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How to Optimize Storage Classes in A Unit-Load Warehouse

Marcus Ang∗, Yun Fong Lim1,∗

Abstract

We study a problem of optimizing storage classes in a unit-load warehouse such that the total

travel cost is minimized. This is crucial to the operational efficiency of unit-load warehouses, which

constitute a critical part of a supply chain. We propose a novel approach called the FB method to

solve the problem. The FB method is suitable for general receiving-dock and shipping-dock locations

that may not coincide. The FB method first ranks the locations according to the frequencies that they

are visited, which are estimated by a linear program based on the warehouse’s layout as well as the

products’ arrivals and demands. The method then sequentially groups the locations into a number of

classes that is implementable in practice. After forming the classes, we use a policy based on robust

optimization to determine the storage and retrieval decisions. We compare the robust policy with the

traditional storage-retrieval policies on their respective optimized classes. Our results suggest that if the

warehouse utilization is low, different class-formation methods may lead to very different total travel

costs, with our approach being the most efficient. We observe the robustness of this result across various

parameter settings. A case study based on data from a third-party logistics provider suggests that the

robust policy under the FB method outperforms the other storage-retrieval policies by at least 8% on

average, which indicates the potential savings by our approach in practice. One of our findings is that

the importance of optimizing classes depends on the warehouse utilization.

Keywords: logistics, unit-load warehouse, storage-retrieval policy, class-based storage

1. Introduction

Warehouses play an important role in a supply chain as they support business by storing, consol-

idating, and distributing products. The operational efficiency of a warehouse is often crucial to the

supply chain’s performance because up to thousands of different products are stored and retrieved daily

(de Koster et al. 2007 and Gu et al. 2007). We study a unit-load warehouse where all products are
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stored and retrieved in unit-load (pallet) quantities. Only items of the same product are stored on each

pallet, which is usually handled singly at a time. Unit-load warehouses can be found in the reserve

areas of large distribution centers. These reserve areas store products to replenish fast-pick areas in

separate locations within the centers (Bartholdi and Hackman 2016). For illustration, we assume that

each pallet is moved by a forklift. However, as we will see later, our model can be applied to warehouses

using very-narrow-aisle trucks or automated storage and retrieval systems (Roodbergen and Vis 2009).

Pallets arriving in every period (say, every day) at a unit-load warehouse generally follow some

schedule predetermined by the suppliers’ production plans. The arriving pallets are stored to locations

within the warehouse. These pallets are then retrieved from the storage locations when random demands

occur. We assume single-command travel. To store an arriving pallet under this assumption, a forklift

first carries the pallet from a receiving dock to a location. After inserting the pallet into the location,

the forklift returns to the receiving dock. Similarly, to retrieve a departing pallet, a forklift first moves

from a shipping dock to the pallet’s location, extracts the pallet, and then carries it to the shipping

dock. We ignore the time durations to insert and to extract each pallet at its storage location.

Many unit-load warehouses are managed by third-party logistics companies. Minimizing the total

travel cost (distance or time) is crucial for such a unit-load warehouse to remain competent given its

tight profit margins in today’s business environment. Furthermore, the responsiveness of the warehouse

is getting more important as its clients typically require their goods to be delivered promptly. To

maximize its efficiency and responsiveness, the warehouse solves a storage and retrieval problem to

determine the locations to store the arriving pallets and the locations to retrieve the departing pallets,

with an objective of minimizing the total travel cost over a planning horizon.

A well-known approach to determine the storage and retrieval decisions is the class-based turnover

(TOS) policy (Hausman et al. 1976, Graves et al. 1977, and Schwarz et al. 1978). Storage locations

are first grouped into a few classes, and then this policy assigns products with the highest turnover

rate to the class with the smallest average travel cost. Within a class, a pallet is assigned randomly to

any empty location. Goetschalckx and Ratliff (1990) introduce the class-based duration-of-stay (DOS)

policy, which sorts the pallets in ascending duration of stay and sequentially assigns the pallets to

a predetermined number of classes. The pallets with the shortest duration of stay are assigned to

the class with the smallest average travel cost. More recently, Ang et al. (2012) study the storage

and retrieval problem with time-varying, deterministic arrivals and non-stationary, stochastic demands.

They introduce a storage-retrieval policy called the restricted linear decision rule (RLR) that is based

on a robust optimization formulation. Their extensive numerical experiments suggest that the RLR
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significantly outperforms the TOS and the DOS policies.

Ang et al. (2012) assume that the storage locations are grouped into classes based on a grid. Given

the classes, they compare the RLR with the TOS and the DOS policies in terms of the total travel cost.

However, the performance of a storage-retrieval policy (the RLR, TOS, or DOS policy) can be quite

different if the classes are formed in different ways. Hausman et al. (1976) and Goetschalckx and Ratliff

(1990) have described methods to optimize the classes for the TOS and the DOS policies respectively.

For the RLR, what is an optimal way to group storage locations into classes such that the total travel cost

is minimized? How many classes are needed and how big should each class be? To ensure operational

efficiency, a warehouse manager needs to address these important and challenging questions. The

problem is non-trivial especially if the warehouse has general receiving-dock and shipping-dock locations,

and the products have time-varying arrivals and stochastic demands in a multi-period setting.

Classes are used in practice because it is too tedious to manage (say, thousands of) individual

locations for a large warehouse. Furthermore, the storage and retrieval problem may become compu-

tationally intractable if individual locations are considered in the model. Figure 1 shows two different

ways to group storage locations into a class. In Figure 1(a), locations 1 and 4 with an identical travel

distance from the receiving and shipping docks (denoted as R/S) are grouped into one class. In Figure

1(b), locations 1 and 2 are grouped into one class because of their proximity to each other (they have

similar coordinates). Different ways of forming the classes may lead to very different solutions to the

storage and retrieval problem, and thus result in substantial differences in the total travel cost.

(a) (b)

Figure 1: Different ways of grouping the locations. (a) Locations with the same total travel distance from the
receiving and shipping docks (R/S) are grouped into one class. (b) Locations near each other are grouped into one class.

Many papers in the literature study different methods to form classes such that the total travel cost

is minimized. Almost all of these papers assume a specific layout in which the receiving and shipping

docks coincide at a corner of the warehouse (Hausman et al. 1976, Rosenblatt and Eynan 1989, Eynan

and Rosenblatt 1994, Kouvelis and Papanicolaou 1995, Yu et al. 2015). In this paper, we introduce a

class-formation method, called the FB method, for general receiving-dock and shipping-dock locations

that may not coincide. Although we present the FB method using a warehouse with horizontal and

vertical aisles, the method can be applied to more general aisle orientations (see Öztürkoğlu et al. 2014).
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Furthermore, all of the above papers rank each storage location based on the travel cost between the

location and the receiving and shipping docks. This approach considers the warehouse’s layout, which

is determined by the receiving and shipping docks’ locations and the aisles’ orientations. However,

this approach ignores other system characteristics such as the arrivals and the demands of products.

In contrast, the FB method ranks each storage location based on its visit frequency : the number of

times the location is visited over the planning horizon. The visit frequency of each location can be

estimated by a linear programming (LP) model, which considers not only the warehouse’s layout, but

also the products’ arrivals and demands. Our paper shows the additional value to warehouse managers

of considering more-detailed information: (i) the difference between the store cost and the retrieve cost

of each location, and (ii) the imbalance between the inflow and the outflow of each product.

Our numerical experiments suggest that if the warehouse’s space utilization is low then the savings

from optimizing the classes can be very substantial. We compare the RLR on the classes formed by the

FB method with the TOS policy and the DOS policy on their respective optimized classes. We observe

that the RLR under the FB method results in the lowest total travel cost across various parameter

settings. Furthermore, a case study based on data from a third-party logistics provider also reveals that

the RLR under the FB method outperforms the two traditional policies on their respective optimized

classes. This shows the potential of our approach for practical use. We also observe and prove that if the

warehouse is highly utilized, then the FB method only forms a single class. This provides a justification

on why the random policy (with one class) is the most commonly used storage-retrieval policy in a unit-

load warehouse in the upstream of a supply chain, where maximizing warehouse utilization is usually

more important than reducing response time.

Our contributions fill the gap in the literature in the following ways:

1. Most papers in the literature consider a specific layout in which the receiving and the shipping

docks coincide at a corner of the warehouse. In contrast, we optimize the classes for a layout with

general receiving-dock and shipping-dock locations that may not coincide. Our class-formation

method (the FB method) can also be applied to more general aisle orientations. Our paper

generates insights into forming effective storage classes under more general warehouse settings.

2. By introducing the FB method, we show the additional value of considering (i) the difference

between the store cost and the retrieve cost of each location, and (ii) the imbalance between the

inflow and the outflow of each product.

3. Through a series of carefully designed numerical experiments and a study using real data from a
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third-party logistics provider, we demonstrate the impact of optimizing classes on the performance

of storage-retrieval policies.

This paper is organized as follows. After reviewing the related literature, we describe a model of the

storage-retrieval problem in Section 3. Section 4 introduces the FB method to form classes. Section 5

illustrates the FB method through a small example. Section 6 compares numerically the performance of

the RLR, the TOS, and the DOS policies on their respective optimized classes across various parameter

settings. Section 7 demonstrates through a case study that the RLR under the FB method outperforms

the two traditional storage-retrieval policies. Section 8 derives analytical results and managerial insights

for some special cases. The paper concludes with remarks in Section 9.

2. Related literature

Heskett (1963, 1964) introduces a dedicated storage policy that determines the storage locations of

pallets. Each storage location is reserved only for a specific product. The author associates each product

with a cube-per-order index (COI), which is defined as the ratio of the product’s allocated storage space

to its demand rate. The author ranks products in increasing COI and assigns them sequentially to

available locations with the smallest travel time. This policy is also known as a full turnover policy

(de Koster et al. 2007, Roodbergen and Vis 2009) because the inverse of COI of a product is called

the turnover rate of the product. Mallette and Francis (1972) consider multiple receiving and shipping

docks. The authors show that the full turnover policy (or the COI policy) is optimal if all products

have the same probability mass function for selecting a dock. Malmborg and Bhaskaran (1990) study

the optimality of the full turnover policy for more complicated settings.

The dedicated storage policy does not efficiently utilize the space because empty locations cannot be

used for other products when the inventory of a product is depleted. One way to overcome this problem

is to use a shared storage policy that assigns an empty location to any product. For example, a random

policy assigns a pallet randomly to any available location with equal probability. Hausman, Graves, and

Schwarz (1976, 1977, 1978) propose a class-based turnover policy (abbreviated as TOS policy), which

groups locations into several classes. The authors assign the product with the highest turnover rate to

the class with the smallest average travel time. Within a class, a pallet is assigned randomly to any

empty location. Rosenblatt and Eynan (1989) assume the receiving and shipping docks coincide at a

corner of a square-in-time warehouse (that is, from the corner, the time to reach the most distant row

equals the time to reach the most distant column). They develop a search procedure to numerically
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find the optimal boundaries of n classes for the TOS policy. Eynan and Rosenblatt (1994) generalize

the search procedure to determine the optimal class boundaries for a rectangular warehouse.

Kouvelis and Papanicolaou (1995) derive formulas for the optimal boundary of two classes in a

rectangular warehouse. These formulas allow us to see the effects of various factors (such as the access

frequencies of the two classes and the warehouse’s dimensions) on the optimal class boundary. Yu et al.

(2015) study the TOS policy for a finite number of products. They develop an algorithm to determine

the optimal number and the boundaries of classes in a warehouse. They find that a small number of

classes is usually optimal, and for a wide range of numbers of classes around this optimum, the total

travel cost is similar. This finding is consistent with Guo et al. (2016) who consider various storage

policies. Rao and Adil (2017) develop a travel distance model, and consider the full and class-based

turnover policies with a hybrid product placement scheme. They study the policies’ performance on

a unit-load warehouse in a real-world setting. Zaerpour et al. (2017a) optimize the dimensions and

the zone boundary of a two-class live-cube storage system to minimize its response time. Zaerpour et

al. (2017b) derive the expected retrieval time of an arbitrary unit load in a live-cube system. They

also optimize the system dimensions to minimize the retrieval time. It is worth noting that all the

papers studying class formation above consider a specific warehouse layout, in which the receiving

and shipping docks coincide at a corner of the warehouse. In contrast, we optimize the classes for a

layout with general receiving-dock and shipping-dock locations that may not coincide in this paper.

Furthermore, our method can handle layouts with multiple receiving and shipping docks such as the

one studied by Gharehgozil et al. (2017) and Weidinger and Boysen (2018). Gharehgozil et al. (2017)

develop an algorithm to sequence the storage and retrieval decisions that minimize the travel time in a

layout with two shipping docks. Weidinger and Boysen (2018) propose a binary search-based heuristic

to scatter products all around a mixed-shelves warehouse with multiple receiving entries.

Pohl et al. (2011) study the full turnover policy in non-traditional warehouse designs. They find that

the best warehouse design parameters under the random policy also perform well under the full turnover

policy. Thonemann and Brandeau (1998) consider stochastic demand with a stationary distribution,

and derive the expected travel time for the random, full turnover, and class-based turnover policies.

A warehouse is perfectly balanced if, for every time period, the number of arriving pallets equals the

number of departing pallets with an identical duration of stay. Goetschalckx and Ratliff (1990) study

a full duration-of-stay policy, which assigns the pallet with the shortest duration of stay to the location

with the smallest travel time. They prove that if a warehouse is perfectly balanced, the full duration-

of-stay policy is an optimal shared storage policy. Goetschalckx and Ratliff (1990) also introduce the
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class-based duration-of-stay policy (abbreviated as DOS policy), which sorts the pallets in increasing

duration of stay and sequentially assigns the pallets with the shortest duration of stay to the class with

the smallest average travel time. For a warehouse that is not perfectly balanced, they use simulations to

compare the performance of different policies based on a deterministic model. Their results suggest that

the full duration-of-stay policy outperforms the TOS policy with two classes, which in turn outperforms

the DOS policy with two classes. Kulturel et al. (1999) perform simulations on a warehouse with three

classes facing stochastic demands, and find that the TOS policy generally outperforms the DOS policy.

This is consistent with the findings of Goetschalckx and Ratliff (1990) for a warehouse with two classes.

Ang et al. (2012) consider products with time-varying, deterministic arrivals and non-stationary,

stochastic demands over multiple periods. Based on a robust optimization formulation, the authors de-

termine the RLR to solve the storage and retrieval problem. They assume the classes are predetermined

by a grid, and compare the RLR with other storage-retrieval policies based on the same class formation.

Through extensive numerical experiments, they find that the RLR is significantly more efficient than

the TOS and the DOS policies. Although the RLR is an efficient storage-retrieval policy, Ang et al.

(2012) do not optimize the class formation. In contrast, we propose a method to optimize the storage

classes for the RLR policy.

To improve a warehouse’s performance, Gue and Meller (2009), Thomas and Meller (2014), Çelk and

Süral (2014), Öztürkoğlu et al. (2014), and Öztürkoğlu et al. (2018) study different ways to configure

aisles in the warehouse. In contrast, we propose a method to optimize the classes in a layout with

general aisle orientations and with general receiving-dock and shipping-dock locations. We also study

the impact of class-formation methods on the performance of the storage-retrieval policies. For excellent

reviews of warehouse designs and operations, see Gu et al. (2007), de Koster et al. (2007), and Gu et

al. (2010).

3. A deterministic model of the storage-retrieval problem

In this section, we present a model of the storage-retrieval problem with products having presched-

uled arrivals and deterministic demands. We consider a unit-load warehouse with single command

travel. We assume a single receiving dock and a single shipping dock located anywhere in the ware-

house, and they may not coincide with each other. We focus on this simplest case, but our model can

be generalized to warehouses with multiple receiving and shipping docks. For each storage location, we

define its store cost (retrieve cost) as the travel distance to move from the receiving dock R (shipping
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dock S) to the location and then return to R (S). We define the location travel cost of each location as

the sum of its store and retrieve costs.

Assume the storage locations of the warehouse are grouped into N classes. Let sj and rj denote the

average store cost and the average retrieve cost, respectively, of all locations in class j, for j = 1, . . . , N .

For the purpose of modelling, we ignore the differences of the locations in the same class. If a pallet is

assigned to a class, it is stored at an arbitrary location in the class. Each class j has capacity cj , which

represents the number of locations in the class. We also consider a class N + 1 that represents external

emergency storage with infinite capacity (cN+1 =∞) but incurs high average store and retrieve costs.

Suppose there are M products indexed by i = 1, . . . ,M . We divide the planning horizon into T

periods indexed by t = 1, . . . , T . For each period, we assume all pallets from suppliers arrive at the start

of the period, and all pallets ordered by customers during the period are retrieved at the end of the

period. The warehouse’s goal is to minimize the total cost over the planning horizon. For convenience,

letM = {1, . . . ,M}, N = {1, . . . , N}, N+ = {1, . . . , N + 1}, T = {1, . . . , T}, and T + = {1, . . . , T + 1}.

In this deterministic model, we assume that all information throughout the entire planning horizon

is available at the start of the first period. Let ati denote the number of pallets of product i arriving

at the start of period t. Let vtij be a decision variable determining the number of arriving pallets of

product i that are assigned to class j in period t. Since all arriving pallets must be assigned to some

classes, we have
∑

j∈N+ vtij = ati, for i ∈ M, t ∈ T . Similarly, let dti denote the number of pallets of

product i that are ordered in period t. Let wtij be a decision variable determining the number of pallets

of product i that are retrieved from class j in period t. We have
∑

j∈N+ wtij = dti, for i ∈M, t ∈ T .

Let xtij denote the number of pallets of product i in class j at the start of period t. No backorders

are allowed. Thus, xtij ≥ 0, for i ∈M, j ∈ N+, t ∈ T +. The inventory of product i in class j at the start

of period t + 1 is xt+1
ij = xtij + vtij − wtij , for i ∈ M, j ∈ N+, t ∈ T . Since the inventory in each class j

must not exceed its capacity, we have the capacity constraints
∑

i∈M

(
xtij + vtij

)
≤ cj , for j ∈ N , t ∈ T .

Rightfully, the decision variables should be restricted to integers. However, in order to yield a

tractable formulation, we relax the integrality constraints and formulate a linear optimization problem

to minimize the total travel cost of the warehouse as follows:

ZD = min
∑
t∈T

∑
i∈M

∑
j∈N+

(
sjv

t
ij + rjw

t
ij

)
(1)
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s.t.
∑
j∈N+

vtij = ati, i ∈M, t ∈ T ;

∑
j∈N+

wtij = dti, i ∈M, t ∈ T ;

xt+1
ij = xtij + vtij − wtij , i ∈M, j ∈ N+, t ∈ T ;∑
i∈M

(
xtij + vtij

)
≤ cj , j ∈ N , t ∈ T ;

xtij ≥ 0, i ∈M, j ∈ N+, t ∈ T +;

vtij , w
t
ij ≥ 0, i ∈M, j ∈ N+, t ∈ T .

We assume any shortage will be handled by the suppliers and this will not incur any cost to the

warehouse. Thus, there is always sufficient inventory to meet demand for every period. Equivalently,

t∑
τ=1

dτi ≤
N+1∑
j=1

x1ij +
t∑

τ=1

aτi , i ∈M, t ∈ T . (2)

Equation (2) ensures that we can always find a feasible solution to Problem (1).

Solving Problem (1) gives us a storage-retrieval policy, where vtij and wtij represent the storage

decisions and the retrieval decisions respectively. However, this model does not accommodate the

randomness of the demands. Ang et al. (2012) extend Problem (1) to incorporate random demands,

and derive a storage-retrieval policy, called the RLR, using a robust optimization model. Due to space

limitation, we describe the robust optimization model and the RLR in Appendix A.

Ang et al. (2012) demonstrate through an extensive numerical study that the RLR outperforms the

TOS and the DOS policies, under the assumption that the warehouse’s storage locations are grouped

into different classes based on a grid. We call this the grid-based (GB) method. It is unclear whether

there exists a better way to form classes for the RLR. Furthermore, it is also unclear how the RLR

performs compared to the TOS and the DOS policies when the classes are optimized for each policy.

In the next section, we introduce a novel class-formation method for the RLR. We show numerically in

Section 6 that the new class-formation method outperforms the GB method for the RLR. Our numerical

study also suggests that the RLR under the new class-formation method continues to outperform the

two traditional storage-retrieval policies even if their respective classes are optimized.

4. A class-formation method based on visit frequency for the RLR

In this section, we introduce a novel method to form storage classes based on the visit frequency

of each location, which can be determined by solving a special case of Problem (1). We then use the
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resultant visit frequencies to rank the locations before we group them into classes. It is worth noting

that our method can handle a layout where the receiving and the shipping docks may not coincide and

are arbitrarily located in the warehouse. It also uses the product flow information to form classes. In

contrast, the traditional class-formation methods (Eynan and Rosenblatt 1994, Goetschalckx and Ratliff

1990) rank each storage location based on its location travel cost (the sum of its store and retrieve costs).

We assume the demands are random. Specifically, we consider a special case of the factor-based

demand model used by Ang et al. (2012) in which the random demand d̃ti for product i in period t

depends linearly on a sequence of uncertain factors z̃ki , k = 1, · · · , t. The uncertain factor z̃ki is related

to product i and is realized in period k. Let zti denote the realized value of the uncertain factor z̃ti ,

for i ∈ M, t ∈ T . We assume z̃ki has mean equal to 0 and a support set W = {z| − q ≤ z ≤ q}. We

assume d̃ti is independent of other products but depends on the past demands for product i up to period

t. Specifically, the demand for product i in period t is defined as d̃ti
(
z̃t
)

= dti +
∑t

k=1 d
t,k
i z̃ki , where dti

represents the mean demand for product i in period t, and dt,ki are non-negative known coefficients with∑t
k=1 d

t,k
i = 1. We set the parameter q in the range

[
0,mini∈M,t∈T d

t
i

]
.

For each t ∈ T , define ζ̃
t

=
(
z̃t1, z̃

t
2, . . . , z̃

t
M

)
and z̃t =

(
ζ̃
1
, ζ̃

2
, . . . , ζ̃

t
)

. For notational convenience,

define z̃0 = 0, where 0 is an M × T dimensional vector with all entries equal to 0, and z̃ = z̃T . The

uncertain factors z̃ are random variables with unknown distributions. They lie in a full dimensional

polytope support set W . Similarly, define ζt =
(
zt1, z

t
2, . . . , z

t
M

)
, zt =

(
ζ1, ζ2, . . . , ζt

)
, for t ∈ T , and

define z = zT . We assume there is sufficient initial inventory to meet the demand for product i in

period t for all z̃ti ∈W, i ∈M, t ∈ T . That is,

t∑
τ=1

d̃τi (z̃τ ) ≤
N+1∑
j=1

x1ij +

t∑
τ=1

aτi , i ∈M, t ∈ T . (3)

Suppose each class j contains only a single location. Let L denote the number of storage locations

in the warehouse (excluding the emergency storage). We have N = L and cj = 1, for j = 1, . . . , N . For

any realization z of the uncertain factors, Problem (1) can be parametrized as follows:

ZD(z) = min
∑
t∈T

∑
i∈M

∑
j∈N+

(
sjv

t
ij + rjw

t
ij

)
(4)
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s.t.
∑
j∈N+

vtij = ati, i ∈M, t ∈ T ;

∑
j∈N+

wtij = dti +
t∑

k=1

dt,ki zki , i ∈M, t ∈ T ;

xt+1
ij = xtij + vtij − wtij , i ∈M, j ∈ N+, t ∈ T ;∑
i∈M

(
xtij + vtij

)
≤ cj , j ∈ N , t ∈ T ;

xtij ≥ 0, i ∈M, j ∈ N+, t ∈ T +;

vtij , w
t
ij ≥ 0, i ∈M, j ∈ N+, t ∈ T .

After solving the parameterized, deterministic Problem (4) for a given z, define the visit frequency

of location j = 1, . . . , L as fj(z) = fsj + f rj , where f sj =
∑

t∈T
∑

i∈M vtij and f rj =
∑

t∈T
∑

i∈Mwtij .

Note that in Problem (4), class N + 1 (= L + 1) represents the emergency storage. Define the visit

frequency to the emergency storage class as fL+1(z) = fsL+1 + f rL+1, where fsL+1 =
∑

t∈T
∑

i∈M vti,L+1

and f rL+1 =
∑

t∈T
∑

i∈Mwti,L+1. If we know the distributions of the uncertain factors z̃, we can compute

the expected visit frequency of each j = 1, . . . , L+ 1 as

E[fj (z̃)] =

∫
z∈W

fj(z)g(z)dz, (5)

where g(z) is the probability density function of z. However, it is computationally expensive (if pos-

sible) to determine E[fj (z̃)] in Equation (5). We therefore approximate E[fj (z̃)] by considering the

following three scenarios: (i) z = −q, (ii) z = 0, and (iii) z = q, where q is an M × T dimensional

vector with all its entries equal to q. Scenario (ii) corresponds to the case where the demand for each

product in each period equals its mean value. Since
∑

j∈N+ fj(z) =
∑

t∈T
∑

i∈M
∑

j∈N+(vtij + wtij) =∑
t∈T

∑
i∈M

(
ati + dti +

∑t
k=1 d

t,k
i zki

)
, scenarios (i) and (iii) correspond to the smallest value and the

largest value, respectively, of the total visit frequency
∑

j∈N+ fj(z). For j = 1, . . . , L + 1, we approxi-

mate Equation (5) as

E[fj (z̃)] ≈ fj :=
1

3
(fj(−q) + fj(0) + fj(q)) . (6)

We call fj the visit frequency of location j (except for fL+1, which represents the visit frequency

of the emergency storage class). Note that Equation (6) requires information of the lower bounds, the

means, and the upper bounds of the demands. Equation (6) may result in a fractional value of fj . For

simplicity, we round fj to the nearest integer. For all the locations j = 1, . . . , L in the warehouse, we

group the locations with identical fj into one class.
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Thus, the resultant number of classes in the warehouse equals the number of distinct visit frequencies.

Class 1 contains the locations with the highest visit frequency, class 2 contains the locations with the

second-highest visit frequency, and so on. We summarize the procedure as follows:

1. Set N = L in Problem (4) (cj = 1, j = 1, . . . , L).

2. Solve Problem (4) with z = −q, 0, and q to find fj(−q), fj(0), and fj(q), respectively, j =

1, . . . , L+ 1. Compute the visit frequency fj for j = 1, . . . , L+ 1 using Equation (6).

3. For j = 1, . . . , L, combine the locations with an identical visit frequency into one class. Let No

denote the resultant number of classes (including the emergency storage).

4. Index the classes in the warehouse as 1, 2, . . . , No−1 from the highest visit frequency to the lowest

visit frequency. Let class No represent the emergency storage.

According to the above procedure, storage locations are grouped based on how frequently they are

visited. The visit frequencies are determined by solving Problem (4), which captures the warehouse’s

layout and product flow information. The resultant number of classes No can be large, and may not be

practical. Thus, we discuss a way to reduce the number of classes as follows.

Intuitively, a convenient class should be visited more frequently. This means that the sum of visit

frequencies of all the locations within a convenient class should be large. We propose an algorithm to

combine the classes based on the sum of visit frequencies of all locations in each class. Let Γj and γj

denote the set of locations and the sum of their visit frequencies, respectively, of class j = 1, . . . , No.

To differentiate the combined classes derived by the algorithm from the original classes, we call each

combined class a cluster. The algorithm combines the original No classes into N ′(≤ No) clusters. Let

Ψk and ψk denote the set of locations and the sum of their visit frequencies, respectively, of cluster k.

Algorithm 1. (Reducing the number of classes)

Given Γj and γj, for j = 1, . . . , No, initialize Ψ1 ← ΓNo, j′ ← No − 1, k′ ← 2, and Ψk′ ← ∅.

(1) Set Ψk′ ← Ψk′ ∪ Γj′.

If ψk′ > ψk′−1, then set k′ ← k′ + 1 and Ψk′ ← ∅.

(2) Set j′ ← j′ − 1.

If j′ = 1, then set Ψk′ ← Ψk′ ∪ Γ1 and go to step 3.

Otherwise, go to step 1.

(3) If k′ = 2 or ψk′ > ψk′−1, then set N ′ ← k′.

Otherwise, set Ψk′−1 ← Ψk′−1 ∪Ψk′ and N ′ ← k′ − 1.

Reverse the indices of the clusters such that ψ1 > ψ2 > · · · > ψN ′. Return Ψ1,Ψ2, . . . ,ΨN ′.

12



Step 1 of Algorithm 1 adds class j′ to the current cluster k′. If cluster k′ has a larger sum of visit

frequencies than cluster k′− 1, then a new cluster k′+ 1 is initiated. Step 2 proceeds to class j′− 1 and

sees if it is the only remaining class in the warehouse. Step 3 terminates the algorithm. Note that if

k′ > 2 and ψk′ ≤ ψk′−1, the second line of step 3 merges cluster k′ with cluster k′ − 1. The third line

of step 3 ensures that the clusters are indexed as 1 to N ′ from the largest sum to the smallest sum of

visit frequencies. We show an example of how to reduce the number of classes below. Recall that fj

represents the visit frequency per location for class j = 1, 2, . . . , No − 1, but represents the total visit

frequency for the emergency class No.

Table 1: The original classes and the combined classes by Algorithm 1

Original classes Combined classes

Class sj rj cj fj Class sj rj cj

1 264 264 16 8 1 264 264 16

2 391 391 11 6 2 419 419 20

3 434 434 2 4 3 664 664 60

4 459 459 7 2 4 5,000 5,000 ∞
5 664 664 60 1

6 5,000 5,000 ∞ 0

Example 1. Consider a warehouse with its classes shown on the left of Table 1. Class 6 represents the

emergency storage. To initialize Algorithm 1, class 6 is assigned to cluster 1, that is, Ψ1 = {Γ6} and

ψ1 = f6 = 0. To form cluster 2, we assign class 5 to it. That is, Ψ2 = {Γ5} and ψ2 = c5 × f5 = 60. We

stop expanding cluster 2 because ψ2 > ψ1. To form cluster 3, we set Ψ3 = {Γ4} and ψ3 = c4 × f4 = 14.

Since ψ3 ≤ ψ2, we add class 3 to cluster 3: Ψ3 = {Γ4,Γ3} and ψ3 = 14 + c3 × f3 = 22. We continue

to expand cluster 3 until Ψ3 = {Γ4,Γ3,Γ2} and ψ3 = 22 + c2 × f2 = 88. We stop expanding cluster 3

because ψ3 > ψ2. To form cluster 4, we set Ψ4 = {Γ1} and ψ4 = c1 × f1 = 128. Since all the classes

are assigned to some clusters, the algorithm terminates. Reversing the indices, we have Ψ1 = {Γ1},

Ψ2 = {Γ2,Γ3,Γ4}, Ψ3 = {Γ5}, and Ψ4 = {Γ6}. The resultant clusters are shown on the right of Table

1. Note that the average store and retrieve costs are recalculated for each combined class.

To summarize, we estimate the visit frequency of each location by solving Problem (4). According

to the visit frequencies, we group the locations into classes by Algorithm 1. We call the class-formation

method described in this section the frequency-based (FB) method. Based on the classes formed, we solve

Problem (A.5) in Appendix A to determine the RLR. We illustrate this procedure using an example

in the next section.
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5. A small example

In this section, we use a simple example to show the performance of the RLR under the FB and

the GB class-formation methods. Through this example, we can see the effectiveness of the FB method

compared to the more straightforward GB method. This shows the importance of optimizing the classes

for a given storage-retrieval policy. We also compare the RLR under the FB method with the TOS and

the DOS policies under their respective optimized class-formation methods.

We consider a warehouse with L = 80 locations in the layout shown in Figure 2(a). Note that

the receiving and the shipping docks are arbitrarily located on opposite sides of the warehouse. The

figure also shows the store cost (first entry) and the retrieve cost (second entry) of each location in the

warehouse. We focus on a problem instance with only one product over one period. Assume a11 = 40

and the demand for the product in the period has mean d11 = 25 and support on [21, 29] (that is, q = 4).

Thus, the demand for the product equals d̃11
(
z̃1
)

= 25 + z̃11 .

(a) (b) (c)

Figure 2: A small example. (a) Store and retrieve costs of each location. (b) Classes formed by the FB method. (c)
Classes formed by the GB method.

To form the classes for the RLR, we consider the FB method and the GB method (see Ang et al.

(2012) for the details). Figures 2(b) and 2(c) show the classes formed by the FB and the GB methods

respectively. The FB method takes both the layout information and the product flow information into

account when it forms classes. Given that there are 40 arriving pallets and 25 of them are expected

to depart from the warehouse, the FB method forms class 1 containing 22 locations with a small sum

of the average store and average retrieve costs (19.0). Furthermore, there are 15 pallets expected to

remain in the warehouse. The FB method forms class 2 containing 19 locations with a low average store

cost (5.5) but a high average retrieve cost (14.7) to accommodate these pallets. In contrast, the GB

method ignores both the layout and the product flow information, and only groups the locations based

on their proximity into four even classes shown in Figure 2(c).
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The first two rows of Table 2 compare the performance of the RLR under the FB and the GB

methods in detail. Columns 2 and 3 show the classes and their capacities, respectively, under each

class-formation method. Based on the store and the retrieve costs, the number of arriving pallets (40),

the mean demand (25), and the range of the uncertain factor (q = 4), the FB method forms classes 1,

2, and 3 with capacities 22, 19, and 39 respectively.

Based on the classes formed by the FB method (Figure 2(b)) and the GB method (Figure 2(c)),

we compute the corresponding RLR by solving Problem (A.5). Assuming a realized demand of 29, we

determine the storage and retrieval decisions in columns 6 and 7 respectively. The last column shows

that the RLR under the FB method (with a total cost of 619.9) outperforms the RLR under the GB

method (with a total cost of 652.0). This indicates that even with the same storage-retrieval policy,

optimizing class formation can significantly reduce the travel cost.

Table 2: Performance of different storage-retrieval policies under different class formations
Class Capacity Costs Sum Storage Retrieval Storage Cost Retrieval Cost Total cost

j cj (sj , rj) sj + rj v1j w1j sjv1j rjw1j

RLR under 1 22 (12.3, 6.7) 19.0 22 22 270.6 147.4

the FB method 2 19 (5.5, 14.7) 20.2 18 7 99.0 102.9

3 39 (9.9, 14.7) 24.6 0 0 0 0

4 ∞ (5,000, 5,000) 10,000 0 0 0 0

369.6 250.3 619.9

RLR under 1 20 (7.0, 12.0) 19.0 5 5 35.0 60.0

the GB method 2 20 (12.0, 7.0) 19.0 20 20 240.0 140.0

3 20 (7.0, 18) 25.0 15 4 105.0 72.0

4 20 (12.0, 13.0) 25.0 0 0 0 0

5 ∞ (5,000, 5,000) 10,000 0 0 0 0

380.0 272.0 652.0

TOS under 1 80 (9.5, 12.5) 22.0 40 29 380.0 362.5

the ER method 2 ∞ (5,000, 5,000) 10,000 0 0 0 0

380.0 362.5 742.5

DOS under 1 16 (13.0, 5.9) 18.9 16 16 208.0 94.4

the GR method 2 64 (8.6, 14.1) 22.7 24 13 206.4 183.3

3 ∞ (5,000, 5,000) 10,000 0 0 0 0

414.4 277.7 692.1

Table 2 also compares the RLR under the FB method with the other two storage-retrieval policies:

the TOS and the DOS policies. For the TOS policy, we adapt the dynamic programming method in

Eynan and Rosenblatt (1994) to form classes. We call this class-formation method the ER method. For

the DOS policy, we use the adaptive algorithm on pages 1126–1127 in Goetschalckx and Ratliff (1990) to

form classes. We call this the GR method. The last column of Table 2 shows that the RLR under the FB

method significantly outperforms the TOS and the DOS policies with their respective optimized classes.

Both the ER and GR class-formation methods rank the locations based on their location travel costs,

before they group the locations into classes. Consequently, they result in larger total costs compared to

the RLR under the FB method. We see similar results for other demand realizations.

By ranking the storage locations based on their visit frequencies, the FB method takes the difference
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of the store cost and the retrieve cost of each location into account. Considering this delicacy allows

the FB method to leverage the imbalance between the inflow and the outflow of each product. This

is the main reason behind the superior performance of the RLR policy applied on the classes formed

by the FB method. This demonstrates the additional value to the warehouse managers of considering

more-detailed information: (i) the difference between the store and the retrieve costs of each location,

and (ii) the imbalance between the inflow and the outflow of each product.

6. Numerical study

In this section, we conduct extensive numerical experiments to study the impact of different class-

formation methods on the performance of storage-retrieval policies for various parameter settings. For

each policy, we first form the classes and then determine the storage and retrieval decisions (see Section 5

for an example). Based on these decisions, we compute the total cost of each policy through simulations.

Note that the FB method requires us to solve Problem (4), which is an LP model, to determine the

visit frequency of each location. The LP model can be solved within minutes on a desktop computer

using any commercial or open-source solver.

We consider three different layouts of the warehouse. Layout 1 is a U-flow layout (Bartholdi and

Hackman 2016), in which the receiving and shipping docks coincide on one side of the warehouse. Layout

2 is a flow-through layout (Bartholdi and Hackman 2016), in which the receiving and shipping docks

are located in the middle of opposite sides of the warehouse. In layout 3, the receiving dock and the

shipping dock are located at arbitrary points of opposite sides of the warehouse.

In the factor-based demand model used in the simulations, we assume that for i ∈ M, t ∈ T ,

dt,ki = 0.1/(t− 1) for k = 1, . . . , t− 1 and dt,ki = 0.9 for k = t. We consider three different distributions

for each z̃ti , i ∈M, t ∈ T , in the simulations:

1. a truncated normal distribution N
(
0, σ2

)
;

2. a scaled beta distribution, that is,

z =

 (x− E[x]) q/E[x], if x ≤ E[x];

(x− E[x]) q/ (1− E[x]) , otherwise;

where x follows a beta distribution Beta(a, b); and

3. a uniform distribution.
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Since the demand is random, the storage and retrieval decisions of any policy may not be executed

exactly. If the storage decisions do not match the actual number of arriving pallets, then we store any

additional arriving pallets to the class with the next smallest index available. (For the FB method, a

class with the next smallest index has a lower sum of visit frequencies. For the other class-formation

methods, a class with the next smallest index has a larger sum of the average store and retrieve costs.)

For example, if there are 15 pallets of a product arriving but the storage decision is to store 10 pallets

to class 1, then we store 10 pallets to class 1 and 5 pallets to class 2 (if class 2 has available space).

Similarly, if the retrieval decisions do not match the actual number of departing pallets, then we retrieve

any additional departing pallets from the class with the smallest index available. For example, if the

demand for a product is 15 pallets but the retrieval decision is to retrieve 10 pallets from class 3, then

we retrieve the additional 5 pallets from class 1 (if the product is available there). This is to ensure the

actual implementation to be as close as possible to the policy when facing the random demand.

Although we use the average store cost sj and the average retrieve cost rj of each class j to determine

a storage-retrieval policy, we use the actual location-to-location cost to compute the total cost of the

policy in each simulation. For example, if we store a pallet in period t to a location with store cost 76,

then we record the cost as 76, even though the location may belong to a class with an average store cost

of 100. This precisely determines the actual total cost of the policy. For each layout and each demand

distribution, we perform 1,000 simulation runs to evaluate each policy to ensure that the standard error

is within 1%. Each simulation run corresponds to one demand sample for all the products and periods.

In Section 6.1, we study the impact of class-formation methods on each storage-retrieval policy. In

Section 6.2, we compare the RLR under the FB method, the TOS policy under the ER method, and the

DOS policy under the GR method by varying (i) the warehouse utilization, (ii) the demand variability,

(iii) the number of products, and (iv) the length of the planning horizon.

6.1. Impact of the class-formation methods under various utilization levels

We focus on the impact of the class-formation methods on each storage-retrieval policy under various

levels of the warehouse’s space utilization. To control the utilization, we scale the number of arriving

pallets of each product in each period by a scaling factor α. Specifically, we set ati = bαatic, where ati

represents the number of arriving pallets of product i in period t of a base problem instance. We create

different problem instances by changing α. As α increases, the number of arriving pallets in each period

increases and the utilization increases.
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Define average utilization u based on the mean demands dti as follows:

u =
1

T × L

T∑
t=1

[
x1 +

M∑
i=1

(
t−1∑
τ=1

(aτi − dτi ) + ati

)]
, (7)

where x1 represents the initial inventory of all the products in the warehouse. We set x1 = 0 for all

the experiments. The average utilization u indicates how populated the warehouse is based on the

mean demands dti. We set M = 10, T = 6, and q = 2. Table 3 shows different values of α and the

corresponding average utilization used in our numerical experiments.

Table 3: Different values of α and average utilization used in the numerical experiments

α 1 2 3 4 5 6 7 8 9 10

u 0.33 0.47 0.63 0.85 1.00 1.52 1.96 2.55 3.08 3.55

To see the effect of optimizing classes for each storage-retrieval policy, we benchmark the total cost

of a policy under its optimized class-formation method against its total cost under the GB method. Let

Pm denote the average total cost using the storage-retrieval policy P under the class-formation method

m over the simulation runs. For example, RLRFB and DOSGB denote the average total costs of the

RLR under the FB method and the DOS policy under the GB method respectively. For the RLR, TOS,

and DOS policies, define the percent improvement of using an optimized class-formation method over

the GB method, respectively, as follows:

RLRGB −RLRFB
RLRFB

× 100%,
TOSGB − TOSER

TOSER
× 100%, and

DOSGB −DOSGR
DOSGR

× 100%.

To obtain the number of classes (excluding emergency storage) for the GB method for each policy, we

set it equal to the number of classes in the warehouse under the corresponding optimized class-formation

method if it is even. Otherwise, we round it up to the nearest even number to ensure a fair comparison.

Figure 3 shows that the percent improvement is generally positive when α < 5 (u < 1.00) under

a truncated normal distribution for all the three layouts. This suggests that optimizing classes can

improve a storage-retrieval policy’s performance when the warehouse’s utilization is low. The percent

improvement is especially high for the RLR and DOS policies. However, as α increases (the utilization

increases) the percent improvement generally decreases. This suggests that the impact of optimizing

classes reduces as the warehouse gets more utilized. We observe similar results for the other two demand

distributions. To save space, we only present the results under the truncated normal distribution.

If the warehouse’s utilization is low the emergency storage is hardly used, and there is a clear

advantage of optimizing classes for each policy as shown in Figure 3. However, as the utilization
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Figure 3: Percent improvement of using an optimized class-formation method over the GB method for
various values of α under each policy

increases, the emergency storage is used more frequently. This tremendously raises the total cost, which

causes the savings by any optimized class formation to be relatively negligible. Thus, a proper estimate

of the warehouse’s utilization is necessary to determine the importance of optimizing classes. If the

warehouse’s utilization is low, then it is important to optimize the storage classes.

Note that in Figure 3 although the percent improvement of DOSGR over DOSGB can be larger than

the percent improvement of RLRFB over RLRGB, RLRFB actually outperforms DOSGR (Section 6.2).

6.2. Comparing the different storage-retrieval policies on their respective optimized classes

We also compare the RLR with the TOS and DOS policies under their respective optimized class-

formation methods by varying (i) the warehouse utilization, (ii) the demand variability, (iii) the number

of products, and (iv) the length of the planning horizon. We define the percent improvement of RLRFB

over TOSER and DOSGR, respectively, as follows:

TOSER −RLRFB
RLRFB

× 100% and
DOSGR −RLRFB

RLRFB
× 100%. (8)

6.2.1. Performance under different utilization levels

Figure 4 shows the percent improvement of RLRFB over TOSER and DOSGR defined in Equations

(8). We set M = 10, T = 6, and q = 2. The RLR under the FB method significantly outperforms

the other two policies for α < 5, suggesting that the former leads to the lowest cost when the average

utilization u of the warehouse is below 1.00. On the other hand, if 5 ≤ α ≤ 8 (1.00 ≤ u ≤ 2.55) then all

the policies with their optimized classes perform similarly. When α > 8 (u > 2.55), the RLR under the

FB method outperforms the TOS and DOS policies again by about 5.5% and 1.5% respectively.
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Figure 4: Percent improvement of RLRFB over TOSER and DOSGR for various values of α

Figure 5 shows the number of classes (excluding the emergency class) for each storage-retrieval policy

under different values of α. It is worth noting that the number of classes for the RLR is no larger than

that for the DOS policy for all the values of α. Compared with the TOS policy, the RLR has more

classes when the warehouse utilization is low, but has fewer classes when the utilization is high. The

RLR requires no more than 4 classes and the number of classes drops to 1 as the utilization increases.

This is promising as the low number of classes for the RLR eases the implementation in practice.
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Figure 5: The number of classes for each policy for various values of α

It is interesting to note that for α > 6, the FB method uses only one class for all the layouts. When

there is only one class, each pallet will be stored at any arbitrary location in the warehouse. This makes

the implementation of the RLR in practice especially simple. Surprisingly, this does not significantly

deteriorate the effectiveness of the RLR in this range of α as it still outperforms the TOS and DOS

policies (see Figure 4), which require more classes (see Figure 5). As discussed at the end of Section

6.1, under high utilization optimizing classes does not have a big impact on a storage-retrieval policy’s
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performance. The FB method is aligned with this insight because it only forms one class for the RLR

when the utilization is high (α > 6). In fact, we prove in Section 8.1 that when the utilization is

extremely high, the FB method always forms a single class in the warehouse.

6.2.2. Performance under various levels of demand variability

We study the impact of demand variability on the performance of the three storage-retrieval policies.

We set M = 10, T = 6, and α = 2. Figure 6 shows the performance of the policies when z̃ti follow a

truncated normal distribution with q = 2 for various σ, for all i ∈ M, t ∈ T . Our results indicate that

RLRFB is lower than TOSER by at least 24% and is lower than DOSGR by at least 14% for a wide

range of σ. This suggests that the RLR under the FB method is robust against demand variability.
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Figure 6: Percent improvement of RLRFB over TOSER and DOSGR for various values of σ

6.2.3. Performance under various numbers of products

We set T = 6, q = 2, α = 2, and compare the three policies by varying the number of products M

from 10 to 80. To maintain the same utilization, we increase the warehouse’s capacity as the number

of products increases. We expand the storage space in the vertical direction (for example, using pallet

racks) such that we have more storage locations per unit floor area. In this manner, we retain the

warehouse’s layout (the relative positions of the receiving and the shipping docks) while keeping the

utilization constant. Figure 7 shows that RLRFB is lower than TOSER and DOSGR by at least 22%

and 15% respectively.

6.2.4. Performance under various lengths of the planning horizon

To see the impact of the length of the planning horizon, we set M = 10, q = 2, α = 2, and vary T

from 6 to 18 to compare the performance of the three policies. Figure 8 shows the percent improvement
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Figure 7: Percent improvement of RLRFB over TOSER and DOSGR for various values of M

of RLRFB over TOSER and DOSGR. We see that the RLR under the FB method outperforms the

other two policies by at least 15%. It is worth noting that the performance of the DOS policy drops

significantly as T increases. This is because the DOS policy relies on the information of the durations

of stay of pallets, which becomes less reliable as the planning horizon gets longer.
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Figure 8: Percent improvement of RLRFB over TOSER and DOSGR for various values of T

7. A case study

In this section, we evaluate the policies in a case study with a third-party logistics provider. The

company owns a unit-load warehouse (see Figure A.10 in Appendix A) that provides storage services

for its client. When the warehouse runs out of storage locations, the company rents an emergency

facility with large storage capacity that holds sufficient inventory for all products in all periods, but

incurs high store and retrieve costs. The client makes all the planning and production decisions such
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as demand forecasting and production scheduling. The storage and delivery of products are managed

by the logistics provider, which operates in two shifts per day. Products arrive and are stored during

the day shift (between 8:00AM and 5:30PM). All customer orders arriving during the day shift are

retrieved in the following night shift (between 8:00 PM and 6:00 AM). Thus, the single-command travel

assumption is valid under this setting.

Each period in our model corresponds to a day in this case study. We have collected the actual

numbers of arriving and departing pallets of each product in each day for 51 weeks. Each week consists

of 6 working days. There are 410 products, where the top 10 products contribute about 28 percent of

the annual total demand, and the top 122 products contribute about 80 percent of the annual total

demand. There is no significant correlation between different products. The demand for product i in

period t is represented as d̃ti
(
z̃ti
)

= dti +
∑t

k=1 d
t,k
i z̃ki , where dti is the sample mean, dt,ki = 0.1/(t− 1) for

k = 1, . . . , t − 1, and dt,ki = 0.9 for k = t. We assume that z̃ti falls in the range [max{−dti,−3σti}, 3σti ],

and σti is the sample standard deviation of the demand for product i in period t.

To evaluate the various storage-retrieval policies, we need to determine the means and the standard

deviations of the products. We use the first 36 weeks of data to estimate these parameters, which will

be used to evaluate the policies for week 37. Using a rolling-horizon principle, the demand parameters

for week 38 is estimated based on the data from week 2 to week 37, and so on.

In practice, we do not change the classes often (say, every planning horizon). In this case study, we

use the first 36 weeks of data to form classes for each policy. This results in two classes, two classes, and

five classes for the RLR, the TOS, and the DOS policies respectively (excluding the emergency class).

For week 37, we evaluate the three policies under their respective class formations. Subsequently, we

reevaluate each policy for week 38 to week 51 with the same class formation.

Under their respective class formations, different policies result in different initial inventory levels

for the subsequent week. This yields different average utilization u of the warehouse due to Equation

(7), as shown in Figure 9(a) for week 38 to week 51. Figures 9(b) and 9(c) show the weekly percent

improvement and the cumulative percent improvement, respectively, of the RLR with the FB method

over the other two policies. The RLR with the FB method has the best weekly performance across the

weeks and yields the lowest cumulative cost for the rest of the year.

When the average utilization u is less than 1 for all the policies (from week 37 to week 39), the RLR

outperforms the TOS policy and the DOS policy by at least 12.5% and 87.9% respectively. When the

average utilization u exceeds 1 for all the policies (from week 40 onwards), the RLR outperforms the

TOS policy and the DOS policy by at least 7.4% and 36.3% respectively.
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Figure 9: Results of a case study. (a) Average utilization of the warehouse. (b) Weekly percent improvement of
RLRFB . (c) Cumulative percent improvement of RLRFB .

One explanation on the shortcoming of the TOS policy is that it does not factor the variable arrivals

and demands into its formation of classes and storage-retrieval decisions. In contrast, the RLR with

the FB method considers the variable arrivals, demands, and demand support sets in its computation.

The performance of the DOS policy is the worst among the three policies (see Figures 9(b) and 9(c)),

suggesting that the locations with low costs are not properly utilized and the emergency class is used

excessively. One explanation of this behavior is that the DOS policy depends on the durations of stay of

individual pallets (of different products). This information is difficult to estimate accurately in practice

(for example, we use the first 36 weeks of data to predict the duration of stay of each individual pallet

for week 37). This inaccuracy of the parameters causes the DOS policy to perform badly. In contrast,

the RLR policy with the FB method can better absorb the variability of the arrivals and demands. The

results in this case study suggest that the RLR with the FB method also outperforms the TOS and the

DOS policies in a practical setting.

8. Special cases

In this section, we assume each class contains only one location so that N = L and cj = 1, for

j = 1, . . . , L. In Section 8.1, we show that the FB method (specifically, Algorithm 1) will group all

the locations in the warehouse into only one class (excluding the emergency storage) if the warehouse

is over utilized. In Section 8.2, we discuss a special case where the store cost is equal to the retrieve

cost for each storage location in the warehouse. In Section 8.3, we consider deterministic demands and

assume the warehouse faces symmetric arrivals and demands. In the latter two special cases, we show

that ranking locations by visit frequency is equivalent to ranking by location travel cost found in the
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literature. This implies that the traditional cost-based ranking is a special case of our frequency-based

ranking.

8.1. An over-utilized warehouse

We consider a special case where the warehouse is over utilized: The number of arriving pallets

is much larger than the number of departing pallets. In this situation, we show that the FB method

produces only one class in the warehouse besides the emergency class (that is, Algorithm 1 results in

N ′ = 2). This suggests that treating the entire warehouse as a single class is sufficient to guarantee

efficiency. Recall that we can determine the visit frequency fj(z), j = 1, . . . , L, for any given realization

z by solving Problem (4). The following lemma characterizes fj(z) for an over-utilized warehouse. All

proofs can be found in the online supplement.

Lemma 1. Suppose Equation (3) holds. For any realization z ∈W , if ati →∞ for some i ∈M, t ∈ T ,

then fj(z) <∞, j = 1, . . . , N , and fN+1(z)→∞.

Corollary 1. Suppose Equation (3) and the condition in Lemma 1 hold, then Algorithm 1 results in

N ′ = 2 classes.

Corollary 1 leads to an interesting insight: To ensure efficiency, it is sufficient to group all the

locations of the entire warehouse into a single class if the warehouse is over utilized. This echoes the

observations made in Sections 6.2.1, where the RLR under the FB method with only one class (excluding

the emergency storage) outperforms the other policies. Corollary 1 also justifies why the random policy

(with one class) is the most commonly used storage-retrieval policy in a unit-load warehouse in the

upstream of a supply chain, where maximizing warehouse utilization is usually more important than

reducing response time.

8.2. Symmetric store and retrieve costs

We consider a case where the receiving dock and the shipping dock are located at the same position

in the warehouse such that the average store cost sj is equal to the average retrieve cost rj for all j ∈ N+.

An example in which the receiving and shipping docks coincide at a corner of the warehouse is widely

studied in the literature (Hausman et al. 1976, Rosenblatt and Eynan 1989, Eynan and Rosenblatt

1994, Kouvelis and Papanicolaou 1995, Yu et al. 2015).

Under this setting, we can simplify the objective function of Problem (4) as∑
j∈N+

sj
∑
t∈T

∑
i∈M

(
vtij + wtij

)
=

∑
j∈N+

sjfj(z). (9)
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The following lemma shows that if sj = rj , for all j ∈ N+, and the warehouse is initially empty, then

the location with the highest visit frequency also has the smallest location travel cost. This implies that

ranking locations by visit frequency is equivalent to ranking them by location travel cost.

Lemma 2. Suppose N = L, sj = rj, and x1ij = 0, for all i ∈ M, j ∈ N+. Given any realiza-

tion z of the uncertain factors, if sj′ ≤ sj′′ then fj′(z) ≥ fj′′(z), for j′, j′′ ∈ N , where fj(z) =∑
t∈T

∑
i∈M

(
vtij + wtij

)
and vtij , w

t
ij, i ∈M, j ∈ N , t ∈ T , are determined by solving Problem (4).

Corollary 2. If N = L and the store cost is equal to the retrieve cost for every location in a warehouse

with no initial inventory, then ranking the locations by visit frequency and ranking them by location

travel cost are equivalent for the warehouse.

8.3. Symmetric arrivals and demands

In this section, we consider a case where the demands are deterministic (this corresponds to a special

case with q = 0 in Section 4). Suppose all the pallets of all the products have the same duration of stay

p ∈ [1, T ]. For the pallets that are retrieved at the end of period T (the end of the planning horizon),

they all arrive at the start of period Tp = T − p + 1. Pallets that arrive after period Tp stay in the

warehouse after period T . For convenience, let Tp = {1, 2, , . . . , Tp}. We have the following results.

Lemma 3. Suppose all pallets have the same duration of stay p ∈ [1, T ]. If N = L, q = 0, and x1ij = 0,

for i ∈M, j ∈ N+, then we have vtij = wt+p−1ij , for i ∈M, j ∈ N+, t ∈ Tp.

Lemma 4. Suppose all pallets have the same duration of stay p ∈ [1, T ]. If N = L, q = 0, and x1ij = 0,

for i ∈M, j ∈ N+, then for each j ∈ N+, we have fsj ≥ f rj .

We now consider a special case where the warehouse faces symmetric arrivals and demands. We say

a warehouse is balanced if q = 0 and ati = dti, for all i ∈ M, t ∈ T . This is equivalent to a case where

all the pallets have a duration of stay p = 1. Lemma 5 shows that if a warehouse is balanced and is

initially empty, then the number of pallets of product i stored to class j is equal to the number of pallets

of product i retrieved from class j at every t ∈ T . This leads to Lemma 6, which in turn implies that

ranking the locations by visit frequency is equivalent to ranking them by location travel cost.

Lemma 5. If N = L, q = 0, ati = dti, and x1ij = 0, for i ∈ M, j ∈ N+, t ∈ T , we have the following

results:

(i) vtij = wtij, for i ∈M, j ∈ N+, t ∈ T .
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(ii) xtij = 0, for i ∈M, j ∈ N+, t ∈ T +.

Lemma 6. If N = L, q = 0, ati = dti, and x1ij = 0, for i ∈M, j ∈ N+, t ∈ T , then for each j ∈ N+, we

have fsj = f rj , where fsj can be determined by the following optimization problem:

min
∑
j∈N+

(sj + rj) f
s
j (10)

s.t.
∑
j∈N+

fsj =
∑
t∈T

∑
i∈M

ati;

f sj ≤ T, j ∈ N ;

fsj ≥ 0, j ∈ N+.

Note that the inequality fsj ≥ f rj , j ∈ N+, in Lemma 4 is tight for p = 1. Lemma 6 shows that for

a balanced warehouse with no initial inventory, the visit frequency of each location can be determined

by solving Problem (10). This implies the following corollary.

Corollary 3. For a balanced warehouse with N = L and no initial inventory, ranking the locations by

visit frequency and ranking them by location travel cost are equivalent.

It is worth noting that by taking both the layout information and the product flow information into

account, the method of ranking the locations by visit frequency considers the difference between the

store cost and the retrieve cost of each location, as well as the imbalance between the arrivals and the

departures of each product. However, Corollaries 2 and 3 imply that if the store cost and the retrieve

cost are symmetric for each location or if the arrivals and the departures are balanced for each product,

then ranking the locations by visit frequency is equivalent to ranking them by location travel cost.

Thus, the traditional cost-based ranking turns out to be a special case of our frequency-based ranking.

The frequency-based ranking is suitable for more general settings with (i) asymmetric store and retrieve

costs for each location and (ii) imbalanced inflow and outflow for each product.

9. Conclusion

Most papers in the literature study the class-formation problem in a unit-load warehouse for a specific

layout where the receiving and the shipping docks coincide at a corner of the warehouse. A common

approach is to rank storage locations according to their location travel costs before they are grouped into

classes. In this paper, we introduce a new approach to optimize classes for general receiving-dock and

shipping-dock locations that may not coincide. We propose the FB method that first ranks the storage
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locations based on their visit frequencies and then groups them into classes using Algorithm 1. This

method considers not only the warehouse’s layout information, but also the product flow information.

It bears similarity with the traditional way of ranking locations based on their location travel costs if

the receiving and shipping docks coincide (see Corollary 2), or if the arrivals and the demands of each

product are balanced (see Corollary 3). We use the FB method to form classes for the RLR, which is

a storage-retrieval policy based on robust optimization. We benchmark the RLR under the FB method

against the traditional TOS and DOS policies with their respective optimized classes.

Our numerical experiments suggest that if the warehouse’s space is highly utilized, the class-

formation method does not significantly affect the performance of all the three storage-retrieval policies.

This is because when the utilization is high, the warehouse gets filled up and the emergency storage is

frequently used. This tremendously raises the total travel cost, and the savings by any class-formation

method becomes negligible. We also observe that the FB method yields only one class in the warehouse

if the utilization is sufficiently high, and we analytically prove this observation in Corollary 1. This

finding explains why the random policy (with one class) is the most commonly used storage-retrieval

policy in a unit-load warehouse in the upstream of a supply chain, which are usually heavily utilized.

On the other hand, if the warehouse utilization is low (α < 5 and u < 1), the emergency storage is

hardly used and different class-formation methods may result in very different total travel costs. Thus,

the importance of optimizing classes depends on the utilization of the warehouse. Warehouse managers

should first assess their warehouses’ utilization. If the utilization is low then the managers should not

neglect the cost effect of optimizing the storage classes.

For low warehouse utilization (such as α = 2), we evaluate the three policies for various levels of

demand variability, numbers of products, and lengths of the planning horizon under different demand

distributions and different layouts. The RLR outperforms the TOS policy (by up to 80%) and the

DOS policy (by up to 125%). This manifests the value of considering both the warehouse’s layout and

the products’ arrivals and demands in the FB method for forming classes, which improves the overall

performance of the RLR. We also evaluate the policies using data from a third-party logistics provider.

Our results suggest that the weekly performance of the RLR under the FB method is better than the

TOS policy and the DOS policy, by an average of 8% and 51% respectively. By ranking the storage

locations based on their visit frequencies, the FB method takes the difference of the store cost and

the retrieve cost of each location into account (see the objective function of Problem (4)). Considering

this delicacy allows the FB method to leverage the imbalance between the inflow and the outflow of

each product. This is the main reason behind the superior performance of the FB method. Our paper
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shows the additional value to the warehouse managers of considering more-detailed information: (i) the

difference between the store cost and the retrieve cost of each location, and (ii) the imbalance between

the inflow and the outflow of each product. One possible future research direction is to incorporate these

two pieces of information into the traditional class-formation methods, such as the ER method for the

TOS policy and the GR method for the DOS policy.

Our model is restricted to single-command travel for unit-load warehouses. It would be interesting

to develop class-formation methods for warehouses with dual-command travel or with more complex

order-picking operations (such as case picking or piece picking).

Compared to the dynamic program in the ER method (Eynan and Rosenblatt 1994), the FB method

is more computationally efficient as it requires only solving a linear program (Problem (4)). We believe

this requirement is quite reasonable because managers do not need to optimize classes frequently, and

the savings from effective class formation can be very substantial.
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Appendix A.

Appendix A.1. The restricted linear decision rule (RLR)

In this section, we describe a robust optimization model proposed by Ang, Lim, and Sim (2012),

and derive a storage-retrieval policy for products with prescheduled arrivals and random demands. The

arrivals of products in each period are generally determined by the suppliers’ production plans and follow

some given schedule. In comparison, it is more difficult to determine the demands for the products in

each period as they are more uncertain. As a result, we adopt the factor-based demand model described

in Section 4.

A storage-retrieval policy decides where to store the pallets when they arrive and which pallets

to retrieve when the demands are realized (note that a product may have multiple pallets at different

locations in the warehouse). At the start of period t, pallets arrive at the warehouse and we decide which

classes to store them based on z̃t−1. At the end of period t, the demands in the period (equivalently,

the uncertain factors z̃t) are realized and we decide which classes to retrieve the pallets. We define the

following decision variables: (i) vtij
(
z̃t−1

)
represents the number of arriving pallets of product i stored

to class j at the start of period t after z̃t−1 is realized. We make this decision at the start of period t

after the arrival of the pallets. (ii) wtij
(
z̃t
)

represents the number of pallets of product i retrieved from

class j at the end of period t after z̃t is realized. We make this decision at the end of period t after the

demands in the period are realized. (iii) xtij
(
z̃t−1

)
represents the number of pallets of product i in class

j at the start of period t. Note that this is a dependent variable determined by vtij
(
z̃t−1

)
and wtij

(
z̃t
)
.

We define U as a family of distributions of the uncertain factors. For each distribution P ∈ U , EP (·)

represents the expected value of · under P. We adopt the approach by Gilboa and Schmeidler (1989)

that minimizes the worst-case expected total cost over the family of distributions U as follows:

ZR = min max
P∈U

EP

∑
t∈T

∑
i∈M

∑
j∈N+

(
sjv

t
ij

(
z̃t−1

)
+ rjw

t
ij

(
z̃t
)) (A.1)
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s.t.
∑
j∈N+

vtij
(
z̃t−1

)
= ati, i ∈M, t ∈ T ;

∑
j∈N+

wtij
(
z̃t
)

= d̃ti
(
z̃t
)
, i ∈M, t ∈ T ;

xt+1
ij

(
z̃t
)

= xtij
(
z̃t−1

)
+ vtij

(
z̃t−1

)
− wtij

(
z̃t
)
, i ∈M, j ∈ N+, t ∈ T ;∑

i∈M

(
xtij
(
z̃t−1

)
+ vtij

(
z̃t−1

))
≤ cj , j ∈ N , t ∈ T ;

xtij
(
z̃t−1

)
≥ 0, i ∈M, j ∈ N+, t ∈ T +;

vtij
(
z̃t−1

)
, wtij

(
z̃t
)
≥ 0, i ∈M, j ∈ N+, t ∈ T ;

vtij , x
t
ij ∈ FM(t−1), i ∈M, j ∈ N+, t ∈ T ;

wtij ∈ FMt, i ∈M, j ∈ N+, t ∈ T ;

where Fp denotes a family of measurable functions that map <p to <. In an optimal solution to Problem

(A.1), vtij and wtij are functions representing the optimal storage and retrieval decisions respectively.

Problem (A.1) is intractable in general. For tractability, we adopt the restricted linear decision rule

(RLR) proposed by Ang et al. (2012). The RLR can be described by the following decision variables:

vtij
(
z̃t−1

)
= vt,0ij +

t−1∑
k=1

vt,kij z̃
k
i , i ∈M, j ∈ N+, t ∈ T ; (A.2)

wtij
(
z̃t
)

= wt,0ij +
t∑

k=1

wt,kij z̃
k
i , i ∈M, j ∈ N+, t ∈ T ; (A.3)

where vt,0ij , v
t,k
ij , w

t,0
ij , and wt,kij are coefficients, for i ∈ M, j ∈ N+, and k ≤ t ∈ T . Given these

coefficients, once the uncertain factors are realized we can evaluate the functions vtij
(
z̃t−1

)
and wtij

(
z̃t
)
,

which determine the storage and the retrieval decisions respectively. Similarly, the functional form of

the inventory level xtij
(
z̃t−1

)
is defined as follows:

xtij
(
z̃t−1

)
= xt,0ij +

t−1∑
k=1

xt,kij z̃
k
i , i ∈M, j ∈ N+, t ∈ T +; (A.4)

where xt,0ij and xt,kij are coefficients, for i ∈M, j ∈ N+, and k < t ∈ T +.

To obtain the coefficients vt,0ij , v
t,k
ij , w

t,0
ij , and wt,kij , for i ∈ M, j ∈ N+, and k ≤ t ∈ T , we first

substitute Equations (A.2) and (A.3) into Problem (A.1). Using Theorem 1 and Proposition 2 of Ang

et al. (2012), we convert Problem (A.1) into the following optimization problem:

ZRLR = min
∑
t∈T

∑
i∈M

∑
j∈N+

(
sjv

t,0
ij + rjw

t,0
ij

)
(A.5)
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s.t.
∑
j∈N+

vt,kij =

 ati, if k = 0,

0, if k 6= 0,
i ∈M, t ∈ T , k ∈ T ;

∑
j∈N+

wt,kij =

 dti, if k = 0,

dt,ki , if k 6= 0,
i ∈M, t ∈ T , k ∈ T ;

xt+1,k
ij =

 xt,kij + vt,kij − w
t,k
ij , if k < t,

−wt,kij , if k = t,
i ∈M, j ∈ N+, t ∈ T ;

∑
i∈M

((
xt,0ij + vt,0ij

)
+ q

t−1∑
k=1

∣∣∣xt,kij + vt,kij

∣∣∣) ≤ cj , j ∈ N , t ∈ T ;

vt,0ij − q
t−1∑
k=1

∣∣∣vt,kij ∣∣∣ ≥ 0, i ∈M, j ∈ N+, t ∈ T ;

wt,0ij − q
t∑

k=1

∣∣∣wt,kij ∣∣∣ ≥ 0, i ∈M, j ∈ N+, t ∈ T ;

xt,0ij − q
t−1∑
k=1

∣∣∣xt,kij ∣∣∣ ≥ 0, i ∈M, j ∈ N+, t ∈ T +.

We solve Problem (A.5) once to obtain the optimal values of the coefficients vt,0ij , v
t,k
ij , w

t,0
ij , and wt,kij , for

i ∈M, j ∈ N+, and k ≤ t ∈ T , which determine the RLR in Equations (A.2) and (A.3).

Appendix A.2. Warehouse layout in the case study in Section 7

· · ·

r
R

rS

Figure A.10: Layout of the logistics provider’s warehouse

Appendix A.3. Proof of Lemma 1

Equation (3) ensures that there is always a feasible solution to Problem (4). Due to the condition

cj = 1, j = 1, . . . , N , and the nonnegativity constraints xtij ≥ 0, vtij ≥ 0, and wtij ≥ 0 in Problem (4),
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the fourth constraint of Problem (4),

∑
i∈M

(
xtij + vtij

)
≤ cj = 1, j ∈ N , t ∈ T ,

implies that 0 ≤ vtij ≤ 1, for i ∈ M, j ∈ N , t ∈ T . Therefore, we have
∑

j∈N v
t
ij ≤ N = L < ∞, for

i ∈ M, t ∈ T . Define i′ = min{i ∈ M| ati → ∞ for some t ∈ T } and define t′ = min{t ∈ T | ati′ → ∞}.

The first constraint of Problem (4) implies

at
′
i′ =

∑
j∈N

vt
′
i′j + vt

′
i′,N+1;

⇒ at
′
i′ ≤ L+ vt

′
i′,N+1.

Since at
′
i′ →∞, we have vt

′
i′,N+1 →∞. Thus,

fN+1(z) =
∑
t∈T

vti′,N+1 +
∑
t∈T

∑
i∈M\{i′}

vti,N+1 +
∑
t∈T

∑
i∈M

wti,N+1

≥ vt
′
i′,N+1 →∞.

The nonnegativity constraints and the fourth constraint of Problem (4) also imply that xtij+vtij ≤ 1,

for i ∈M, j ∈ N , t ∈ T . The third constraint of Problem (4) implies

wtij =
(
xtij + vtij

)
− xt+1

ij ≤ 1− xt+1
ij ≤ 1, i ∈M, j ∈ N , t ∈ T .

Therefore, for j = 1, . . . , N , we have

fj(z) =
∑
t∈T

∑
i∈M

vtij +
∑
t∈T

∑
i∈M

wtij

≤ 2MT <∞.

This completes the proof.

Appendix A.4. Proof of Corollary 1

If Equation (3) and the condition in Lemma 1 hold, then fj(0), fj(q), and fj(−q) are finite, for

j ≤ N , and fN+1(0), fN+1(q), and fN+1(−q) tend to∞. As a result, Equation (6) implies that fj <∞,

for j ≤ N , and fN+1 → ∞. Thus, in Algorithm 1 we have Ψ1 = ΓL+1 and ψL+1 = ψN+1 → ∞. Since

ψj < ∞ for all j ≤ N = L, we cannot find a k′ such that ψk′ > ψN+1. According to Algorithm 1, all

classes j = 1, . . . , N are grouped into 1 cluster. This results in N ′ = 2.
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Appendix A.5. Proof of Lemma 2

We prove by contradiction. Given an optimal solution to Problem (4), suppose there exist j′, j′′ ∈ N

such that sj′ ≤ sj′′ and fj′′(z) = fj′(z) + ε for some ε > 0. From the third constraint of Problem (4)

and the assumption that x1ij = 0 for i ∈M, j ∈ N+, we have

xt+1
ij = xtij + vtij − wtij , i ∈M, j ∈ N+, t ∈ T ;

⇒ xt+1
ij = x1ij +

t∑
τ=1

(
vτij − wτij

)
, i ∈M, , j ∈ N+, t ∈ T ;

⇒ xt+1
ij =

t∑
τ=1

(
vτij − wτij

)
, i ∈M, , j ∈ N+, t ∈ T .

We can rewrite Problem (4) as

ZD(z) = min
∑
j∈N+

sj
∑
t∈T

∑
i∈M

(
vtij + wtij

)
(A.6)

s.t.
∑
j∈N+

vtij = ati, i ∈M, t ∈ T ;

∑
j∈N+

wtij = dti +
t∑

k=1

dt,ki zki , i ∈M, t ∈ T ;

xt+1
ij =

t∑
τ=1

(
vτij − wτij

)
, i ∈M, j ∈ N+, t ∈ T ;∑

i∈M

(
xtij + vtij

)
≤ 1, j ∈ N , t ∈ T ;

xtij ≥ 0, i ∈M, j ∈ N+, t ∈ T +;

vtij , w
t
ij ≥ 0, i ∈M, j ∈ N+, t ∈ T .

In the above formulation, the indices j′ and j′′ are interchangeable in the constraints. Thus, we can

exchange these indices in the solution and maintain its feasibility. The objective function in Equation
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(9) after exchanging j′ and j′′ in the solution becomes

sj′fj′′(z) + sj′′fj′(z) +
∑

j∈N+\{j′,j′′}

sjfj(z)

= sj′fj′(z) + sj′′fj′(z) + sj′ε+
∑

j∈N+\{j′,j′′}

sjfj(z)

≤ sj′fj′(z) + sj′′fj′(z) + sj′′ε+
∑

j∈N+\{j′,j′′}

sjfj(z)

= sj′fj′(z) + sj′′fj′′(z) +
∑

j∈N+\{j′,j′′}

sjfj(z).

The last expression is the objective function under the original solution without exchanging j′ and j′′.

Thus, we can find a better solution to the problem by exchanging j′ and j′′ in the original solution,

which leads to a contradiction.

Appendix A.6. Proof of Corollary 2

Suppose N = L, sj = rj , and x1ij = 0, for all i ∈ M, j ∈ N+. From Lemma 2 we know that if

sj′ ≤ sj′′ then fj′(z) ≥ fj′′(z), j′, j′′ ∈ N , for any realization z of the uncertain factors. Equation (6)

implies that if sj′ ≤ sj′′ then fj′ ≥ fj′′ , for j′, j′′ ∈ N , where fj is the visit frequency of location j.

This implies that ranking the locations from the highest visit frequency to the lowest visit frequency is

equivalent to ranking the locations from the smallest location travel cost to the largest location travel

cost. Therefore, ranking by visit frequency and ranking by location travel cost are equivalent for such

a warehouse.

Appendix A.7. Proof of Lemma 3

Given that x1ij = 0, for i ∈M, j ∈ N+ and
∑

j∈N+ vtij = ati, for t ∈ Tp, there are two cases:

1. For j ∈ N , given vtij = n′ ≤ 1 and because each pallet has a duration of stay p, we have

wt+p−1ij = n′ = vtij .

2. For j = N + 1, given vti,N+1 = n′ ≤ ati and because each pallet has a duration of stay p, we have

wt+p−1i,N+1 = n′ = vti,N+1.

This proves the lemma.
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Appendix A.8. Proof of Lemma 4

Let T1 = {1, 2, . . . , p − 1} and T2 = {p, p + 1, . . . , T}. We have
∑

t∈T1
∑

i∈Mwtij = 0. According to

Lemma 3, we have
∑

t∈Tp
∑

i∈M vtij =
∑

t∈Tp
∑

i∈Mwt+p−1ij =
∑

τ∈T2
∑

i∈Mwτij . For j ∈ N+, we have

fsj =
∑
t∈T

∑
i∈M

vtij =
∑
t∈Tp

∑
i∈M

vtij +
∑

t∈T \Tp

∑
i∈M

vtij ≥
∑
t∈T2

∑
i∈M

wtij =
∑
t∈T

∑
i∈M

wtij = f rj .

Appendix A.9. Proof of Lemma 5

Since p = 1 for a balanced case, we have Tp = T , and T \ Tp = ∅. Part (i) of Lemma 5 follows

directly from Lemma 3.

To prove part (ii) of Lemma 5, we consider the third constraint of Problem (4), we have

xt+1
ij = xtij + vtij − wtij , i ∈M, j ∈ N+, t ∈ T ;

⇒ xt+1
ij = xtij , i ∈M, j ∈ N+, t ∈ T .

Together with the conditions x1ij = 0, for i ∈ M, j ∈ N+, the last equality implies that xtij = 0, for

i ∈M, j ∈ N+, t ∈ T +.

Appendix A.10. Proof of Lemma 6

According to part (i) of Lemma 5, we have vtij = wtij , for i ∈ M, j ∈ N+, t ∈ T . Thus, fsj =∑
t∈T

∑
i∈M vtij =

∑
t∈T

∑
i∈Mwtij = f rj . The objective function of Problem (4) becomes∑

j∈N+

sj
∑
t∈T

∑
i∈M

vtij +
∑
j∈N+

rj
∑
t∈T

∑
i∈M

wtij

=
∑
j∈N+

(sj + rj)f
s
j .

The first and the second constraints of Problem (4) reduce to the first constraint of Problem (10).

From the fourth constraint of Problem (4) and part (ii) of Lemma 5, we have∑
i∈M

(
xtij + vtij

)
≤ 1, j ∈ N , t ∈ T ;

⇒
∑
i∈M

vtij ≤ 1, j ∈ N , t ∈ T ;

⇒ fsj =
∑
t∈T

∑
i∈M

vtij ≤ T, j ∈ N .

Since vtij ≥ 0, for i ∈M, j ∈ N+, t ∈ T , we have fsj ≥ 0, for j ∈ N+.
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Appendix A.11. Proof of Corollary 3

Problem (10) is a continuous Knapsack Problem (Sahni (1975)). It can be solved as follows. We first

index the classes from 1 to N+1 such that s1+r1 ≤ s2+r2 ≤ · · · ≤ sN+1+rN+1. Let â =
∑

t∈T
∑

i∈M ati.

For j ≤ bâ/T c, set f sj = T . For j = ĵ ≡ bâ/T c+ 1, set fsj = â mod T . For j > ĵ, set fsj = 0.

Since each class contains only one location, the above procedure results in the first bâ/T c most

economic locations to be visited more frequently than other locations. Throughout the planning horizon,

we store T pallets to and retrieve T pallets from each of these most economic locations. Thus, the

solution to Problem (10) implies that for a balanced warehouse with no initial inventory, it is optimal

to first index its storage locations from the smallest location travel cost to the largest location travel

cost. We then visit a location with a smaller index more frequently than a location with a larger index.

Under the ranking by visit frequencies, the location with the highest visit frequency corresponds to

the location with the smallest location travel cost. Thus, ranking the locations by visit frequency and

ranking them by location travel cost are equivalent for the warehouse.
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