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Automated photo tagging is an important technique for many intelligent multimedia information
systems, e.g. smart photo management system and intelligent digital media library. To attack the
challenge, several machine learning techniques have been developed and applied for automated
photo tagging. For example, supervised learning techniques have been applied to automated
photo tagging by training statistical classifiers from a collection of manually labeled examples.
Although the existing approaches work well for small testbeds with relatively small number of
annotation words, due to the long-standing challenge of object recognition, they often perform
poorly in large-scale problems. Another limitation of the existing approaches is that they require
a set of high quality labeled data, which is not only expensive to collect but also time consuming.
In this paper, we investigate a social image based annotation scheme by exploiting implicit side
information that is available for a large number of social photos from the social web sites. The key
challenge of our intelligent annotation scheme is how to learn an effective distance metric based
on implicit side information (visual or textual) of social photos. To this end, we present a novel
“Probabilistic Distance Metric Learning” (PDML) framework, which can learn optimized metrics
by effectively exploiting the implicit side information vastly available on the social web. We apply
the proposed technique to photo annotation tasks based on a large social image testbed with over
1 million tagged photos crawled from a social photo sharing portal. Encouraging results show
that the proposed technique is effective and promising for social photo based annotation tasks.

Categories and Subject Descriptors: 1.2.6 [Artificial Intelligence|: Learning; H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing
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General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: Automated photo tagging, distance metric learning, uncertain
side information, social images, content-based image retrieval

1. INTRODUCTION

Although content-based image retrieval has been extensively studied [Smeulders
et al. 2000; Lew et al. 2006], searching image and photo by textual queries remains
one of the most common and imperative functions for most intelligent multimedia
systems. For many real-world multimedia systems, raw images and photos are often
not associated with text labels or human tags. Automated image annotation thus
becomes an important technique to make massive collections of unlabeled images
and photos searchable by existing text indexing and retrieval solutions.

In general, an image annotation task is to assign a set of text labels or semantic
tags to a novel image based on its visual (and textual if any) content. A typical
image annotation approach usually requires two key steps. One is to extract visual
features to represent the images [Lowe 2004], and the other is to build accurate clas-
sification models from the training images and employ them to predict tags/lables
for the query/test images [Carneiro et al. 2006]. Over the past decade, significant
efforts have been expended for automated image annotation and object recognition
tasks in several areas, including multimedia, computer vision, image processing,
and machine learning [Jeon et al. 2003; Smeulders et al. 2000; Lew et al. 2006].

Despite encouraging progresses, most image annotation methods work well on
small-sized dataset with high quality training data, but often fail when it comes to
large-scale real-world applications for photo tagging due to the well-known semantic
gap between low-level image features and high-level semantic concepts. Besides the
challenge arising from the semantic gap, it is also expensive and time-consuming to
collect a large set of manually-labeled training data for the conventional methods.
Therefore, it is urgent to develop new effective paradigms for automated photo
tagging beyond the traditional approaches.

Recently, due to the popularity of social networks and social web, massive tagged
images have been available on the web, which are referred to as “social images/photos”.
Unlike typical WWW images [Hoi and Lyu 2004], social images often contain
manually-labeled tags and rich user-generated contents, which offer a new opportu-
nity to resolve some long-standing challenges in multimedia, e.g., the semantic gap.
In this paper, we investigate an emerging retrieval-based annotation paradigm for
automated photo tagging by mining massive social images freely available on the
web. The basic idea is to first retrieve a set of most similar images for a test photo
from the social image repository, and then assign the test photo with the most
popular tags associated with the set of similar social images [Wang et al. 2006].

The crux of a retrieval-based annotation paradigm is to accurately find the set of
similar images. It mainly relies on two key components: (1) image representation
by extracting salient visual features from images, and (2) distance measure for
computing the dissimilarity between the two images based on the extracted features.
In this paper, we focus on the second challenge by learning an optimal metric for
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distance measure, known as “Distance Metric Learning” (DML) [Xing et al. 2002].

Existing DML methods work only with explicit side information, which is given
either in the forms of class labels [Weinberger et al. 2006; Goldberger et al. 2005] or
pairwise constraints [Xing et al. 2002; Bar-Hillel et al. 2005; Hoi et al. 2006]. Be-
sides, existing DML methods also assume that the given side information is clean
and perfect. Such assumptions seldom hold in a real application. For example,
in our application, the tags and contents generated by users for images are often
erroneous, and more importantly cannot be used directly as the explicit side in-
formation. This motivates us to study a new approach of distance metric learning
from uncertain/implicit side information.

To this end, in this paper, we present a novel Probabilistic Distance Metric Learn-
ing (PDML) framework, which aims to learn distance metrics from noisy and un-
certain side information for automated photo tagging tasks. The proposed frame-
work consists of two steps: (1) an unsupervised learning approach for discovering
probabilistic side information from hidden erroneous and implicit side information
contained in rich user-generated content of social image data; and (2) a PDML ap-
proach for learning an optimal distance metric from probabilistic side information.

In summary, the key contributions of this paper include: (1) a retrieval-based
annotation scheme powered by a novel DML technique for automated photo tag-
ging; (2) a novel probabilistic DML framework to learn metrics from erroneous and
implicit side information; (3) two effective PDML algorithms, pRCA and pDCA, to
learn optimal metrics from probabilistic side information; (4) extensive experiments
to verify the efficacy of our algorithms in comparison to a number of state-of-the-art
DML algorithms for automated photo annotation tasks.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents an overview of the proposed DML framework for automated
photo annotation, and proposes solutions for discovering implicit constraints from
social photo repositories. Section 4 proposes the probabilistic DML method and
gives two efficient algorithms, i.e., probabilistic Relevance Component Analysis
(pRCA) and probabilistic Discriminative Component Analysis (pDCA). Section 5
discusses the application of PDML to automated photo tagging. Section 6 presents
the experimental results and Section 7 concludes this work.

2. RELATED WORK

Our work is mainly related to two groups of research. One is the group of studies
on exploring web/social photo repositories for image annotation and object recog-
nition [Russell et al. 2008; Torralba et al. 2008; Yan et al. 2008]. The other is
related to the group of DML studies [Bar-Hillel et al. 2005; Si et al. 2006]. We
briefly review some representative work in both sides.

2.1 Automated Photo Tagging

Automated image/photo annotation has been actively studied over the past decade
in multimedia community. Among a variety of conventional approaches, a widely-
studied paradigm is the supervised classification approach, in which classifica-
tion models, such as SVM [Fan et al. 2004], are trained from a collection of
human-labeled training data for a set of predefined semantic concept/object cate-
gories [Carneiro et al. 2006; Carneiro and Vasconcelos 2005; Duygulu et al. 2002;

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 06 202010.



4 . Wu, Hoi, Jin, Zhu, and Yu

Wang et al. 2008]. Besides, semi-supervised learning methods are also explored in
recent literature [Li and Sun 2006; He and Zemel 2008].

Recent years have witnessed a surge of emerging interests in exploring web photo
repositories for image annotation/object recognition problems. One promising ap-
proach is the retrieval-based (or termed “search-based”) paradigm [Russell et al.
2008; Wang et al. 2006; Torralba et al. 2008; Wang et al. 2008]. Russell et al. [Rus-
sell et al. 2008] built a large collection of web images with ground truth labels for
helping object recognition research. Wang et al. [Wang et al. 2006] proposed a fast
search-based approach for image annotation by some efficient hashing technique.
Torralba et al. [Torralba et al. 2008] proposed efficient image search and scene
matching techniques for exploring a large-scale web image repository. These stud-
ies are usually focused on techniques for fast indexing and search, while we focus
on learning effective distance metrics from erroneous and implicit side information.
Yan et al. [Yan et al. 2008] proposed a learning based method for improving the
efficiency of manual image annotation with the hybrid of tagging and borrowing.
Our work differs from theirs by focusing on fully automated photo annotation. Be-
sides, we also notice there are some related work that also learned distance metrics
from tagged media collection, such as [Qi et al. 2009; Wang et al. 2008]. Our study
differs from them by emphasizing metric learning from uncertain side information.

2.2 Distance Metric Learning

From a machine learning point of view, our work is closely related to DML studies.
Firstly, we review some basics of DML. Given a set of n data examples X = {z; €
R4} | in d-dimensional vector space, the Mahalanobis distance between any two
examples x; and z; is defined as:

At (i, 2) = /(@ — ) TM (zi — 7)) (1)

where M is a positive semi-definite matrix that satisfies the property of valid metric
and can be decomposed as M = AT A. The goal of DML is to find an optimal
Mahalanobis metric M from training data (side information) that can be either
class labels or general pairwise constraints [Xing et al. 2002].

In literature, DML studies can be roughly divided into two major categories.
One is to learn metrics with explicit class labels, such as Neighbourhood Compo-
nents Analysis (NCA) [Goldberger et al. 2005], which are often studied for classifi-
cation [Fukunaga 1990; Globerson and Roweis 2005; Weinberger et al. 2006; Yang
et al. 2006]. The other is to learn metrics from pair-wise constraints that are mainly
used for clustering and retrieval. Examples include RCA [Bar-Hillel et al. 2005] and
Discriminative Component Analysis [Hoi et al. 2006], amongst others [Xing et al.
2002]. Our work is more related to the second category, though some methods in
the former category could be converted to the latter.

Lots of research studies focus on learning more effective distance metrics with
the assistance of the high level semantic from the side information such as pairwise
constraints [Xing et al. 2002; Hoi et al. 2006; Weinberger et al. 2006; Davis et al.
2007; Hoi et al. 2008; Jin et al. 2009]. An earlier and well-known DML approach
was proposed by Xing et al. [Xing et al. 2002], who formulated the task as a convex
optimization problem. The major drawback of their work is computational ineffi-
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ciency for large scale dataset. Later, RCA was proposed [Bar-Hillel et al. 2005] to
learn metrics with equivalent/relevant constraints, which is simple and efficiency.
Discriminant Component Analysis (DCA) further improves RCA by incorporating
negative constraints [Hoi et al. 2006]. Most recently, regularized DML and semi-
supervised DML algorithms were also studied [Si et al. 2006; Hoi et al. 2008], which
were often formulated as an SDP problem and again difficult to be used in large
applications. The existing DML algorithms are restricted to rely on explicit pair-
wise constraints. Our probabilistic DML overcomes this limitation by exploiting
implicit side information, in particular the user-generated content for images, in a
probabilistic learning framework.

2.3 Relevant Component Analysis

Here we review a well-known and effective DML technique, i.e., Relevant Com-
ponent Analysis (RCA) [Bar-Hillel et al. 2005], since it is highly related to our
work. The basic idea of RCA is to identify and down-scale global unwanted vari-
ability within the data. In particular, RCA suggests to change the feature space
used for data representation by a global linear transformation in which relevant
dimensions are assigned with large weights. More formally, given a set of data
examples X = {x;}_; and a collection of pairwise constraints indicating whether
two data examples are similar (or dissimilar). RCA forms a set of m “chunklets”
C; = {z;;};2, where j = 1,...,m. Each chunklet is defined as a group of data
examples linked together by similar pair-wise constraints ( “must-link”).

The optimal transformation by RCA is then computed as A = C~/2 and the
Mahalanobis matrix is equal to the inverse of the average covariance matrix of
chunklets, i.e., M = C~!, where C is defined as follows:

C= %ZZ(%Z — ) (w50 — py)" 2)

where 11 denotes the mean of j* chunklet, z;; denotes the i‘" example in the j**
chunklet and n is the total number of examples. RCA is simple, efficient, and easy
to implement. Similar to other conventional DML techniques, RCA also requires a
set of explicit “positive” pairwise constraints provided for the learning task, which
limits its application when the side information is given implicitly.

2.4 Discriminative Component Analysis

Discriminative Component Analysis (DCA) [Hoi et al. 2006] aims to learn from both
positive constraints and negative constraints. Here a positive constraint indicates
two instances are in the same chunklet, and a negative one indicates two instances
are in different chunklets. For each chunklet j, a set of discriminative chunklets is
formed if there is at least one negative constraint with the j** chunklet.

DCA learns the optimal transformation A by maximizing the total variance be-
tween discriminative chunklets and minimizing the total variance of data instances
in the same chunklet simultaneously, which can be formally formulated below:

T A

_ AT G A 3)
|[ATC\, A|
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n nj

) 1 n - R 1 1 T

Cp=— D> (my—my)(my —m)", Cp==" — D (@i = my)(azi —my)
b j=1ieD; j=1'7 =1

where D; is the discriminative set for the 4t chunklet, my; is the mean vector of

the j** chunklet, and ny is the cardinality of all the discriminative sets.

2.5 Certain Side Information V.S. Uncertain Side Information

Side information is critical to any distance metric learning algorithm. It typically
appears in the forms of pairwise constraints, which a positive (negative) constraint
indicates whether a pair of samples are similar (or dissimilar). Traditional DML
methods assume that perfect side information is provided explicitly, which is re-
ferred to as certain side information. In most studies, certain side information is
cast in the hard pairwise constraints that indicate two examples are either abso-
lutely similar or absolutely dissimilar. Besides, certain side information is usually
assumed to be perfect without any error. The manual nature of certain side infor-
mation makes it expensive to collect. These limitations restrict the application of
certain side information.

In our study, we focus on learning a distance metric from uncertain side infor-
mation that allows the uncertainty when generating the side information, which
differs from the certain side information in several aspects. First, it is often gener-
ated automatically, e.g. derived from the user-generated content of social images
available on the web. Thus, uncertain side information is often much cheaper to ac-
quire than certain side information. Second, it adopts “soft” pairwise constraints, in
which each pairwise constraint is associated with a confidence/uncertainty. It is the
soft constraints that allow us to better deal with the potentially noisy constraints.

3. METRIC LEARNING FRAMEWORK FOR AUTOMATED PHOTO TAGGING
3.1 Overview

We first give an overview of the proposed semantic metric learning framework for
learning metrics from social image data. Figure 1 shows a flowchart illustrating the
proposed framework with application to automated photo tagging.

In the figure, the right column shows a retrieval-based photo tagging solution.
Specifically, given a novel photo, the idea of the retrieval-based tagging approach
is to firstly perform a similarity search for finding top & most similar photos from
the social photo repository, and then annotate the novel photo with top ¢ ranked
tags associated with the k retrieved photos. Our main effort focuses on learning
an effective metric to reduce semantic gap for the similarity based search process,
which is shown in the left panel of the flowchart. Below we discuss the main ideas
of our metric learning framework.

Since no explicit side information is available, we cannot directly apply regular
DML techniques. Therefore, the first step towards DML is to discover possible
side information from training data, which is essential to DML. In another words,
we wish to find some forms of side information, which could indicate how likely
two social image examples are similar or dissimilar. One solution is to discover
some “chunklets” (similar to RCA) from training data such that images in the
same chunklets are similar to each other, and images in different chunklets could

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 06 202010.
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Probabilistic
Distance Metric
Learning

Image Similarity
Search

Generate Side
Information

Relevant Tag
Ranking

Image Tags

Fig. 1. Flowchart illustrating the proposed metric learning scheme for annotation.

be similar or dissimilar, up to the similarity of the two associated chunklets. Since
such chunklets are not explicitly available (also cannot be easily formed as RCA),
we refer to them as “latent chuklets’. Intuitively, a latent chunklet can be viewed
as a common semantic topic shared by the social images in the chunklet. Thus, it
is possible that one image belongs to multiple chunklets.

To find the latent chunklets effectively and precisely, we propose a graphical
model to estimate the probabilities of assigning an image to the latent chunklets.
We refer to this step as “Latent Chunklet Estimation” (LCE) step. By LCE, we
obtain side information in the form of latent chunklets with probabilistic assign-
ments, which we refer to as “probabilistic side information” or “uncertain side
information”. Finally, the last step of our semantic metric learning is to find an
optimal metric from the probabilistic side information. In this paper, we propose
two PDML algorithms, i.e., probabilistic relevant component analysis (pRCA) and
probabilistic discriminative component analysis (pDCA), for solving the PDML
tasks effectively.

Next we first present the algorithms for latent chunklet estimation followed by
the proposed pRCA and pDCA algorithms in the subsequent section.

3.2 Latent Chunklet Estimation for Social Image Modeling

Typically a social image contains rich information, such as tags, title, description,
comments, visual content, etc. In this paper, we propose two approaches for dis-
covering side information of latent chunklets from rich contents of social images.
One is a graphical model approach, and the other is a clustering based approach.
For simplicity, we focus on exploring two key types of information, i.e., textual and
visual. It is not difficult to engage additional information in our framework.

3.2.1 Latent chunklet definition. First of all, we assume that there are m latent
chunklets available, each of them represents a hidden topic z;, in which both visual
images and associated textual metadata (e.g. tags) in the chunklets are generated

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 06 202010.
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Fig. 2. Graphical model approach for social image modeling

from the hidden topic. Figure 2 shows the graphical model for social image mod-
eling. The upper part of the graph represents the visual model. The images can
be represented by some local feature descriptor, e.g. bag of visual words represen-
tation [Lowe 2004], and each visual word a is generated from certain topic z, by
a multinomial distribution ¢Z. On the left side, 6 is a Dirichlet distribution with
hyper parameter a. The lower part of the graph represents the textual model gen-
erating textual tags, in which w represents the tags. For simplicity, we also assume
that the tags are generated from a multinomial distribution ¢7, parameterized by
the topic z,,. Thus, a topic z contains two parts, i.e., 2 = [24, Zuw)-

Our goal is to estimate the hidden distribution P(z,|I), the probability of an
image I belonging to a certain topic z,, and the hidden distribution P(z,|d), the
probability of topic z, existing in tag document d. Such conditional probabili-
ties will be further used to predict the inter chunklet variation and intra chunklet
variation. We discuss the generating process of the graphical model below.

Firstly, 6 is the parameter for the topic distribution, which follows a Dirichlet
distribution with parameter a:

Ola ~ Dir(a) (4)

Further, given 6, topic z is drawn from a multinomial distribution, and ®, and ®,,
follow some Dirichlet distributions:

2|0 ~ Multi(9), @,|Ba ~ Dir(Ba), ®u|Buw ~ Dir(Bw) (5)

Here we denote 8 = [f4, By]. Finally, given topic z, both tags and visual words
follow multinomial distributions:

W2y, Py ~ Multi(¢Z), alzq, Py ~ Multi(d?) (6)

3.2.2 Inferences. The main idea of the graphical model is to capture the condi-
tional joint probability of tag document d and image x. A tag document is modeled

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 06 202010.
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by a bag of words d = {w}, and the image « is represented by a bag of visual words
x = {a}. The joint probability P(z,z,d|«a, 3) can be written as:

P(e.a.da.8) = [ Peva.wla,5) = T [ Ple.acwbla,s)as

where a represents a visual word in the social image, and w represents one of the
tags with the social image. Further, according to the assumptions, the conditional
joint probability of topic z, visual word a, tag w with respect to parameters «, 8
can be expressed as follows:

P(z,a,w,0|a, B, Buw) X P(w|zw, Py)P(a|zq, Pa)P(2|0)P(Py|Ba) P(Puw|Buw)

To calculate the chain of conditional probability in the above equation, Gibbs sam-
pling is adopted. Although variational methods can also be used, we choose the
Gibbs sampling for its simplicity and applicability to our problem. Specifically, it
repeatedly draws a topic z with respect to the conditional distribution. Then visual
words and tags are generated with the conditional probability given the topic z.
The objective of inference in the Gibbs sampling is to obtain the conditional
distribution of hidden topic given the observed data. The Bayesian estimation of
conditional distributions of tag, visual words, and topics are calculated as:

i nZij+ Pu . nZ;; + Ba
P(zwi = jlw) = njw7 P(za,0 = jla) = nji-i-Aﬂ
—1,J w 72"] a
P(a|2ai =j) = ——4—— P(d|zw,: = j) = >

b
HL + ma nii,‘ + ma

In the above, z,, ; represents topic z for tag w in the it" sampling; Zq,; denotes topic
z for visual word a in the i** sampling; n; ; is the frequency of tag w assigned to
is the number of all tags/visual words

the j" topic before the i** sampling; n_;
assigned to the j topic before the i*" sampling; n®, ;
word a assigned to the j*" topic before the i** sampling: n

is the frequency of visual
Lij
the j*" topic that appears in image « before the i** sampling; n?

is the frequency of
;.; 1s the frequency
of the j* topic that appears in tag document d before the i*" sampling. Besides,
W is the size of the tag dictionary, A is the size of the visual word dictionary, and
m is the number of topics.
With the above estimations, we can calculate the marginal by integrating out the

parameter 6 and sampling the topic with the distribution below:

ngi,j + ﬁu) « nii,j + «
n_, i +Wphy n?, +ma

P(zw,i = jlzw,—iw) &
J

a x
nj+Ba  nita

P(zqi = jlza—i,a) X
(20,i = jl2a,-i ) n;i’j—FA,Ba nt, +ma

Finally, we can calculate the topic relationship given parameter o and 8 below:

N
1
P(Zz7zj|a7ﬁ) X N2 § P(Zi,$k,dk|0[,ﬁ)P(Zj,xk,dk|Oé,ﬁ)
k=1
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where z; and z; are any two topics from the set Z.

As a summary, each topic z; represents a chunklet. we can compute the condi-
tional probability P(z;|z,d) that represents the relationship between the example
and the chunklet, and the joint probability P(z;,z;|c, §) that represents the re-
lationship between the two chunklets. These probabilities can be adopted and
explored for DML.

3.3 Generating Chunklets by Clustering

Besides the complex topic model approach, it is also possible to study other methods
to generate the probabilistic chunklets as long as the technique is able to find out the
probability relationship between the examples. Below we discuss another approach,
the fuzzy k-means (FKM) clustering method [Bezdek 1981], for generating the
latent chunklets.

The fuzzy k-means clustering algorithm [Bezdek 1981] partitions a set of n data
samples 1,3, - ,T, into k clusters such that the overall distances of examples
within the same clusters are minimized. Specifically, the optimization task of FKM
can be formulated as follows:

n k
min J(P,C) =) > pid3; (7)
’ i=1 j=1
k
s.t. Zpij =li=1,...,m
j=1
0<py; <lyi=1,....,n,j=1,... k. (8)

where P € R™*¥ is the membership matrix, whose element p;; € [0,1] indicates
the probability of each data point belonging to each of the clusters (chunklets).
C = [c1, -+ ,cm) denote the centroids of the clusters (chunklets). The exponent
¢ is the fuzzy exponent which determines the degree of fuzziness, and d;; is the
distance between the i'" example and the j*" cluster/chunklet:

d7; = (2 — ¢;) ' M(z; — ¢) 9)

where z; denotes the features of the i*" image, and M is the distance metric. If
M is equal to an identity matrix, the distance measure reduces to Euclidian space.
Here we use the tag vector to represent each image. Each image is represented as
a K-dimensional vector, and the k" dimension of x;;, indicates whether the image
contains the k" tag, i.e., if the k*" tag appears in the i*” image, z;; = 1; otherwise
Tk = 0.

By clustering the social images based on the tag vectors using the FKM algo-
rithm, we can achieve the clustering results, which include both the set of clus-
ters/chunklets and the membership matrix P that describes the assignment prob-
ability of each example to the chunklets. Such output membership matrix P will
then be used as the probabilistic chunklets in the subsequent PDML task.
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4. PROBABILISTIC DISTANCE METRIC LEARNING
4.1 Problem Definition

In this section, we present a probabilistic DML (PDML) method for learning met-
rics from probabilistic side information. Unlike regular RCA learning, the latent
chunklets are represented by some probabilistic distributions rather than “strictly-
hard” pairwise constraints. Therefore, the challenge of PDML is how to exploit
the uncertain side information for optimizing the metric in the most effective way.
Below we present a probabilistic RCA technique, which extends the regular RCA
in a probabilistic metric learning approach. We first introduce some definitions and
notations below.

Let us denote by z; a d-dimensional visual feature vector of an image, and zj
one of m latent chunklets. Further, we denote by ux a center (mean) for a latent
chunklet z, and pu = (u1,...,m) & matrix of all centers. Moreover, we denote
by matrix P = (p1,...,pn) the membership probabilities of associating examples

with chunklets, where p; = (pgl)7 o ,pl(-m)) is the probability distribution for the 7*"
(k)

%

example and p

. k
2K, i.e., pz(- ) = p(x;|2k).

In our approach, we initialize P by a prior probability matrix Py = [p(2;|2k)]nxm.,
which were obtained from the Latent Chunklet Estimation or the clustering process.

represents the probability of observing example x; given chunklet

4.2 Probabilistic Relevant Component Analysis

The objective of our DML task is to learn an optimal metric M in a d-dimensional
feature vector space, i.e., M € R4 To exploit latent chunklets in DML, we
formulate a probabilistic extension of RCA, termed as “Probabilistic Relevance
Component Analysis” (pRCA), as follows:

. n m )y )
M20g,P z_; kz—lpi el = Ao M1 .
st. ||P—Pl% <7, (11)
Zpgk)zlapz(k)zoazzlvﬂl (12)
k

where parameter v > 0 constraints the difference between the prior probability
matrix Py (known from the previous side information generation stage) and the
proxy probability matrix P (unknown), A is a regularization constant, |- ||z denotes
the Frobenius norm of a matrix, and || || o denotes the mahalanobis distance under
metric M.

The above formulation can be interpreted as a robust optimization problem with
bounded uncertainty on the probability matrix P. In particular, for the objective
function, the first term is to minimize the sum of squared distances from examples
to their chunklet centers, and the second term is to prevent the solution M from
being obtained by shrinking the entire solution space. For the constraints, the one
in (11) is to restrict the matrix of desired probability assignments P to be close
to the prior matrix Py, and the remaining set of constraints in (12) are used to
enforce the probability requirements. The following corollary shows that RCA can
be viewed as a special case of pRCA.
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COROLLARY 1. For the optimization in (10), when fizing the means of chunklets
w and the matriz of probability assignments P (assuming with hard assignments of
0 and 1), the pRCA formulation reduces to reqular RCA learning.

The proof of Corollary 1 can be found in Appendix A.

We now discuss techniques to solve the optimization of pRCA. Generally, the
problem in (10) is a nonlinear optimization task containing three sets of variables
M, P, and pu, where p can be easily computed once P is found. It is often hard
to solve the problem with global optima directly. To address this challenge, we
present an iterative optimization algorithm by applying alternating optimization
techniques [Bezdek and Hathaway 2003], which is widely used to solve multi-variable
nonlinear optimization tasks.

Our iterative optimization algorithm consists of three steps: (1) fixing P and p
to optimize M; (2) fixing M and p to optimize P; and (3) fixing P and M to find
1. According to Corollary 1, the first step is equivalent to solving regular RCA, i.e.,
M = %C’*l, where C' is the average chunklet covariance matrix with the given P.
The last step is straightforward, i.e., u = P X, where X is a matrix of all training
data.

We now focus on the second step. In particular, by fixing M and u, the opti-
mization can be rewritten as follows:

mph Zng )Hffi—uk||?\/[+§||P_p0||% (13)
=1 k=1

s.t. sz(‘k) = 1,p,§k) >0,i=1,...,n
k

where the constraint in (11) was moved to the objective. The above problem is a
quadratic program (QP), which can be solved by some existing convex optimization
software. However, for a real web application, the training data size can be very
large, this poses a challenge of huge computation when solving a large-scale QP
problem by a standard QP solver. To this end, we develop a fast algorithm, which
is able to solve the above optimization very efficiently.

To ease our discussion, we notice that p;,i = 1,...,n are completely decoupled in
(13) given py. Thus, we can rewrite (13) into a set of n independent optimization
tasks, one for each p;, i.e.,

m
. 2 Y 2
m - Llp— 14
Jnin kglpkllxz wellas + 5 llp = poll2 (14)

m

s.t. Zpk =1L,pe>0,k=1,....m
k=1

It can be easily shown that solving the above problem is equivalent to solving the
problem in (13). We now discuss a fast algorithm to solve this problem. We first
introduce the Lagrangian of the optimization as follows:

E=pr+%Ilp—poH%er(Zpk—l)—n-p (15)
k

where fT = (||z; — p1l;, ..., |2 — pml3;), p is a Lagrange multiplier and 7 is a
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Algorithm 1 Probabilistic RCA Algorithm (pRCA)

1: INPUT:
training data matrix: X € R?*?
chunklet assignment probabilities: Py € R"*™
penalty parameter: v > 0
2: OUTPUT:
optimized distance metric: M*
3: initialize P = Py, and p = P X
4: repeat
5: (1) compute M by the following formula:

M = (30l Yoy o (i — pw) (i — ) T)

6: (2) find P by solving QP problem in (13) as follows:
7. fori=1tondo

8 AT = (lar— o 21— )

9: f = sort(f, descending’)

10: find p by Proposition 1

11: for k=1 tom do

12: P = max (0, por, - %(P + fk:))

13: end for

14:  end for
15:  (3) update the chunklet means: y = PTX
16: until convergence

vector of non-negative Lagrange multipliers. By differentiating it with respect to
Pk, we can get the following optimality condition:

oL

T:fk:+7(pk:_p0k)+p_77k:0
Pk

By applying the KKT condition, whenever p; > 0, 1 should be zero. Therefore, if
pr > 0, we have the following result:

1
Pk = Pok — ;(P-F fr)

Combining the fact that py > 0, we have the following:

pr = max (0, por — %(P + fr)) (16)

The next issue is to find the optimal p. The following proposition provides a solution
to find the optimal value of p by a simple sorting approach[Wu et al. 2009].

We can solve the QP problem (14) in O(nlog(n)), which is significantly faster
than standard QP solvers with interior point methods that usually require O(n?)
complexity. Finally, we summarize the pseudo-code of the pRCA algorithm in
Algorithm 1. The following corollary guarantees the convergence of the proposed
algorithm.

COROLLARY 2. Algorithm 1 converges to the local optimum for the optimization
problem of probabilistic relevance component analysis in (10).
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Algorithm 2 Linear projection method for searching P.
1: INPUT:
a matrix pgr and the scaler distance f; > 0
2: INITTALIZE:
U=[n],s=0,p=0
: OUTPUT:

w

p{*) = max (07p0k —2(p+ fk))
4: repeat
5:  Pick k € U at random;

6:  Partition U:
G={j€eUlp; > px}
L={jeUlp; <px}
7. Calculate Ay = |G|, & p=>_,capj
8 IF (p+ 2 p)—(v+27) <[k
9 pptbpy eyt oyU L

10:. ELSE
11: U<+ G\{k}
12: ENDIF

13: until U = @

4.3 Probabilistic Discriminative Component Analysis

Similarly, we can also generalize the DCA technique [Hoi et al. 2006] by applying
the proposed probabilistic distance metric learning framework in order to incorpo-
rate both positive and negative pairwise constraints. Specifically, we formulate the
probabilistic Discriminative Component Analysis method (pDCA) as follows:

. n m *) ) )
B E_l g—lpi s = pxl[ar + 1P = Poll& (17)
sty (1= pig)lp = pllt > 1 (18)

i

we=3 P xik=1,...om S p® =1 >0i=1,....n
=1 k

where p;; denotes the joint probability of two web images, which is estimated by
the latent chunklet estimation process, e.g., p;; = P(2;, zj|, B) in the graph model
approach. As a result, (1 — p;;) measures the dissimilarity between any two chun-
klets, which implicitly represents the probability of negative constraint. Therefore,
in the above formulation, the first constraint is introduced to avoid two dissimilar
chunklets from being too close by exploring negative constraints.

Similar to the approach in solving pRCA, we can also solve the pDCA problem
by an iterative algorithm of three steps. The first step is to fix P and p and then
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optimize M, for which the optimization can be reduced as follows:

. k
min - > > p |l — il (19)

M=0 4
1=1 k=1
st Y (L=pij)lmi — njlla > 1 (20)
i

It can be shown that the above optimization is almost equivalent to the regular
DCA. The second step of the iterative algorithm is to fix M and p, and then
optimize P. For this step, it is clear to see that the reduced optimization of the
pDCA formulation in (17) becomes the same QP problem as shown in (13). The
last step is to update the chunklet means p based on the optimized P. Finally,
Algorithm 3 summarizes the iterative algorithm of probabilistic DCA.

Algorithm 3 Probabilistic DCA Algorithm (pDCA)
1. INPUT:
training data matrix: X € R"*¢
chunklet assignment probabilities: Py € R"*™
chunklet joint probabilities: P € Rm*™
penalty parameter: v > 0
2: OUTPUT:
optimized distance metric: M*
proxy probabilities of chunklet assignments: P*
initialize P = Py
initialize p = PTX
repeat
(1) compute M by solving DCA optimization in (19)
(2) find P by solving the QP optimization in (13)
(3) update the chunklet means: y = PTX
until convergence

© P NPT Rw

5. APPLICATION TO AUTOMATED PHOTO TAGGING

In this section, we discuss the application of pRCA to the exploitation of social
photo repositories for automated photo tagging tasks. Given a novel photo, the
automated tagging task is to annotate the photo labels or tags, which often reflect
certain semantic concepts/objects. To overcome the limitation of conventional ap-
proaches, we investigate a retrieval based approach to automated photo tagging
tasks by exploring a huge number of social photos freely available on the web. We
formally formulate our approach as follows.

Let I, = {x4, 74} denote a query image for tagging, where z, represents the
visual contents of the image, and 7, denotes a set of unknown tags to be found
in the tagging task. In general, a retrieval based tagging approach consists of two
steps: (1) retrieving a set of visually similar social photos, which are closest to the
query photo; and (2) annotating the query photo by a set of most relevant tags
that are associated with the retrieved similar photos.
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For the first step, there are two typical approaches to find a set of nearest neigh-
bors with respect to a query image. One is to retrieve the k-nearest neighbors of
the query image, i.e.,

Ni(zg) ={i €[1,...,n]|lz; € KNN list(x,)}, (21)

where n is the total number of photos in the social photo repository. The other
way is to retrieve a set of nearest photos within certain distance range, i.e.,

Ne(wg) ={i €1, n]l [lzis — x4l <€}, (22)

where € is a predefined distance threshold. For both approaches, it is clear that an
effective distance metric M is essential to retrieve the set of nearest neighbors. In
this paper, we adopt the first approach and employ the metric learned by pRCA
to compute the k-NN list.

For the second step, we suggest an information theory based tag ranking scheme
by adopting the voting by maximum likelihood scheme. Specifically, we define a
set of candidate tags 7T, as:

Tw=J T (23)
iGNk
where 7; represents the set of tags associated with image I;. For each candidate tag
w; € Tw,, we compute its frequency appearing in the k" nearest web photos I,
denoted by f(w;|I)). The conditional probability of each tag given the k*" similar
photo I is calculated as follows.

S AIARS
P = 5 Flal )+

where k is a smoothing parameter which is simply fixed to the vocabulary size in
our experiments. The likelihood of assigning the tag w; to the test image I; is

p(w;| L) = p(w;|Ie)p(I | T;)
k

where p(I;|I;) is estimated by the visual similarity between two images, which is
calculated by

p(Ik|1;) = exp(—|[ I, — Ll ar)

where we use a Gaussian kernel to model the visual conditional probability and
is a kernel parameter that is empirically determined by a validation set.

We then incrementally add the best tag w* into the tag set for the query image
Ty = T4 U {w*}, which is chosen according to their likelihood scores, i.e.,

*

w* = argmax p(w|l;) (24)
WETWwAWET,

where p(w|I;) represents the probability the candidate photo I; that contains tag
w. The above formula indicates that we prefer to assign the query image with a
tag according to both tag frequency and image visual similarity.
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6. EXPERIMENTS

The goal of our experiment is to examine if the proposed distance metric learning
method is more effective than conventional methods for automated photo tagging
tasks. To this purpose, we first conduct a numerical evaluation by comparing
the proposed algorithms with a number of state-of-the-art distance metric learning
algorithms, and further examine the influence of varied parameters and settings that
could affect the performance of the proposed automated photo tagging scheme.
Finally, we note that all experiments were run in the same environment with a
typical PC of 2.8GHz CPU with Matlab.

6.1 Experimental Testbed

We collected a large social photo testbed with over 1,000,000 photos crawled from
www.Flickr.com, in which most photos contain user-tags and other metadata.
There are around 200,000 tags in the dataset. The average occurrence of each
tag is around 11. We split the whole dataset into three disjoint partitions: a train-
ing set, a test set, and a knowledge database set. Since both the images for metric
learning and for knowledge databased are crawled from Flickr, the tag property
and distribution of the two sets are similar. Below we describe the details of the
three partitions.

The training set is used for learning distance metrics. In particular, we randomly
sampled 16,588 photos with tags from the whole social photo testbed. We did not
make any refinements on the associated tags. To provide visual words for training
the models, we construct the bag-of-visual-words representation by extracting local
features from the training photos using the SIFT descriptor [Lowe 2004].

The test set is used for evaluating the photo tagging performance. In particular,
we randomly picked 2,000 photos from the whole photo testbed as the query images
to test the photo tagging performance. To improve the quality of test data, we
created the annotation ground truth by manually removing some clear noises to
refine the original tags.

The rest social photos are engaged as the knowledge database set, which serves
the base of social photo repository for tagging. We also randomly selected 200,000
photos from the knowledge database. We perform directly similarity search on this
small knowledge database, for the comparison with the search results in the whole
knowledge database, in which LSH indexing [Andoni and Indyk 2008] is adopted
to improve the search efficiency. We try to see whether the scale of the knowledge
database will help improve the performance.

Finally, for the photos in both test set and the knowledge database, we extract
a set of effective and compact visual features [Hoi et al. 2006; Hoi et al. 2009],
including: (1) grid color moments, (2) edge direction histogram, (3) Gabor textual
features, and (4) Local binary pattern histograms. In total, a 297-dimensional
feature vector is used to represent each photo. The reason that here we do not
adopt local features, such as SIFT, is primarily due to the efficiency consideration.

6.2 Compared Schemes

To examine the effectiveness of our technique, we compare the proposed pRCA and
pDCA algorithm with some baseline and a number of state-of-the-art DML meth-
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ods, including (1) a baseline that simply adopts Euclidean distance, (3) regular
RCA [Bar-Hillel et al. 2005], (3) Discriminative Component Analysis (DCA) [Hoi
et al. 2006], (4) Information-Theoretic Metric Learning (ITML) [Davis et al. 2007],
(5) Large Margin Nearest Neighbor (LMNN) [Weinberger et al. 2006], (6) Neigh-
bourhood Components Analysis (NCA) [Goldberger et al. 2005], and (7) Regular-
ized Distance Metric Learning (RDML) [Si et al. 2006]. Note that we excluded
other DML methods in our comparison mainly due to their computational infeasi-
bility for such large-scale applications. For example, the well-known DML method
in [Xing et al. 2002] is only applicable to a very small dataset.

Regarding the two proposed algorithms, pRCA and pDCA, there are some com-
mon property, i.e., both of them adopt the probabilistic constraints, which is also
the key advantage over traditional RCA and DCA methods. In general, pDCA
can be viewed as an extension of pRCA. The difference is that pRCA only mini-
mizes the distance between the relevant samples, while pPDCA both minimize the
distance between high relevant samples and maximize the distance between low
relevant samples.

Since no explicit side information is available for traditional DML, in training
stage, we performed clustering on training photos using both visual features and
tag co-occurrence information. Photos that have similar visual contents and share
common tags will be grouped together. Finally, we generate side information from
the resulting clusters (after removing trivial clusters) as the inputs for DML.

We sample the same subset of image pairs for both deterministic metric learning
and probabilistic metric learning. For the probabilistic metric learning, we estimate
the probabilistic chunklets by the sample image content and their tags. For the
deterministic metric learning, if the sampled pair of images share any tag, they are
in same chunk; otherwise, in different chunks

6.3 Experimental Setup and Protocols

Regarding parameter settings, for the pRCA learning, we assume there are m (m =
500) latent chunklets for the N (N = 16,588) training examples, and generate an
m x N matrix of probabilistic latent chunklets distribution by the graphical model
as the probabilistic side information, which is used as the prior probability matrix
Py for metric learning. For the extraction of visual words in LCE, we set the number
of visual words A = 1,000, and the number of tags W = 2,000. The parameter ~y
of pRCA was simply fixed to 0.5 for all experiments.

For other DML methods, we adopt the same settings, i.e., 500 chunklets for
producing the side information. For their parameters, we chosen them according
to the suggestions/empirical results in the original work.

To evaluate the automated photo tagging performance by different methods, we
employ the proposed retrieval-based annotation solution presented in Section 5.
Firstly, for each query photo in the test set, top k nearest photos from the database
are first retrieved as the set of candidate images. Then, we annotate the query
photo by assigning top ¢ tags ranked by the function in (24). Finally, we adopt
standard average precision and average recall at top ¢ tags as performance metrics
to evaluate the automated photo tagging performance.
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6.4 Experiment I: Numerical Evaluation

Figure 3 and Figure 4 show average precision and average recall at top ¢ annotated
tags, respectively. For these results, we fixed the number of nearest neighbors k
to 30 for all compared methods. In both figures, the horizontal axis denotes the
number of top tags ¢ that ranges from 1 to 10.
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0.3 -
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S 015 =NCA
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< = pRCA
0.05 pDCA
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Top t annotated tags
Fig. 3. Average precision at top ¢ annotated tags
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= 0.1 =DCA
§ = ITML
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1 2 3 4 5 6 7 8 9 10
Topt annotated tags

Fig. 4. Average recall at top t annotated tags
From the figures, we can draw several observations. First of all, we found that

most DML techniques outperformed the baseline by simple Euclidean distance.
This shows that DML techniques are beneficial and critical to the retrieval-based
photo tagging tasks. Second, we found that for some cases, some DML methods
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did not perform well, and sometimes performed even worse than the Euclidean
method. For example, for the case of top-1 annotated tag, we found that DCA
performed slightly worse than Euclidean. We believe this is mainly due to the
noisy side information issue. This again shows that it is important to develop some
effective and robust method in our problem. Further, we observe that the proposed
pRCA algorithm considerably outperformed other approaches in most cases. For
instance, for the case of top-1 tag, pRCA achieved average precision of about 31%,
which improves the baseline approach over 40% and over RCA about 20%. Finally,
comparing the two proposed methods, pRCA and pDCA, we found they are quite
comparable, in which pDCA tends to be slightly more effective than pRCA.

Figure 5 further shows the precision-recall curves. Similar observations were
found. The proposed algorithms, pRCA and pDCA, considerably outperform the
others. This is because our methods use the probabilistic constraints rather than
the traditional hard constraints. The probabilistic constraints can better reflect the
relationship between the examples and thus achieve more accurate results. These
results again validate the efficacy and significance of our technique.

0.32 T
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— © —DCA
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LMNN
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©
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

average recall

Fig. 5. Comparison of the precision-recall curves

6.5 Experiment Il: Evaluation of Varied k£ Values

We also notice that an important parameter, i.e., the number of nearest neighbors
k, could affect the annotation performance considerably. To examine how is its
impact, we evaluate the annotation performance of the proposed annotation method
by varying the value of parameter k. Figure 6 and 7 show the average precision
results of the proposed pRCA and pDCA annotation approaches by varying the
value of k from 10 to 50.

From the experimental results, we found that when k equals to 30, the resulting
annotation performance is generally better than the other cases. We suspect the
main reason is that if we set k too large, e.g. 50, many noisy tags may be included;
as a result, there may not exist so many relevant images in the database, which
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thus could harm the performance. However, if we set k too small, some relevant

tags may not appear, which again would degrade the annotation performance.
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Fig. 6. Average precision at top t tags using top k retrieved images by pRCA for annotation.
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Fig. 7. Average precision at top ¢ tags using top k retrieved images by pDCA for annotation.

6.6 Experiment Ill: Influence of the Knowledge Database Sizes

In our annotation framework, the size of the knowledge database plays a critical
role in affecting the annotation quality. In this experiment, we aim to evaluate
how the size of knowledge database affects the image annotation performance. In
particular, we vary the size of the knowledge database from 20,000 to 1,000,000 and
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evaluate the average precision/recall of image annotation based on each database.
Fig. 8 summarizes the comparison of the annotation performance with respect to
two knowledge databases of different sizes.

As we can see from the figure, when the size of the knowledge database increases,
the performance of the retrieved based photo tagging solution is improved consid-
erably. The main reason is because once we have a larger database, the chance of
finding the similar/relevant images can be potentially increased, which thus leads
to the improvement of the annotation quality as the performance of retrieval-based
tagging method highly depends on the relevance of the retrieved similar images.

Varied Knowledge Database
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(b) Average Recall.
Fig. 8. Performance of image annotation with different knowledge databases.

6.7 Experiment Ill: Time Cost Evaluation

The third experiment is to evaluate the time efficiency of the proposed DML algo-
rithm. To this purpose, we compare time performance of our algorithm with other
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DML algorithms. Table I summarizes the evaluation of average time cost results
that were obtained by running the compared algorithms in our DML tasks.

Table I. Time cost comparison of different DML methods (seconds).

(s) [ baseline [ RCA | DCA [ ITML [ LMNN [ NCA | RDML [ pRCA [ pDCA
Time [ N/A [ 731.6 [ 865.6 | 1185.3 | 1673.2 [ 28989.8 [ 824.8 [ 891.2 [ 9365

From the results, we can see that the most efficient method is the regular RCA
approach, and the least efficient one is NCA that was significantly slower than the
others. Finally, by comparing our algorithms with the other competing algorithms,
we found that both pRCA and pDCA are quite competitive, which though are
slightly worse than RCA, DCA, and RDML, are considerably more efficient than
ITML, LMNN, and NCA.This is due to the efficient sorting algorithm. Since we
use a sorting algorithm instead of to solving the QP problem directly, our methods
can be much faster than its counterparts.

6.8 Experiment IV: Generating Latent Chunklets: Sampling vs. Clustering

As discussed previously, we suggest two kinds of approaches to generating the latent
chunklets (i.e., side information). One is the sampling method using the graphical
model, and the other is the clustering approach using the fuzzy k-means. In this
section, we aim to compare the sampling method with the clustering method to
examine their influence on the final image annotation task.

We evaluate the performance of both methods by computing their average pre-
cision and average recall scores. For the clustering based approach, we adopt the
fuzzy k-means algorithm [Bezdek 1981], which also generates a soft probabilistic
relationship between samples and the clusters. For fair comparison, we generate
the same numbers of chucklets/clusters using the same settings for both compared
methods. Fig. 9 shows the results of average precision and average recall of the
image annotation task.

From the experimental results, we found that both methods perform quite com-
parably for the automated image tagging task. Empirically, the graphical model
based approach is slightly better than the clustering based approach. This is rea-
sonable as the graphical model may generate more natural and effective initial
chunklets compared with the clustering based approach. Since the probabilistic
chunklets will be automatically updated in the subsequent distance metric learning
process, the initialization actually has limited influence on the final performance.
This also shows that the proposed algorithm is robust to the noisy side information.

6.9 Experiment V: Qualitative Comparison

In addition to the previous quantitative evaluations, our last experiment is to exam-
ine qualitative performance of our automated photo tagging solution. We randomly
picked a list of query photos from the test set and showed the qualitative retrieval
and annotation results in Figure 10 and Figure 11, respectively. From these results,
we can observe that our solution generally achieved better qualitative results than
others. On average, our method can produce more than 5 correct annotations for
each image, which is better than other methods. Also the retrieval result shows our
method can produce more relevant images.
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Fig. 9. Performance of image annotation with different approaches to generating side information.

7. CONCLUSIONS

This paper investigated a new problem, termed “Probabilistic Distance Metric
Learning” (PDML), which aims to learn distance metrics from uncertain side infor-
mation that implicitly exists in some real applications. Unlike conventional DML
techniques that work with explicit side information, the PDML problem is more
challenging given that the side information is not explicitly available. We proposed
a novel two-stage PDML framework, which firstly discovers probabilistic side infor-
mation from the data using an unsupervised learning approach, and then employs
some effective probabilistic DML algorithm to find an optimal metric from the
probabilistic side information. In particular, we proposed two effective PDML al-
gorithms, i.e., probabilistic RCA and probabilistic DCA. We applied the proposed
technique to automated photo tagging on a large-scale social photo testbet with
over one million photos from Flickr. By comparing our technique with a number
of state-of-the-art DML methods extensively, we concluded that our technique is
effective and promising for solving this challenging problem. Future work will ex-
tend our framework by exploring more social information to boost automated photo
tagging [Sigurbjornsson and van Zwol 2008; Stone et al. 2008].
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Appendix A: Proof of Corollary 1

Proor. By fixing ¢ and P, the optimization reduces to:

-nm(k><_2—1M 2
=1

By differentiating the Lagrangian with respect to M, we have the following equality:

n k
SN P — ) (ki — )T =AM =0 (26)

i=1 j=1

Hence, we have the optimal solution: M = %C”l, where matrix C' is given as:

n k
=33 "M xi — ) (i — ) T (27)

i=1j=1

When pl(-k) takes only 0 or 1, it can be seen clearly that the solution of M is almost
identical to the solution learned by RCA (up to a global scale factor). Hence, pRCA
reduces to regular RCA learning in this special case. O

Appendix B: Proofs of pRCA Solution

Here we discuss the details of our techniques in solving the QP problem in (18)
and also give some formal proofs of our approach. We consider the optimization
problem as follows:

m
. 2 g 2
min > pyllei - Yip— 2
peRm kﬂpkal pellar + 9 [P — poll3 (28)

m
s.t. Zpk =1lLpr,>0k=1,....m
k=1

We have the Lagrangian of the optimization as follows:
Y
£=pr+§||p—po||§+p(Zpk—1)—n'p (29)
k

where f7 = (||x; — pu1ll3, - - -, |z — pml3;), p is a Lagrange multiplier and 7 is a
vector of non-negative Lagrange multipliers. By differentiating it with respect to
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TestImage Baseline RCA DCA ITML LMNN NCA RDML pRCA pDCA

Figure App1. Visual Retrieval Results

Fig. 10. Examples showing top images retrieved by different methods. For each
row, the first image is a test image for tagging and each following block shows top
4 images retrieved by one of the compared methods.

Pk, we have:

oL
6—=fk+7(l>k—pok)+p—77k=0
Pk

By applying the KKT condition, whenever py > 0, 1 should be zero. Therefore, if
pr > 0, we have the following result:

1
Pk = Dok — ;(P-F f)
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Figure App2. Top10 Annotation Results

Fig. 11. Examples showing the tagging results by different methods. For each row,
the first image is a test image and each following block shows top 10 tags annotated
by one method. The correct tags are highlighted.

Combining the fact that py > 0, we have the following:

pr = max (0, pok — %m ) (30)
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To simplify the formula, we let ax = por — %’“, as a result, pi can be rewritten as:

%)

pr = max (0,ax — = (31)

Next we show a proposition to find the optimal p by a simple sorting approach.
PROPOSITION 1. Let a’ denote the vector by sorting a in decreasing order, the

optimal value of p to the solution in (31) can be computed as: p = %(Z;Zl ajp,— 1) ,
where T can be found through a sorting approach, i.e.,

k

T = max {k:a;f%(2a3*1)>0} (32)

ke[l,n] =

PROOF. In order to prove this proposition, we shall first introduce a lemma:

LEMMA 1. Letp denote the optimal solution to the minimization problem in (3),
let s and t are two indices such that as > as, where agy = pos — % as defined above.
If ps = 0, then py must also be zero.

PROOF. We can prove it by contraction, i.e., assume that p;, = 0 but p; > 0. Let
us introduce a vector p’ by setting p, = py, pi = ps, and pj, = py, for Vk # sAk # t. It
is clear the constraint sum(p’) = 1 still holds. We now compare the two objectives:

. - v
obj(p) = Y prfr+ §||P — poll3 (33)
k=1
. = v
obj(p') = ;p;fk + 5P~ poll3 (34)

obj(p) — obj(p') = vpt((pos - %) — (pot — %)) =pi(as —a;) >0 (35)

The above result means obj(p) > obj(p'), which contradicts the fact that p is the
optimal (minimal) solution. [

Lemma 1 implies that those non-zero solutions pg should have the largest values of
ay. This shows we can find py by sorting vector a in decreasing order, denoted by a’.
As a result, by combining the optimality condition, we have equation: ZZ=1 Pr =
Sr_ah— % =1, where 7 is a constant number. Once T is given, it is clear to have:

= 2(Si) o
k=1

Finally, the optimal value of 7 can be found by applying the following lemma, which
was proved in [Shalev-Shwartz and Singer 2006].

LEMMA 2 [SHALEV-SHWARTZ AND SINGER 2006]. Let « be the optimal solu-
tion to the minimization problem below:

n
o1
m1n§||a—u||2,s.t. E a;=z,0; >0 (37)
a
=1
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and assume that p is sorted in decreasing order. Then, the number of strictly
positive elements in p is:

k
1
T—kren[%{k.ukk(;uj1)>o} (38)

Applying the above lemma leads to compete the proof of this proposition.
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