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Efficient Augmented Inverse Probability
Weighted Estimation in Missing Data Problems
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(jingqin@niaid.nih.gov)
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Department of Mathematics, University of Toledo, Toledo, OH 43606-3390 (bzhang@utnet.utoledo.edu)

Denis H.Y. LEUNG
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When analyzing data with missing data, a commonly used method is the inverse probability weighting
(IPW) method, which reweights estimating equations with propensity scores. The popularity of the IPW
method is due to its simplicity. However, it is often being criticized for being inefficient because most
of the information from the incomplete observations is not used. Alternatively, the regression method is
known to be efficient but is nonrobust to the misspecification of the regression function. In this article,
we propose a novel way of optimally combining the propensity score function and the regression model.
The resulting estimating equation enjoys the properties of robustness against misspecification of either
the propensity score or the regression function, as well as being locally semiparametric efficient. We
demonstrate analytically situations where our method leads to a more efficient estimator than some of its
competitors. In a simulation study, we show the new method compares favorably with its competitors in
finite samples. Supplementary materials for this article are available online.

KEY WORDS: Inverse probability weighting; Missing data; Regression estimate; Semiparametric
efficiency.

1. INTRODUCTION

In this article, we study regression problems in the pres-
ence of missing data. We assume that the data are missing at
random (MAR; Little and Rubin 2002), which implies that,
conditional on the observed, missingness and the unobserved
data are independent. One way to approach this problem is to
model the propensity score (Rosenbaum and Rubin 1983) or
the probability of missingness given the covariates, and use
the inverse of these estimates as weights to derive an estima-
tor through inverse probability weighting (IPW) of observed
outcomes (Horvitz and Thompson 1952). This approach was
used by Imbens (1992) in choice-based sampling, Robins and
Rotnitzky (1995) in nonlinear regression problems, Scharfstein,
Robins, and Rotnitzky (1999) in panel data analysis, Wooldridge
(2007) in M-estimation, and Hahn (1998) in treatment effects
models. Another approach is to model the regression of the out-
come given the covariates using the complete observations, and
to derive an estimator based on the fitted values for observed
and missing observations. Roberts, Rao, and Kumar (1987) used
this approach to study unemployment rate data collected in a
multi-level survey. Pepe, Reilly, and Fleming (1994) applied this
method in regression analyses with incomplete covariate infor-
mation. Cheng (1994) used this method to estimate the mean in
a nonparametric regression. A third approach derives estimators
using a combination of the propensity score and the regression
model (Robins, Rotnitzky, and Zhao 1994). This approach has
the attractive “doubly robust” property that estimators are con-
sistent as long as either the propensity score or the outcome
regression model is correctly specified. Furthermore, it attains

the semiparametric efficiency bound (Bickel et al. 1993) if both
the propensity score and outcome regression model are correct.
Robins, Rotnitzky, and Zhao (1994, 1995) used this method for
regression models with panel data. Bang and Robins (2005),
Wooldridge (2007), Cattaneo (2010), Uysal (2015), among oth-
ers, applied this method in treatment effects models. Słoczyński
and Wooldridge (2014) provided a unified framework for var-
ious doubly robust estimators of the average treatment effect
under unconfoundedness and Kang and Schafer (2007) showed
that doubly robustness can also be achieved by other means
(Särndal, Swensson, and Wretman 1989; Little and An 2004).

The class of estimators proposed by Robins, Rotnitzky, and
Zhao (1994) achieves double robustness by augmenting the IPW
by a function of the regression model, hence the estimators are
often referred to as augmented inverse probability weighted
(AIPW) estimators. Robins, Rotnitzky, and Zhao (1994) sug-
gested using maximum likelihood to estimate the parameters in
the propensity score and ordinary least squares to estimate the
parameters in the outcome regression model. However, Kang
and Schafer (2007) showed that it can be severely biased when
(1) the regression model and the propensity score function are si-
multaneously misspecified or (2) the propensity score function
is near zero for some observations. Kang and Schafer (2007)
pointed out that a reason for the poor performance of the AIPW
is due to inverse weighting of the propensity score. Recently,
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a number of works have suggested alternative doubly robust
estimators to address the problems demonstrated by Kang and
Schafer (2007). Most of these works differ from Robins, Rot-
nitzky, and Zhao (1994) in the way the outcome regression
model is estimated. For example, Kang and Schafer (2007) and
Rubin and van der Laan (2008) used weighted least squares to
estimate the parameters in the regression model. Tan (2006) and
Cao, Tsiatis, and Davidian (2009) proposed estimators by pro-
jection. On the other hand, Robins et al. (2007) and Cao, Tsiatis,
and Davidian (2009) proposed using alternative estimates of the
propensity score.

This article studies a new doubly robust method that addresses
the problems illustrated by Kang and Schafer (2007). The ad-
ditional robustness of the new method is achieved through a
novel combination of the component estimation equations of
the AIPW that is equivalent to the projection onto the largest
linear subspace spanned by the component estimation equations
(Tsiatis 2006, pp. 43–48). Previous works has focused on the
problem of estimating the mean of the outcome where data are
MAR, or in causal inference problems where the average treat-
ment effect is of interest. In contrast, the method proposed here
can be applied to more general missingness problems, where the
parameter of interest need not be restricted to a mean or treat-
ment effects parameter. Specifically, our method can be used
to estimate regression coefficient parameters in the regression
setup with MAR data. Even though doubly robust estimation is
not new (see, e.g., Graham, Pinto, and Egel 2012, and references
therein); however, we have proposed a new method which is
more efficient than Robins et al.’s double robust estimator when
the working regression model is misspecified.

2. MAIN RESULTS

Consider the situation where in the absence of missing data
one would observe a random sample V1, . . . , Vn, where each Vi

is a vector, typically Vi = (Yi,Xi, Zi). The goal is to estimate
a K-dimensional finite Euclidean-valued functional β = β(F ∗)
of the law F ∗ of V = (V ∗T ,WT )T under some model F for the
law of V when a subvector V ∗ of V is missing in a subsample.
Let D be the indicator function of missingness with value 1 if V ∗

is observed and 0 otherwise. This setup is completely general
and applies to a large variety of missing data problems. If we let
Yi,Xi, Zi denote, respectively, the potential outcome, covari-
ates of interest, and additional variables of Vi , then in missing
outcome problems, V ∗ consists of the subset of Yi correspond-
ing to Di = 0; in missing covariate problems, V ∗ consists of
the subset of Xi corresponding to Di = 0. If we assume Zi to
be always observed and let Zi contain information on auxiliary
variables, then Zi may be applied as proxies of missing out-
come or covariates. Finally in treatment effects/causal inference
models, Di = 0 for all subjects, Zi is a 0-1 treatment indicator,
Yi = (1 − Zi)Yi0 + ZiYi1 and V ∗ is the set of the unobserved
outcomes (Y10, Y11), . . . , (Yi0, Yi1), . . . , (Yn0, Yn1).

In the absence of missing data, we assume there exists a
K × 1 unbiased estimating function U (β) = U (V ; β) so that
we can obtain a full-data consistent and asymptotically normal
estimator β̂f of β under model {F} solving

En{U (β̂f )} = 0, (2.1)

where En is the empirical mean operator based on V and 0 rep-
resents a zero vector. In the sequel, we use 0 to represent either
a numeric zero, a zero vector or null matrix, where appropriate.
Under MAR,

P (D = 1|V ) = P (D = 1|W ). (2.2)

In practice, we may postulate a model

ω(W ; η) = P (D = 1|W,η), (2.3)

where η is a p-dimensional vector parameter. The unknown pa-
rameter η can be estimated by the maximum likelihood estimator
η̂, obtained as the solution to

En

[
D

ωη(W ; η̂)

ω(W ; η̂)
− (1 − D)

ωη(W ; η̂)

1 − ω(W ; η̂)

]
= 0,

where ωη(W ; η̂) = ∂ω(W ; η)/∂η|η=η̂. Assuming ω(W ; η) cor-
rectly specifies P (D = 1|W ), Robins, Rotnitzky, and Zhao
(1994) defined a class of AIPW estimators β̂AIPW by solving
the following augmented estimating equation

En

[
D

ω(W, η̂)
U (β̂AIPW) − A

(
W, q(W ; β̂AIPW)

)] = 0, (2.4)

where

A(W ; q) = D − ω(W ; η̂)

ω(W ; η̂)
q(W ; β)

and q ≡ q(W ; β) is any arbitrary K × 1 function of W and β.
Robins, Rotnitzky, and Zhao (1994) showed that, if model (2.3)
is correct, then with no additional assumptions on the distribu-
tion of the data, all consistent and asymptotically normal estima-
tors are derived from estimating equations of the form (2.4). The
optimal q(W ; β) leading to the smallest asymptotic variance is
qopt(W ; β) = E[U (β)|W ], where E denotes expectation taken
under F ∗. Robins, Rotnitzky, and Zhao (1994) demonstrated
that estimators derived using estimation equations of the form
(2.4) possess a “double robustness” property, that is, estimators
are consistent if either the propensity score model (2.3) is cor-
rect or the outcome regression q(W ; β) = qopt(W ; β), given the
observed data. When both (2.3) and q(W ; β) are correct, then
using (2.4) leads to semiparametric locally efficient estimators.
Robins, Rotnitzky, and Zhao (1994) proposed using maximum
likelihood (ML) for estimating η. In the context of treatment
effects and mean outcome estimation, Rubin and van der Laan
(2008) and Tan (2008) proposed using weighted least squares to
estimate η, which lead to an estimator with minimum asymptotic
variance when q(W ; β) �= qopt(W ; β). Other proposals that use
the augmented estimating Equation (2.4) differ mainly in their
methods of estimating the parameters η and β. For simplicity,
in the following, we refer the estimator of Robins, Rotnitzky,
and Zhao (1994) as AIPW.

In practice, without any knowledge on the distribution of W,
E[U (β)|W ] is unknown. We may postulate a “working regres-
sion model” h(W ; β, γ ) where γ is an extra parameter char-
acterizing the relationship between W and other variables. If
h(W ; β, γ ) �= E[U (β)|W ], then using (2.4) no longer leads to
an efficient estimator. This is because the simple difference of
the estimating functions {D/ω(W ; η̂)}U (β) and A(W, q) may
not produce the optimal combination of estimating equations.
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Based on Godambe’s (1960) optimal estimating function the-
ory, it is not difficult to construct an optimal combination of
these two estimating functions. However, the resulting optimal
estimating equation may not have the double robustness
property.

Intuitively, combining {D/ω(W ; η̂)}U (β) and A(W, q) is
equivalent to combining the estimating functions

D

ω(W ; η̂)
U (β) − A(W ; q) and A(W, q). (2.5)

Since AIPW has the double robustness property, it is possible
to make the combined estimating equations inherit the same
property.

The score estimating function for η can be written as

A(W ; q̃) = {D − ω(W ; η̂)} ωη(W ; η̂)

ω(W ; η̂){1 − ω(W ; η̂)} ,

where q̃ ≡ q̃(W ) = ωη(W ; η̂)/{1 − ω(W ; η̂)}. Define a
(K + p)-dimensional vector A(W ; q1, q2)T = [A(W ; q1)T ,

A(W ; q2)T ]T for any q1, q2. We will show that the estimator
β̂AIPWnew that solves

En

[
D

ω(W ; η̂)
U (β̂AIPWnew ) − A(W ; q̂) − τ̂ T A(W ; q̂, q̃)

]
= 0

(2.6)

has the double robustness property by using a careful choice
of a K × (K + p) matrix τ̂ = B̂1B̂

−1
2 , where q̂ ≡ q̂(W, β̂) is

defined in Step 2 below and

B̂1 = n−1
n∑

i=1

Di{1 − ω(Wi ; η̂)}{Ui(β̂) − q̂(Wi ; β̂)}
ω2(Wi ; η̂)

[
q̂(Wi ; β̂)
q̃(Wi)

]

B̂2 = n−1
n∑

i=1

{Di − ω(Wi, η̂)}2

ω2(Wi, η̂)

[
q̂(Wi ; β̂)T

q̃(Wi)T

]
[q̂(Wi ; β̂), q̃(Wi)].

We can observe two properties:

1. When model (2.3) is correct, τ̂ converges in probability to
the least squares coefficient τ ∗ in the population regres-
sion of {D/ω(W ; η∗)}U (β∗) − A(W ; q∗) on A(W ; q∗, q∗∗)
where β∗ is the true value of β, q∗ = h(W ; β∗, η∗), q∗∗ =
ωη(W ; η∗)/{1 − ω(W ; η∗)}.

2. When q(W ; β) = E[U (β)|W ], τ̂ converges to 0 in probabil-
ity.

Before we present the large sample properties of the pro-
posed method, we summarize the overall approach. The method
proposed here is a three-step procedure:

Step 1. A parametric model ω(W ; η) for the propensity score
function is fitted using the data. A commonly used
model here is a logit model linear in W. This step gives
ω(W ; η̂).

Step 2. We require a working model q̂(W ; β) ≡ h(W ; β, γ̂ ) for
E[U (β)|W ]. A natural choice is to consider a regres-
sion model of U (β) as a function of W. Then based
on an initial estimate of β, say β̂, we find q̂(W ; β̂) =
h(W ; β̂, γ̂ ) by regressing U (β̂) on W. For example, we
can use either the modified Cao, Tsiatis, and Davidian’s
(2009) method minγ

∑n
i=1 di(1 − wi)/w2

i [Ui(β̂) −

h(wi, β̂, γ )]2 or the weighted least-square method
minγ

∑n
i=1(di/wi)[Ui(β̂) − h(wi, β̂, γ )]2.

Step 3. Using q̂(W ; β̂) from Step 2, we can find τ̂ . Finally, the
estimate of β is estimated using (2.6). These three steps
can be iterated until convergence.

We now give the large sample properties of our method:

Theorem 1. Under the same regularity conditions specified
in Robins, Rotnitzky, and Zhao (1994).

(i) If either P(D = 1|W ) or E[U (β)|W ] is correctly speci-
fied, then the estimator β̂AIPWnew is a consistent and asymp-
totically normal estimator for β∗, the true value of β.

(ii) If P(D = 1|W ) is correctly specified, then for a “work-
ing regression function” q(W ; β)(which need not be the
same as E[U (β) | W ]), β̂AIPWnew has asymptotic variance
as least as small as those of the IPW estimator β̂IPW and
AIPW estimator β̂AIPW. There are no general results on
the comparison of the asymptotic variances between β̂IPW

and β̂AIPW.

(iii) When both P(D = 1|W ) and E[U (β)|W ] are correctly
specified, then β̂AIPWnew and β̂AIPW have the same asymp-
totic variance and both are asymptotically semiparametric
efficient.

Proof.

(i) We first assume P(D = 1|W ) is correctly specified. We
note that

A(W ; q̂) − τ̂ T A(W ; q̂, q̃)

= D − ω(W ; η̂)

ω(W ; η̂)

[
q̂ − τ̂ T

1 q̂ − τ̂ T
2 q̃
]
,

which is in the form of A(W ; q) for q = q̂ − τ̂ T
1 q̂ − τ̂ T

2 q̃.
Hence, (2.6) is in the form of (2.4) and β̂AIPWnew is con-
sistent and asymptotically normal by the proof in Robins,
Rotnitzky, and Zhao (1994).
On the other hand, if q(W ; β) = E[U (β)|W ], then by
the second property stated before the theorem, β̂AIPWnew

is asymptotically the same as β̂AIPW and the claim is
satisfied.

(ii) When model (2.3) is correct, β̂AIPWnew has the same limit-
ing distribution as the estimator that solves

En

[
D

ω(W ; η̂)
U (β) − A(W ; q∗) − τ ∗T A(W ; q∗, q∗∗)

]
= 0.

Since the left-hand second and third terms in the above
equation are of the form A(W ; q) for q = q∗ − τ ∗T

1 q∗ −
τ ∗T

2 q∗∗, the following expansion around the true value β∗

of β follows from Robins, Rotnitzky, and Zhao (1994)

√
n(β̂AIPWnew − β∗) = I−1

[
En

{
D

ω(W ; η̂)
U (β∗)

−A(W ; q∗) − τ ∗T A(W ; q∗, q∗∗)

− ν∗T A(W ; q∗∗)

}]
+ op(1),
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where ν∗ is the least-squares coefficient of the regres-
sion of D

ω(W ;η̂)U (β∗) − A(W ; q∗) − τ ∗T A(W ; q∗, q∗∗) on

A(W ; q∗∗) and I = E[ ∂
∂β

U (β)|β=β∗ ].
For any S1, S2, let 	(S1|S2) denote the least-squares
projection of S1 on S2 and write M = D

ω(W ;η̂)U (β∗) −
A(W ; q∗). Since A(W ; q∗) and A(W ; q∗∗) are both in the
space spanned by A(W ; q∗, q∗∗), we can write

M − τ ∗T A(W ; q∗, q∗∗) − ν∗T A(W ; q∗∗)

= M − 	
[
M
∣∣A(W ; q∗, q∗∗)

]
−	

[
M − 	

[
M
∣∣A(W ; q∗, q∗∗)

]∣∣A(W ; q∗∗)
]

= M − 	
[
M
∣∣A(W ; q∗, q∗∗)

]
= D

ω(W ; η̂)
U (β∗)

−	

[
D

ω(W ; η̂)
U (β∗)

∣∣A(W ; q∗, q∗∗)

]
,

where the second identity is because M −
	[M|A(W ; q∗, q∗∗)] is orthogonal to A(W ; q∗∗)
and the third identity is because the residual from the
the projection of D

ω(W ;η̂)U (β∗) − A(W ; q∗) on the space
spanned by A(W ; q∗, q∗∗) is the same as that from the
projection of D

ω(W ;η̂)U (β∗) on the space spanned by
A(W ; q∗, q∗∗).
The asymptotic variance of β̂AIPWnew is

I−1var

[
D

ω(W ; η̂)
U (β∗)

−	

[
D

ω(W ; η̂)
U (β∗)

∣∣A(W ; q∗, q∗∗)

]]
I−1

which cannot be larger than the asymptotic variance of
β̂IPW, which is

I−1var

[
D

ω(W ; η̂)
U (β∗)

−	

[
D

ω(W ; η̂)
U (β∗)

∣∣∣∣A(W ; q∗∗)

]]
I−1

because the variance in the middle is for the residual of a
projection into the smaller space spanned by A(W ; q∗∗).
It is also not larger than that of β̂AIPW, which has asymp-
totic variance

I−1var

[
D

ω(W ; η̂)
U (β∗) − A(W ; q∗)

−	

[
D

ω(W ; η̂)
U (β∗) − A(W ; q∗)

∣∣∣∣A(W ; q∗∗)

]]
I−1

because the variance in the middle is that of D
ω(W ;η̂)U (β∗)

minus some linear combination of A(W ; q∗) and
A(W ; q∗∗).
This proves that the asymptotic variance of β̂AIPWnew is
smaller than those of β̂IPW and β̂AIPW.

(iii) When the working model is correct, then A(W ; q∗) is the
projection of D

ω(W ;η̂)U (β∗) into the largest space spanned
by all functions of the form A(W ; q) for any q as pointed

by Robins, Rotnitzky, and Zhao (1994), hence

D

ω(W ; η̂)
U (β∗) − 	

[
D

ω(W ; η̂)
U (β∗)

∣∣A(W ; q∗, q∗∗)

]

= D

ω(W ; η̂)
U (β∗) − A(W ; q∗)

and likewise

	

[
D

ω(W ; η̂)
U (β∗) − A(W ; q∗)

∣∣∣∣A(W ; q∗∗)

]
= 0.

Consequently, the asymptotic variances of β̂AIPWnew and
β̂AIPW coincide when the working regression model is
correct. Furthermore, they are semiparametric efficient
due to the results in Robins, Rotnitzky, and Zhao (1994).

3. SIMULATION STUDY

In this section, we report the results of a Monte Carlo sim-
ulation study to evaluate the finite sample performance of the
proposed estimator. Three separate sets of simulations were car-
ried out. In the first set of simulations, the goal was to estimate
the mean value of the outcome in a regression model. In the
second set of simulations, the goal was to estimate the regres-
sion parameters. For the third set of simulations, we study the
finite sample higher order bias. In each set of simulations, we
compare the estimator to several alternative estimators.

3.1 Estimation of Mean

For the first set of simulations, the alternative estimators we
consider are the inverse probability weighted method, hence-
forth IPW; the parametric imputation estimator as described in
Rubin (1977), henceforth PI; the nonparametric regression esti-
mator of Chen, Hong, and Tarozzi (2008), henceforth CHT; the
augmented inverse probability weighted estimator of Robins,
Rotnitzky, and Zhao (1994), henceforth AIPW; the projection
estimator of Cao, Tsiatis, and Davidian (2009), henceforth CTD;
the inverse probability tilting estimator of Graham, Pinto, and
Egel (2012), henceforth IPT. We refer the estimator proposed in
this article as AIPWnew.

The first set of simulations was set up in the following way.
For the ith observation, let Zi = (Zi1, Zi2, Zi3, Zi4) be gener-
ated from a standard multivariate normal distribution and let
ei be a standard normal deviate independent of Zi . Further-
more, let Xi = (Xi1, Xi2, Xi3, Xi4) be the observed covariate
vector. We let Yi be the outcome and we allowed the out-
come to be MAR for some observations and we denote the
missingness indicator for the ith observation by Di . We write
a = (a0, a1, a2, a3, a4)T and b = (b0, b1, b2, b3, b4)T , then we
consider four different designs for the simulation study. For De-
signs 1 and 3, Yi = bT (1, Xi) + ei whereas for Designs 2 and 4,
Yi = bT (1, Zi) + ei . For Designs 1 and 2, Di is a Bernoulli
variable such that logitP(Di = 1) = aT (1, Xi), whereas for
Designs 3 and 4, logitP(Di = 1) = aT (1, Zi). In Design 1,
Xi = Zi and in Designs 2 to 4, we let Xi1 = exp(Zi1/2),
Xi2 = Zi2/{1 + exp(Zi1)} + 10, Xi3 = (Zi1Zi3/25 + 0.6)3 and
Xi4 = (Zi2 + Zi4)2. These models and the values of a and b
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Table 1. Models and values of the parameters for the four designs
used in the simulation study

Design 1 Design 2 Design 3 Design 4

Yi bT (1, Xi) + ei bT (1, Zi) + ei bT (1, Xi) + ei bT (1, Zi) + ei

logitDi aT (1, Xi) aT (1, Xi) aT (1, Zi) aT (1, Zi)
a0 0 −65 0 0
a1 −1 −1.7 −1 −1
a2 0.5 0.87 0.5 0.5
a3 −0.25 0.23 −0.25 −0.25
a4 −0.1 0 −0.1 −0.1
b0 210 210 35.4 210
b1 27.4 27.4 51.3 27.4
b2 13.7 13.7 0 13.7
b3 13.7 13.7 −130 13.7
b4 13.7 13.7 0 13.7

used for each design are summarized in Table 1. These designs
are similar to the simulation set-ups used in Kang and Schafer
(2007), Cao, Tsiatis, and Davidian (2009) and others for evalu-
ating the performance of doubly robust estimators. For each of
the four designs, we use 5000 simulation runs with N = 1000
observations each.

Throughout the simulations, the estimators IPW, AIPW, IPT,
CTD, and AIPWnew use a logistic model for the propensity
model that is linear in Xi . For estimators that require an out-
come regression model, a model linear in Xi was used for PI,
AIPW, CTD, and AIPWnew and a polynomial model that in-
cludes a linear as well as a quadratic term in Xi is used in CHT.
Therefore, for Design 1, all estimators are expected to be unbi-
ased; for Design 2, estimators that used only a propensity score
model (IPW) or the doubly robust estimators (IPT, AIPW, CTD,
AIPWnew) are expected to be unbiased; for Design 3, estimators
that only use an outcome regression model (PI, CHT) and the
doubly robust estimators (IPT, AIPW, CTD, AIPWnew) are ex-
pected to be unbiased; for Design 4, none of the estimators are
expected to be unbiased.

The results of this set of simulations are given in Tables 2
and 3. Recall that the goal of this study is to estimate the mean
value of the outcome. For each estimator, we calculate the fol-
lowing statistics: (1) the median bias (Bias), which is defined
as the Monte Carlo median of the difference between an esti-
mate and the true value; (2) the median standard error (MSE),
which is defined as the Monte Carlo standard error based on the
asymptotic sandwich estimator; (3) the median absolute devi-
ation (MAE), which is defined as the Monte Carlo median of
the absolute value of the difference between an estimate and
the true value; (4) the standard deviation (SD), which is defined
as the Monte Carlo standard deviation of the estimates; (5) the
root mean squared error (RMSE), which is defined as the square
root of the Monte Carlo mean squared error and (6) the 95%
coverage probability (COV) which is defined as the proportion
of times the true value falls inside the 95% confidence interval
based on estimate ±1.96˜SE.

Table 2, top panel, shows the results for Design 1. In this
design, all estimators are expected to be unbiased in theory.
However, the results show some bias for IPW, and so for this
estimator, even though its standard error (as seen by the values

Table 2. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 1 (Designs 1 and 2)

with sample size N = 1000 each

Estimator Bias MSE MAE SD RMSE COV

Design 1
IPW −0.175 1.496 1.133 1.749 1.750 0.930
IPT 0.011 1.138 0.795 1.165 1.165 0.943
CHT 0.010 1.145 0.791 1.164 1.164 0.944
PI 0.009 1.145 0.794 1.164 1.164 0.945
AIPW 0.010 1.145 0.794 1.165 1.165 0.944
CTD 0.014 1.145 0.796 1.165 1.165 0.944
AIPWnew 0.013 1.145 0.795 1.165 1.165 0.945

Design 2
IPW −0.437 1.395 1.239 2.564 2.570 0.908
IPT 0.355 1.108 0.938 1.319 1.363 0.873
CHT −1.023 1.340 1.266 1.556 1.870 0.846
PI 2.279 1.592 2.280 1.449 2.697 0.724
AIPW 0.546 1.493 1.297 3.302 3.307 0.917
CTD 0.186 1.265 0.969 1.425 1.438 0.921
AIPWnew 0.267 1.350 0.921 1.331 1.357 0.954

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.

of MSE) is usually considerably higher than those of the other
estimators, there is still under coverage by its 95% confidence
interval; furthermore, IPW has a much bigger SE than the other
estimators. The results for the other estimators are similar; all
are approximately unbiased and the coverages are all close to
the 95% level.

In Design 2 (Table 2, bottom panel), PI is expected to perform
poorly and its poor performance is confirmed by the simulation
results. All the other estimators are theoretically unbiased but all
show some biases with the most serious bias seen in CHT. For

Table 3. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 1 (Designs 3 and 4)

with sample size N = 1000 each

Estimator Bias MSE MAE SD RMSE COV

Design 3
IPW 6.263 3.771 6.263 23.08 26.28 0.757
IPT 0.063 1.081 0.679 1.010 1.012 0.963
CHT 0.080 0.990 0.677 1.012 1.015 0.948
PI 0.066 0.989 0.678 1.010 1.012 0.949
AIPW 0.072 0.993 0.692 1.780 1.780 0.948
CTD 0.066 0.989 0.680 1.011 1.013 0.949
AIPWnew 0.066 0.992 0.680 1.011 1.013 0.950

Design 4
IPW 2.171 2.474 2.584 11.07 12.20 0.886
IPT −2.745 1.179 2.746 1.544 3.164 0.379
CHT −2.192 1.356 2.199 1.542 2.717 0.631
PI −0.802 1.658 1.190 1.500 1.692 0.949
AIPW −5.224 2.415 5.224 293.7 294.5 0.606
CTD −1.824 1.281 1.849 1.527 2.399 0.698
AIPWnew −1.746 2.105 1.773 1.347 2.192 0.936

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.
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CHT, the logistic model for using a quadratic term in Xi failed
to converge in a number of simulation runs, which indicates
that including a quadratic term actually hurts in this case. The
coverage for CHT suffers as a result. The standard error of
IPT (as seen by MSE) is much smaller than those of the other
estimators. This leads to a much shorter 95% confidence for IPT
and subsequently for this estimator, there is significant under
coverage. All the other doubly robust estimators (AIPW, CTD,
AIPWnew) perform quite well in this case, with AIPWnew the
best performance in terms of matching the coverage to the 95%
level. Table 3, top panel, shows the results when it is not possible
from the observed data to correctly identify model the propensity
score function. In this situation, estimators that use a wrong
propensity score model should perform poorly, as reflected in
the results for IPW, which shows significant bias, as well as
a very high SE and poor coverage. AIPW, though unbiased in
this case, is much less efficient than the other estimators, as
evidenced by its large SE and RMSE. The performance of the
other estimators are similar but there is some over coverage in
IPT due to its relatively large MSE.

None of the estimators is expected to be unbiased in Design 4
(Table 3, bottom panel); IPT, AIPW, CTD, and CHT performed
particularly poorly. The best performances are seen in PI and
AIPWnew.

In addition, we also calculated the semiparametric variance
bounds based on Robins, Rotnitzky, and Zhao (1994), assuming
the correct model is used, as benchmarks to evaluate the differ-
ent methods. For the four designs in this section, the variance
bounds are: 1.15, 1.15, 0.99, 1.15, respectively. These bounds
are relevant only when the estimators correctly use the right
model, as in the cases of Designs 1 and 3. Comparing the esti-
mators to the variance bounds, we observe that for all estimators
except IPW and AIPW, the SDs are close to variance bounds
for both Designs 1 and 3. The well-known inefficiency of IPW
is reflected in Design 1; for Design 3, IPW is biased by design.
For AIPW, the results are close to the variance bound for Design
1 but not in Design 3.

We also carried out a set of simulations based on mod-
els originally considered in Kang and Schafer (2007). These
models mimic situations when one or both of the propensity
score function and the outcome regression model is slightly
misspecified. Kang and Schafer (2007) showed that some esti-
mators performed poorly under these models. Hence, this set
of simulations is useful to study the robustness of the pro-
posed method and how it compares to other estimators. The
models used by Kang and Schafer (2007) are similar to those
in the first set of simulations. Let Zi,Di, ei , a, and b be de-
fined as in the first set of simulations, and Xi1 = exp(Zi1/2),
Xi2 = Zi2/{1 + exp(Zi1)} + 10, Xi3 = (Zi1Zi3/25 + 0.6)3 and
Xi4 = (Zi2 + Zi4 + 20)2. Furthermore, let Yi = bT (1, Zi) + ei

and logitP(Di = 1) = aT (1, Zi). The values of a and b are the
same as those for Design 1 in Table 1. Four different situations
were used in Kang and Schafer (2007), that correspond to (1)
both the outcome regression model and the propensity score
function are correctly fitted using Zi , (2) only the propensity
function is correctly fitted using Zi , (3) only the outcome re-
gression model is correctly fitted using Zi , and (4) both models
incorrectly fitted using Xi . We called these Designs 1’, 2’, 3’,
and 4’. Incidentally, Design 1’ is the same as Design 1, but we

Table 4. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 1’ (Designs 1’ and 2’)

with sample size N = 1000 each

Estimator Bias MSE MAE SD RMSE COV

Design 1’
IPW 0.013 1.145 0.794 1.163 1.163 0.945
IPT 0.010 1.138 0.795 1.165 1.165 0.943
CHT 0.009 1.145 0.791 1.164 1.164 0.944
PI 0.008 1.145 0.794 1.164 1.165 0.945
AIPW 0.009 1.145 0.794 1.165 1.165 0.944
CTD 0.012 1.149 0.796 1.165 1.165 0.946
AIPWnew 0.011 1.145 0.795 1.165 1.165 0.945

Design 2’
IPW −0.066 1.496 1.105 1.721 1.721 0.943
IPT −0.022 1.151 0.774 1.145 1.146 0.950
CHT −1.931 1.197 2.313 1.494 2.759 0.510
PI −0.492 1.658 1.167 1.496 1.698 0.950
AIPW 0.073 1.448 1.063 1.658 1.660 0.947
CTD 0.022 1.169 0.777 1.156 1.156 0.953
AIPWnew 0.073 1.602 0.865 1.261 1.268 0.986

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.

include Design 1’ here for completeness. This set of simulation
also uses 5000 simulation runs of each situation, based on 1000
observations each.

The results of simulation study (Study 1’) are given in
Tables 4 and 5. The top panel of Table 4 shows similar re-
sults as those from Design 1, as expected. The bottom panel of
Table 4 shows that both CHT and PI are biased, as to be expected
because both methods fit a wrong outcome regression model
and neither is doubly robust. The confidence interval coverage
of CHT is severely affected by the bias, whereas, the moderate

Table 5. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 1’ (Designs 3’ and 4’)

with sample size N = 1000 each

Estimator Bias MSE MAE SD RMSE COV

Design 3’
IPW 0.862 2.455 2.536 9.850 10.93 0.880
IPT −0.011 1.140 0.791 1.165 1.165 0.947
CHT −0.012 1.146 0.791 1.165 1.165 0.946
PI −0.013 1.146 0.788 1.165 1.165 0.947
AIPW −0.011 1.150 0.796 2.392 2.392 0.947
CTD −0.011 1.150 0.790 1.165 1.165 0.948
AIPWnew −0.010 1.149 0.789 1.165 1.166 0.948

Design 4’
IPW 0.878 2.474 2.584 11.07 12.20 0.886
IPT −2.328 1.179 2.746 1.544 3.164 0.379
CHT −1.869 1.197 2.240 1.510 2.740 0.527
PI −0.484 1.658 1.190 1.500 1.692 0.949
AIPW −2.163 2.415 5.224 293.7 294.5 0.606
CTD −0.931 1.348 1.328 1.268 1.772 0.873
AIPWnew −0.829 2.105 1.773 1.347 2.192 0.936

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.
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bias of PI has no effect on the coverage, probably because of its
large MSE. All other methods perform satisfactorily, in all di-
mensions considered. However, for AIPWnew, there is moderate
over coverage. For Design 3’, all methods except IPW perform
satisfactorily. The performance of IPW is especially bad, with
a large bias, large RMSE and its confidence interval severely
conservative. AIPW, though being unbiased, has RMSE quite
a bit larger than those of the remaining methods. In Design 4’,
no method is supposed to give unbiased estimate. However, the
data affect the estimators quite differently. The bias of IPT is
quite large here, and the confidence interval coverage is severely
compromised; the results here is similar to IPT’s performance
in Design 4. IPW, CHT, and AIPW all perform poorly, in one di-
mension of another. There is moderate under coverage of CDT;
the two methods that have the best overall performance are PI
and AIPWnew. We note in passing that in these simulations, PI
seems to perform quite satisfactorily. This is because these sim-
ulations were designed to mimic situations where the regression
outcome model is only slightly misspecified, and so PI, which
uses a regression model, is not severely affected.

The variance bounds for Designs 1’–4’ are all 1.15. A similar
pattern emerges for the different estimators, that is, for Designs
1’ and 3’, all estimators except IPW and AIPW perform well.

3.2 Estimation of Regression Parameters

In this set of simulations, for the ith observation, the outcome
Yi is generated using a linear model Yi = βT (1, Xi, Zi) + ei ,
where Xi and ei are independent standard normal random vari-
ables, Zi is a binary random variable with P(Zi = 1) = 0.5 and
β ≡ (β0, β1, β2)T is the vector of regression parameters. We
allow Zi to be MAR for some observations. The missingness
indicator for the ith observation, Di is a Bernoulli variable such
that logitP(Di = 1) = aT (1, Yi, Xi), where a = (a0, a1, a2)T .
Throughout this set of simulations, we used β = (−2, 1, 2)
and we considered four different combinations of the values
of a = (−1, 0, 0), (−1, 0.2, 0.2), (−1, 0.4, 0.4), (−1, 0.6, 0.6).
We call these Designs 5–8 and they correspond to different
levels of dependency of the missingness on the observed data,
ranging from missing completely at random to heavily MAR.

For this set of simulations, we compare AIPWnew to four
competitors (IPW, AIPW, IPT, and CHT) that are designed to
estimate regression parameters. For all estimators, we use a
logistic model for the propensity model that is linear in Yi and
Xi . For AIPW and AIPWnew, we used an outcome regression
model a logistic outcome regression model that is linear in Yi

and Xi and then we calculated h(W ; β, γ̂ ) = q̂(W ; β) based on
this logistic outcome regression model. Note that this logistic
outcome regression model is not the correct model so we do
not expect methods to be efficient. For all methods, we allow
the form of the propensity score be known with the parameters
estimated using the data. More details are given in a set of online
supplementary materials, where additional simulation results
are also given.

Once again, we use 5000 simulation runs with N = 1000
observations in each simulation run. The results of this set of
simulations are recorded in Tables 6 and 7. For each regression
parameter, we calculate the same statistics for each estimators,
as we did in the first set of simulations, that is, Bias, MSE, MAE,

Table 6. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 2 (Designs 5 and 6)

with sample size N = 1000 each

Parameter Estimator Bias MSE MAE SD RMSE COV

Design 5
β0 IPW −0.003 0.107 0.055 0.078 0.078 0.993

AIPW −0.003 0.065 0.044 0.065 0.065 0.947
AIPWnew −0.006 0.075 0.043 0.064 0.064 0.976
IPT −0.003 0.078 0.054 0.078 0.078 0.949
CHT −0.003 0.086 0.055 0.079 0.079 0.970

β1 IPW 0.000 0.061 0.042 0.063 0.063 0.949
AIPW −0.001 0.046 0.033 0.048 0.048 0.939
AIPWnew −0.001 0.052 0.033 0.048 0.048 0.961
IPT 0.000 0.060 0.042 0.062 0.062 0.944
CHT 0.000 0.061 0.043 0.063 0.063 0.942

β2 IPW 0.002 0.123 0.083 0.123 0.123 0.946
AIPW 0.006 0.089 0.062 0.091 0.091 0.947
AIPWnew 0.009 0.107 0.058 0.086 0.087 0.980
IPT 0.003 0.121 0.083 0.123 0.123 0.943
CHT 0.004 0.122 0.084 0.124 0.124 0.946

Design 6

β0 IPW 0.001 0.128 0.065 0.097 0.097 0.989
AIPW −0.003 0.068 0.047 0.069 0.069 0.945
AIPWnew −0.005 0.084 0.045 0.067 0.067 0.978
IPT 0.000 0.086 0.061 0.088 0.088 0.945
CHT 0.002 0.123 0.070 0.104 0.104 0.978

β1 IPW −0.002 0.072 0.049 0.074 0.074 0.942
AIPW −0.001 0.051 0.036 0.055 0.055 0.929
AIPWnew −0.002 0.058 0.036 0.055 0.055 0.961
IPT −0.003 0.068 0.048 0.073 0.073 0.932
CHT −0.006 0.081 0.061 0.093 0.093 0.918

β2 IPW 0.001 0.140 0.095 0.140 0.140 0.952
AIPW 0.006 0.095 0.067 0.098 0.098 0.941
AIPWnew 0.012 0.117 0.064 0.094 0.095 0.973
IPT 0.001 0.136 0.094 0.139 0.139 0.944
CHT −0.003 0.145 0.107 0.158 0.158 0.933

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.

SD, RMSE and COV. For Designs 5-6, IPW, IPT, and CHT are
considerably less efficient than either AIPW or AIPWnew. Both
AIPW and AIPWnew are similar for these two designs. All five
estimators are approximately median unbiased for these designs.
For Designs 7 and 8, however, when the estimated propensity
scores for some of the observations can be close to zero, all
three designs are affected in the sense that the median bias is
non-negligible. The estimator AIPW stands out in having some
very large Monte-Carlo SDs (Design 7), while for the remaining
estimators, the order of efficiency are AIPWnew, IPT, IPW, and
then CHT. Of note in Designs 7 and 8 is, except AIPWnew, the
coverage probability of all estimators are quite seriously biased.

The semiparametric variance bounds for β ≡ (β0, β1, β2)T

are 0.051, 0.033, and 0.077, respectively. We notice that the
relative efficiency of all methods decreases as the degree of
MAR increases. Across all methods, AIPWnew again performs
the best, but even so, for Design 8, its relative efficiency is
still low. It is interesting to observe that whereas the propensity
score is ancillary to the semiparametric variance bound for the
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Table 7. Simulation results based on 5000 Monte Carlo replications
for Simulation Study 2 (Designs 7 and 8)

with sample size N = 1000 each

Parameter Estimator Bias MSE MAE SD RMSE COV

Design 7
β0 IPW 0.013 0.156 0.090 0.138 0.138 0.969

AIPW −0.008 0.073 0.051 0.859 0.860 0.938
AIPWnew −0.014 0.106 0.050 0.074 0.076 0.975
IPT 0.007 0.098 0.071 0.108 0.108 0.920
CHT 0.012 0.192 0.104 0.159 0.159 0.974

β1 IPW −0.013 0.086 0.068 0.104 0.104 0.911
AIPW 0.000 0.057 0.046 0.777 0.777 0.912
AIPWnew −0.002 0.066 0.046 0.070 0.070 0.949
IPT −0.012 0.080 0.065 0.098 0.099 0.887
CHT −0.031 0.144 0.108 0.165 0.166 0.916

β2 IPW −0.001 0.168 0.118 0.180 0.180 0.947
AIPW 0.023 0.103 0.077 1.495 1.495 0.928
AIPWnew 0.039 0.145 0.079 0.112 0.116 0.964
IPT 0.000 0.157 0.115 0.174 0.174 0.927
CHT −0.008 0.199 0.156 0.236 0.236 0.910

Design 8
β0 IPW 0.042 0.183 0.132 0.202 0.204 0.914

AIPW −0.012 0.081 0.060 0.179 0.180 0.915
AIPWnew −0.021 0.159 0.060 0.094 0.097 0.978
IPT 0.018 0.112 0.097 0.143 0.144 0.872
CHT 0.036 0.292 0.155 0.240 0.242 0.956

β1 IPW −0.036 0.100 0.096 0.142 0.145 0.837
AIPW −0.006 0.062 0.059 0.151 0.151 0.883
AIPWnew −0.011 0.078 0.059 0.092 0.092 0.926
IPT −0.032 0.099 0.091 0.134 0.138 0.799
CHT −0.085 0.324 0.179 0.257 0.266 0.972

β2 IPW −0.016 0.200 0.158 0.243 0.243 0.914
AIPW 0.042 0.113 0.094 0.248 0.251 0.888
AIPWnew 0.071 0.202 0.105 0.149 0.161 0.947
IPT −0.007 0.182 0.151 0.231 0.231 0.890
CHT −0.033 0.284 0.220 0.337 0.338 0.900

NOTES: Bias: Median bias. MSE: Median standard error using asymptotic formula. MAE:
Median absolute deviation. SD: Monte Carlo standard deviation. RMSE: Root mean squared
error. COV: Monte Carlo coverage of 95% confidence intervals.

estimation of β (see, e.g., Hahn 1998), the level of precision
to which the methods can estimate the unknown parameters is
affected by the propensity score in finite sample problems.

3.3 Higher Order Bias

When both the outcome regression model and the propensity
score functions are correctly specified, the four doubly robust es-
timators, i.e., AIPW, AIPWnew, IPT, and CTD, are all equivalent
and they are all semiparametric equivalent, to order O(N−1/2).
Hence, one way to compare and contrast the estimators is to
study their higher order bias behavior. Using results in Newey
and Smith (2004), Graham, Pinto, and Egel (2012, Theorem
4.1) developed higher order bias expressions for their IPT es-
timator and the general doubly robust estimators. We will use
these results to study the finite sample higher order of AIPWnew

and compare the results to other estimators here. The results in
Graham, Pinto, and Egel (2012) are derived under the assump-
tions that the propensity score function and outcome regression

model can be correctly modeled (Assumption 1.5 and Assump-
tion 2.1 in their article). However, we would like to compare the
estimators under the scenarios when both the propensity score
and outcome regression models are correctly specified, and also
when only one of them is correctly specified. Hence, we derived
the higher order bias expressions here for the four estimators
under these more general situations (see the Appendix).

We focused on the data-generating mechanisms considered
in simulation study 1’ in this section. Following Newey and
Smith (2004, Lemma A4), suppose θ is a L-dimensional vector
of parameters defined by a set of estimating equations

E{h(θ )} = 0, (3.1)

and θ̂ is the solution to the equations

En{h(θ̂)} =
N∑

i=1

hi(θ̂ ) = 0. (3.2)

Then under suitable regularity conditions as defined in Newey
and Smith (2004), the higher order bias, to O(n−1), is given by

Bias(θ̂) = −H−1

N

(
Q̃φ̃ + 1

2

L∑
l=1

φ̃lHlφ̃

)
, (3.3)

where

H = E

(
∂hi(θ )

∂θT

)
, Hl = E

(
∂2mi(θ )

∂θl∂θT

)
,

φi(θ ) = −H−1hi(θ ), φ̃ = 1

N

N∑
i=1

φi(θ ),

Qi = ∂hi(θ )

∂θT
− H, Q̃ = 1

N

N∑
i=1

Qi,

and φ̃l stands for the lth row of φ̃. Note that (3.3) applies for
doubly robust estimators as long as one or both of the outcome
regression model or propensity score function is correctly spec-
ified, but not when both models are incorrect. Since all four
doubly robust estimators can be written as the solution to esti-
mating equations of the form (3.2), we can use (3.3) to study
their higher order bias.

The ingredients for Bias(θ̂ ) for the four doubly robust estima-
tors are given in the Appendix, under the designs in simulation
study 1’–3’. We used simulations to verify the higher order
biases. In each set of simulations, we generated N = 500 obser-
vations and repeated the simulation 5000 times. We evaluated
the bias based on the asymptotic expression (3.3) for estimating
μ and we compared them to the Monte Carlo biases, both scaled
by the Monte Carlo SE. The results of these comparisons are
given in Table 8. The results seem to reproduce the asymptotic
bias expressions best for IPT. For this set of data, the higher
order biases are similar in magnitudes between the different
estimators, with no estimator dominating the others.

4. APPLICATION

In this section, we apply the method proposed in this article
to a wage regression (Mincer 1974). In a wage regression, the
effects of human capital on productivity are investigated using
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Table 8. Higher order bias comparison for Simulation Study 1’
(Designs 1’, 2’, and 3’)

Design Estimator BiasA SE BiasMC

1’ IPT −0.020331 1.605160 −0.017396
AIPW −0.017663 1.620410 −0.000100
AIPWnew −0.018226 1.620136 −0.000268
CTD −0.019966 1.620256 0.000012

2’ IPT −0.019873 1.629051 −0.011349
AIPW 0.090485 2.007442 −0.031858
AIPWnew 0.007857 1.636378 −0.033795
CTD 0.093400 1.778517 0.003977

3’ IPT −0.019869 1.629053 −0.011349
AIPW −0.019344 1.623214 −0.002832
AIPWnew −0.020005 1.620506 −0.042134
CTD −0.020593 1.621180 −0.001617

NOTES: SE: Median SE based on Monte Carlo. BiasA: Bias using asymptotic formula,
scaled by SE. BiasMC: Median bias based on Monte Carlo, scaled by SE.

a regression model, whereby the natural logarithm of a measure
of wage is regressed upon education, experience, and ability.
The use of experience allows economists to study the influence
of education on wage, adjusting for individual differences in
human capital acquired on the job. The data we use come from
the 1980 wave of the National Longitudinal Surveys (NLS).
The NLS sampled 5255 young men in 1966 to represent the
civilian population of men aged 14–24 in the United States. The
individuals selected into the NLS were followed longitudinally
and were interviewed almost annually until 1981. The dataset
consists of detailed information about each individual, in par-
ticular, measures of ability. However, the dataset suffers a high
attrition rate such that by 1980, only 3438 (65.8%) of the men in
the 1966 cohort were left in the study. To make matters worse,
there is no evidence to suggest that attrition was completely at
random.

We use the hourly wage as a measure of wage, and education
is the highest grade completed. We use the following four vari-
ables as proxies for human capital: education, experience, IQ
test score, KWW (Knowledge of the World of Work) test score.
Experience is measured by age minus 6 minus years of educa-
tion, IQ is coded as above or below median (104) and KWW
has a range of 10–56. The wage regression equation is

log(wage) = β0 + β1 education + β2 experience

+β3 experience2 + β4 IQ + β5KWW + ε. (4.4)

There are many evidences that show wage differences between
race that cannot be accounted for by education, experience
and ability, hence, following others, we focus our attention

on the sample of 1784 white males in 1980. This sample
accounts for about half of the 3438 men in the 1980 NLS
because blacks were deliberately oversampled. Among the
1784 whites, a sub-sample of 1401 have complete records of
IQ score. However, all individuals in that cohort also took
another ability test KWW and the KWW test score is available
for all 1784 men. Hence, D = 1 for the 1041 men with IQ
information and D = 0 for the remaining 1784 − 1041 =
743 men. We use five estimators, IPW, AIPW, AIPWnew, IPT,
and CHT, to analyze wage regression model (4.1) based on
the NLS data. Griliches, Hall, and Hausman (1978) showed
that IQ score is not MAR and missingness may be related
to age and education, among other things. Therefore, we
use the inverse probability selection model logitP (D = 1) =
aT (1, log(wage), education, experience, experience2, KWW).
For estimators that use a surrogate for the missing IQ score, we
use a logistic model that is also linear in log(wage), experience,
experience2, and KWW.

The results of the analysis are given in Table 9. The results
for all the estimators are similar. The coefficients for all the
variables: education, experience, IQ, and KWW are positive,
indicating a direct relationship of these on wage, which is to
be expected. For experience2, the coefficient is negative for all
estimators, suggesting that influence of experience on wage does
plateau off, which also seems to make sense.

5. CONCLUSION

Missing data are a common phenomenon in economics and
social sciences research. In this article, we have proposed a
robust and efficient method for handling missing data under
a general missing data setup, which applies to a large variety
of missing data problems such as missing outcome problems,
missing covariate problems, and treatment effects/causal infer-
ence problems. The proposed method optimally combines work-
ing propensity score and regression functions by employing
Godambe’s (1960) optimal estimating function theory. The re-
sulting estimator of the full-data model parameter is shown to be
at least as efficient as the IPW estimator and augmented inverse
probability weighted estimator in both large and small sam-
ple cases when the working propensity score model is correctly
specified, as well as being locally semiparametric efficient when
both the working propensity score model and the working re-
gression model are correctly specified. The proposed estimator
also enjoys the properties of double robustness against misspec-
ification of either the propensity score model or the regression
model. In addition, the proposed doubly robust method can be
viewed as a projection approach for variance reduction in that

Table 9. Estimates (SE) of wage regression analysis based on 1784 white males from the 1980 NLS

IPW AIPW AIPWnew IPT CHT

Intercept 0.7065 (0.2035) 0.6769 (0.1430) 0.6773 (0.1490) 0.7121 (0.1784) 0.6698 (0.2236)
Education 0.0488 (0.0085) 0.0480 (0.0067) 0.0478 (0.0067) 0.0515 (0.0082) 0.0514 (0.0093)
Experience 0.0646 (0.0205) 0.0611 (0.0147) 0.0613 (0.0133) 0.0598 (0.0203) 0.0729 (0.0207)
Experience2 −0.1575 (0.0731) −0.1553 (0.0509) −0.1558 (0.0438) −0.1342 (0.0749) −0.1859 (0.0723)
IQ 0.0054 (0.0020) 0.0076 (0.0017) 0.0076 (0.0016) 0.0046 (0.0021) 0.0039 (0.0021)
KWW 0.0505 (0.0232) 0.0488 (0.0235) 0.0516 (0.0210) 0.0530 (0.0235) 0.0477 (0.0231)
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the resulting estimating equation is obtained as the residual from
the projection of the AIPW estimating function onto the linear
space spanned by the working propensity score and regression
functions. This consideration leads to the implementation of the
proposed method as a three-step procedure: (1) fitting a working
propensity score model using fully observed data W ; (2) fitting
a working regression model using complete data; (3) solving
the proposed doubly robust estimating Equation (2.6) for esti-
mating β. The proposed method compares favorably with its
competitors in finite samples and is illustrated using an analysis
of the data from the 1980 wave of the National Longitudinal
Surveys (NLS).

Recently, Rothe and Firpo (2013) suggested using nonpara-
metric estimators for the propensity score function ω and out-
come regression function q in a double robustness set-up. They
showed the assumptions on ω and q required in their method
are weaker than those in classical semiparametric double robust
estimators, leading to improved accuracy in drawing inference.
nonparametric estimators of ω and q can also be used in the
construction of our projection estimator.

For estimators that use inverse propensity scores as weights,
there are always concerns about inverse weighting when the
propensity scores get too close to zero. In such situations, ob-
servations with very low propensity scores that are occasionally
observed in a sample create instability in the method. This prob-
lem is more severe when the propensity score function is known
than when it is estimated in the sample and it does not disap-
pear with large samples as in a large sample, there is a higher
chance of such phenomenon to be observed. As pointed out by
Robins et al. (2007) and Khan and Tamer (2010), when there is
the possibility that some observations may assume propensity
scores that are arbitrary close to zero, then in finite samples, the
researcher must find a balance of choosing between a consistent
estimator (at the risk of giving a totally unreasonable estimate)
or an estimator that is bounded (but may not be consistent). Our
method is not immune to this problem. The sensitivity analy-
sis suggested by Robins et al. (2007) is one way of detecting
this problem. When there is evidence that some of the propen-
sity scores may be too close to zero, perhaps methods such as
those in Khan and Tamer (2010) of bounding them could be
employed. As Kang and Schafer (2007) pointed out, no method
is foolproof and intuition and caution must always be exercised.

APPENDIX: DERIVATIONS OF THE HIGHER ORDER
BIAS EXPRESSIONS FOR DOUBLY ROBUST

ESTIMATORS

We will work out Bias(θ̂ ) in (3.3) for the four doubly robust esti-
mators, i.e., AIPW, AIPWnew, IPT, and CTD below, for the designs
1’–3’ considered in simulation study 2 in Section 4. To economize no-
tations, we omit references to the parameter θ or any part of it, where
possible, for example, we write ωi ≡ ω(Wi ; η) = P (Di = 1|Wi, η).
Under designs 1’–3’, ωi is fitted using a logistic model, in gen-
eral, let ri = r(Wi) be a vector-valued function of Wi such that
ωi = exp(ηT ri)/(1 + exp(ηT ri)) so ωηi = ∂ωi/∂η = ωi(1 − ωi)ri and
ωηηT i = ∂2ωi/∂η2 = ωi(1 − ωi)(1 − ωi)rir

T
i . Furthermore, let the re-

gression function for the outcome model be mi = m(Wi) = βT t(Wi) =
βT ti , mβi = ∂mi/∂β = ti and E(Y |W ) = μ. We now work out the
ingredients for evaluating (3.3) for the four estimators. For AIPW,

θ = (η, β, μ), and

hi =

⎛
⎜⎜⎜⎝

Di − ωi

ωi(1 − ωi)
ωηi

Di(Yi − mi)mβi

Di

ωi

(Yi − mi) + mi − μ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

(Di − ωi)ri

Di(Yi − mi)ti
Di

ωi

(Yi − mi) + mi − μ

⎞
⎟⎠ ,

Qi =

⎛
⎜⎝

−ωi(1 − ωi)rir
T
i 0 0

0 −Diti t
T
i 0

−Di(1 − ωi)

ωi

(Yi − mi)r
T
i −Di − ωi

ωi

tT
i −1

⎞
⎟⎠− H.

Let p be the dimension of η, then for Hl, l = 1, . . . , p, we have

Hl = E

⎛
⎜⎝

−ωi(1 − ωi)(1 − 2ωi)rilrir
T
i 0 0

0 0 0
Di(1 − ωi)

ωi

(Yi − mi)rilr
T
i

Di(1 − ωi)

ωi

ril t
T
i 0

⎞
⎟⎠ .

Let K be the dimension of β, then for Hl, l = p + 1, . . . , p + K , we
have

Hl = E

⎛
⎜⎝

0 0 0
0 0 0

Di(1 − ωi)

ωi

ti(l−p)r
T
i 0 0

⎞
⎟⎠ .

Finally,

Hp+K+1 = 0.

For AIPWnew, θ = (η, β, μ), and

hi =

⎛
⎜⎜⎜⎝

Di − ωi

ωi(1 − ωi)
ωηi

Di(Yi − mi)mβi

Di

ωi

(Yi − mi) + mi − μ − τ̂ T A(W ; q̂, q̃)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎝

(Di − ωi)ri

Di(Yi − mi)ti
Di

ωi

(Yi − mi) + mi − μ − τ̂ T A(W ; q̂, q̃)

⎞
⎟⎠ ,

where τ̂ = B̂1B̂
−1
2 .

Qi =

⎛
⎜⎜⎜⎝

−ωi (1 − ωi )ri r
T
i 0 0

0 −Diti t
T
i 0

−Di (1 − ωi )

ωi

(Yi − mi )r
T
i − τ̂ T C1i −Di − ωi

ωi

tTi − τ̂ T
1 C2i −1

⎞
⎟⎟⎟⎠− H,

where

C1i = −
[

Di(1 − ωi)

ωi

q̂ir
T
i , ωi(1 − ωi)rir

T
i

]
; C2i = Di − ωi

ωi

tT
i .

Let p be the dimension of η, then for Hl, l = 1, . . . , p, we have

Hl = E

⎛
⎜⎜⎜⎝

−ωi (1 − ωi )(1 − 2ωi )ril ri r
T
i 0 0

0 0 0

Di (1 − ωi )

ωi

(Yi − mi )ril r
T
i − τ̂ T C∗

1i

Di (1 − ωi )

ωi

ril t
T
i − τ̂ T

1 C∗
2i 0

⎞
⎟⎟⎟⎠ ,

where

C∗
1i =

[
Di(1 − ωi)

ωi

q̂irilr
T
i , −ωi(1 − ωi)(1 − 2ωi)rilrir

T
i

]
;

C∗
2i = −Di(1 − ωi)

ωi

ril t
T
i .
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Let K be the dimension of β, then for Hl, l = p + 1, . . . , p + K , we
have

Hl = E

⎛
⎜⎝

0 0 0
0 0 0

Di(1 − ωi)

ωi

ti(l−p)r
T
i − τ̂ T

1 C∗∗
1i 0 0

⎞
⎟⎠ ,

where

C∗∗
1i = −Di(1 − ωi)

ωi

ti(l−p)r
T
i .

Finally,

Hp+K+1 = 0.

Let t∗
i be the union of the nonoverlapping elements of (ri , ti),

then IPT over-parameterizes ωi by fitting a logistic function ωi =
exp(ζ T t∗

i )/(1 + exp(ζ T t∗
i )) so the parameters in this model are θ =

(ζ, μ). Estimates of the parameters are solutions to (3.2) with

hi =

⎛
⎜⎝
(

Di

ωi

− 1

)
ωζi

Di

ωi

(Yi − μ)

⎞
⎟⎠ =

⎛
⎜⎝
(

Di

ωi

− 1

)
ωi(1 − ωi)t∗

i

Di

ωi

(Yi − μ)

⎞
⎟⎠ ,

Qi =

⎛
⎜⎝−Di(1 − ωi)

ωi

t∗
i t∗T

i 0

−Di

ω2
i

(Y − μ)t∗
i −Di

ωi

⎞
⎟⎠− H.

Let p be the dimension of ζ , then for Hl, l = 1, . . . , p, we have

Hl = E

⎛
⎜⎝

Di(1 − ωi)

ωi

t∗
il t

∗
i t∗T

i 0

Di(1 − ωi)

ωi

(Y − μ)t∗
il t

∗
i

Di(1 − ωi)

ωi

t∗
il

⎞
⎟⎠ .

Hp+1 = E

⎛
⎝ 0 0

0
Di(1 − ωi)

ωi

⎞
⎠ .

For CTD, θ = (η, β, c, μ), and

hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Di − ωi

ωi(1 − ωi)
ωηi

Di(1 − ωi)

ω2
i

mβi

(
Yi − mi − cT ωηi

1 − ωi

)
Di(1 − ωi)

ω2
i

ωηi

1 − ωi

(
Yi − mi − cT ωηi

1 − ωi

)
Di

ωi

(Yi − mi) + mi − cT Di − ωi

ωi(1 − ωi)
ωηi − μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(Di − ωi)ri

Di(1 − ωi)

ω2
i

(Yi − mi − ωic
T ri)ti

Di(1 − ωi)

ωi

(Yi − mi − ωic
T ri)ri

Di

ωi

(Yi − mi) + mi − (Di − ωi)c
T ri − μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ωi(1 − ωi)rir
T
i 0 0 0

tiC2i −Di(1 − ωi)

ω2
i

ti t
T
i −Di(1 − ωi)

ωi

tir
T
i 0

C3i −Di(1 − ωi)

ωi

ri t
T
i −Di(1 − ωi)rir

T
i 0

C4i −Di − ωi

ωi

tT
i −(Di − ωi)rT

i −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

− H,

where C2i = C21i − cT C22i and

C21i = −Di(2 − ωi)(1 − ωi)

ω2
i

(Yi − mi − ωic
T ri)r

T
i ,

C22i = Di(1 − ωi)2

ωi

rir
T
i ,

C3i = ωiriC2i + (1 − ωi)rih
T
3i ,

C4i = −Di(1 − ωi)

ωi

(Yi − mi)r
T
i + ωi(1 − ωi)c

T rir
T
i .

Let p be the dimension of η, then for Hl, l = 1, . . . , p, we have

Hl = E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ωi (1 − ωi )
× (1 − 2ωi )ril ri r

T
i

0 0 0

tiC
′
2i

Di (1 − ωi )(2 − ωi )

ω2
i

ril ti t
T
i

Di (1 − ωi )

ωi

ril ti r
T
i 0

C ′
3i

Di (1 − ωi )

ωi

ril ri t
T
i Diωi (1 − ωi )ril ri r

T
i 0

C ′
4i

Di (1 − ωi )

ωi

ril t
T
i ωi (1 − ωi )ril r

T
i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where C ′
2i = C ′

21i − cT C ′
22i and

C ′
21i = Di

1 − ωi

ω2
i

ril

[
(4 − 3ωi)(Yi − mi − ωic

T ri)

+ (2 − ωi)ωi(1 − ωi)c
T ri

]
rT
i ,

C ′
22i = −Di(1 − ωi)2(1 + ωi)

ωi

rilrir
T
i ,

C ′
3i = 2ωi(1 − ωi)rilriC2i + ωiriC

′
2i + (1 − ωi)(1 − 2ωi)rilrih

T
3i ,

C ′
4i =

[
Di

ω2
i

(Yi − mi) + (1 − 2ωi)c
T ri

]
ωi(1 − ωi)rilr

T
i .

Let p be the dimension of c, then for Hl, l = p + 1, . . . , 2p, we have

Hl = E

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
Di(2 − ωi)(1 − ωi)

ω2
i

ti(l−p)ti r
T
i 0 0 0

Di(1 − ωi)

ωi

ti(l−p)rir
T
i 0 0 0

Di(1 − ωi)

ωi

ti(l−p)r
T
i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let K be the dimension of β, then for Hl, l = 2p + 1, . . . , 2p + K ,
we have

Hl = E

⎛
⎜⎜⎜⎜⎝

0 0 0 0
Di(1 − ωi)

ωi

ri(l−2p)ti r
T
i 0 0 0

Diωi(1 − ωi)ri(l−2p)rir
T
i 0 0 0

ωi(1 − ωi)ri(l−2p)r
T
i 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Finally,

H2p+K+1 = 0.

SUPPLEMENTARY MATERIALS

The supplementary materials give additional details and results of
the simulation study described in Section 3.
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