions to a third-party 
server that is not completely trusted. This gives rise to the need to safeguard the privacy of the database as 
well as the user queries over it. In this article, we address the problem of running ad hoc equi-join queries 
directly on encrypted data in such a setting. Our contribution is the first solution that achieves constant 
complexity per pair of records that are evaluated for the join. After formalizing the privacy requirements 
pertaining to the database and user queries, we introduce a cryptographic construct for securely joining 
records across relations. The construct protects the database with a strong encryption scheme. Moreover, 
information disclosure after executing an equi-join is kept to the minimum—that two input records combine 
to form an output record if and only if they share common join attribute values. There is no disclosure on 
records that are not part of the join result.

Building on this construct, we then present join algorithms that optimize the join execution by eliminating 
the need to match every record pair from the input relations. We provide a detailed analysis of the cost of 
the algorithms and confirm the analysis through extensive experiments with both synthetic and benchmark 
workloads. Through this evaluation, we tease out useful insights on how to configure the join algorithms to 
deliver acceptable execution time in practice.

Categories and Subject Descriptors: H.2.7 [Database Management]: Security, Integrity, and Protection

General Terms: Security, Algorithms, Performance

Additional Key Words and Phrases: Data and query privacy, equi-join, query over encrypted data

1. INTRODUCTION

IT outsourcing including cloud computing and database-as-a-service offers many ad-
vantages like enhanced data availability, flexibility in provisioning resources according 
to usage demand, and economy of scale. Nevertheless, adoption has been slowed by per-
sistent concerns over control and protection of data, as well as conflicting legislative 
frameworks (e.g., U.S. Patriot Art versus EU Data Protection Art). In a recent high-
profile case, Computer Weekly [Saran 2011] reported that defense contractor BAE Sys-
tems aborted plans to adopt Microsoft Office 365, due to concerns that the Patriot Act 
would prevent Microsoft from guaranteeing that BAE’s data would not leave Europe.

The concerns over data control and protection may be mitigated if data leave cus-
tomers’ premises only in encrypted form. While a small dataset may be encrypted and 
retrieved in its entirety from an outsourced server each time some data are used, doing 
so is impractical with large relational databases. Rather, a database system on the
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server needs to support ad hoc queries to select and compose data from an encrypted
database.

In this article, we focus on the problem of executing ad hoc equi-join queries on an
outsourced database while preserving the privacy of the queries and data. An example
of equi-join is the following query to retrieve back-to-back appointments.

SELECT * FROM APPT R, APPT S
WHERE R.StartT ime = S.EndT ime

Following the database-as-a-service model (adopted in many studies like Hacigumus
et al. [2002] and Mykletun and Tsudik [2006]), our system setting includes a User and
an untrusted Server. The User deposits a database, within which are two relations
R and S with confidential attributes R.A and S.B, respectively, with the Server. At
runtime, the User may authorize the Server to perform an equi-join operation R ��A=B S
in a way that satisfies the following (high-level) privacy and functionality requirements.

—Initial confidentiality mandates that, from its copy of the database, the Server derives
no information on the confidential values in R.A and S.B.

—Query safety embodies three aspects: (a) after executing equi-join R ��A=B S, the
Server knows only that a pair of records r ∈ R and s ∈ S combine to form a record in
the query answer if and only if r.A = s.B. The actual values of r.Aand s.B are still not
revealed; (b) the Server gains no advantage in deducing the values in records that
are not part of the query answer; (c) the Server is unable to abuse the authorization
for R ��A=B S to join R or S with some other relations.

—Noninteractivity requires the Server to produce the query answer without involving
the User in processing the join. An important reason for this requirement is to avoid
incurring costly network exchanges in the course of query execution.

The preceding privacy requirements, defined more precisely in Section 3.1, are the
strongest possible while allowing the untrusted Server to execute the equi-join. In
particular, initial confidentiality requires the use of strong encryption to protect the
confidential values, whereas query safety caps the information disclosure stemming
from the equi-join to the minimum necessitated by the semantics of the join.

Deterministic encryption schemes, with which records sharing the same attribute
value can be observed to have the same ciphertext, violate initial confidentiality as well
as point (b) of query safety. Consider the example in Figure 1 that includes a patient
relation and a diagnosis relation. The diagnosis codes in the patient relation, as well
as the attributes in the diagnosis relation, are encrypted deterministically and stored
in the E(DiagCode) and E(Name) attributes, respectively. Without recovering the
original diagnosis codes, an adversary can observe from their ciphertexts that Alice
and Bob have the same diagnosis. Furthermore, if Alice is known to have HIV, a join of
the two relations on E(DiagCode) would reveal that the ciphertext E(HIV) corresponds
to HIV. Also, deterministic encryption preserves the frequency of the plaintext values
in the ciphertexts; this allows an adversary who possesses prior knowledge of the
plaintext frequency distribution to decipher the ciphertext through frequency analysis.
Such inference exposure from deterministic encryption poses a real privacy threat and
has been highlighted in Damiani et al. [2003].

To prevent inference exposure, we need a probabilistic scheme that incorporates
randomness in encrypting data. Thus, the diagnosis codes of Alice and Bob in the
patient relation, as well as the diagnosis code for HIV in the diagnosis relation, will
encrypt to different ciphertexts, making it impossible for an adversary to link the
three records from their encrypted diagnosis codes. This, however, raises the challenge
of enabling the untrusted Server to perform an equi-join R ��A=B S, which involves
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Fig. 1. Example of deterministic encryption.

determining whether two records r ∈ R and s ∈ S satisfy the condition r.A = s.B from 
their probabilistically generated ciphertexts.

In cryptography, the predicate encryption schemes of Katz et al. [2008] and Shen 
et al. [2009] allow the Server to determine from the ciphertext of r.A and s.B whether 
r.A− s.B = 0, by treating r.A as message and s.B as predicate. However, the schemes 
do not meet the second aspect of query safety defined previously and they are very 
computationally expensive. Another construct called hidden vector encryption [Boneh 
and Waters 2007] enables the Server to evaluate whether two encrypted vectors for r.A 
and s.B embed the same value, but with an overhead proportional to the domain size 
of r.A and s.B that is impractical in our problem setting.

The existing study that is closest to our work is Carbunar and Sion [2012]. Their 
study is the first we are aware of to formalize the twin requirements of initial confi-
dentiality and query safety for private join. The authors also offered a scheme for an 
untrusted Server to perform private join. As the data encryption in the scheme con-
tains components that are produced deterministically, it is vulnerable to the inference 
exposure problem described before and hence falls short of our privacy requirements. 
We aim to avoid this shortcoming in our method.

Contributions. In this article, we propose a solution for an untrusted Server to per-
form ad hoc equi-join R ��A B S while safeguarding the privacy of the database and 
query. Our solution is the first

= 
that achieves constant complexity per pair of records that 

are evaluated for the join. The query is ad hoc in the sense that, when the database is 
first deposited with the Server, it is not known that the equi-join will be performed. Con-
sequently, the encryption of attributes R.A and S.B cannot build in clues to facilitate 
the processing of R ��A B S. Our contribution to existing work includes a cryptographic 
construct for joining e 

=
ncrypted records across relations that satisfies the aforesaid pri-

vacy requirements, as well as optimized join algorithms that reduce the number of 
record pairs from the input relations that need to be matched. The contributions are 
further elaborated next.

We begin by defining precisely, in the context of equi-join, the notions of initial confi-
dentiality and query safety in our privacy framework. To implement the privacy frame-
work, we then introduce a cryptographic construct for the User to enable the Server 
to match the records across two input relations on their encrypted join attributes. The 
cryptographic construct is built on bilinear groups of prime order (see Definitions 2.4 
and 2.5). We show that our construct correctly preserves the semantics of the equi-
join while enforcing the privacy requirements, predicated on commonly accepted hard 
problems in bilinear groups.

In view that the equi-join is executed over encrypted data, we should expect to incur 
additional overheads relative to working directly with cleartext data. As operations in 
bilinear groups are computationally expensive, for performance reasons it is imperative 
to avoid matching every record pair from the input relations. We achieve this through 
two techniques, namely equivalence partitioning (EP) and hash partitioning (HP).
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In EP, we exploit the fact that records in R that join with the same S record must
share a common value in attribute A. As these R records are discovered, they are
grouped into an equivalence class so that, if any representative matches a subsequent
S record, the remaining members in the equivalence class can be determined to match
that S record without further tests. This technique applies also in grouping the records
of S into equivalence classes. We provide an EP algorithm that concurrently partitions
R and S into equivalence classes in the course of performing the join.

In HP, the User applies a hash function to map each record on its join attribute to
a partition identifier, so that the Server needs to join an R record only with those S
records that have the same partition identifier. The partition identifiers are encrypted
to ensure initial confidentiality and disclosed only at the time of the join. Unlike EP,
HP discloses extra information, and we show how to quantify this disclosure.

To assess the effectiveness of EP and HP, we provide a detailed analysis of their
costs in common query settings. We also evaluate them extensively on synthetic and
benchmark workloads. The evaluation reveals useful insights on how to configure the
join algorithms to achieve practical query execution time.

The remainder of this article is organized as follows. Section 2 summarizes related
work and background on the cryptographic techniques that we employ in this work.
In Section 3, we formalize the private join problem and introduce our cryptographic
construct for joining records across selected relations. The security of the construct
is proved in Section 4. Section 5 then develops the cryptographic construct into join
algorithms, incorporating the EP and HP techniques to reduce computation cost. We
analyze the cost of EP in Section 6, while Section 7 empirically evaluates the join
algorithms. Finally, Section 8 concludes.

2. BACKGROUND

This section begins with a review of existing schemes for private join [Carbunar and
Sion 2012] before discussing related literature in cryptography. We also briefly cover
the cryptography background for our work.

2.1. Related Work on Private Join

In the OPES scheme [Agrawal et al. 2004], a cleartext attribute value is converted to a
ciphertext for query processing (including joins) through two order-preserving mapping
functions. The first function maps from the source (i.e., cleartext value) distribution to
a uniform distribution, which the second function then maps to a target distribution.
Without knowledge of the mapping functions, an adversary cannot reverse them to
recover the cleartext value from a ciphertext. As explained in Agrawal et al. [2004],
OPES (and any order-preserving scheme) fails when the data distribution or the clear-
text data are known, as it is then straightforward to correlate an encrypted record
with its cleartext counterpart. Moreover, in cases where pairs of cleartext-ciphertext
are leaked, an adversary can easily partition the data collection by the compromised
cleartext values.

In Hacigumus et al. [2002], the authors proposed to provide the DBMS with hash di-
gests of the attribute values to facilitate query processing. Two types of hash functions
were considered. The first type, order-preserving functions, suffers the same limita-
tions as OPES. The second, randomized hashing, destroys the order between attribute
values. However, as the hashing function is deterministic, it has a similar vulnera-
bility as deterministic encryption (as described in the Introduction). Clearly, the finer
the hash buckets, the more precise the retrieval, leading to better performance but
higher disclosure. Hore et al. [2004] provide a systematic treatment of this privacy-
performance trade-off. Instead of one hash function, an alternative is to use a Bloom
filter [Bloom 1970] that applies multiple hash functions to derive the digests. Even so,
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the vulnerability of hashing remains since the same deterministic hash functions are
applied to every attribute value.

CryptDB [Popa et al. 2011] embodies an SQL-aware encryption strategy to enable
query execution on encrypted data. This means that the type of encryption used on an
attribute depends on the query operations that need to be performed on the attribute.
For equi-join, the attributes involved are encrypted with a deterministic function. That
paper provides a method to encrypt attributes with different keys initially, and then to
adjust their encrypted values to the same key (without access to the original values)
just prior to the join operation.

In contrast to Agrawal et al. [2004], Hacigumus et al. [2002], Hore et al. [2004], and
Popa et al. [2011], our objective in this article is to protect data with a probabilistic
encryption approach to achieve stronger privacy, although we also show how to combine
our solution with deterministic bucketization to improve runtime performance.

The notion of private join was first formalized by Carbunar and Sion [2012]. The
authors also introduced a method to privately perform predicate join. Suppose that R
is a relation of records {r1, r2, . . . , rm} with schema 〈KR, A, . . .〉, where KR is the primary
key and A is a confidential attribute, and S is a relation of records {s1, s2, . . . , sn} with
schema 〈KS, B, . . .〉 where KS is the primary key and B is a confidential attribute.
Let predFM : A × B → {true, f alse} be a finite match predicate such that: (a) for
every value a ∈ A, there is an upper bound on the number of values b ∈ B for which
predFM(a, b) = true; and (b) for every value b ∈ B, there is an upper bound on the
number of values a ∈ A for which predFM(a, b) = true. The private predicate join
method comprises three procedures:

—Setup. Let p be a large prime number. Let Z
∗
p be a cyclic group of order p, with

generator g (see Definition 2.2). Randomly generate encryption key K ∈R {0, 1}∗
and xA, yA, xB, yB ∈R Zp. Let H(.) be a cryptographic hash function and EK(.) be an
encryption of its input with key K. The User keeps 〈K, xA, yA, xB, yB〉 secret, whereas
〈p, g〉 is published to the Server.

—Encrypt data. For each value ai ∈ A in record ri ∈ R, the User generates a tuple
〈EK(ai), O(ai), BF(ai)〉, where O(ai) = H(ai)xA mod p, and BF(ai) is a Bloom filter on
{gH(b)yA mod p | predFM(ai, b) = true}.

Likewise, for each value bi ∈ B in record si ∈ S, the User generates a tuple
〈EK(bi), O(bi), BF(bi)〉, where O(bi) = H(bi)xB mod p and BF(bi) is a Bloom filter
on {gH(a)yB mod p | predFM(a, bi) = true}.

The generated tuples are deposited with the Server.
—Join. To identify record pairs ri ∈ R, sj ∈ S that match predicate predFM(ai, bj)

where ai and bj are the A and B values in ri and sj , respectively, the User supplies a
trapdoor TAB = gyA/xB mod p. The Server decides that ri matches sj if (TAB)O(bj ) mod p
is encoded in BF(ai).

An advantage of the scheme is that it supports any finite match predicate. At the 
same time, it has limitations. One limitation is that duplicate values within the A 
column can be observed by the Server; since  O(.) and  BF(.) are deterministic functions, 
they always give the same output for duplicate values within a column. The authors 
showed that O(.) may be remedied by forcing each duplicate to a unique value, for 
example, by appending an instance count. Even so, the Server is able to deduce that, 
if BF(ai ) = BF(aj ) for records ri, r j ∈ R, it is highly likely that ai = aj . Similarly, 
duplicates in the B column are apparent from their BF(.) values. Hence the scheme is 
vulnerable to inference exposure [Damiani et al. 2003].

Another limitation is that BF(.) depends on predFM, so any change to the predicate 
function requires all the records to be reencoded. Consequently, the method caters only
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for predefined predicates but not for ad hoc join queries. Moreover, if there are multiple
predicates defined on a column, each predicate would require its own set of Bloom
filters.

In this article, we focus on equi-join, one of the most common operations in relational
DBMS. The main differentiations of our work from the scheme in Carbunar and Sion
[2012] are in: (a) employing probabilistic encryption to protect confidential attributes,
and (b) supporting ad hoc equi-join queries.

Instead of processing encrypted data directly, a different approach is to assume the
Server contains a trusted hardware that can decrypt data securely for processing. An
example of such a study is reported in Arasu and Kaushik [2014], proposing algorithms
that ensure the access patterns generated by database operations do not disclose in-
formation on the encrypted data. Challenges associated with this approach, including
the cost of programming the trusted hardware, the administrative overhead in deploy-
ment, and the resource constraint of the trusted hardware, lead us to decide against
the approach in this article.

2.2. Relation Work in Cryptography

The predicate encryption schemes of Katz et al. [2008] and Shen et al. [2009] allow
the Server to determine whether r.A − s.B = 0 for r ∈ R, s ∈ S, by treating r.A
as an encrypted message and s.B as an encrypted predicate. The schemes rely on
bilinear groups (see Definitions 2.4 and 2.5) with composite orders that are products of
3 and 4 large prime numbers, respectively. Operations in such groups incur very high
computation costs; for example, on our experiment platform described in Section 7.1,
a bilinear mapping operation requires 114 msec. In comparison, the same operation
takes only 565 usec in bilinear groups of prime order, the cryptographic setting for our
solution. Most importantly, the schemes do not meet the second aspect of query safety,
in that they cannot restrict the Server to only specific joins that the User authorizes. For
instance, if there is a record t in some other relation that contains encrypted message
t.C, the Server could also determine whether t.C − s.B = 0.

The Hidden Vector Encryption (HVE) scheme proposed by Boneh and Waters [2007]
enables a Server to compute the inner product of two encrypted vectors. To apply HVE
in an equi-join, we represent each R record value r.A ∈ [1, . . . , m] as an m-bit vector−→a with value 1 in position r.A and value 0 everywhere else. Likewise, each S record
value s.B ∈ [1, . . . , m] is represented as an m-bit vector

−→
b with value 1 in position s.B

and value 0 everywhere else. The Server then computes and tests whether the inner
product −→a · −→

b = 1. With HVE, every attribute value requires a ciphertext that is
O(m) in size. Additionally, the inner product computation entails O(m) operations in a
bilinear group of composite order that is the product of two large prime numbers. On
our experiment platform, a bilinear mapping operation in such a group is 70× slower
than in the cryptographic setting for our work, namely bilinear groups of prime order.
Such overheads are clearly impractical for general database attributes (e.g., 4-byte
integers where m would be 232). In contrast, the space and computation costs of our
construction in this article are constant and specifically independent of the attribute
domain size.

There are also symmetric-key encrypted keyword search [Song et al. 2000; Golle et al.
2004; Curtmola et al. 2006] and public-key encrypted keyword search [Boneh et al.
2004b, 2007] schemes for keyword search over encrypted data. While these schemes
protect the data with probabilistic encryption, the trapdoor for testing whether the
data contain a given keyword is deterministic. To apply such a scheme in an equi-join,
the attribute values in one relation R will be treated as encrypted data while the
attribute values in the other relation S will be trapdoors, meaning that the latter will
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be subjected to information exposure. Hence the requirement of initial confidentiality
will not be met.

Another line of related work is private set intersection [Freedman et al. 2004], where
two parties engage in a protocol to jointly compute the intersection of their respective
lists without leaking any additional information. In that problem, each party has access
to its own list of data and uses their values in the protocol. In contrast, in our equi-join
problem the Server that carries out query processing cannot know the cleartext values
of the input relations.

2.3. Cryptography Foundation

We define next several concepts in cryptography that underlie our proposed solution
in the next section.

Definition 2.1 (Chosen Plaintext Attack (CPA)). A CPA is a standard adversarial
model under which the adversary is able to obtain the encryption for arbitrary clear-
texts.

Definition 2.2. A cyclic group (G, ·) with generator g is an algebraic structure in
which applying binary operation · on any two elements yields a third element, while
demonstrating the closure, associativity, identity, and invertibility properties. More-
over, for every h ∈ G, there is an integer i such that h = gi. The number of elements in
G is known as its order.

Definition 2.3. The decision linear problem is to determine, for given cyclic group
G and u, v, h, ua, vb, hc ∈ G, whether c = a + b. The decision linear Diffie-Hellman
assumption [Boneh et al. 2004a] asserts that the decision linear problem is as hard
as the discrete logarithm problem. The latter is widely accepted as intractable in the
sense that it cannot be solved within a reasonable amount of time when the problem
parameter is large.

Definition 2.4. Let G be a cyclic group of order p with generator g. A bilinear map
is a mapping e : G×G → GT , where GT is another cyclic group of order p, that exhibits
the following properties:

—bilinearity: ∀u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
—computability: ∀u, v ∈ G, e(u, v) can be computed efficiently in complexity polynomial

in log p; and
—nondegeneracy: e(g, g) 
= 1.

Definition 2.5. A bilinear group is a cyclic group that has a bilinear map on it.

Definition 2.6 (Linear Encryption [Boneh et al. 2004a]). Construct a bilinear group
G with generators g1, g2, g3 such that g3 = gσ1

1 = gσ2
2 for some σ1, σ2 ∈ Z. Let the public

key be (g1, g2, g3) and the secret key be (σ1, σ2). To encrypt a record value r.A ∈ G, choose
random values λ1, λ2 ∈ Z and output the ciphertext (gλ1

1 , gλ2
2 , r.A· gλ1+λ2

3 ). To recover the
value r.A in a ciphertext (T1, T2, T3), the user computes r.A = T3/(T σ1

1 ·T σ2
2 ). The scheme

is secure against CPA, based on the decision linear Diffie-Hellman assumption.

Definition 2.7. In the context of a bilinear group G of prime order p with generator 
g, the Decision 3-party Diffie-Hellman (D3DH) problem [Boneh et al. 2006] is to decide, 
for given g, ga, gb, gc, t ∈ G, whether  t = gabc. The Decision 3-party Diffie-Hellman 
Assumption asserts that any polynomial algorithm has negligible advantage over a 
random guess in solving the D3DH problem.
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Table I. Notation

Symbol Meaning Default
|R| # pages in relation R 5,000
‖R‖ # records in relation R 20,000
φA # distinct values in attribute R.A 1,000
|S| # pages in relation S 5,000
‖S‖ # records in relation S 20,000
φB # distinct values in attribute S.B 1,000
TAB Token that the User issues to the Server to perform equi-join R ��A=B S –
M # memory pages for join operation 100

G, GT Cyclic groups with bilinear mapping e : G × G → GT –
p Large prime number that is the order of G and GT –

cexp Cost of exponentiation in G and GT –
cmul Cost of multiplication in G and GT –
cmap Cost of bilinear mapping e( , ) –
SK SK = (σ, σ1, σ2) is the User’s secret key; σ, σ1, σ2 ∈R Zp –
PK PK = (p, g1, g2) includes the public values of the cryptosystem; g1, g2 ∈ G –

κA, τA Random value generated for R; κA, τA ∈R Zp –
κB, τB Random value generated for S; κB, τB ∈R Zp –
Ai Ai = 〈Ai,1,Ai,2,Ai,3,Ai,4,Ai,5,Ai,6,Ai,7,Ai,8〉 ∈ G

8 is the encryption of
attribute A in record ri ∈ R

–

λi,1, λi,2, xi Random values generated for record ri ∈ R; λi,1, λi,2 ∈R Zp, xi ∈R G –
B j B j = 〈B j,1,B j,2,B j,3,B j,4,B j,5,B j,6,B j,7,B j,8〉 ∈ G

8 is the encryption of
attribute B in record sj ∈ S

–

μ j,1, μ j,2, yj Random values generated for record sj ∈ S; μ j,1, μ j,2 ∈R Zp, yj ∈R G –

3. CONSTRUCT FOR PRIVATE EQUI-JOIN QUERY

This section introduces our privacy-preserving construct for the ad hoc equi-join query.
We begin by defining our problem precisely, before presenting our cryptographic con-
struct. Table I summarizes the key notations, which will be explained as they are
used.

3.1. Problem Formulation

Our system comprises two parties, namely User and Server. The User’s database in-
cludes two relations R and S, wherein R contains records {r1, r2, . . . , rm}; the schema of
R is 〈KR, A, . . .〉, where KR is the primary key and A is a confidential attribute. S con-
tains records {s1, s2, . . . , sn} according to schema 〈KS, B, . . .〉, where KS is the primary
key and B is a confidential attribute. For now, we assume that A, B are in the domain
[L,U ) ⊂ [0, p) for some large prime number p; we will discuss how to handle other
common attribute domains in Section 5.

The User contracts with the Server to host the database and process queries over it.
In this work, we focus on equi-join queries of the form R ��A=B S. Engaging the Server
to compose the result of an equi-join from the input relations entails a necessary
disclosure that a record in one relation joins with two records in the other relation if
and only if the latter share the same join attribute value. Consequently, we can only
prevent additional disclosure from the equi-join. Specifically, we aim to achieve the
following two objectives: one pertaining to the privacy protection before executing an
equi-join on the database, the other the privacy protection thereafter.

P1 Initial Confidentiality. When the database is first deposited on the Server, the A
values in R and B values in S are sensitive and must be protected. In particular, the
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adversary’s ability to determine the A values and B values is no better than random
guesses in their respective domains.

P2 Safety of Equi-Join. The Server can perform a join R ��A=B S only after receiving an
enabling token TAB from the User. The Server cannot adapt TAB for a join involving
other relations or attributes. After executing the join, the following must hold.
P2A For any two records r1, r2 ∈ R that join with some record s ∈ S, the Server

knows that r1.A = r2.A. Nevertheless, the actual value of r1.A and r2.A remain
hidden from the Server. Likewise, for any two records s1, s2 ∈ S that join with some
record r ∈ R, the Server knows that s1.B = s2.B but not the actual values in s1.B
and s2.B.

P2B The Server gains no other information on any record of R that does not pair
with some S record, and vice versa, to satisfy the join condition encoded in TAB.

Our objective P1 implies that an adversary must not learn whether two records in
R share the same A value (i.e., ∀ r1, r2 ∈ R such that r1 
= r2, whether r1.A = r2.A),
two records in S share the same B value (i.e., ∀ s1, s2 ∈ S such that s1 
= s2, whether
s1.B = s2.B), or the Avalue in an R record is the same as the B value in an S record (i.e.,
∀ r ∈ R and s ∈ S, whether r.A = s.B). This objective is stronger than the corresponding
provision in Carbunar and Sion [2012], that leaks information on whether two records
share the same A or B values as explained in Section 2.1. As for objective P2, it limits
the disclosure to the minimum necessitated by the semantics of the equi-join. P2B in
particular cannot be met by fixed bucketization schemes (like Hacigumus et al. [2002]
and Hore et al. [2004]).

In general, an equi-join R ��A=B S may be performed on any two relations R and S in
which the join attributes Aand B have compatible domains. One interesting instance is
where R and S are vertical partitions of a larger relation such that A and B correspond
to the primary key of the original relation. In this instance, our privacy objectives
ensure that the original relation can be reconstructed from R and S only after the
User issues TAB, and even then the join attributes remain protected. Other common
instances involve primary-key-to-foreign-key joins and foreign-key-to-foreign-key joins.
Here, we provide the additional assurance that the Server cannot determine whether
any particular primary key value and foreign key value, respectively, has matching
counterparts in the other relation.

Adversarial model. The adversary may be the Server that is capable of observing the
schema, the database, and all the queries, in addition to tampering with the data and
query processing procedure. The adversary may also be an external party that somehow
manages to inject itself into the protocol of the system. We exclude consideration of any
external knowledge that the adversary may exploit to defeat our privacy measures.

3.2. Cryptographic Construction

We now present a protocol for the Server to determine, in any pair of encrypted records
ri ∈ R and sj ∈ S, whether the condition ri.A = sj .B holds. We begin by explaining how
our privacy framework leads us to the following design decisions, before introducing
details of our protocol.

—To ensure that query token TAB is necessary for equi-join R ��A=B S and cannot be
abused, we embed secret values specific to attribute R.A in the ciphertext of ri.A
in every record ri ∈ R, secret values specific to attribute S.B in the ciphertext of
sj .B in every record sj ∈ S, and the secret values of both attributes in TAB. Only by
combining TAB with the ciphertexts of an ri.A value along with an sj .B value can the
attribute secrets in them be cancelled out to allow for testing whether ri.A = sj .B.
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—The combination of TAB with the ciphertexts of an ri.A value and an sj .B value gives
an output that is a function of (xi · yj)ri .A−sj .B, where xi is a random value specific to
each record ri ∈ R and where yj is a random value specific to each record sj ∈ S. Thus,
if ri.A− sj .B = 0, the protocol output is a known constant; otherwise, the output is
a random value due to the factor xi · yj . This property is critical in preventing any
inference between R records (by checking, for r1, r2 ∈ R and any one sj ∈ S, whether
the protocol gives the same output on the pair {r1.A, sj .B} and on {r2.A, sj .B}), as well
as between S records. Since (ri.A, xi) and (sj .B, yj) belong to independent ciphertexts,
our cryptographic construct exploits the bilinearity property of bilinear groups to
constitute (xi · yj)ri .A−sj .B from the ciphertexts.

—In order to compose, from TAB and the ciphertexts of an ri.A value and an sj .B value,
an output that is a function of (xi · yj)ri .A−sj .B, the encryption of ri.A and sj .B must
be additively homomorphic. We choose to extend Boneh et al’s linear encryption
scheme in Boneh et al. [2004a]; besides being additively homomorphic, it satisfies
our requirement of initial confidentiality in providing semantic indistinguishability
of encrypted data against CPA. We emphasize, though, that Boneh et al’s work
provides neither the mechanism for testing whether ri.A−sj .B = 0 nor the necessary
safeguards to limit the information derivable from the test.

—As our data encryption maps each record value to a ciphertext comprising multiple
elements of a bilinear group, those elements need to be “chained” by record-specific
random values. This is necessary to prevent deviations from our protocol by inter-
mixing elements across the ciphertexts of different records.

We now present details of our cryptographic protocol that consists of four procedures:
Setup, EncryptData, GenerateQuery, and ServerProcessing.

Setup. Construct a cyclic group G with bilinear mapping e : G × G → GT , where the
orders of G and GT are both p, a large prime number such that [0, p) envelops the
domain of R.A and S.B. Let g1 be a generator of G. Randomly choose σ and σ1 from Zp,
denoted as σ, σ1 ∈R Zp. Compute g2 = gσ

1 . The User’s secret key is SK = (σ, σ1). The
public values PK = (p, g1, g2) are released to the Server.

EncryptData. After choosing κA, τA ∈R Zp for R and κB, τB ∈R Zp for S, the User encrypts
the confidential attribute in the records of the two relations before depositing them with
the Server.

—For each ri ∈ R, let λi,1, λi,2 ∈R Zp, xi ∈R G and represent ri.A by encrypted tu-
ple 〈Ai,1,Ai,2,Ai,3, Ai,4,Ai,5,Ai,6,Ai,7,Ai,8〉 ∈ G

8, where Ai,1 = xλi,1
i , Ai,2 = gλi,2

1 ,
Ai,3 = xσ1×ri .A+σ2

i · gλi,1+λi,2
2 , Ai,4 = xi, Ai,5 = xσ

i , Ai,6 = xσ/κA
i , Ai,7 = gλi,1×τA

1 ,
Ai,8 = e(xi, xi)σ1×ri .A+σ2 .

—For each sj ∈ S, let μ j,1, μ j,2 ∈R Zp, yj ∈R G and represent sj .B by encrypted tu-
ple 〈B j,1,B j,2,B j,3, B j,4,B j,5,B j,6,B j,7,B j,8〉 ∈ G

8, where B j,1 = yμ j,1
j , B j,2 = gμ j,2

1 ,

B j,3 = yσ1×sj .B+σ2
j · gμ j,1+μ j,2

2 , B j,4 = yj , B j,5 = yσ
j , B j,6 = yσ/κB

j , B j,7 = gμ j,1×τB

1 ,
B j,8 = e(yj, yj)σ1×sj .B+σ2 .

In the encryption, κA, τA, κB and τB are per-attribute secrets that allow the User to
control which pair of attributes can be joined by the Server. Moreover, all the group ele-
ments in each encrypted tuple are linked to each other, directly or indirectly, by record-
specific random variables (i.e., λi,1, λi,2, xi in the ciphertext of ri.A, and μ j,1, μ j,2, yj in
the ciphertext of sj .B). Among them, xi and yj will go into the output that is a func-
tion of (xi · yj)ri .A−sj .B when the Server subsequently tests whether ri.A − sj .B = 0 in
ServerProcessing.
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GenerateQuery. For equi-join query R ��A=B S, the User generates a query token TAB =
〈κB/τA,−κA/τB〉. TAB is sent to the Server.
ServerProcessing. For any pair of records ri ∈ R and sj ∈ S, if the Server detects that
the following condition holds

e
(
Ai,3 · B−1

j,3,Ai,4 · B j,4
) = Ai,8 · B−1

j,8 · e
(
Ai,1 · B−1

j,1, g2
) · e

(
BκB/τA

j,6 ,Ai,7
) · e

(
Ai,6,B−κA/τB

j,7

) ·
e
(
Ai,2 · B−1

j,2,Ai,5 · B j,5
)
, (1)

then 〈ri, sj〉 forms an output record of the equi-join.

4. ANALYSIS OF EQUI-JOIN CONSTRUCT

We now give a formal analysis of the security properties of the equi-join protocol
introduced in Section 3.2, following the convention and terminology in cryptography.

4.1. Correctness of Equi-Join Construct

THEOREM 4.1. The equi-join protocol in Section 3.2 is correct.

PROOF. Consider any pair of records ri ∈ R and sj ∈ S, their ciphertexts
〈Ai,1,Ai,2,Ai,3,Ai,4,Ai,5,Ai,6,Ai,7,Ai,8〉 and 〈B j,1,B j,2,B j,3,B j,4,B j,5,B j,6,B j,7,B j,8〉,
along with query token TAB. Due to the properties of the bilinear group,

e
(
Ai,1 · B−1

j,1, g2
) = e

(
xλi,1

i · y−μ j,1
j , g2

) = e(xi, g2)λi,1 · e(yj, g2)−μ j,1

e
(
BκB/τA

j,6 ,Ai,7
) = e

(
yσ/τA

j , gλi,1×τA

1

) = e(yj, g2)λi,1

e
(
Ai,6,B−κA/τB

j,7

) = e
(
xσ/κA

i , g−μ j,1×κA

1

) = e(xi, g2)−μ j,1

e
(
Ai,2 · B−1

j,2,Ai,5 · B j,5
) = e

(
gλi,2−μ j,2

1 , xσ
i yσ

j

) = e(xi yj, g2)λi,2−μ j,2 .

Therefore,

e
(
Ai,3 · B−1

j,3,Ai,4 · B j,4
) = e

(
xσ1×ri .A+σ2

i y−σ1×sj .B−σ2
j gλi,1+λi,2−μ j,1−μ j,2

2 , xi yj
)

= e
(
xσ1×ri .A+σ2

i y−σ1×sj .B−σ2
j , xi yj

) · e(g2, xi yj)λi,1+λi,2−μ j,1−μ j,2

= e(xi, xi)σ1×ri .A+σ2 · e(xi, yj)σ1(ri .A−sj .B) ·
e(yj, yj)−σ1×sj .B−σ2 · e(g2, xi)λi,1−μ j,1 ·
e(g2, yj)λi,1−μ j,1 · e(g2, xi yj)λi,2−μ j,2

= Ai,8 · e(xi, yj)σ1(ri .A−sj .B) · B−1
j,8 · e

(
Ai,1 · B−1

j,1, g2
) ·

e
(
BκB/τA

j,6 ,Ai,7
) · e

(
Ai,6,B−κA/τB

j,7

) ·
e
(
Ai,2 · B−1

j,2,Ai,5 · B j,5
)
. (2)

In formula (2), e(xi, yj)σ1(ri .A−sj .B) = 1 ⇔ ri.A = sj .B mod p. As we have chosen [0, p)
to envelop the domains of R.A and S.B and as the order of GT is a prime number, we
have ri.A = sj .B if and only if e(xi, yj)σ1(ri .A−sj .B) = 1. Thus, the condition in formula (1)
holds.

In testing the previous join condition, the query token TAB plays a crucial role in that,
without it, the Server can obtain only e(B j,6,Ai,7) = e(yj, g2)λi,1×τA/κB and e(Ai,6,B−1

j,7) =
e(xi , g2)−μ j,1×τB/κA, thus failing to offset the components e(yj , g2)λi,1 and e(xi , g2)−μ j,1 in 
e(Ai,3 · B j

−
,3
1, Ai,4 · B j,4).
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4.2. Initial Confidentiality

4.2.1. Definition of Initial Confidentiality. Our privacy objective P1 mandates the use of
strong encryption to protect the confidential R.A and S.B attributes. To satisfy the
objective, we show formally that our data encryption is secure against CPA (see
Definition 2.1) through a privacy experiment involving an adversarial algorithm A,
relation R, and a security parameter n. Without loss of generality, we suppose that
A targets the privacy of R. The definitions and security proof that follow are also
applicable to an adversary targeting relation S.

The privacy experiment, denoted by ExpREO
R,A (n), follows the standard procedure in

cryptography for proving the security of an encryption against CPA. We enable the
adversary to carry out CPA by giving it access to the following oracle. Using the oracle,
the experiment simulates the ability of the adversary to obtain ciphertext correspond-
ing to any plaintext it chooses, without knowing the encryption key.1 This ability gives
the adversary more advantage than a passive eavesdropper.

R-Enc-Oracle (REO). Upon receiving an R-Enc-Oracle “query” representing a
record r ∈ R, REO returns a 8-tuple A = 〈A1,A2,A3,A4,A5,A6,A7,A8〉 ∈ G

8

produced with the EncryptData procedure.

The steps in the experiment are next given.

Step 1. Adversary A issues a polynomial number of R-Enc-Oracle queries to REO to
obtain the encryption of arbitrarily chosen records of R.
Step 2. Adversary A chooses two records (r̄0, r̄1) from R. It receives an encrypted
tuple Ā = 〈Ā1, Ā2, Ā3, Ā4, Ā5, Ā6, Ā7, Ā8〉 ∈ G

8 for r̄β , where β ∈R {0, 1}, produced
with the EncryptData procedure.
Step 3. Adversary A may issue a polynomial number of R-Enc-Oracle queries to
REO to obtain the encryption of arbitrarily chosen records of R, in the same way as
in step 1. Finally, A stops and outputs β ′.
Output. The output of the experiment is defined to be 1 if β ′ = β, and 0 otherwise.

Since attribute R.A is not necessarily a primary key, R may have multiple records with
the same key attribute value. Step 3 of the experiment thus allows the adversary to
issue R-Enc-Oracle queries on either r̄0 or r̄1.

We now formally define privacy objective P1 by stating its mathematical meaning in
the context of the attacker’s capability.

Definition 4.2. An encryption scheme on a relation R ensures its initial confiden-
tiality if, for all probabilistic polynomial-time algorithms A, there exists a polynomially
negligible function ε(n) of the security parameter n such that the adversary’s proba-
bility of outputting 1 from the ExpREO

R,A (n) experiment differs from the probability of a
successful random guess by ε(n); in other words,

Pr
[
ExpREO

R,A (n) = 1
] = 1/2 + ε(n).

Informally, the definition means that, in a CPA, an adversary can do no better than a
random guess in determining the confidential attribute A in any R record.

4.2.2. Proof of Initial Confidentiality. We now prove that our protocol given in Section 3.2
achieves initial confidentiality as specified in Definition 4.2. Suppose on the contrary
that there exists an algorithm A offering a nonnegligible advantage in determining

1It is a common practice to define oracles in a formal proof to model the adversary’s noncomputational attack
capability. For instance, an adversary may manipulate the database owner so that a special record (with a
value known to the adversary) is encrypted and inserted into the database.
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β in the ExpREO
R,A (n) experiment. This would allow the formulation of an algorithm B

upon algorithm A that solves the decision linear problem with nonnegligible advantage.
As this contradicts the decision linear Diffie-Hellman assumption (in Definition 2.3),
algorithm A cannot exist.

Informally, algorithm B is built on A as follows: B receives an instance of the decision
linear problem (x, v, h, xa, vb, W) and has to determine whether W = ha+b. We set up B

to encrypt records of relation R, so B can simulate REO in the ExpREO
R,A (n) experiment

performed by A. In step 2 of the experiment, B receives records (r̄0, r̄1) from A and
encrypts r̄β , β ∈R {0, 1}, with the input parameters of the decision linear problem. If
A successfully determines β, then B concludes that W is related to the other input
parameters, specifically W = ha+b.

THEOREM 4.3. The encryption scheme presented in Section 3.2 ensures initial con-
fidentiality, assuming that both the decision linear problem and the Decision 3-party
Diffie-Hellman (D3DH) problem are intractable.

PROOF. We give a sketch of the proof here and defer the complete proof to the Appendix.
We show that, if there is a Probabilistic Polynomial-Time (PPT) algorithm A that

can defeat the encryption scheme with nonnegligible advantage (denoted by ε) over
a random guess, then there exists a PPT algorithm B that is capable of successfully
solving the decision linear problem with nonnegligible advantage.

Algorithm B takes as input an instance of the decision linear problem,
(x, v, h, xa, vb, W) where x, v, h ∈ G and a, b, c ∈ Zp, such that W is random with 0.5
probability and W = ha+b with 0.5 probability. B successfully solves the problem if it
outputs 1 when W = ha+b, and 0 otherwise. Let ρ denote B’s success probability.

B simulates the privacy experiment ExpREO
R,A (n) for A. Choosing κA, τA, σ, σ1 ∈R Zp

and setting g1 = v, g2 = gσ
1 , B has all the secrets used in the EncryptData procedure

described in Section 3.2 to simulate REO for the R-Enc-Oracle queries in steps 1 and 3
of the experiment. Upon receiving (r̄0, r̄1) from A in step 2 of the experiment, B chooses
β ∈R {0, 1} and returns Ā = 〈Ā1, Ā2, Ā3, Ā4, Ā5, Ā6, Ā7, Ā8〉 where

Ā1 = xa, Ā2 = vb, Ā3 = xσ1×r̄β .A+σ2 · W, Ā4 = x,

Ā5 = xσ , Ā6 = xσ/κA, Ā7 = gz
1, z ∈R Zp, Ā8 = e(x, x)σ1×r̄β .A+σ2 .

If A determines β correctly from Ā and the output of ExpREO
R,A (n) is 1, then B decides

that W = ha+b and outputs 1; otherwise, B outputs 0.
We consider the two equally likely cases for W in the decision linear problem that B

is trying to solve: (I) W is random; (II) W = ha+b.

Case I. As Ā3 would be random in this case, A guesses randomly and outputs 0 with
1/2 probability. Therefore, B’s success probability is 1/2 as well.
Case II. Except for Ā3 and Ā7, all the components of Ā in B’s simulation are identical
to those in the original privacy experiment ExpREO

R,A (n).
Let ρ0 denote the probability that adversary A manages to discern that z 
= a × τA

in Ā7, given Ā1 to Ā6 and Ā8. In the Appendix, we show that the D3DH problem
is reducible to A’s problem of discerning Ā7. Assuming that the D3DH problem is
hard, ρ0 can be only negligibly greater than 1/2.

Let ρ1 denote the probability that A successfully distinguishes Ā3 = xσ1×r̄β .A+σ2 ha+b

in the simulation from xσ1×r̄β .A+σ2 ga+b
2 in the original privacy experiment. In the

Appendix, we show that A has negligible advantage in distinguishing xσ1×r̄β .A+σ2 ha+b

from xσ1×r̄β .A+σ2 ga+b
2 over random guessing. This implies that ρ1 is also negligibly

greater than 1/2.
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Since the differences in Ā3 and Ā7 are not discernible, A will complete the exper-
iment with advantage ε and lead B to the right output; else A’s output is of no help
to B. Therefore, B’s success probability in Case II is (1 − ρ0)(1 − ρ1)ε + 1/2.

Combining Cases I and II, B’s probability of solving the decision linear problem is

ρ = 1/2 × 1/2 + 1/2((1 − ρ0)(1 − ρ1)ε + 1/2)
= 1/2 + ε(1 − ρ0 − ρ1 + ρ1ρ1)/2.

Assuming that B’s advantage in solving the decision linear problem is insignificant, ε
must be negligible. This leads to the conclusion that no PPT adversary can defeat our
encryption scheme.

4.3. Safety of Equi-Join

4.3.1. Definition of Equi-Join Safety. We formalize privacy objective P2 through a privacy
experiment in a similar fashion as in Section 4.2. Again, we suppose that A targets the
privacy of relation R. We prove that any record of R that does not join with some S
record remains secure against CPA. The definitions and security proof that follow are
applicable to an adversary targeting relation S as well.

The privacy experiment, denoted by ExpREO,SEO
��(R,S),A (n), is an extension of the standard

procedure in cryptography for proving the security of an encryption against CPA. We
enable the adversary to carry out CPA by giving it access to the following oracles to
obtain the encryption of arbitrarily chosen records of R and S.

R-Enc-Oracle (REO). : The same as in ExpREO
R,A (n).

S-Enc-Oracle (SEO). : Upon receiving an S-Enc-Oracle “query” representing a
record s ∈ S, SEO returns a 8-tuple B = 〈B1,B2,B3,B4,B5,B6,B7,B8〉 ∈ G

8 produced
with the EncryptData procedure.

The steps in the experiment are next given.

Step 1. Adversary A issues a polynomial number of R-Enc-Oracle and S-Enc-Oracle
queries to REO and SEO to obtain the encryption of arbitrarily chosen records of R
and S, respectively.
Step 2. Adversary A receives a join query token TAB and runs the ServerProcessing
procedure using TAB on R and S.
Step 3. Adversary A chooses two records (r̄0, r̄1) from R such that ∀s ∈ S, s.B 
= r̄0.A
and s.B 
= r̄1.A. It is given an encrypted tuple Ā = 〈Ā1, Ā2, Ā3, Ā4, Ā5, Ā6, Ā7, Ā8〉 ∈
G

8 for r̄β , where β ∈R {0, 1}, produced with the EncryptData procedure.
Step 4. Adversary A may issue a polynomial number of R-Enc-Oracle and S-Enc-
Oracle queries to REO and SEO to obtain the encryption of arbitrarily chosen records
of R and S, respectively, in the same way as in step 1, with the restriction that ∀s ∈ S,
s.B 
= r̄0.A and s.B 
= r̄1.A. Finally, A stops and outputs β ′.
Output. The output of the experiment is defined to be 1 if β ′ = β, and 0 otherwise.

As in the previous experiment, the adversary is allowed to issue R-Enc-Oracle queries
on either r̄0 or r̄1 in step 4. The main differences between the previous experiment
ExpREO

R,A (n) and ExpREO,SEO
��(R,S),A (n) here are that in the latter: (1) A has access to the S-Enc-

Oracle, and (2) A is given query token TAB.

Definition 4.4. An equi-join scheme �� on two relations R and S ensures safety
of the equi-join if, for all probabilistic polynomial-time algorithms A, there exists a
polynomially negligible function ε(n) of the security parameter n such that

Pr
[
ExpREO,SEO

��(R,S),A (n) = 1
] = 1/2 + ε(n).
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Informally, the definition means that, in a CPA, an adversary can do no better than
a random guess in determining the confidential attribute A in any R record that is not
part of the join result.

4.3.2. Proof of Equi-Join Safety. We now prove that our protocol given in Section 3.2
achieves query safety as specified in Definition 4.4. The proof is similar to the one in
Section 4.2.2 for initial confidentiality: Suppose, on the contrary, that there exists an
algorithm A offering a nonnegligible advantage in determining β in the ExpREO,SEO

(R,S),A (n)

experiment. This would allow the formulation of an algorithm B upon algorithm
�� 

A that 
solves the decision linear problem with nonnegligible advantage. Since this contradicts 
the decision linear Diffie-Hellman assumption (in Definition 2.3), algorithm A cannot 
exist.

THEOREM 4.5. The equi-join scheme �� presented in Section 3.2 ensures safety of the 
equi-join, assuming that both the decision linear problem and the Decision 3-party 
Diffie-Hellman (D3DH) problem are intractable.

PROOF. We show that, if there exists a PPT algorithm A that breaks the privacy of �� 
with nonnegligible advantage over a random guess, then there exists a PPT algorithm 
B that successfully solves the decision linear problem with nonnegligible advantage as 
well.

The reduction is similar to the one in Theorem 4.3. To avoid repetition, this proof 
focuses only on the differences between the two privacy experiments. B runs in the 
same way as in the proof of Theorem 4.3, except that, additionally: (i) it simulates SEO 
by executing the EncryptData procedure to handle SEO queries, and (ii) it issues to A 
the query token TAB = 〈κB/τA, −κA/τB〉. Note that B can perform the simulation because 
it holds all the necessary secrets.

Next, we show that A’s knowledge of TAB does not change our security analysis in the 
proof for Theorem 4.3. Obviously, it does not affect ρI in Case I where  W is a random 
element from G. In Case II, B has already lowered the difficulty for A by exposing 
σ, σ1, σ2, κA, h (in the detailed proof in the Appendix), so TAB provides no additional 
knowledge to A in the experiment. Hence, the previous security analysis still holds, 
leading to the conclusion that A must have a negligible probability of defeating the 
safety of the equi-join scheme.

Finally, we observe that the transitivity property of equi-join may permit unintended 
disclosure. Suppose that the User issues an equi-join on attributes R.A and S.B with 
query token TAB, followed by an equi-join on R.A and some other attribute T.C with 
TAC . If records ri ∈ R, sj ∈ S and tk ∈ T meet the conditions ri.A = sj .B of the first 
join and ri.A = tk.C of the second join, the Server can deduce that sj .B = tk.C. This is a  
necessary consequence of the equi-joins.

5. JOIN PROCESSING ALGORITHMS

Having introduced our cryptographic construct, we now build upon it to create algo-
rithms for equi-join R ��A B S. Our construct applies directly to R.A and S.B attributes 
that are of integer types,

=
namely char, short, int, and long. For bool, float, and double 

values, we simply treat their internal representations as the binary representation of 
an integer. A string value can be treated as an array of char’s or, more efficiently, an 
array of char blocks with each block mapped to an integer.

We start with a baseline algorithm that uses the conventional nested loop join strat-
egy and show that it entails a high computation cost. To achieve scalability, we propose 
two algorithms based on the classical partitioning strategy. The Equivalence Parti-
tioning (EP) algorithm organizes relation R (and relation S) into equivalence classes, 
where an equivalence class contains all the R (respectively, S) records with the same
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A (respectively, B) value; this way, the Server only needs to test one representative
record of an R class with a representative record of an S class to determine whether
all the records of the R class join with all the records of the S class. To avoid any com-
promise in privacy, EP forms the equivalence classes gradually, as they are discovered
during the join execution. The Hash Partitioning (HP) algorithm is an adaptation of
the conventional hash join, with a consequent relaxation in privacy protection. Finally,
we explain how EP and HP can be employed in tandem.

5.1. Baseline Algorithm

Algorithm 1 gives the baseline algorithm based on a block nested loop. The crypto-
graphic computations include 6 exponentiations in line 5, along with 10 multiplications
and 5 bilinear mappings, in lines 10 to 15. Denoting the cost of exponentiation, bilinear
mapping, and multiplication by cexp, cmap, and cmul, respectively, and the cardinality of
R and S by ‖R‖ and ‖S‖, the computation cost of the baseline algorithm is

CostBaseline = ‖S‖(6 cexp) + ‖S‖ · ‖R‖(10 cmul + 5 cmap). (3)

In our implementation described in Section 7, cexp and cmap are on the order of mil-
liseconds whereas cmul is on the order of microseconds. Hence the computation cost is
dominated by the 5 bilinear mappings incurred for every possible pair of an R record
and a S record in the last component in formula (3).

ALGORITHM 1: Baseline Algorithm for Equi-Join
1: Let M be the number of buffer pages.
2: while there are unprocessed records in S do
3: Load the next M − 2 pages of records from S.
4: for all buffered S records sj do
5: Compute B−1

j,1, B−1
j,2, B−1

j,3, BκB/τA
j,6 , B−κA/τB

j,7 , B−1
j,8.

6: while there are unprocessed records in R do
7: Load the next page of records from R.
8: for all buffered S records sj do
9: for all buffered R records ri do

10: Compute T0 = e(Ai,3 · B−1
j,3,Ai,4 · B j,4).

11: Compute T1 = e(Ai,1 · B−1
j,1, g2).

12: Compute T2 = e(BκB/τA
i,6 ,A j,7).

13: Compute T3 = e(Ai,6,B−κA/τB
j,7 ).

14: Compute T4 = e(Ai,2 · B−1
j,2,Ai,5 · B j,5).

15: if (T0 = Ai,8 · B−1
j,8 · T1 · T2 · T3 · T4) then

16: Add 〈ri, sj〉 to the join result.

5.2. Equivalence Partitioning Algorithm

Our Equivalence Partitioning (EP) algorithm aims to avoid evaluating every possible
pair of R record and S record. The strategy is to dynamically group those S records
that are found to join with the same R record, implying that the S records share the
same underlying B value. This way, each subsequent record r ∈ R only need be tested
once against any group member; if and only if r joins with that member does r join with
every S record in the group. We emphasize that EP adheres to our privacy objective
P1 on initial confidentiality, as well as objective P2 on safety of equi-join as detailed in
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Section 3.1. This is because the strategy affects only those S records that have joined
with some R record. Following an overview of the essence of EP, we present the data
structures and detailed algorithm.

5.2.1. Overview of Equivalence Partitioning. We assume initially that relation S fits en-
tirely in memory; the assumption will be removed in the complete EP algorithm. The
strategy is as follows.

(1) Load S into memory, with each record sj ∈ S forming its own equivalence class
C j = {sj}. Let L denote the resulting set of equivalence classes.

(2) For every record r ∈ R, initialize C = ∅.
(a) For every equivalence class C j ∈ L, let s be any record in C j . If 〈r, s〉 satisfy the

condition in formula (1), set C ← C ∪ C j and L ← L\{C j}.
(b) Set L ← L ∪ {C}.
(c) For every record s ∈ C, add 〈r, s〉 to the join result.

Provided attribute B is not unique in S, the number of equivalence classes in L is
expected to decline as we iterate through the records in R. Since all the records within
an equivalence class C j share the same Bvalue, we need only test each R record against
any one S record in C j in step 2(a). Consequently, the number of times that formula (1)
is evaluated per R record should decline over time.

Now, when |S| is large, the Server may not be able to load the entire relation S into
memory. In this situation, the Server will process S over several passes. In each pass,
the Server loads a block of S records, groups them into equivalence classes using the
records in R, then writes the classes to disk. Concurrently, those R records that match
the same S record are grouped into equivalence classes. After processing all the records
in S, the equivalence classes generated across the passes are merged to derive the final
partitioning of S. Finally, the Server performs a cross-product of the records in each
equivalence class of S with the records in the corresponding equivalence class of R to
produce the join result. This is the quintessence of our EP algorithm.

5.2.2. Data Structures. To reduce the number of passes, EP attempts to pack as many
equivalence classes as possible in memory for each pass. In lieu of full records, EP keeps
only minimal information for record identification and testing the join condition. The
temporary files used in the algorithm include “R-classes” for the equivalence classes on
R, “S-classes.i” for the equivalence classes on S produced in pass i, and “R-unmatched”
for the identifiers of the unmatched R records.

The data structure for the equivalence classes on S is as follows.

struct EClass {
sno : int; // serial number for each class
Slist : sorted list; // identifier of S records, in ascending order
B : G8; // ciphertext for the common B value of the S records in the class
Rcnt : int; // number of matching R records

};
Each equivalence class tracks in Slist the (physical) identifier of the S records that 
belong to it, in ascending order. Since all the S records in the class share the same B 
attribute value, it suffices to adopt any one of their ciphertexts for the B value of the 
class. sno is a serial number that runs across passes, that is, it does not reset on each 
pass. The sno of an equivalence class is assigned automatically upon creation, but may 
be explicitly overwritten. Rcnt is initially set to zero.

To create an equivalence class C for record sj ∈ S, the Server inserts the record 
identifier sj .id into C.Slist and copies into C.B the ciphertext for sj .B, 〈B j,1, B j,2, 
B j,3, B j,4, B j,5, B j,6, B j,7, B j,8〉. To merge equivalence class C1 into class C2, the  Server
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ALGORITHM 2: Equivalence Partitioning Algorithm for Equi-Join
1: Initialize pass = 1.
2: Invoke EP-Pass1 on the first block of S records.
3: Coalesce Rlist entries for the same sno in R-classes.
4: while there are unprocessed records in S do
5: Increment pass by 1.
6: Invoke EP-PassN(pass) on the next block of S records.
7: Coalesce Rlist entries for the same sno in R-classes.
8: Merge the C j classes in S-classes.i (1 ≤ i ≤ pass) by C j .sno into S-classes.
9: for all 〈sno, Rlist〉 in R-classes do

10: Find 〈sno, Slist〉 in S-classes.
11: for all record ri ∈ R such that ri.id ∈ Rlist do
12: for all record sj ∈ S such that sj .id ∈ Slist do
13: Add 〈ri, sj〉 to the join result.

simply sets C2.Slist = C2.Slist ∪ C1.Slist, C2.Rcnt = C2.Rcnt + C1.Rcnt and discards
C1. With our system configuration (described in Section 7), the merged class is always
smaller than the combined space occupied by the two initial classes. This ensures that
the memory usage does not grow during a pass, which is important in enabling the
Server to load its buffer fully at the start of a pass.

As the Server executes the EP algorithm, it registers in “R-classes” the classification
of the matched R records, in a series of tuples 〈sno, Rlist〉 denoting that the R records
corresponding to the identifiers in Rlist match the equivalence class of S having se-
rial number sno. This also implies that these R records share the same A attribute
value. When “R-classes” contains two tuples for the same equivalence class of S, say
〈sno, Rlist1〉 and 〈sno, Rlist2〉, they may be coalesced by setting Rlist1 = Rlist1 ∪ Rlist2
before discarding the second tuple.

5.2.3. Algorithm. Algorithm 2 gives the outline of the EP algorithm. It starts with the
EP-Pass1 procedure that processes the first block of records in S by making one pass
over R. As illustrated in Figure 2(a), the Server creates in L a list of equivalence classes
from the first block of S records. Subsequently, each R record is matched against the
classes in L in turn, using formula (1). Suppose that r1 ∈ R matches C2 = 〈2, [s2.id], . .〉,
a tuple 〈2, [r1.id]〉 is written to R-classes. Moving down L, r1 matches another class
C13 = 〈13, [s13.id], . .〉, which gets merged into the first matching class (Figure 2(b)).
After processing r1, the merged class C2 = 〈2, [s2.id, s13.id]〉 is pushed to the end of L, as
in Figure 2(c). The figure also shows that C13 has been removed from between C12 and
C14. Now suppose that r4 ∈ R matches C2, a tuple 〈2, [r4.id]〉 is written to R-classes. Any
R record without a matching class in L is sent to R-unmatched. The detailed procedure
for EP-Pass1 will be shortly described. After completing EP-Pass1, tuples in R-classes
that reference the same equivalence class of S are combined. For example, 〈2, [r1.id]〉
and 〈2, [r4.id]〉 generated before are combined into 〈2, [r1.id, r4.id]〉.

Next, EP iterates through the remaining blocks of S records. For each S block, the
Server executes the EP-PassN procedure. First, L is repopulated from the current S
block. As illustrated in Figure 3(a), the sno for the classes continues from the previous
pass. Next, each equivalence class 〈sno, Rlist〉 in R-classes is matched against the
classes in L. This is done by matching any record referenced in Rlist against L. Suppose
that 〈2, [r1.id, r4.id]〉 matches C101 = 〈101, [s101.id], . .〉, the latter is renumbered to
C2 = 〈2, [s101.id], . .〉. Turning to Figure 3(b), 〈2, [r1.id, r4.id]〉 also matches C137 = 〈137,
[s137.id], . .〉, so it is merged into C2. After processing 〈2, [r1.id, r4.id]〉, the renumbered
C2 is pushed to the back of L as shown in Figure 3(c). Subsequent equivalence classes
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Fig. 2. Equivalence partitioning algorithm: Pass 1.

Fig. 3. Equivalence partitioning algorithm: subsequent passes.
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in R-classes need only be matched with the classes at the front of L, as the former are
guaranteed to be disjoint with the renumbered classes (shaded in grey) at the back like
C2. After processing R-classes, the R records in R-unmatched are processed against
the classes at the front of L (i.e., skipping the renumbered classes), following the same
logic as in EP-Pass1. To round out the iteration, R-classes is scanned to combine any
tuples that reference the same equivalence class of S.

After all the S records have been processed, line 8 merges the equivalence classes
generated in different passes. Consider two classes Ci and C j from different passes. If
Ci and C j have the same B value, they must have matched the same R record(s) earlier
and been set to the same sno, for example, C2 in Figure 2 and the renumbered C2 in
Figure 3. Hence it suffices to merge the equivalence classes by their sno’s.

Finally, within each equivalence class, every ri record in the R list pairs with every
sj record in the corresponding S list to produce a result tuple (lines 9 to 13).

The detailed procedures for EP-Pass1 and EP-PassN are given next.

EP-Pass1: Referring to Algorithm 3, lines 2 to 5 create the equivalence classes from
the first block of S records and prepare them for evaluation with formula (1). Following
this, the Server iterates through the pages within R. The R records in each page are
loaded in line 7. Each R record ri is then matched against the equivalence classes
with formula (1) (in lines 13 to 18). Upon finding the first matching class C j for ri
(line 19), the Server registers the match to R-classes (line 20) and checks whether C j .R
contains any other record (line 22). If not, ri is the first R record that matches C j .B; the
Server marks C j (line 23), then continues with the for loop in line 10 to look for more
matching classes. If some other R record had matched C j .R previously, C j has already
been merged with all the classes sharing the same B value in L, so there is no need
to check ri against the remaining classes (line 25). In case C j is not the first matching
equivalence class for ri, the Server merges C j into the previous matching class (lines 26
to 28).

One optimization that is built into the algorithm is that the class Cprev that matches
the current R record is pushed to the back of L (in line 32). By keeping such matched
classes that are guaranteed disjoint with every other class, at the back of L, the Server
can avoid evaluating them against any R record associated with previously unmatched
classes (lines 11 to 12).

After processing all the R records, the equivalence classes in L that do not have
matching R records cannot contribute to the join result and are discarded in line 33.
The remaining classes are ordered by sno and written to S-classes.1 (lines 34 to 35).

EP-PassN: Algorithm 4 begins by creating equivalence classes from the next block of
S records and preparing them for evaluation (lines 2 to 5). For each tuple 〈sno, Rlist〉
in R-classes, one of the records ri ∈ R referenced in Rlist is retrieved for its encrypted
A value (lines 6 to 7), to be used to match against the classes in L (lines 12 to 17). Upon
finding the first matching class C j , its sno is reset to the current sno (line 19). If this
is the first match for C j , the Server tracks it (in line 22) and continues with the for
loop in line 9 to look for more matching classes; otherwise, C j has already been merged
with all the classes sharing the same B value in the current pass, so there is no need
to check ri against the remaining classes (line 24). In case C j is not the first matching
class for ri, the former is merged into the previous matching class (lines 25 to 27).

As in the first pass, the matched class Cprev is pushed to the back of L (in line 29).
Since the tuples in R-classes represent equivalence classes of R, a class in L that has
matched some tuple of R-classes cannot match any more tuples from it. This is why
matched classes at the back of L are skipped (lines 10 to 11).

After processing R-classes, the matched classes at the back of L are sorted on sno
and written out (lines 30 to 34). The Server then proceeds to match the records in
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ALGORITHM 3: EP-Pass1
1: Allocate 1 input buffer for R, 1 output buffer for R-classes, 1 output buffer for

R-unmatched.
2: Load M − 3 pages of equivalence classes from the first block of S records.
3: Denote the equivalence classes in memory by L.
4: for all equivalence class C j ∈ L do
5: Compute B−1

j,1, B−1
j,2, B−1

j,3, BκB/τA
j,6 , B−κA/τB

j,7 , B−1
j,8.

6: while there are unprocessed records in R do
7: Load the next page of records from R.
8: for all buffered R records ri do
9: Set prev = 0.

10: for all equivalence class C j ∈ L do
11: if ((prev > 0) and (C j .Rcnt > 0)) then
12: Exit the immediate for loop.
13: Compute T0 = e(Ai,3 · B−1

j,3,Ai,4 · B j,4).
14: Compute T1 = e(Ai,1 · B−1

j,1, g2).

15: Compute T2 = e(BκB/τA
i,6 ,A j,7).

16: Compute T3 = e(Ai,6,B−κA/τB
j,7 ).

17: Compute T4 = e(Ai,2 · B−1
j,2,Ai,5 · B j,5).

18: if (T0 = Ai,8 · B−1
j,8 · T1 · T2 · T3 · T4) then

19: if (prev = 0) then
20: Write 〈C j .sno, [ri.id]〉 to R-classes.
21: Increment C j .Rcnt by 1.
22: if (C j .Rcnt = 1) then
23: Set prev = j.
24: else
25: Exit the immediate for loop.
26: else
27: Merge C j into Cprev.
28: Remove C j from L.
29: if (prev = 0) then
30: Write rj .id to R-unmatched.
31: else
32: Move Cprev to the back of L.
33: Discard from L all classes C j with C j .Rcnt = 0, and sort the remaining classes in

ascending C j .sno.
34: for all class C j ∈ L do
35: Write tuple 〈C j .sno, C j .Slist〉 to S-classes.1.

R-unmatched against the remaining classes in L, following the same logic in the first 
pass. This is an optimization exploiting the fact that records in R-unmatched are 
outside of the equivalence classes in R-classes, so the former cannot match any class 
of S having matched the latter. We defer a detailed analysis of EP’s costs to Section 6.

There is an interesting parallel between our EP algorithm and existing work on 
optimizing queries involving expensive predicates (e.g., Hellerstein and Stonebraker 
[1993] and Gaede and G ̈unther [1994]). A key technique in the latter is to cache the 
results of predicate evaluations. Before invoking the predicate function on a value,
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ALGORITHM 4: EP-PassN(pass)
1: Allocate 1 I/O buffer for R-classes, 1 input buffer for existing R-unmatched, 1 output

buffer for new R-unmatched.
2: Load M − 3 pages of equivalence classes from the next block of S records.

. . . Lines 3 to 5 from Algorithm 3 . . .
6: for all 〈sno, Rlist〉 in R-classes do
7: Let ri be any R record such that ri.id ∈ Rlist.
8: Set prev = 0.
9: for all equivalence class C j ∈ L do

10: if (C j .Rcnt > 0) then
11: Exit the immediate for loop.

. . . Lines 13 to 17 from Algorithm 3 . . .

17: if (T0 = Ai,8 · B−1
j,8 · T1 · T2 · T3 · T4) then

18: if (prev = 0) then
19: Set C j .sno = sno.
20: Increment C j .Rcnt by 1.
21: if (C j .Rcnt = 1) then
22: Set prev = j.
23: else
24: Exit the immediate for loop.
25: else
26: Merge C j into Cprev.
27: Remove C j from L.
28: if (prev > 0) then
29: Move Cprev to the back of L.
30: Sort the classes C j in L in ascending C j .sno.
31: for all class C j ∈ L do
32: if (C j .Rcnt > 0) then
33: Write tuple 〈C j .sno, C j .Slist〉 to S-classes.$pass.
34: Remove C j from L.
35: for all record ri ∈ R such that ri.id is in the existing R-unmatched do

. . . Lines 9 to 32 of Algorithm 3 . . .

60: Discard from L all classes C j with C j .Rcnt = 0, and sort them in ascending C j .sno.
61: for all class C j ∈ L do
62: Write tuple 〈C j .sno, C j .Slist〉 to S-classes.$pass.

the cache is checked first to see whether the result for that value has already been
computed. The technique is analogous to the way that EP avoids evaluating an R record
against two S records having been found to share the same B value. The difference is
that EP is unable to determine directly whether two S records share the same B value,
because they are probabilistically encrypted. Rather, this fact has to be discovered
during query execution, after observing the two S records to join with some earlier R
record.

5.3. Hash Partitioning Algorithm

Independently of EP, a common approach (for example, in Hacigumus et al. [2002] and
Hore et al. [2004]) to lower the computation cost for equi-join is to hash-partition R on
A and S on B, so only records in corresponding R and S partitions may pair with each
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other to produce output records. Applied in our setting, hash partitioning can reduce
the number of times that formula (1) is evaluated, as explained next.

Let φA denote the number of distinct values in R.A, and φB the number of distinct
values in S.B. The number of partitions b is computed as

b = min(φA, φB)/u (4)

for some given privacy parameter u. This sets the expected number of distinct A (B)
values per partition to at least u. The User applies a hash function with a secret key
(known as a keyed hash message authentication code) to derive from the A value
in each record of R a partition identifier pidA, and from the B value in each record
of S a partition identifier pidB. The pidA and pidB values are encrypted to ensure
initial confidentiality. To perform an equi-join between R and S, the User includes the
decryption keys for pidA and pidB in the query token (in addition to TAB) that is given
to the Server. The decrypted pidA and pidB values then enable the Server to split R
into partitions by pidA and S into partitions by pidB for the equi-join operation.

The hash partition approach continues to meet privacy objective P1 for initial confi-
dentiality as defined in Section 3.1. However, once decrypted, the partition identifiers
pidA and pidB disclose information even on records that do not satisfy the join condition.
This necessitates the following relaxation of objective P2.

P2B′ For any records ri, rj ∈ R that do not join with any record of S, the Server’s prob-
ability of guessing correctly that ri.A = rj .A is 1

u for given privacy parameter u.
At the same time, the Server’s probability of guessing correctly that ri.A 
= rj .A
is u−1

u if ri, rj have the same pidA value, or 1 if they do not, and similarly for any
records si, sj ∈ S that do not join with any record of R.

To elaborate on P2B′, we observe that, without the pidA values, the Server’s probability
of guessing correctly that ri.A = rj .A is 1

φA
, as well as the probability of guessing

correctly that ri.A 
= rj .A is φA−1
φA

. Hence, the information disclosed by the pidA values
helps to improve the Server’s probability of guessing correctly that ri.A = rj .Aby ( 1

u− 1
φA

)

and that ri.A 
= rj .A by max(φA−1
φA

− u−1
u , 1 − φA−1

φA
) = max(φA−1

φA
− u−1

u , 1
φA

). Likewise, the
pidB values raise the Server’s probability of guessing correctly that si.B = sj .B by
( 1

u − 1
φB

) and that si.B 
= sj .B by max(φB−1
φB

− u−1
u , 1

φB
). The User may cap the extent of

information disclosure, expressed as

DisclosureHP = max
(

1
u

− 1
φA

,
φA − 1

φA
− u − 1

u
,

1
φA

,

1
u

− 1
φB

,
φB − 1

φB
− u − 1

u
,

1
φB

)
, (5)

thus yielding a lower bound on u relative to φA and φB, as well as an upper bound on 
b. Formula (5) measures specifically the additional disclosure in an equi-join due to 
hash partitioning, in contrast to the general entropy measure advocated in Hore et al.
[2004].

The disclosure measure in formula (5) reflects the expected situation where the hash 
partitions are roughly uniform in cardinality. In the worst case where a partition may 
contain only records with the same attribute value, the disclosure would obviously be 
much higher. We decided to base our disclosure measure on the expected situation 
for two reasons: (i) Hashing has been studied extensively and there are good hash 
functions that can produce roughly uniform partitions even for skewed distributions.
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ALGORITHM 5: Hash Partitioning Algorithm for Equi-Join
1: Decrypt the pidA and pidB values.
2: Split R into b partitions by pidA.
3: Split S into b partitions by pidB.
4: for i = 1 to b do
5: Load partition i of S.
6: for all buffered S records sj do
7: Compute B−1

j,1, B−1
j,2, B−1

j,3, BκB/τA
j,6 , B−κA/τB

j,7 , B−1
j,8.

8: while there are unprocessed records in partition i of R do
9: Load the next page of records in partition i of R.

10: for all buffered S records sj do
11: for all buffered R records ri do
12: Compute T0 = e(Ai,3 · B−1

j,3,Ai,4 · B j,4).
13: Compute T1 = e(Ai,1 · B−1

j,1, g2).

14: Compute T2 = e(BκB/τA
i,6 ,A j,7).

15: Compute T3 = e(Ai,6,B−κA/τB
j,7 ).

16: Compute T4 = e(Ai,2 · B−1
j,2,Ai,5 · B j,5).

17: if (T0 = Ai,8 · B−1
j,8 · T1 · T2 · T3 · T4) then

18: Add 〈ri, sj〉 to the join result.

(ii) The User can check whether the hash partitions are uniform. If they are not, the
User can apply a different hash function or decide not to employ HP altogether.

Algorithm 5 gives the hash partition procedure. With the exception of lines 1 to 5 and
lines 8 to 9, this algorithm is identical to Algorithm 1. Moreover, the expected number
of iterations through lines 12 to 18 is 1

b · ‖R‖ · ‖S‖, therefore, the computation cost of
the hash partition algorithm is

CostHP = ‖S‖(6 cexp) +
⌈‖S‖ · ‖R‖

b

⌉
(10 cmul + 5 cmap). (6)

CostHP is nearly 1
b of CostBaseline in formula (3). The difference between the two costs

is the performance gain of HP at the expense of the information disclosure quantified
by formula (5).

5.4. Combined Hash and Equivalence Partitioning Algorithm

The equivalence partitioning approach in Section 5.2 combines easily with the hash
partitioning approach in Section 5.3 as follows: We hash-partition R and S, then apply
EP to each pair of R-S partitions in turn. We call the combined algorithm Hash-
cum-Equivalence Partitioning (HEP). The information disclosure attached to HEP is
identical to that of HP in formula (5), while the computation cost of HEP is similar to
that of EP as quantified in Section 6, with ‖R‖ and ‖S‖, respectively, replaced by ‖R‖/b
and ‖S‖/b.

5.5. Potential for Speedup through Parallel Execution

Even with EP and HP, an equi-join on large R and S relations will still invoke the
matching operation in Eq. (1) on many pairs of R-S records, leading to long processing
times. An effective way to mitigate this overhead is through parallel execution. We
envisage the following means to achieve parallelism.
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—Multithreading for the matching operation. The five bilinear mappings e( , ) consti-
tute the computation bottleneck in Eq. (1). On modern multicore CPUs, the bilinear
mappings can be carried out by concurrent threads, before combining their results
to complete the matching test. This can speed up the join processing by 4× relative
to sequential execution, as we show in Section 7.6.

—Data parallelism. Parallel execution for HP is identical to that for the classical hash
join [Schneider and DeWitt 1989], where every corresponding pair of R and S parti-
tions is assigned to a different server. With EP, we would iteratively replicate a block
of S records on multiple processors and send each R record to one of the processors
for matching. Equivalence classes discovered at a processor could be communicated
immediately to the other processors, or the processors could synchronize their equiv-
alence classes at the end of a pass.

—GPU accelerators. Several studies (e.g., Harrison and Waldron [2010] and Bose et al.
[2013]) have reported how cryptographic protocols can be speeded up effectively by
implementing them on GPUs. In particular, Katoh et al. [2011] and Bose et al. [2013]
have investigated the implementation of pairing based cryptography on GPUs. These
studies show good promises that the execution time of our cryptographic join protocol
in Section 3.2 can be improved by porting the underlying cryptographic library to a
GPU-based implementation.

6. COST ANALYSIS FOR EQUIVALENCE PARTITIONING ALGORITHM

To understand the behavior of the EP algorithm, this section gives a detailed analysis
focusing on three important cases. We denote the number of tuples in R and S by
‖R‖ and ‖S‖. For simplicity, R.A and S.B have the same number of unique values,
namely φA = φB. Further, |EC| denotes the fraction of a memory page needed to hold
an equivalence class structure. We take into account only computation cost here, which
dominates I/O cost as shown in the experiments in Section 7. We also omit the costs
of sorting and managing data structures in memory, which are orders of magnitude
faster than the cryptographic operations.

Case A. Both R.A and S.B contain duplicates, that is, ‖R‖ > φA and ‖S‖ > φB, such
as where R.A and S.B are foreign keys.

Memory permitting, we want to load just enough tuples (in lines 4 and 5 of
Algorithm 3) so that all the φB values of S.B are present in the S block for the first
pass. This enables R to be partitioned into φA equivalence classes, hence minimizing
the number of iterations in the for statement in line 35 of Algorithm 4. In general, the
User will not know exactly how big an S block is needed for the first pass without exam-
ining the S.B values. Instead, the block size is estimated probabilistically as explained
next. Let ω denote the number of tuples in the S block for each pass. For simplicity, we
assume that ‖S‖

ω
is a round number.

—In Pass 1, the ω initial classes in L created from the first block of S tuples are
progressively grouped into φB equivalence classes by the R tuples. Hence, the number
of iterations over lines 13 to 18 in Algorithm 3 is roughly ‖R‖ · ω+φB

2 , giving the cost
of Pass 1 as

CostEP-1 = ω · (6 cexp) + ‖R‖ · ω + φB

2
· (10 cmul + 5 cmap).

As the probability that a given S.B value does not appear in the first S block is

q1 =
(

1 − 1
φB

)ω

,
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we expect to produce (1 − q1)φA R-classes and q1 · ‖R‖ tuples in R-unmatched for the
next pass.

—The second pass starts by using R-classes to group (1 − q1)ω of the ω initial C j ’s in L
into (1 − q1)φB classes, and then remove them in lines 31 to 34 of Algorithm 4. The
process involves (1−q1)φA· ω+(1−q1)φB+q1·ω

2 iterations over lines 12 to 17 in Algorithm 4.
The remaining q1 · ω entries in L are grouped into q1 · φB equivalence classes upon
matching against the q1 · ‖R‖ tuples in R-unmatched in lines 35 through 59. This
entails q1 · ‖R‖q1(ω+φB)

2 invocations of formula (1) and results in (1 − q2)φA R-classes
(including those produced in Pass 1) and q2 · ‖R‖ tuples in R-unmatched, where

q2 =
(

1 − 1
φB

)2ω

is the probability that a given S.B value does not appear within the first two blocks
of S. The cost of Pass 2 is

CostEP-2 = ω · (6 cexp)

+
(

(1 − q1)φA
(1 + q1)ω + (1 − q1)φB

2
+ q2

1 · ‖R‖ω + φB

2

)
× (10 cmul + 5 cmap)

—Similarly, in each subsequent pass i (2 < i ≤ ‖S‖
ω

), the number of iterations over lines
12 to 17 in Algorithm 4 is (1 − qi−1)φA · (1+qi−1)ω+(1−qi−1)φB

2 , and lines 35–59 involves
qi−1 · ‖R‖qi−1(ω+φB)

2 invocations of formula (1). The cost of the pass is thus

CostEP-i = ω · (6 cexp)

+
(

(1 − qi−1)φA
(1 + qi−1)ω + (1 − qi−1)φB

2
+ q2

i−1 · ‖R‖ω + φB

2

)
× (10 cmul + 5 cmap)

The pass ends with (1 − qi)φA R-classes and qi · ‖R‖ tuples in R-unmatched, where

qi =
(

1 − 1
φB

)i×ω

.

Summing over all the passes, the total cost of EP is

CostEP = ‖S‖ · (6 cexp)

+
⎛
⎝φA

‖S‖
ω∑

i=2

(1 − qi−1)
(1 + qi−1)ω + (1 − qi−1)φB

2

+ ‖R‖ω + φB

2

⎛
⎝1 +

‖S‖
ω∑

i=2

q2
i−1

⎞
⎠

⎞
⎠ · (10 cmul + 5 cmap). (7)
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If we pick a value for ω such that q1 is below 10%, q2
1 as well as q2, q3, . . . , q‖S‖

ω
are

negligible and formula (7) simplifies to

CostEP = ‖S‖ · (6 cexp)

+
(

φA(1 − q1)
(1 + q1)ω + (1 − q1)φB

2

+
(

φA

(‖S‖
ω

− 2
)

+ ‖R‖
)

ω + φB

2

)
× (10 cmul + 5 cmap). (8)

Comparing CostEP with formula (3) for the baseline algorithm, we see that EP has the
potential to reduce computation cost substantially where φA � ‖R‖. Formulae (7) and
(8) are also useful in deciding which of the relations in a foreign-key-to foreign-key join
should be designated as R versus S in the EP algorithm.

An interesting characteristic of EP is that it may be counterproductive to utilize all
the available memory to operate the algorithm with a large block size ω. The reason is
that the last component in CostEP-1 (i.e., ‖R‖ω+φB

2 (10 cmul +5 cmap)) is proportional to ω.
Instead, ω should be “just large enough” to lead to a small q1. Given memory allocation
M and a target q1, w is set as

ω = min

(
log(q1)

log(1 − 1
φB

)
,

M − 3
|EC|

)
. (9)

We will investigate the setting of ω empirically in Section 7.
Case B. In performing a join R ��A=B S in which R.A is a primary key and S.B

a foreign key, we have a choice between a foreign-key to primary-key join (FP-join)
where S is designated as outer relation and R as inner relation R as in Algorithm 2,
or a primary-key to foreign-key join (PF-join) by swapping R and S in the algorithm.

We first consider how EP executes in the FP-join setting. Here, ‖R‖ = φA = φB and
‖S‖ > φB. With M − 3 memory pages for S, EP requires ‖S‖·|EC|

M−3 passes as depicted in
Figure 4; to simplify the notation, we assume that ‖S‖·|EC|

M−3 is a round number. Each
pass starts with M−3

|EC| equivalence classes in L. Since R.A is a primary key, an R record
will not match the merged classes produced by previous R records. Moreover, each R
record merges roughly M−3

|EC|·φB
of the classes with matching B value in L. This is why

the number of classes in L that are evaluated against each R record declines gradually
within a pass. The number of iterations over lines 13 to 18 in Algorithm 3 in the first
pass, and over lines 12 to 17 in Algorithm 4 in each subsequent pass, is thus M−3

|EC| × ‖R‖+1
2 .

The total cost is

CostEP(F−P) = ‖S‖ · (
6 cexp

) + ‖S‖ · ‖R‖ + 1
2

· (10 cmul + 5 cmap). (10)

In this setting, EP roughly halves the computation cost of the baseline algorithm.
Next, we consider the PF-join setting with R as outer relation and S as inner relation.

As depicted in Figure 5, EP executes in #pass = ‖R‖·|EC|
M−3 passes; again, we assume for

simplicity that ‖R‖·|EC|
M−3 is a round number. Every pass initializes L with the next M−3

|EC|
records from R and matches them with the equivalence classes of S. In the process,
each R record matches roughly ‖S‖

φB
of the equivalence classes of S, that at the end of the

pass are coalesced in line 3 or 7 of Algorithm 2 to leave M−3
|EC| (

‖S‖
φB

− 1) = 1
#pass (‖S‖ − φB)
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Fig. 4. EP with foreign-key-to-primary-key join.

Fig. 5. EP with primary-key-to-foreign-key join.

fewer S classes. In Pass i, 1 ≤ i ≤ #Pass, line 5 of Algorithm 3 or 4 is run M−3
|EC times,

while lines 13 to 18 in Algorithm 3 or lines 12 to 17 in Algorithm 4 are executed
M−3
|EC| ((1 − i−1

#pass )‖S‖ + i−1
#passφB) times. The total cost is

CostEP(P−F) = ‖R‖ · (6 cexp)

+
(

‖R‖ · ‖S‖ · #pass + 1
2 · #pass

+ ‖R‖ · φB
#pass − 1
2 · #pass

)
× (10 cmul + 5 cmap). (11)

A comparison of the dominant (last) component in formula (10) with the corresponding
component in formula (11) indicates that CostEP(F−P) < CostEP(P−F). We will confirm
this finding empirically in Section 7.

Case C. Here R.A and S.B are unique attributes, namely ‖R‖ = φA and ‖S‖ = φB,
as in a join of the vertical partitions of a relation. In this case, every R record and S
record belong to their own equivalence class, so EP offers no performance gain. In other
words, the computation cost of EP is the same as CostBaseline in formula (3).

7. EMPIRICAL EVALUATION

In this section, we empirically evaluate the performance of the privacy-preserving equi-
join algorithms proposed in Section 5 and also verify the cost analysis in Section 6. The
key questions to be investigated include the following.

—What is a good setting for q1 in formula (9) for determining the block size ω in the
equivalence partitioning algorithm?
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—What relationship between M, |EC| and the join operands would enable equivalence
partitioning to be effective relative to the baseline algorithm?

—How does hash partitioning trade off between privacy protection and join
performance?

—How scalable are the various join algorithms?

7.1. Experiment Setup

We begin by describing the setup of our experiments. The important workload and
resource parameters, along with their default values, are included in Table I.

Competing algorithms. In our experiments, we evaluate and compare various join
algorithms built on our cryptographic construct in Section 3; these are the Baseline
algorithm described in Section 5.1 that is based on nested loop join, equivalence par-
titioning (EP) in Section 5.2, hash partitioning (HP) in Section 5.3, and hybrid Hash-
cum-Equivalence partitioning (HEP) in Section 5.4. For HP and HEP, the number of
partitions b is 10 by default. For comparison, we also include Carbunar-Sion’s (CS)
scheme [Carbunar and Sion 2012], which we combine with a block nested loop join
strategy. We emphasize that CS offers a weaker privacy protection than our solution,
as explained in Section 2.1, and is intended only to provide a performance baseline in
the evaluation.

Workload. We use two workloads for our experiments. The first is a synthetic work-
load that contains two relations, R and S, according to the schemata in Section 3.1.
The attributes R.A and S.B are 8-byte integers and encrypted with the scheme in Sec-
tion 3.2. The workload allows fine-grained control of the parameters |R|, ‖R‖, φA, |S|,
‖S‖, φB that are listed in Table I. The join query that we run is R ��A=B S.

To corroborate the findings obtained with the synthetic workload, we employ another
workload extracted from TPC-E (http://www.tpc.org/tpce), a standard benchmark that
models the online transaction processing (OLTP) system of a brokerage firm but is
representative of OLTP systems in general. The relations that we use are: (a) the
Security relation that contains records on 3,425 exchange-traded stocks and has a
total size of 507Kbytes; (b) the Holding Summary relation with 50,297 records on the
security holdings in customer accounts and a size of 1.1Mbytes; and (c) the Watch Item
relation with 500,717 records on the securities in customers’ watch lists and a size of
7.9Mbytes. We focus on two equi-join queries.

—Query 1:
SELECT * FROM Security R, Holding Summary S
WHERE R.S SYMB = S.HS S SYMB

—Query 2:
SELECT * FROM Holding Summary R, Watch Item S
WHERE R.HS S SYMB = S.WI S SYMB

The join attribute, a 15-character stock symbol, is the primary key in Security and a 
foreign key in both Holding Summary and Watch Item.

System configuration. Our experiments are carried out on Centos Linux servers that 
are equipped with Intel Xeon X5460 3.16 GHz quad-core CPUs and 16GB RAM. The 
databases are replicated on IBM-ESXS MBA3147RC hard disks that are formatted 
with 1Kbyte pages and mounted on each server. We implemented our cryptographic 
construct in C++ on the Stanford PBC library (http://crypto.stanford.edu/pbc). In in-
stantiating the cryptographic construct, we set the group order p to a 160-bit prime 
number, thus providing 80 bits of security and equivalent in strength to 1024-bit RSA 
keys [Barker et al. 2012]. At this group order, each ciphertext is 140 bytes in size. This



23:30 H. Pang and X. Ding

Fig. 6. Block size in EP.

translates to 17.5× space overhead for each integer attribute in the synthetic workload
and 9.3× space overhead for each stock symbol in the TPC-E workload.

Performance metrics. Our primary concerns are the execution time of our equi-join
algorithms, as well as any information disclosure as measured through formula (5).
While we also report the space overhead for storing the ciphertext of the encrypted
attributes, this is a secondary consideration to the first two metrics as modern disk
storage offers abundant space at low cost.

7.2. Block Size in EP Algorithm

We begin by investigating the setting for q1, that determines the block size ω in EP
according to formula (9). Using the synthetic workload, we vary q1 from 0.1% to 20%,
while keeping the workload parameters at their default values in Table I that model
a foreign-key-to-foreign-key join. The observed query execution times are shown in
Figure 6. The figure breaks down the execution time between I/O time and computation
time, respectively below and above the dotted line marked by star labels. Clearly, CPU
cost dominates I/O cost here.

More importantly, the figure confirms that the number of equivalence classes pop-
ulated from each block of S tuples should be neither too big nor too small, exactly as
predicted in the cost analysis in Section 6. The lowest execution time is observed at
q1 = 3%, so we adopt this setting by default.

7.3. Impact of Memory Allocation

Keeping to the synthetic workload, we next investigate the impact of memory allocation
M to the performance of the various join algorithms. At q1 = 3%, the target number of
equivalence classes ω = 3505 from the block of S records occupy only 521 memory pages,
implying EP should utilize at most 524 memory pages for this workload, including
the input buffer for R and output buffers for R-classes and R-unmatched. Thus, we
increase M progressively to 500 in the experiment. Figure 7 summarizes the CPU, I/O,
and overall execution times.

Referring to Algorithm 1 for the baseline, a low memory allocation necessitates
several iterations over R, leading to high I/O cost. The I/O cost declines steadily with
more memory. However, the dominant factor is CPU cost, which is determined by the
product of the cardinality of R and S and independent of M. This is why the overall
execution time of the baseline declines only marginally with a higher M.

For EP, the I/O cost falls steadily, as a more liberal memory allocation allows fewer
passes. Concurrently, the CPU cost also drops, as a rising M allows the algorithm to
operate closer to the target block size ω. Overall, EP’s strategy of partitioning the input
relations into equivalence classes is effective in giving it a 10 to 40× speedup over
Baseline.
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Fig. 7. Impact of memory allocation.

Turning to HP, we observe that at b = 10 the computation time is just over 10%
that of Baseline, as predicted by formula (6). Like the two previous algorithms, the 
I/O cost incurred by HP reduces as the memory allocation permits fewer iterations 
over each R partition. Unlike EP that offers the same privacy protection as Baseline, 
HP achieves its performance improvement at the expense of information disclosure. At 
b = 10 partitions, the disclosure is 0.009 as determined with formula (5).

As for HEP, it incurs a lower I/O cost in iterating over the R partitions as compared 
to EP, which iterates over R itself. As more memory is allocated, the I/O cost for HEP 
stabilizes because of the fixed cost of carving R and S into partitions. However, the 
I/O consideration is overshadowed by CPU cost. Here, HEP performs substantially less
computation in joining the smaller R and S partitions. With φA = φB = 100 unique key

b b
values per partition, HEP requires only up to 55 memory pages according to formula 9. 
This is why the CPU cost holds steady from M = 100 onwards in Figure 7(a). Overall, 
HEP achieves speedups of 12 to 244×, 1.3 to 6×, and  1.2 to 25× over Baseline, EP, and 
HP, respectively. Finally, we remark that HEP has an information disclosure of 0.009 
here, the same as HP.

7.4. Choice of Outer versus Inner Relations

A question that pertains to all of our join algorithms is: where the input relations are 
asymmetrical, which should be the outer relation versus inner relation in executing 
the join? A particularly important scenario is where the join involves a primary key 
in one input relation and a foreign key in the other. In this experiment, we aim to 
find out whether the primary-key-to-foreign-key join (PF-join) with the primary key 
in the outer relation and foreign key in the inner relation is preferable over or the 
foreign-key-to-primary-key join (FP-join) that reverses the role of the two relations, in 
terms of the join algorithm.
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Fig. 8. Foreign-key-to-primary-key join.

In setting up the synthetic workload for FP-join, we fix φA = φB = ‖R‖ = 1,000,
|R| = 250 pages, and M = 100 pages, while varying ‖S‖ and |S| together such that
each page contains four records. For EP and HEP, we set q1 = 3% following the guidance
in Section 7.2. The results are plotted in Figure 8. Keeping the experiment parameters
unchanged, we then swap the two relations such that R and S become the outer and
inner relations, respectively, for PF-join; the results are summarized in Figure 9.

With the baseline algorithm, the number of I/Os is |S| + |S|
M−2 · |R| in FP-join and

|R| + |R|
M−2 · |S| in PF-join. Since |S| > |R|, we might have expected FP-join to have

a higher I/O than PF-join. However, the results in Figures 8(b) and 9(b) indicate the
opposite. A closer examination reveals that this happens because the outer relation is
fetched sequentially in blocks of M−2 pages, whereas the inner relation is fetched page-
by-page, thus incurring a random I/O for each page. However, PF-join incurs a smaller
CPU cost (though the difference is not obvious in the figures), which is consistent
with formula (3). Overall PF-join is marginally more favorable to Baseline and thus by
extension HP, that invokes the baseline algorithm on the partitions.

With EP, PF-join incurs higher CPU cost than FP-join as predicted by formulae (10)
and (11). Even the I/O cost is higher in PF-join because, for each S record, an entry
〈C j .sno, [si.id]〉 is written to S-classes (in line 20 of Algorithm 3 and line 47 of Algo-
rithm 4) and these entries have to be loaded back into memory, merged, and written
out after each pass (in line 8 of Algorithm 2). Overall, FP-join gives EP a clear advan-
tage over PF-join. Similarly, while the difference between PF-join and FP-join is not
apparent due to the scale of the figures, the latter is more favorable for HEP.

Moving to the next part of the experiment, we fix φA = φB = 1,000 and M = 100 pages
while scaling ‖R‖ and ‖S‖ in tandem; |R| and |S| are also increased accordingly to main-
tain four records per page. As formula (3) predicts, the cost of Baseline is proportional to
the product of ‖R‖ and ‖S‖. The prediction is confirmed in Figure 10 where Baseline’s
cost quadratically grows. This is so also for HP. Interestingly, the costs of EP and HEP
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Fig. 9. Primary-key-to-foreign-key join.

Fig. 10. Foreign-key-to-foreign-key join
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Fig. 11. Number of partitions.

rise only linearly even though both ‖R‖ and ‖S‖ are growing, owing to the ability of the
two algorithms to quickly cluster duplicate key values into equivalence classes. This
ability is responsible for the substantial performance gains enjoyed by EP and HEP
over Baseline. For EP, the total time starts on par with Baseline at ‖R‖ = ‖S‖ = 1,000
records and drops to 6.5% of Baseline’s at ‖R‖ = ‖S‖ = 20,000. In the case of HEP, the
total time declines to merely 0.6% that of Baseline.

7.5. Impact of Hash Partitioning

The previous experiments show that hash partitioning leads to significant cost reduc-
tion in HP over Baseline and in HEP over EP. We now investigate how varying the
number of hash partitions facilitates different trade-offs between performance and
privacy protection.

In Figure 11, we vary the number of partitions b while keeping the synthetic workload
and resource parameters at their default settings as given in Table I. Among the join
algorithms, Baseline and EP are independent of partitioning. For HP, the computation
cost is roughly inversely proportional to b, according to formula (6) and as reflected in
the trend in Figure 11(a). Furthermore, an increasing b lowers the number of passes
over the inner partitions, until b = 52 where every outer partition can be loaded
entirely into memory. The reduction in CPU and I/O costs explains HP’s improvement
in performance with more partitions. Of course, the performance gain is derived at
the expense of disclosing more information as quantified in Figure 11(d). As for HEP,
we were initially surprised that its I/O cost rises with b. Upon closer examination, we
discovered that this is because a larger b reduces φB per partition, leading in turn to
a smaller outer block size ω according to formula (9). This mandates more passes over
the inner partitions, hence incurring higher I/O costs.

Through this experiment, we confirm that hash partitioning provides an effective
mechanism for HP and HEP to trade off execution time against information disclosure.
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Table II. TPC-E Workload (in hours)

CS Baseline EP HP HEP
Query 1 13.1 83.0 40.4 2.9 1.4
Query 2 1917 (est.) 12,120 (est.) 458.6 405.1 16.3

Table III. TPC-E Workload (in hours) with
Multithreaded Implementation

Baseline EP HP HEP
Query 1 19.1 9.3 0.7 0.3
Query 2 2800 (est.) 105.6 93.4 3.8

For instance, by lifting b from 10 to 100, the speedup of HP over Baseline increases 
from 10× to 93×, whereas the speedup of HEP over Baseline improves from 180× to 
1076×.

7.6. TPC-E Workload

In this experiment, we switch to running the join algorithms on the TPC-E workload 
described in Section 7.1. To accommodate the larger relations, we use M = 2,000 pages. 
We also set q1 = 3% for both EP and HEP as before. Moreover, for HP and HEP, we set 
b = 30, entailing a disclosure of 0.0085 according to formula (5). In the case of CS (from 
Carbunar and Sion [2012]), we initialize its Bloom filters with a 0.1% false positive 
rate. The total execution times (made up of CPU and I/O costs) for the two queries are 
tabulated in Table II.

For Query 1 involving a primary-key-to-foreign-key join, the relative performances 
among the join algorithms that we observe here support our cost analysis in Section 6 
and the results obtained in the previous experiments. In particular, EP’s execution 
time is half that of Baseline (in line with formula (10)); HEP doubles the speed of 
HP (formula (10)), which in turn is about b = 30× faster than Baseline (formula (6)). 
The execution time of CS is around 16% that of Baseline and a third of EP’s for this 
query.

As for the foreign-key-to-foreign-key join in Query 2, Baseline is too slow for us to 
run it to completion. Instead, we executed Baseline on samples of the relations and 
extrapolated the total query time. Again, the time taken by HP is roughly 1

b = 1
30 that 

of Baseline. Here, EP is 26× faster than Baseline, whereas HEP is 25× faster than HP. 
These trends are consistent with those obtained earlier with the synthetic workload. 
Here, the execution time of CS is also estimated like Baseline. The time taken by CS 
is again around 16% that of Baseline, but more than 4× slower than EP (due to the 
latter’s ability to avoid evaluating every record in an equivalence class).

Next, we repeat the experiment with multithreaded implementations of our join al-
gorithms. The results, summarized in Table III, show the same relative performance 
between the join algorithms that we observed earlier. More importantly, the results 
confirm that our join algorithms can be speeded up effectively through parallel execu-
tion. Similarly, the CS scheme of Carbunar and Sion [2012] can be parallelized, but 
this is beyond the scope of our work.

7.7. Summary of Experiment Results

We summarize the main findings from our experiments in the following.

—Where the join operands are asymmetrical, the input relation containing a higher ra-
tio of duplicate key values (i.e., the number of records to unique key values) should be
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the outer relation in EP and HEP. Moreover, the outer block size ω in the algorithms
should be guided by formula (9), with q1 set to roughly 3%.

—Where privacy requirements prevail over execution-time concerns, EP delivers signif-
icant speedup over Baseline across a wide range of workloads without leaking extra
information, especially when both input relations contain duplicate key values.

—EP may be slower or faster than Carbunar-Sion’s scheme [2012], depending on
whether or not the join attributes involve a primary key. While the execution times
of EP and CS are roughly of the same order of magnitude, EP achieves a stronger
privacy protection between the two schemes.

—Where the application permits, employing HEP is very effective in achieving further
cuts in execution time relative to EP. In particular, a disclosure of only 0.01 (as
defined by formula (5)) easily brings about a speedup in excess of 10×.

—Both EP and HEP are amenable to parallel processing. As discussed in Section 5.5,
multithreading (evaluated in Section 7.6), data parallelism, and GPU implemen-
tation are viable means to achieving practical query execution time with our join
algorithms.

—Join operations on encrypted attributes are expensive, with their CPU costs over-
shadowing I/O costs. This characteristic contrasts with conventional join operations
on cleartext attributes, for which computation overheads are dominated by I/O con-
cerns. In practice, we envisage that most of the attributes in a database will be in
cleartext, with only a minority of confidential attributes encrypted. In such a sce-
nario, those join operations involving encrypted attributes should be pushed back as
late as possible in a query execution plan, so that the size of the join operands may be
trimmed by earlier selection and join operations involving cleartext attributes. This
is analogous to joins involving expensive predicate functions [Gaede and Günther
1994].

8. CONCLUSION

In this article, we address the problem of executing ad hoc equi-join queries directly
on an outsourced, encrypted database while preserving the privacy of the queries and
data. We advocate a privacy framework in which the database itself is protected through
strong encryption, whereas the disclosure from executing an equi-join is strictly limited
to the minimum necessitated by its semantics, that is, that two input records combine
to form an output record if and only if they have common join attribute values. There
is no disclosure on records that are not part of the join result. This framework provides
stronger privacy protection than existing solutions in the literature. Our solution is
the first that achieves constant complexity per pair of records that are evaluated for
the join.

To implement our framework, we introduce a cryptographic construct for the data
owner to authorize the server to perform equality testing on probabilistically encrypted
join attributes. Moreover, we develop join algorithms on the cryptographic construct
to reduce the number of equality testing operations. Our join algorithms incorporate
two techniques, namely equivalence partitioning and hash partitioning, to lower the
computation demand. Equivalence partitioning specifically groups those records that
contribute to the query output on their join attribute values during join execution, thus
avoiding the need to match them individually again; this technique adheres strictly to
the requirements of the privacy framework. In hash partitioning, all the records are
assigned into partitions; this discloses some extra information which we quantified.
We provide a detailed cost analysis of the join algorithms. We also report on extensive
experiments confirming that our partitioning techniques combine to produce practical
query execution times.
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APPENDIX

In this Appendix, we give a detailed proof for Theorem 4.3 in Section 4.2. We begin by
extending the decision linear problem (in Definition 2.3) through the following lemma.

LEMMA A.1. Given (x, v, h0, h1, xa, vb, Z), where x, v, h0, h1 ∈R G, a, b ∈R Zp and
Z = ha+b

β for β ∈R {0, 1}, no probabilistic polynomial-time adversary can determine β

with a probability significantly larger than 1/2.

PROOF. The lemma can be proven by a reduction from the decision linear problem
(in Definition 2.3). Let A be an algorithm that takes as input (x, v, h0, h1, xa, vb, Z) and
outputs 0 when β = 0 or 1 otherwise. Suppose that A successfully guesses β with
advantage ε1 over a random guess. We construct on A an algorithm B to solve the
decision linear problem as follows.

Given an instance of the decision linear problem, specifically a 6-tuple
(x, v, h0, xa, vb, Z) such that Z = ha+b

0 and Z 
= ha+b
0 are equally likely, B picks h1 ∈R G

and passes (x, v, h0, h1, xa, vb, Z) to A. If Z = ha+b
0 , A outputs 0 with probability

1/2 + ε1(n). If Z 
= ha+b
0 , A outputs 0 with a probability 1/2. Now, if A outputs 0, B

decides that Z = ha+b
0 ; else A outputs 1 and B decides that Z 
= ha+b

0 . Therefore, B’s
success probability is (1/2 + ε1(n))/2 + 1/2 × 1/2 = 1/2 + ε1(n)/2. Since the advantage
in solving the decision linear problem is negligible, so must ε1(n). �

With Lemma A.1, we can now proceed to the detailed proof for Theorem 4.3. We show
that, if there is a Probabilistic Polynomial-Time (PPT) algorithm A that can defeat our
encryption scheme with nonnegligible advantage over a random guess, then there
exists a PPT algorithm B capable of successfully solving the decision linear problem
with nonnegligible advantage. For clarity, we fix the security parameter n and use ε
instead of ε(n) to denote a negligible polynomial function on n.

Algorithm B takes as input an instance of the decision linear problem,
(x, v, h, xa, vb, W), where x, v, h ∈ G and a, b, c ∈ Zp such that W is random with 0.5
probability and W = ha+b with 0.5 probability. B successfully solves the problem if it
outputs 1 when W = ha+b and 0 otherwise. Let ρ denote B’s success probability.

In the following, we construct B that simulates the privacy experiment ExpREO
R,A (n)

for A.

—For the Setup procedure of ExpREO
R,A (n), B chooses κA, τA, σ, σ1 ∈R Zp and sets g1 =

v, g2 = gσ
1 .

—B simulates REO by executing the EncryptData procedure described in Section 3.2.
It is able to do so because it possesses all the necessary secrets for the procedure.

—Upon receiving (r̄0, r̄1) from A in step 3 of the ExpREO
R,A (n) experiment, B chooses

β ∈R {0, 1} and returns Ā = 〈Ā1, Ā2, Ā3, Ā4, Ā5, Ā6, Ā7, Ā8〉, where

Ā1 = xa, Ā2 = vb, Ā3 = xσ1×r̄β .A+σ2 · W, Ā4 = x,

Ā5 = xσ , Ā6 = xσ/κA, Ā7 = gz
1, z ∈R Zp, Ā8 = e(x, x)σ1×r̄β .A+σ2 .

—If A determines β correctly, namely ExpREO
R,A (n) = 1, B outputs 1; otherwise, B outputs

0.

To analyze the success probability of B, we consider the two equally likely cases for W 
in the decision linear problem that B is trying to solve: (I) W is a random element from 
G, or (II) W = ha+b.

Case I. Since W is random, Ā3 is a random element that is independent of the other 
components in A. Therefore, A can have no advantage in determining r̄β in Ā3. Under
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the circumstances, there is a probability of 1/2 that A outputs β = 0, leading B to
conclude correctly that W 
= ha+b. Thus, B’s success probability in this case is ρI = 1/2.

Case II. Except for Ā3 and Ā7, all the components of Ā that B produces in our simulation
are identical to those in the original privacy experiment ExpREO

R,A (n). In the following,
we first evaluate the probability that A accepts the simulation, that is, the chance that
A cannot distinguish between the simulation and the original privacy experiment.

Let ρ0 denote the probability that adversary A successfully decides that z 
= a × τA
in Ā7, given Ā1, Ā3 to Ā5; Ā2, Ā6 and Ā8, being independent of Ā7, are irrelevant
here. B lowers the difficulty for A by exposing additional information to it, includ-
ing σ, σ1, σ2, κA, h. The rationale is that A’s probability of deciding correctly whether
z = a×τA with the additional information will form an upper bound on the probability of
making the same decision correctly using only Ā1 to Ā6 and Ā8. The additional informa-
tion simplifies Ā and, after removing redundancy, leaves A with an easier decision based
on (x, v, h, xa, xσ1×r̄β .A · ha+b, vz). We help A further by giving it b, xτA, hτA and assuming
that it guesses r̄β.A correctly, so the decision is based on (x, v, h, xa, ha, xτA, hτA, vz). Now
this is equivalent to solving the D3DH problem in Definition 2.7 on (x, v, xa, xτA, vz) in
view of the fact that v is a power of x, or solving the D3DH problem on (h, v, ha, hτA, vz)
considering that v is a power of h. Denoting the probability of solving the D3DH prob-
lem by ρd3dh, we thus have 1/2 ≤ ρ0 ≤ ρd3dh. As the D3DH assumption asserts that the
difference between ρd3dh and 1/2 is negligible, we conclude that ρ0 = 1/2 + ε0, where ε0
is a negligible polynomial function.

Next, let ρ1 denote the probability that A successfully distinguishes Ā3 =
xσ1×r̄β .A+σ2 ha+b in the simulation from xσ1×r̄β .A+σ2 ga+b

2 in the original privacy experiment.
Again, B simplifies the decision for A by releasing σ1 and σ2 to the latter and assuming
that it correctly guesses r̄β.A. We have shown earlier that Ā7 is random and indepen-
dent of Ā3. Moreover, σ and κA are independent of Ā3, so Ā5 = Āσ

4 and Ā6 = Āσ/κA
4

do not provide additional information beyond Ā4 to A. Also, Ā8 = e(Ā4, Ā4)σ1×r̄β .A+σ2

is composed only of values that have been exposed to A by this time. Therefore, the
problem of distinguishing Ā3 is equivalent to deciding Ā3/(xσ1×r̄β .A+σ2 ) ?= ga+b

2 given
(x, v, g2, h, Ā1 = xa, Ā2 = vb, Ā3/(xσ1×r̄β .A+σ2 )); A’s advantage in the decision is negligi-
ble, according to Lemma A.1. We thus conclude that A can distinguish the simulation
from the original privacy experiment with probability ρ1 = 1/2 + ε1, where ε1 is a
negligible polynomial function.

Let ε denote the advantage of A in correctly guessing β. Consider the two conditions
under which B is able to solve the decision linear problem: (a) A fails to discern the
differences in Ā3 and Ā7 and guesses β correctly for B; the associated probability
is (1 − ρ0)(1 − ρ1)(1/2 + ε). (b) A detects the differences in Ā3 or Ā7 and makes a
random guess of β; the probability that B is then led to conclude that W = ha+b is
(1 − (1 − ρ0)(1 − ρ1))/2. Hence B’s success probability in this case, ρII , is

ρII = (1 − ρ0)(1 − ρ1)(1/2 + ε) + (1 − (1 − ρ0)(1 − ρ1))/2
= ε(1/2 − ε0)(1/2 − ε1) + 1/2
= 1/2 + ε/4 + ε(ε0ε1 − ε0/2 − ε1/2).

Combining Cases I and II, we have

ρ = 1/2 × ρI + 1/2 × ρII

= 1/2 + ε

(
1
8

+ ε0ε1

2
− ε0

4
− ε1

4

)
. (12)
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Under the assumption that the decision linear problem is intractable, (ρ − 1/2) is
negligible. This, coupled with the previous observations that ε1 and ε2 are negligible,
implies that ε must also be negligible. Since A can have no significant advantage over
a random guess in determining β in the privacy experiment, we conclude that the
protocol in Section 3.2 satisfies objective P1 on initial confidentiality against all PPT
adversaries, hence completing the proof.
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