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A B S T R A C T

It is well known that in contrast to the Prisoner’s Dilemma, the snowdrift game can lead to a stable
coexistence of cooperators and cheaters. Recent theoretical evidence on the snowdrift game suggests
that gradual evolution for individuals choosing to contribute in continuous degrees can result in the
social diversification to a 100% contribution and 0% contribution through so-called evolutionary
branching. Until now, however, game-theoretical studies have shed little light on the evolutionary
dynamics and consequences of the loss of diversity in strategy. Here, we analyze continuous snowdrift
games with quadratic payoff functions in dimorphic populations. Subsequently, conditions are clarified
under which gradual evolution can lead a population consisting of those with 100% contribution and
those with 0% contribution to merge into one species with an intermediate contribution level. The key
finding is that the continuous snowdrift game is more likely to lead to assimilation of different
cooperation levels rather than maintenance of diversity. Importantly, this implies that allowing the
gradual evolution of cooperative behavior can facilitate social inequity aversion in joint ventures that
otherwise could cause conflicts that are based on commonly accepted notions of fairness.
ã 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In daily life, cooperative behavior in joint ventures is a
fundamental index that represents the real state of human
sociality and is often a matter of degree that can continuously
vary and diverge within a wide range. In general, understanding
the origin and dynamics of diversity or heterogeneity has been one
of themost challenging hot topics in biology and the social sciences
(Axelrod, 1997; McCann, 2000; Valori et al., 2012). However, most
traditional game-theoretical studies on cooperation have de-
scribed the degree of cooperation in terms of discrete strategies,
such as cooperators who contribute all and cheaters who do
nothing. Comparedwithmatrix games for finite discrete strategies,
games for infinite continuous strategies have been relatively little
studied (Brännström et al., 2011; Cressman et al., 2012; Le Galliard
et al., 2005; Hilbe et al., 2013; Killingback and Doebeli, 2002;
Killingback et al., 1999; McNamara et al., 2008; Nakamaru and
Dieckmann, 2009; Roberts and Sherratt, 1998,b; Wahl and Nowak,

1999a,b). We should note that a common motivation among
previous game-theoretical models with continuous strategies was
to resolve the fundamental question, “How altruistic should one
be?” (Roberts and Sherratt, 1998).

Crucially, in the last decade it has been clarified that even
without specific assortment, very small, occasional mutations on
the degree of cooperation can lead subpopulations of the
cooperators and cheaters to gradually dissimilate each other out
of a uniform population (“evolutionary branching”) (Brännström
and Dieckmann, 2005; Brown and Vincent, 2014; Doebeli et al.,
2004; Parvinen, 2010). This divergence scenario for the coopera-
tion level has been termed the “tragedy of the commune” (Doebeli
et al., 2004). Gradual evolution can favor such a state in which a
sense of fairnessmay beminimized, rather than a state inwhich all
adopt the same cooperation level. To date, theoretical and
numerical investigations have shown the conditions under which
evolutionary branching occurs at the cooperation level, and by also
considering ecological dynamics, where even extinction at the
population level can follow (Parvinen, 2010, 2011).

Importantly, previous studies implicitly indicated that a
heterogeneous population of cooperators and cheaters may be
unstable when considering a small mutation (Brown and Vincent,
2014; Doebeli et al., 2004 Doebeli et al., 2004). To the best of our
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knowledge, this issue has never been seriously tackled, despite the
fact that the coexistence of cooperators and cheaters is one of most
elementary equilibria in classical 2�2 matrix games as described
in Eq. (1) and is also common in nature and human societies.
Indeed, little is known about how continuous investment in joint
ventures affects what the traditional framework of a two-person
symmetric game with two strategies has so far predicted (Doebeli
et al., 2013; Shutters, 2013; Tanimoto, 2007;W. Zhong et al., 2012).

To address this issue, we consider the snowdrift game (Chen
and Wang, 2010; Doebeli and Hauert, 2005; Gore et al., 2009;
Hauert and Doebeli, 2004; Kun et al., 2006; Maynard Smith, 1982;
Sugden, 1986), which has traditionally been a mathematical
metaphor to understand the evolution of cooperation, and in
particular, it can result in the coexistence of cooperation and
cheating or inter-species mutualism (Fujita et al., 2014; Gore et al.,
2009; Kun et al., 2006). (The snowdrift game is also well
recognized as the chicken or hawk-dove game (Maynard Smith,
1982)). The classical snowdrift game for cooperators and cheaters
has been featured by the rank ordering of the four payoff values:
T >R > S > P (Doebeli and Hauert, 2005; Sugden, 1986), which are
given in the 2�2 payoff matrix for cooperation (C) and cheating
(or defection) (D),

C D
C
D

R S
T P

� �
: (1)

We note that if P and S have the other order: P > S, then this matrix
represents the well-known Prisoner’s Dilemma, leading to mutual
cheating (D–D) (Axelrod and Hamilton, 1981). The rank ordering
for the snowdrift game indicates that when starting with the D–D
state where both cheat, for one cheater to switch to cooperation is
beneficial to both, yet not so is then for the other to switch to
cooperation. The following situation may be useful as an example:
the front porch of an apartment has been covered by a snowdrift,
such that getting out requires someone to shovel the snowdrift.
The situation becomes a sort of snowdrift game if a resident is
willing to shovel snow and how much snow (C), and a best
response for the other resident(s) is to shovel less (or nothing) (D).
Considering that shoveling time and effort can vary continuously,
this would naturally evoke a question of “How much would high-
and low-contributors differ from each other in the snowdrift
game?”

In Section 2, we extend the discrete snowdrift game to
continuous cooperation. Fig.1 presents an overview encompassing

evolutionary scenarios in the classical and continuous snowdrift
games. In Section 3, we then investigate the gradual evolution of
cooperationwith small mutations. In the continuous extensionwe
consider quadratic payoff functions for interpolating these four
payoff values in Eq. (1). It is known that the continuousmodel with
quadratic payoff functions is at minimum, required for full
coverage of basic adaptive dynamics for a population monomor-
phic with the same level of cooperation (Brown and Vincent, 2008;
Doebeli et al., 2004) (see also (Boza and Számadó, 2010; Chen et al.,
2012; Zhang et al., 2013) for effects of more generalized payoff
functions).We show that adaptive dynamics in the snowdrift game
analytically provides a solution whether a population is mono-
morphic or dimorphic. Finally, in Section 4 we provide a summary
and discuss the model, results, and future work.

2. Models and methods

2.1. Replicator dynamics for cooperators and cheaters

We consider the 2�2 matrix game in Eq. (1) in infinitely large
populations without any assortment.We denote by PC(n) and PD(n)
the expected payoffs for a cooperator (C) and cheater (D),
respectively, in the population with the frequency of cooperators
n. Clearly,

PCðnÞ ¼ nRþ ð1� nÞS;
PDðnÞ ¼ nT þ ð1� nÞP:

(2)

we analyze the replicator equation for the frequency of cooperators
n (Cressman and Tao, 2014; Hofbauer and Sigmund, 1998),

dn
dt

¼ nðPCðnÞ � PðnÞÞ; (3)

where PðnÞ ¼ nPCðnÞ þ ð1� nÞPDðnÞ denotes the average payoff
over the population. Eq. (3) can be rewritten as

dn
dt

¼ nð1� nÞðPCðnÞ � PDðnÞÞ

¼ nð1� nÞ½nðR� TÞ þ ð1� nÞðS� PÞ�:
(4)

Therefore, the replicator dynamics in the 2�2 matrix game in
Eq. (1) are classified into four types by the sign combination of S� P
and R�T (Table 1 and Fig. 2(x)) (Lambert et al., 2014; Santos et al.,
2012; Shutters, 2013). In particular, if and only if S�P >0 and
R� T<0 hold, the dynamics have a stable interior equilibriumwith
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Fig. 1. Evolution of cooperation in snowdrift games. For discrete strategies, on the one hand, the evolution of the strategy frequencies can lead to the coexistence of
cooperators and cheaters (upper arrows, X0 to B and X1 to B), yet do not help in understanding whether or not the resultant mixture is stable against continuously small
mutations. For continuous strategies, on the other hand, the population converges to an intermediate level of cooperation (lower arrows, X0 to A and X1 to A) and can further
undergo evolutionary branching (vertical arrow, A to B). In this case, the population splits into diverging clusters across an evolutionary-branching point x ¼ x̂ and eventually
evolves to an evolutionarily stable mixture of full- and non-contributors (B). Otherwise, it is possible that a point where x ¼ x̂ has already become evolutionarily
stable. In this case, the initially dimorphic population across a point x ¼ x̂ can be evolutionarily unstable, and thus the population will approach each other and
finally merge into one cluster at the point (“evolutionary merging”; vertical arrow, B to A).
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n ¼ S� P
ðS� PÞ � ðR� TÞ ¼: n̂: (5)

2.2. Continuous snowdrift game with quadratic payoff functions

We then turn to the continuous snowdrift game (Brown and
Vincent, 2008; Doebeli et al., 2004; McNamara et al., 2008; Zhong
et al., 2008; L.X. Zhong et al., 2012). Each player in a random-
matching pair of players has an option to make some investment,
which can continuously vary between 0 and xmax with xmax > 0, to a
joint venture. Provided that the focal player invests x and its
opponent, y, each will receive the benefit B(x + y) with respect to
the accumulated investment x + y. The benefit is subtracted by the
cost C(x) which depends only on the focal player’s investment x.
Thus, the individual net payoff from the one-shot pairwise
interaction is B(x + y)�C(x).

We extend the 2�2 matrix game so that the four components
of the matrix are described, respectively, by the values of B
(x + y)�C(x) with the extreme levels of investment. We assume
that a cheater (D) invests x = 0 and a cooperator (C) invests x = xmax,
with xmax =1 for simplicity. It is straightforward that the traditional
payoff matrix is described as

R ¼ Bð2Þ � Cð1Þ; T ¼ Bð1Þ � Cð0Þ; S ¼ Bð1Þ � Cð1Þ; and
P ¼ Bð0Þ � Cð0Þ: (6)

In the followingwe assume that the payoff function is quadratic
as B(x + y) =b2(x + y)2 + b1(x + y) and C(x) = c2x2 + c1x. Thus, B(0) = 0
and C(0) = 0. This reflects a plausible situation in which no

contribution results in no benefit and no cost. Using Eqs. (2)
and (6),

R ¼ 4b2 þ 2b1 � c2 � c1; T ¼ b2 þ b1; S ¼ b2 þ b1 � c2 � c1; and

P ¼ 0: (7)

To fully adhere to the order of T >R > S > P, in addition to both
inequalities: for T >R,

R� T ¼ 3b2 þ b1 � c2 � c1 < 0; (8)

and, for S > P,

S� P ¼ b2 þ b1 � c2 � c1 > 0; (9)

it is required that R > S, namely,

R� S ¼ 3b2 þ b1 > 0: (10)

Eqs. (8) and (9) yield that b2<0: the quadratic benefit function for
the snowdrift game should be concave.

2.3. Monomorphic adaptive dynamics and evolutionary branching

We are interested in understanding how the strategy distribu-
tion over the population changes through imitation of the
successful strategies of others (namely, social learning) with small
mutations in the continuous snowdrift game. We thus investigate
this by means of adaptive dynamics (Deng and Chu, 2011; Geritz
et al., 1997, 1998). The expected payoff for a rare mutant with
investment level y among the residents with an investment level
x is P(x,y) =B(x + y)�C(y). In the case x = y,Pðx; xÞ ¼ Bð2xÞ�
CðxÞ ¼: PðxÞ, represents the average payoff over the monomorphic
population with x. The growth rate of the rare mutant is the so-
called invasion fitness, given by Sðx; yÞ ¼ Pðx; yÞ � PðxÞ in the
resident monomorphic population with x. We consider DðxÞ ¼
@ySðx; yÞjy¼x which expresses the selection gradient of the mutant-
fitness landscape at x. Letm(x), s2(x), and m̂ðxÞ denote themutation
probability, mutation variance, and equilibrium-population size at
x, respectively. Adaptive dynamics for a monomorphic population
with x is governed by the canonical equation dx=dt ¼
ð1=2ÞmðxÞs2ðxÞm̂ðxÞDðxÞ, except around a singular strategy, x ¼ x̂,
at which the selection gradient D(x) vanishes. One can set
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Fig. 2. Classification diagrams of evolutionary scenarios in snowdrift games.We employ (d1,d2) = (R�T,S� P) as the coordinate system for parameterization. Parameter sets in
the fourth quadrant, {d1 > 0, d2<0}, lead to the classical snowdrift game. However, parameters by which the diversified population of cooperators and cheaters can stabilize
against continuously small mutations are restricted in the triangle OQR for decelerating costs c2<0 (b), and do not exist for accelerating costs c2 > 0 (a). Moreover, the sub-
region for evolutionary branching to occur is sub-triangle PQR (iv-B). Compared to stabilization of the strategic diversity, its destabilization can happenwithin awider region
of parameters. Indeed, in region (iv-A) of (a) and (b), the mixed equilibrium in the classical snowdrift game is no longer stable under the continuous game. The two strategies
will eventually converge to an evolutionarily stable state with an intermediate level of cooperation. In (b), these regions (iv-A) and (iv-B) are divided by line QR given by
b2� c2 = (d2�d1)/2� c2<0. Lines PQ and PR are given by D(0) = 0 and D(1) = 0, respectively. In the shaded regions one of the natural assumptions, Eq. (18), does not hold: the
benefit function B(x) is not increasing. Parameters: c1 = 4.6, c2 = 1 (a) or �1 (b).

Table 1
Scenarios of replicator dynamics for discrete strategy C (x =1) and D (x = 0).

Conditions Replicator dynamics for C and D Title

I S� P >0, R� T > 0 Unilaterally evolving to all C By-product
mutualism

II S� P<0, R�T > 0 Bi-stable for C and D Stag hunt
III S� P<0,

R�T<0
Unilaterally evolving to all D Prisoner’s Dilemma

IV S� P >0, R�T<0 Coexistence of C and D Snowdrift
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ð1=2ÞmðxÞs2ðxÞm̂ðxÞ to 1 without loss of generality (Meszéna et al.,
2001).

In the continuous snowdrift game with quadratic cost and
benefit functions, we can use known results (Brännström et al.,
2011; Brown and Vincent, 2008; Doebeli et al., 2004). The invasion
fitness in the model can be rewritten as

Sðx; yÞ ¼ ðy� xÞ½b2ð3xþ yÞ þ b1 � c2ðxþ yÞ � c1�: (11)

Then,

DðxÞ ¼ ð4b2 � 2c2Þxþ b1 � c1: (12)

Thus, there exists at most one singular strategy, x̂, given by

D x̂
� � ¼ 0, x̂ ¼ � b1 � c1

4b2 � 2c2
: (13)

From D0(x) = 2(2b2� c2), we know that, in a case 0 < x̂ < 1, it is
(convergence) stable, if 2b2� c2<0; otherwise, it is unstable.
Moreover, according to the theory of adaptive dynamics, the
curvature of invasion fitness at a singular strategy lets us know
whether the evolution of populations will end at the singular
strategy. In the model, the curvature is given by

@2ySðx; yÞjy¼x¼x̂ ¼ 2ðb2 � c2Þ. Indeed, the singular strategy x̂ is
evolutionarily stable so that the population at x̂ cannot be invaded
by any rare mutant neighbors, if invasion fitness takes a maximum
at x̂, b2� c2<0; otherwise (if it takes a minimum at x̂), it is
evolutionarily unstable so that the population at x̂ will undergo
disruptive selection to a couple of diverging subpopulations.

Therefore, a necessary condition for the interior singular
strategy x̂ to be convergence stable and evolutionarily unstable
(namely, an evolutionary-branching point) is that 2b2< c2< b2.
Considering b2<0, this yields that evolutionary branching also
requires a concave (decelerating) cost function with c2 < 0.
Therefore, a convex (accelerating) cost function with c2<0 will
never result in evolutionary branching (Fig. 2(a)).

2.4. Individual-based models

For the sake of comparison of results in large, but finite
populations, we also considered an existing individual-based
model for the continuous snowdrift game (Doebeli et al., 2004). In
the model, we iteratively apply the replicator dynamics to finite
populations as follows: first, a focal individual i and another
individual j are selected at random. Their respective payoffs, P(i)
and P(j), are determined independently after giving each of the two
individuals a single offer to participate in a public good game. If the
focal individual has the lower payoff of the two, i.e., P(j) > P(i), it
imitates individual j’s strategy with a probability proportional to
the payoff difference P(j)� P(i). Second, independent mutations
occur in the focal individual’s cooperative investment x, each with
a small probability m. If a mutation occurs, the focal individual’s
new value of cooperative investment is drawn from a normal

distribution with standard deviation s, centered at its pre-
mutational trait value.

3. Results

3.1. Coordinate evolutionary outcomes of discrete and continuous
snowdrift games

For parameterization, subsequently, we represent the coordi-
nate system with d1 = S� P and d2 =R�T. Considering Eqs. (8) and
(9), hence, b1 = (3d1� d2)/2 + c2 + c1 and b2 = (d2� d1)/2. Using the
parameter space (d1,d2,c1,c2), we can overlay classification dia-
grams of evolutionary scenarios for discrete and continuous
strategies (Fig. 2). We note that the coordinate system (d1,d2) is
equivalent with (Dg= T�R, Dr = P� S) which was originally
reported by Tanimoto and Sagara (2007) and has been commonly
shared by following application (e.g., Tanimoto, 2007; W. Zhong
et al., 2012; Tanimoto, 2014). For simplicity, in what follows we
assume that the values of c1 and c2 are fixed.

We then turn to adaptive dynamics in the continuous snowdrift
game. It follows from Eq. (12) that D(0) = (3d1� d2)/2 + c2 and D
(1) = (3d2� d1)/2� c2. The selection gradient D(x) is linear. One can
thus describe the full classification of the monomorphic adaptive
dynamics in the continuous snowdrift game (Doebeli et al., 2004)
in terms of the signs of D(0) and D(1) (Table 2, see Sasaki et al.
(unpublished results) for continuous public good games). In a case
where D(0) and D(1) have the same sign ((i) positive or (iii)
negative), there is no point at which D(x) vanishes, and therefore,
the population unilaterally evolves to (i) x =1 or (iii) x = 0,
respectively. For case (ii), D(0)<0 and D(1) > 0, there is exactly
one singular strategy, which is evolutionarily repelling (not
convergence stable) and which divides the strategy space into
two basins of attraction for maximal investment x =1 and no
investment x = 0. For case (iv), D(0) > 0 and D(1)<0, there is again
exactly one singular strategy, which is evolutionarily attracting
(convergence stable).

Given a fixed c1 and c2, the intersection of lines D(0) = 0 and D
(1) = 0 in the (d1,d2) -space is P = (�c2/2,c2/2). In the case, c2<0, it
follows that point P is located in the fourth quadrant, aroundwhich
all adaptive scenarios in Table 2 are possible. In contrast to this,
having an accelerating cost with c2 > 0 leads to convergence and an
evolutionarily stable singular point for all points in the fourth
quadrant (the region (iv-A) in Fig. 2).

For cases (ii) or (iv), depending on the curvature of D(x), the
population state with the singular strategy can either be (A)
evolutionarily stable or (B) unstable. For instance, the combination
of (iv) and (B) means that monomorphic populations lead to
evolutionary diversification into a mixture of full and no
cooperation, entitled (iv-B) evolutionary branching.

Finally, with adhering situations under the social dilemma
(Dawes, 1980), the corresponding natural conditions are that C(x)
and B(x) are strictly increasing within these domains [0,1] and

Table 2
Scenarios of adaptive dynamics for continuously varying strategy x within [0,1].

Conditions For monomorphism For dimorphism across singular strategy x

i D(0) > 0, D(1) > 0 Unilaterally increasing to 1 (No singular strategy)

ii-A D(0)<0, D(1) > 0 Repelling from x Converging to x
ii-B Repelling from x

iii D(0)<0, D(1)<0 Unilaterally increasing to 0 (No singular strategy)

iv-A D(0) > 0, D(1)<0 Converging to x Converging to x
iv-B Repelling from x
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[0,2], respectively. This requires that C0(0) = c2 > 0 and C0(1) = 2c2 +
c1 > 0, and

B0ð0Þ ¼ 3d1 � d2
2

þ c2 þ c1 > 0; (14)

B0ð2Þ ¼ 3d2 � d1
2

þ c2 þ c1 > 0: (15)

Considering c2 + c1 > 0, it follows that in the quadrant for snowdrift
games only, Eq. (15) matters (and Eq. (14) holds for all (d1,d2) in the
forth quadrant). We note that B0(2) > 0 leads to R� S > 0.

3.2. Classify replicator dynamics for intermediate strategies

We exclusively analyzed the replicator dynamics for two
strategies generally given by 0� x2< x2�1 in the continuous
snowdrift game. We denoted a dimorphic population with these
strategies as X = {(x1,n1), (x2,n2)}, where ni represents the frequency
of xi for i =1,2 (thus, n2 = 1�n1). The expected payoff for strategy xi
for i =1,2, then was defined by P(X,xi) =n1B(x1 + xi) + (1�n1)B
(x2 + xi)�C(xi). We also denoted by PðXÞ :¼ n1PðX; x1Þ þ ð1�
n1ÞBðX; x2Þ the average payoff over the dimorphic population.

The replicator dynamics for x1’s frequency n1 is

dn1

dt
¼ n1 P X; x1ð Þ � P Xð Þ� �

¼ n1 1� n1ð Þ P X; x1ð Þ � P X; x2ð Þð Þ; (16)

where

PðX; x1Þ � PðX; x2Þ
¼ ðx1 � x2Þ½2b2ðx1 � x2Þn1 þ b2ð3x2 þ x1Þ þ b1 � c2ðx2 þ x1Þ � c1�
¼: F12ðn1Þ:

(17)

From its linearity, the evolution of n1 is determined by the signs of
F12(0) and F12(1). Considering Eq. (11) yields that F12(0) = S(x2,x1)
and F12(1) =�S(x1,x2). That is, the sign pair of (S(x2,x1),S(x1,x2))
(Table 3) can indicate the evolutionary outcome from the replicator
dynamics. Therefore, the four criteria (I)–(IV) for classifying the
replicator dynamics for D (x =0) and C (x =1) (Table 1) can similarly
be applied to any pair of x1 and x2 on the strategy space [0,1]
(Table 3). In particular, for the cases of (II) and (IV), solving P(X,
x1)� P(X,x2) = 0 with respect to n1 leads to a non-trivial equilibri-
um, in which two strategies coexist. The equilibrium frequency is
uniquely given by

n̂1ðx1; x2Þ ¼ �b2ðx1 þ 3x2Þ � b1 þ c2ðx1 þ x2Þ þ c1
2b2ðx1 � x2Þ

; (18)

as in the supplement of (Doebeli et al., 2004).
We note that in the model, invasion fitness has already been

resolved into two linear components: one variable as b2(3x + y) +
b1� c2(x + y)� c1 and a fixed diagonal as y� x. This leads to the so-
called pairwise invasibility plot (PIP) (Geritz et al., 1997, 1998), a
sign plot of invasion fitness S(x,y) on (x,y)-space, which can be
separated by lines (Fig. 3). The PIP diagram can provide a useful
overview to determine the sign pair for any (S(x2,x1),S(x1,x2)) and
thus the replicator dynamics in any dimorphic population. The
adaptive dynamics of the population, once degenerated to
monomorphism, can then be predicted by the four adaptive
dynamics criteria in Table 2. In certain cases its dimorphism is
protected, otherwise, we shall consider adaptive dynamics in
dimorphic populations.

3.3. Dimorphic adaptive dynamics and evolutionary merging

Previous studies have calculated adaptive dynamics for
dimorphic populations when 2b2< c2< b2: the singular strategy

is evolutionary-branching. We shall show that in the case of
b2� c2<0, the dimorphism is destabilized and a reverse process of
adaptive diversification can occur: the extreme strategies, x =1 and
x = 0, can evolve towards the interior singular strategy x ¼ x̂ with
0 < x̂ < 1 (see Fig. 4 for individual-based simulations).

We consider adaptive dynamics for dimorphic populationswith
distribution X = {(x1,n1),(x2,n2)}. The expected payoff for a rare
mutant with y is then defined by

PðX; yÞ ¼ n1Bðx1 þ yÞ þ ð1� n1ÞBðx2 þ yÞ � CðyÞ: (19)

The invasion fitness for the mutant is given by SðX; yÞ ¼ PðX; yÞ �
PðXÞ (Geritz et al., 1997). For the quadratic cost and benefit
functions, the adaptive dynamics for the dimorphic population X
with 0 � x2 < x̂ < x1 � 1, are given by

_x1 ¼ m1ðx1; x2Þ@ySðX;yÞjy¼x1 ¼ m1ðx1; x2Þðb2 � c2Þðx1 � x2Þ;
_x2 ¼ m2ðx1; x2Þ@ySðX;yÞjy¼x2 ¼ �m2ðx1; x2Þðb2 � c2Þðx1 � x2Þ; (20)

wherem1 andm2 are positive quantities that describe themutation
process in the two branches with x1 and x2; and, m1 and m2 are
proportional to n1 and 1�n1, respectively (Doebeli et al., 2004;
Meszéna et al., 2001).

In a case where b2� c2 = (d2� d1�2c2)/2 >0, as shown in
Doebeli et al. (2004), it follows that _x1 > 0 and _x2 < 0, and thus,
the two branches are repelling each other. We note that the PIP in
Fig. 3(d) indicates that for all of two strategies with
0 � x2 < x̂ < x1 � 1, the corresponding sign pair in Table 3 is (+,
+): coexistence (in other words, protected dimorphism). Thus,
the adaptive dynamics in Eq. (20) can drive the two branches to
the boundaries, x1 = 1 and x2 = 0, without extinction of either
branch.

What we clarify here is that in the case, b2� c2<0, then, the
dimorphic population undergoes bi-directional evolution that
leads the levels of cooperative investment in the two branches to
come closer and closer to each other. Different from the former
case, the PIP in Fig. 3(e) indicates that for the two strategies given
across the interior singular strategy x ¼ x̂, the possible sign pairs in
Table 3 consist of not only (+,+), but also (+,�) and (�,+). Thus, in
the specific strategies, through the replicator dynamics, either of
the two branches goes to extinction on the way toward converging
to x ¼ x̂. This, however, does not matter for the evolutionary
consequence. The resultant monomorphic population, whether it
is from the former higher or lower branch, will continue evolving
to x ¼ x̂. Indeed, the interior singular strategy x ¼ x̂ is convergence-
stable for monomorphic populations.

This indicates that the continuous snowdrift game with
b2� c2<0, in particular with accelerating costs (c2 > 0), will
necessarily lead a traditionally differentiated population to
converge to a monomorphic state with an intermediate level of
cooperation (which is a local maximum).

3.4. How continuous snowdrift games affect social welfare

We quantitatively compared evolutionary outcomes from the
discrete and continuous snowdrift games. So far, we have
calculated analytical expressions of non-trivial equilibria. Using
the results, we accessed the quantitative difference of discrete and

Table 3
Scenarios of replicator dynamics for discrete strategy x = x1 and x = x2 with x1 > x2.

Conditions Replicator dynamics for x1 and x2

I S(x1,x2) > 0, S(x1,x2)<0 Unilaterally evolving to all x1
II S(x1,x2)<0, S(x1,x2)<0 Bi-stable for x1 and x2
III S(x1,x2)<0, S(x1,x2) > 0 Unilaterally evolving to all x2
IV S(x1,x2) > 0, S(x1,x2) > 0 Coexistence of x1 and x2
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continuous strategies, which previously have only been discussed
for matrix games (Tanimoto, 2007; W. Zhong et al., 2012).

First, we rewrite the difference in the cooperation levels at
equilibria in Eqs. (13) and (18), as follows:

x̂ � n̂ ¼ ðb2 � c2Þð2b2 þ b1 � c2 � c1Þ
2b2ð2b2 � c2Þ : (21)

Then, the average payoff for the monomorphic population with an
interior singular strategy x ¼ x̂ is given by

[(Fig._4)TD$FIG]

Fig. 4. Individual-based simulations of (a) merging and (b) branching in the continuous snowdrift game. Panels show evolutionary changes in the frequency distribution of
cooperative investment levels over the population (from high to low: red, orange, yellow, green, blue, white (for 0)). At the outset of each tree, for (a) the population is at a
traditionally acknowledged, mixed equilibrium with full-investment (x =1) or non-investment (x = 0) and for (b) all have no investment (x =0). In (a), the dimorphic
populationwill eventuallymerge into a single branch. In (b), in contrast to this, themonomorphic populationwill first converge to an intermediate level and then diverge into
double branches moving to the extreme states, respectively. Parameters: population size N =10,000, mutation rate m = 0.01, mutation variance s =0.005; for (a), b1 =7,
b2 =�1.7, c1 = 4.6, c2 =�1 (d1 = 1.7, d2 =�1.7); for (b), b1 = 6, b2 =�1.4, c1 = 4.8, c2 =�1.6 (d1 = 1.4, d2 =�1.4). In both cases the interior singular strategy is with x = 0.5. The scaling
factor for proportional selection is set so as to be greater than themaximal difference over all possibilities of two samples. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Pairwise invisibility plots (PIPs) for the continuous snowdrift game. Each panel shows a sign plot of invasion fitness S(x,y) in Eq. (11). Due to the linearity of the payoff
difference with respect to the strategy frequency, the sign pair (S(x2,x1),S(x1,x2)) can indicate the frequency dynamics between the strategies with x1 and x2. Panel (x)
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P x̂ð Þ ¼ ðb1 � c1Þð�4b1b2 þ 3b1c2 � c1c2Þ
4ð2b2 � c2Þ2

: (22)

It should be stressed that maximal average payoffs in dimorphic
populations, as well as in monomorphic populations, cannot be
expected to predict the evolutionary outcome. In the discrete
snowdrift game, at its interior mixed equilibrium n ¼ n̂ in Eq. (5),
the average payoff over the population is given by

P n̂ð Þ ¼ ðb2 þ b1Þð�b2 � b1 þ c2 þ c1Þ
2b2

: (23)

Indeed, our numerical investigations indicated that in specific
parameters, the adaptive dynamics favor the second best equilib-
ria, which bring about a lower level of average cooperation and/or
payoff over the population (Fig. 5).

4. Discussion

So far, we have shown that the continuous extension of the
well-known snowdrift game is more likely to lead to unification
rather than diversification of cooperators and cheaters. We
analyzed how allowing gradual evolution of cooperative invest-
ments can lead to outcomes that can qualitatively and
quantitatively differ from discrete strategies. In the classical,
discrete snowdrift game within well-mixed populations, the
stable coexistence of cooperators and cheaters is a unique
evolutionary outcome. Provided that the degree of cooperative
efforts to produce common goods can continuously vary,
however, this is often not the case. Indeed, we find that with a
wider range of parameters (in particular in the case of
accelerating costs) initially heterogeneous populations with
high- and low-investment levels will be destabilized and merge
into a homogeneous state in which all invest at the same, but
intermediate, rate. Therefore, our analysis explicitly shows that
the gradual evolution of cooperation often prefers the social
inequity aversion in snowdrift games.

To describe intermediate levels of cooperation, an alternative
and fairly trivial way to consider this is through the mixed
strategies of C (x =1) and D (x =0) (McGill and Brown, 2007). In a
mixed-strategy model it is assumed that a player invests 1 with
probability x, or otherwise, 0. It is known, however, that this

treatment is structurally unstable (Dieckmann and Metz, 2006).
We remark that the adaptive dynamics are linear with probability
x, which is identical to traditional replicator dynamics of frequency
n in Eq. (3), except for difference in the variables. Thus, it is obvious
that invasion fitness at a singular strategy is completely flat: all
strategies when rare can fit equally, corresponding to the results
known by the Bishop-Canning theorem (Bishop and Cannings,
1978). Rare mutants can then sneak in along with the residents
with a singular strategy by neutral drift, which yet is not
predictable by the theory of adaptive dynamics.

It has also been considered that responding to disruptive
selection can lead to sympatric speciation (Rueffler et al., 2006). By
means of adaptive dynamics a mechanism for the disruptive
selection to occur has become understandable as evolutionary-
branching points (McGill and Brown, 2007). Interestingly, recent
studies on speciation, by analyzing the empirical data, have
clarified that for a specific kind of white fish, reversed speciation
has happened in large European lakes, and thereby biodiversity has
been greatly reduced (McKinnon and Taylor, 2012; Vonlanthen
et al., 2012). Analogously, a mechanism for the reverse speciation
to occur might be understood through the process of evolutionary
merging. For instance, these studies of white fish indicated that
species differentiation can be reversed by environmental eutro-
phication. Through the continuous snowdrift game, our analysis
reveals that enriching the game environment, in particular the
marginal benefit of cooperation in the population of cheaters, can
increase the degree of S� P in Eq. (1), and thus can reverse
evolutionary branching, leading to an evolutionary merging of
cooperation and cheating.

In previous numerical investigations of spatial snowdrift
games, it was suggested that spatial coexistence does not always
promote the evolution of cooperation (Hauert and Doebeli, 2004).
Our results imply that the coexistence of cooperators and cheaters
discrete in the structured population could be unstable when
considering adaptive dynamics. Similarly, applying our approach
to discrete games with more than two players or strategies (e.g.,
optional participation in public good games) deserves further
investigation (Doebeli et al., 2004; Sasaki et al., 2015). More
generally, evolutionary branching could be considered in the
context of work specialization or cultural polarization (Axelrod,
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1997; Torney et al., 2010; Valori et al., 2012). Evolutionarymerging,
can for example, suggest that a division of labor can be disbanded
gradually, not abruptly, in a slowly changing environment.

On the one hand, ourmodel has beenminimalistic in that it only
considers quadratic payoff functions. Considerable efforts looking
at the evolution of cooperation among non-relatives, on the other
hand, have so far clarified supportivemechanisms, such as direct or
indirect reciprocity, reciprocity on networks, and multi-level
selection, and promotion of cooperation in a heterogeneous
population with cheaters (Rand and Nowak, 2013). Our results
showed differences in the resultant cooperation level and average
payoff in a case without such supportive mechanisms. Therefore,
another fascinating question would be whether assimilation or
dissimilation at the cooperation level would be a better environ-
ment that enhances social welfare when considering supportive
mechanisms. This idea deserves further work, for instance, to
explore whether evolutionary branching can facilitate the promo-
tion of costly selective incentives in the presence of second-order
free riders (Chan et al., 2013; Jiang et al., 2013; Xu et al., 2011, 2015).
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