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Abstract

Using a New Economic Geography (NEG) model, this study estimates the rela-
tionship between regional per capita income levels and the proximity of regions
to large markets. Market access cannot be observed directly, so it has to be
constructed. We follow a two-step-procedure of Redding and Venables (2004)
and use results of a spatially-filtered gravity model to infer market access. To
this end, we make use of a new dataset of constructed bi-regional trade flows
between (and within) 240 European NUTS-2 regions (from 25 European coun-
tries excluding Bulgaria, Croatia and Romania) for the year 2010 (Thissen et
al. 2014, IPTS). In a second step we test the hypothesis that access to large
markets increases factor incomes. We find robust evidence that supports this
hypothesis on a regional level. Controlling for a variety of factors that drive
income differences, our findings highlight the robustness of the role of market
access in explaining the uneven spatial distribution of income.

Keywords Wage equation · Gravity · European regions · New Economic
Geography
JEL Classification F12 · F14

1 Introduction

Differences in incomes across countries are one of the most studied questions in eco-
nomics. Models of growth theory usually constitute the main framework studying
questions of income differences. However, in growth theory, spatial aspects usually
play a very limited role, goods and factors are assumed to be immobile. A look at the
data reveals that economic activity is not uniformly distributed across space. There
are centers of economic activity and there is also an economic periphery. This is true
on the international scale down to the regional and even the city scale. Figure 1 shows
the distribution of gross value added (GVA) per capita of European NUTS-2 regions
for 2010 1, darker shades indicate a higher GVA. There seems to be a “core-periphery”
structure not only at an European scale but also within countries where the region
around the capital city is also the economic core with the highest GVA per capita.
Ever since, the seminal work of Krugman (1991) models of “New Economic Geogra-
phy” (NEG) have attempted to shed some light on this uneven distribution using a
general-equilibrium framework with a focus on geography represented by transport-
or trade costs. The change in the spatial structure is a result of a combination of

∗Corresponding author: Christoph Hammer (christoph.hammer@wu.ac.at)
1http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
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Figure 1: GVA in 2010, Source: Cambridge Econometrics

Darker shades of grey correspond to higher distribution quantiles of the regional GVA.

forces that promote agglomeration or dispersion respectively. Unlike growth theory
(goods and factors immobile) and trade theory (factors immobile), NEG models as-
sume mobile goods and factors. While there are many possible explanations for the
formation of agglomerations in space such as physical endowment or the physical ge-
ography of a region – what Krugman labelled “first-nature geography” – forces that
reflect behaviour of optimizing mobile economic agents are the focus of NEG models.
One interesting feature of CES-type NEG models is the so-called “wage-equation”2.
It states that the “maximum wage that each firm in a specific region can afford to
pay is a function of trade-cost-weighted market- and supply capacities” (Redding and
Venables, 2004, p.58). This means, NEG models imply a spatial wage structure in
which wages are higher in regions that have better access to markets. In turn, this
leads to a relocation3 of firms and workers to those regions. Depending on the spe-
cific model, agglomeration in the high-income “core-region” might present a stable
long-run equilibrium. There are, however, also variants following Puga (1999) where
this process is eventually reversed and firms relocate to the periphery. In this case,
dispersion forces outweigh agglomeration forces. Increasing house prices in the core
due to immigration of firms and workers would be one example for such a dispersion
force. The relative strength of agglomeration- and dispersion forces in NEG models
is driven by the degree of trade integration.
The concept of increased factor remuneration in areas with good access to demand,
was first introduced by Harris (1954), who used simple geographic distance to weigh
demand from distant regions. Following empirical literature that studies the wage
equation is dominated by a two-step approach put forward by Redding and Venables
(2004). They first derive a structural trade equation to estimate bilateral trade flows
using a gravity model. This is necessary to construct trade costs, which then are used

2The name arises from the fact that labour is the only production input in the first NEG model
by Krugman (1991). It also holds for other production inputs, since it is about factor remuneration
in general.

3See Baldwin et al. (2003) for a detailed discussion of different NEG model types. They mainly
differ in their assumptions about the factors of production and their assumed (im-)mobility. Head
and Mayer (2004a) discuss the early literature from an empirical point of view and provide a list of
testable hypotheses of NEG models.
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to calculate market- as well as supplier access. In a second step, the wage equation is
estimated using the constructed variables. They apply their model to a cross-section
of over 100 countries and find positive evidence on the importance of market- and
supplier access in explaining income differences across countries.
The wage equation seems to be a very robust4 relationship. In a similar paper, Head
and Mayer (2004b) study the importance of market access for Japanese investors in
selected European NUTS-1 regions. Hanson (2005) does not use the two-step ap-
proach but estimates the wage equation in a cross-section of US counties including
house prices and controlling for heterogeneous workers. Head and Mayer (2006) then
incorporate industry, time and intra-national variation into the wage equation. They
also consider the possibility that higher demand not only leads to higher wages but
higher employment. Their findings suggest that wages respond more to changes in
demand, however this response seems to be very industry-specific. Breinlich (2006)
applies the two-step approach to a more disaggregated data set of 193 NUTS-2 regions
for the 1975-1997 period. He also confirms the role of market access in explaining
income differences, although he argues that the trade-cost-saving motive5 for locating
in a core-region might only be a small part of the overall picture. Theoretical NEG
models that include intermediate inputs6 also highlight the importance of supplier
access. That is, the attractiveness of a region also depends on the access to sources of
inputs, not only output. While Redding and Venables (2004) also control for supplier
access with fixed effects, Amiti and Cameron (2007) build supplier access using input-
output information on the regional level for Indonesia. Input-output tables provide
information about the use of intermediate inputs by a specific industry. Since they
cannot match this on the firm level they refer to it as “potential rather than actual
suppliers” (Amiti and Cameron, 2007, p.20). They also control for other potential
explanations for agglomeration like labour pooling or technological spillovers. Both
explanations yield statistically significant results. On the one hand, firms benefit from
the proximity to other firms using similar input-mixes, which increases their produc-
tivity and thus wages. On the other hand, proximity to firms in the same industry
leads to a decrease in wages. This might be due to competition effects outweighing
positive externalities. They also show that most effects are highly localized and ben-
efits from good market- and supplier-access at about 100km and 260km respectively.
Amiti and Smarzynska Javorcik (2008) perform a very similar study for foreign direct
investments (FDI) decisions of foreign firms into China. They transform the wage
equation to study how the change in the number of new firms entering a region is
dependent on market- and supplier access. An additional feature is the possibility to
allow for heterogeneity across industries, which shows that market- and supplier ac-
cess matter for all industries but differ in magnitude. Hering and Poncet (2009) study
the wage equation for 29 Chinese provinces over 1995-2002. In addition to previous
studies, they try to identify through which channels market access might influence
wages. One example for such an indirect channel comes from increased incentives
to human capital formation in agglomerated areas due to positive knowledge exter-
nalities. Their results suggest that market access still explains part of the variation
in wages even after controlling for potential indirect channels. (Hering and Poncet,
2009, p.12). On a micro level for Chinese workers Hering and Poncet (2010) also
find a positive effect of market access on wages. However, the effect is stronger for
high-skilled workers and for those working in internationally oriented firms. Their
work also confirms one hypothesis of NEG models, namely that a further integration
into the world economy might lead to an even stronger wage gradient within China
when labour is not mobile enough.
For the estimation of the wage-equation, constructing market access requires a speci-

4See Bosker and Garretsen (2010) for a meta-study on the wage equation.
5As Redding and Schott (2003) put it:“Because firms in remote locations pay greater trade costs

on both their sales to final markets and their purchases of imported intermediate inputs, they have
less value added available to remunerate domestic factors of production”. For more details on how
market access influences the level of wages see section 2.4.

6So called “vertical-linkages” models, see for example Krugman and Venables (1995).
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fication of trade costs. Trade costs represent every form of friction in shipping goods,
services, people or ideas over space. In the most general case one can think of the
sum of transport costs, information and time costs, institutional and cultural barriers
(e.g., tariffs, product standards, language, etc.), see for example Fujita et al. (2001),
Fujita and Thisse (2002), Fingleton and McCann (2007) or Combes et al. (2008) for
a more detailed discussion. Trade costs are not only vital in terms of theory but are
still relevant in real world trade. Empirical work has shown that, while pure transport
costs have decreased over the last decades, trade still is impeded by distance, borders
and other factors mentioned above (for a survey see Head and Mayer (2015)).
Since market access is a trade-cost-weighted measure of demand, we first estimate bi-
lateral trade costs, using a spatial interaction model of the gravity type, by applying
a new data set7 of constructed trade flows between NUTS-2 regions. In constrast to
previous research relying on the estimation of the trade equation, the spatial interac-
tion model used in this study accounts for origin- and destination spatial dependences
by incorporating spatial filters (see LeSage and Pace (2010)). Second, we construct
market access using fitted values of the trade costs in order to estimate the wage
equation.
We pay a lot of attention to the robustness of our results. Since our approach consists
of two steps, there might be a large variation of outcomes depending on the specifics
of both steps (see Bosker et al. (2010)). We will also compare the theoretically derived
specifications of market access to more ad-hoc versions such as the Harris market po-
tential or a spatial autoregressive model.
The contributions to the literature are many fold: i) having a focus on European re-
gions we are able to control for regional determinants of income, ii) we make use of a
spatially-filtered trade equation estimation for the construction of measures of market
access, making the process more reliable, iii) we perform a benchmark exercise, com-
paring the theoretically based measures of market access against ad-hoc construction
schemes in order to test for model accuracy and iv) the estimation a spatial version
of the wage equation (as a robustness check) helps shed some light on possible spatial
externalities.
The paper is structured as follows: in section 2 we derive the main equations of in-
terest from a theoretical NEG model. Section 3 describes the estimation procedure
or how we get from theory to empirics. Section 4 gives details to the data sets,
while estimation results are presented and analysed in section 5. Finally, section 6
concludes.

2 Theoretical Model

While space is not explicitly modelled in growth theory, it is often accounted for
by augmenting growth equations with a spatial autocorrelation component. How-
ever, spatial linkages are not explained economically. They are taken into account
by modelling a spatial structure that is purely defined by some form of geographical
neighbourhood (contiguity, k-5 nearest neighbours, etc.). While it is necessary to ac-
count for spatial correlation from an econometric point of view, it is not satisfactory
from an economic point of view8. The role for spatial interaction remains inside a
“black box”. In models of economic geography, on the other hand, spatial structures
are the outcome. We will use such models that explain why and how income is re-
lated to spatial aspects, which is the focus of our question. Moreover, Head and Mayer
(2011) show that the “wage-equation” is even more general and can be derived from
different trade9 models. It is exactly this relationship that we exploit in our analysis.

7Details on the construction of the trade matrix can be found in Thissen et al. (2013a) and
Thissen et al. (2013b)

8We will, however, also contrast our results to a spatial formulation.
9According to Head and Mayer, a gravity-type trade equation forms the basis of derivation. This

gravity equation is consistent with models of product differentiation, comparative advantage or firm
heterogeneity.
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There is a big variety10 of NEG models. They differ in their use of functional forms of
utility and costs as well as their assumptions about the mobility of production factors
and therefore the exact mechanisms of agglomeration and dispersion across space.
Common to all models is the endogenous market size for the relevant sector. The way
in which market size is determined differs across models (migration across regions,
migration across sectors, (human) capital accumulation). However, Ottaviano (2007),
Ottaviano and Robert-Nicoud (2006) and Robert-Nicoud (2005) show that all two-
region-models based on a CES utility function share the same equilibrium properties,
they are, according to Robert-Nicoud (2005), “identical twins”. While there are dif-
ferences in the assumptions and in the specific dynamic behaviour of the model, the
“short-run”11 equilibrium properties are nearly identical. We will use the implications
of the short-run equilibrium to explain differences in income across regions.
The first generation12 of NEG models is not solvable analytically but relies on nu-
merical solutions. We chose to use the so-called “Footloose entrepreneur”(FE) model
by Forslid and Ottaviano (2003) which is solvable analytically and fits our question
best.

2.1 Demand

Assume that there are two sectors of production and two types of labour (skilled and
unskilled) that spend their income locally. While the constant-returns-to-scale sector
(A) acts as a numeraire, the sector of interest is often dubbed “manufacturing” (M)
and it features increasing-returns-to-scale internal to the firm. Firms in that sector
produce different varieties under monopolistic competition. This means that every
firm produces one variety, so there are as many firms as varieties. This model is based
on the popular framework developed by Dixit and Stiglitz (1977).
Utility of a representative consumer in this model economy comes from consumption
of goods from both sectors A and M .

U = A1−µMµ (1)

where µ represents the share of expenditure that is spent on the bundle (varieties) of
manufactured goods M . Consumers face a budget constraint E = pAA+ PM where
E denotes total expenditure, pA is the price of one unit of good A and P is a price
index for all varieties of the M-good.13 Under this constraint demand for both types
of goods takes the familiar form

A =
(1− µ)E

pA
M =

µE

P
(2)

Consumers, however, not only face the decision of consuming A and M , but also
the decision of which or how much varieties of M to consume. For the M -good,
consumers’ sub-utility takes the CES form

M ≡

[
N∑
i

x
(σ−1)/σ
i

]σ/(σ−1)
(3)

Utility increases with the amount of consumption xi. Further, one can show that this
functional form implies the love-for-variety-effect. This means, utility increases with
the numbers of varieties available to the consumer – they love variety for varieties’
sake. The parameter σ represents the constant elasticity of substitution between
any two varieties. Different varieties are imperfect substitutes, so every producer

10See Baldwin et al. (2003) for a survey of theoretical models of NEG.
11A short-run equilibrium satisfies all equilibrium conditions except the migration condition. This

condition depends on the specific model and describes why and how the mobile factor moves between
regions. When the migration condition(s) are fulfilled, the model is in the “long-run” equilibrium.

12See Krugman (1991) and Krugman and Venables (1995).
13There is no saving in this model, hence income equals expenditure Y = E on the aggregate level.
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exerts some form of monopoly power. Considering budget constraints, this yields the
following demand function for a variety j with σ elasticity

xj = p−σj µEPσ−1 (4)

P =

[
N∑
i

p1−σi

]1/(1−σ)
(5)

µE denotes expenditure on manufacturing goods, P the price index of manufacturing
goods and pj the free-on-board (FOB or mill-) price of variety j.

2.2 Supply

The demand side is virtually identical in all models with a CES sub-utility function.
Most of the differences between NEG models come from the supply side and the
assumed cost function. The present model assumes that there are two types of labour
input, skilled (H) and unskilled (L). The constant-return sector only uses unskilled
labour which leads to marginal cost pricing pA = wL. The term “skilled labour” is
synonymous to human capital or entrepreneurs. Entrepreneurs are assumed to be
mobile between regions while unskilled labour is assumed to be immobile between
regions. Further, it is assumed that in order to set up a firm it requires fixed costs of
α units of entrepreneurs H. Unskilled labour is only used in the marginal cost part,
i.e.,

C(xi) = wHα+ wLβxi (6)

where xi is the quantity produced, α and β the fixed and marginal input requirements
respectively, wL the price (wage) of unskilled labour and wH the price (wage) of the
entrepreneur. This might be a quite reasonable assumption about production. As
Combes et al. (2008) put it: “In fact, in a growing number of industries, production
is divided into several activities, starting with the product design and ending with
its marketing and distribution, which all require skilled workers, while the actual
production can often be performed by unskilled workers”.
The first order condition leads to

πi = pixi − wHα− wLβxi (7)

pi = wLβ
σ

σ − 1
(8)

(8) shows that the price for any variety is a constant mark-up over variable costs, in
this case, the wage of unskilled labour. (8) is also a result of the assumption that
individual firms can ignore their effect on the overall price index, i.e., ∂P/∂pi = 0.
There is no strategic interaction among firms in this model.

2.3 Trade Costs

So far we focused on a representative consumer and a typical firm in this model
economy, irrespective of their location. Now, assume there are r = 1, ..., R identical14

regions. The index for varieties is dropped, since they enter utility symmetrically.
The importance of space in NEG models is given by the assumption that shipping
(manufacturing-) goods to other regions is costly. Virtually all NEG models assume
iceberg-type trade costs15: in order for one unit to arrive at the destination, τrs units

14“Identical” refers to the endowment with factors, resources, technologies used by firms, etc.
Forslid and Ottaviano (2003) show, that the equilibrium properties also hold for the asymmetrical
case.

15See Fingleton and McCann (2007) for a discussion about the theoretical and empirical implica-
tions of the iceberg assumption.
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have to be shipped. This results in a higher price for exporting and a slightly different
price index16

prs = prτrs (9)

Pr =

[
R∑
s

nsp
1−σ
rs

]1/(1−σ)
(10)

where ns represents the number of firms, i.e., the number of varieties produced in
region s. This means that mill-pricing is still the optimal strategy for firms. Firms
charge the same price irrespective of their location. The price of selling to other
regions only differs by the trade costs τrs. The demand from region s for goods of
region r becomes

xrs = p−σr µEsP
σ−1
s τ1−σrs (11)

Summing over all (export-) markets, a typical firm in region r now faces demand

xr = p−σr
∑
s

µEsP
σ−1
s τ1−σrs (12)

where µEs denotes expenditure on manufacturing goods in region s. Further, trade
costs have to be accounted for in the price and the amount being shipped. Note that
trade is free within a region τrr = 1, this guarantees that we can interpret τ1−σrs as the
“freeness of trade” φ (see Baldwin et al., 2003). When trade is completely free, φ is
1, if trade costs are prohibitively high, φ approaches 0. (12) also shows that demand
faced by a firm in region r depends on the competition17 in other regions Ps.

2.4 Short-run equilibrium

The short-run equilibrium is now defined as a situation where good- and labour mar-
kets are cleared simultaneously. The difference to the long-run equilibrium comes
from the mobility of the entrepreneurs. Only in the long-run equilibrium, they have
no more incentive to move across regions to the region with the highest profitability.
Goods that are produced on the competitive market (A) are assumed to be shipped
freely across regions, which equalizes prices as well as wages of unskilled labour
wL,r = wL,s. Thus, good A is chosen as the numeraire, giving pA,r = wL,r = 1.
The clearing condition for the good market of A will be dropped due to Walras’ law.
Turning to the manufacturing sector, the fixed cost requirement α means that in
equilibrium the number of firms nr is proportional to the number of entrepreneurs.
The labour market clearing condition for entrepreneurs H is thus given by

nr =
Hr

α
(13)

Another short-run equilibrium condition is free entry and exit of firms. Firms enter
until every firm generates zero operating profits, or equivalently, profits only cover
fixed costs.

(pr − β)xr =
xrpr
σ

= αwH,r (14)

which then determines the break-even amount of output per firm

xr = x̄ = (σ − 1)αwH,r (15)

According to (12) the good market equilibrium is defined as

x̄ = p−σr
∑
s

µEsP
σ−1
s τ1−σrs (16)

16The index rs denotes origin region r and destination region s. τ ∈ [1,+∞)
17Competition is higher in regions where many varieties are produced. Less varieties have to be

imported subject to trade costs which lowers the price index in the respective region.
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Using (15), we can rewrite

(σ − 1)αwH,r = p−σr
∑
s

µEsP
σ−1
s τ1−σrs (17)

In order to estimate this equation and for an easier interpretation, we transform it
further18

wH,r = κ
∑
s

EsP
σ−1
s τ1−σrs (18)

which Fujita et al. (2001) and Redding and Venables (2004) call the “wage equation”.
It restates the market clearing condition for manufacturing goods in terms of factor
remuneration. Given the current location of firms (i.e., given the market size) and
given they make zero operating profits, (18) shows the maximum a firm can pay their
entrepreneurs as a function of market access (dubbed MA henceforth). MA is defined
as the trade-cost-weighted sum of market capacities EsP

σ−1
s .

Another way of interpreting this equilibrium condition is that there is a bidding
process (at equilibrium market prices) of firms for entrepreneurs, which only ends
when all remaining operating profits are zero and totally cover the wage bill of skilled
labour (see also (14)). Remember that any type of worker/entrepreneur spends his or
her income locally. Therefore, the location of H determines the relative market sizes.
For the empirical part, we take this distribution as given to see if it can help explain
differences in income across regions according to (18), ie. we estimate a short-run
equilibrium.

3 Estimation strategy

This section provides an overview of the proposed empirical implementation. First
we derive the estimation specification of the wage equation. Secondly we show how
to obtain the necessary measures, which come from a gravity equation.
Redding and Venables (2004) estimate a version of (18) which differs in the assumed
production factors. Their dependent variable is a composite of costs for immobile
labour, some mobile production factor as well as some cr, the marginal input require-
ment or “technological difference”. In most studies the dependent variable is proxied
by GVA. Breinlich (2006) estimates (17) where the technological differences are cap-
tured by the error term. To arrive at an estimable expression we take the natural log
of (18) and add a disturbance term

ln(wr) = γ + ϕ ln(MAr) + εr (19)

where εr ∼ N(0, σ2).
Since MA is not directly observable, we have to construct it. Head and Mayer (2004a),
Combes et al. (2008) and Bosker and Garretsen (2010) summarize important dimen-
sions along which the literature differs when it comes to implementing (19).
First, the wage equation can be estimated directly or in a two-step approach. In this
case, directly means that trade costs are already incorporated in the wage equation
and estimated together with other parameters of the model, see for example Hanson
(2005). For that it is necessary to use non-linear least squares methods which often
are highly sensitive to the starting values. On the other hand, it is possible to esti-
mate parameters like σ which are important for simulation studies19. An alternative

18κ captures all constants.
19Even if the structural parameters can be extracted, there is still a problem of interpretation.

There might be a problem of interpreting structural parameters derived from a two-region model,
estimated with a multi-region data set. Bosker et al. (2010) discuss this issue at length and propose
an empirical strategy that first estimates the parameters of interest econometrically. They then use
the results to calibrate a more sophisticated multi-regional NEG model to simulate the long-run
distribution of firms. This approach is beyond the scope of the present paper but should be kept in
mind for interpreting the results.

8



method follows Redding and Venables (2004) who first estimate a trade equation of
the gravity-type in order to get estimates for trade costs between regions. In a second
step, obtained estimates are then used to construct measures of MA. This approach,
however, does not allow to identify the theoretical parameters separately.

3.1 The trade equation

One appealing feature of NEG models with a CES sub-utility function for manufac-
turing goods is the derivation of a structural gravity equation within the model. The
value of total exports from one region to another can be expressed as

nrprxrs = nrp
1−σ
r µEsP

σ−1
s τ1−σrs (20)

This states that exports from r to s are a function of supply capacity sc = nrp
1−σ
r ,

market capacity mc = EsP
σ−1
s , as well as bilateral trade costs τ1−σrs . The right-hand-

side of (20) shows the similarity to the definition of MA. It is exactly this similarity
that is used to construct MA with the results of the estimated trade equation. We
define the total value of goods exported from region r to s as exports x̃rs and take
the natural logarithm to arrive at a specification that can be estimated

ln (x̃rs) = c+ sc+mc+ (1− σ) ln (τrs) + εrs (21)

where c20 is a constant term controlling for the mean measurement error in the x̃rs’s
and εrs ∼ N(0, σ2).
Supply and market capacity measures (i.e., sc and mc) are not observable and are
therefore proxied by exporters and importers fixed effects ξs and ξr.
Regarding the functional form, multiple approaches on how to proxy both capacity
measures for the trade equation estimation, i.e., sc and mc in (21), have been used
over time. In early studies, logged GDPs, expenditures as well as remoteness terms
were highly popular although they implicitly impose severe restrictions (mc = µEs
in the case of the remoteness terms). Modern practice in estimating trade equation
has advocated the use of importer and exporter fixed effects as proxy of sc and mc,
yielding consistent estimates of τ1−σrs . The exporter ξr and importer fixed effects ξs
can be written as

ξr = In ⊗ ιn
ξs = ιn ⊗ In (22)

where, for n regions, In is a n–by–n identity matrix and ιn a 1–by–n vector of ones.
In our econometric setting, we follow this latter definition of multilateral resistance
terms using fixed effects.
τ1−σrs is approximated by a distance deterrence function Drs construed to include
spatial, institutional and cultural separation factors that are defined in a further
section. Inserting the deterrence function Drs in (21) we obtain

ln (x̃rs) = κ+ δ1ξr + δ2ξs + lnDrs + εrs (23)

where

sc = nrp
1−σ
r ≡ δ1ξr (24)

mc = µEsP
σ−1
s ≡ δ2ξs (25)

τ1−σrs ≡ Drs (26)

(27)

In turn, this specification allows us to obtain estimates for the empirical counterparts
of mc and τ1−σrs which we will combine later to obtain the correct theory-consistent

20It captures the constant 1
E

.
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measure of MA.
Taking into account the spatial nature of bilateral trade flows (see LeSage and Pace
2010), eigenvector spatial filters were added to the gravity model specification in (21)
21. The eigenvectors identified are used as additional explanatory variables in (21)
to filter out any remaining unexplained spatial dependence in the residuals. Spatial
filtering relies on a spectral decomposition of the transformed spatial weight matrix
MWM , where W is an N -by-N spatial weight matrix

W = Wn ⊗Wn (28)

that captures spatial dependence between origin-destination flows from regions neigh-
bouring both the origins and destinations, labelled origin-to-destination dependence
by LeSage and Pace (2010). Wn is a row-stochastic n-by-n spatial weight matrix that
describes spatial neighbourhood relationships between the n European regions. This
matrix has – by convention – zeros in the main diagonal, and non-negative elements
in the off-diagonal cells. Specifically, the (r,s)-th element of Wn is greater than zero
if r and s are neighbouring regions.22 ⊗ denotes the Kronecker product, and M is
the N -by-N projection matrix M = IN − ιN ι

′

N
1
N where IN is the N -by-N identity

matrix, and ιN the N -by-1 vector of ones.
The orthogonality properties of eigenvectors make the spectral decomposition useful
for lower rank approximations to MWM (see Pace et al. 2013). The usual approach
is to keep all the eigenvectors associated with the largest magnitude eigenvalues and
discard the rest. This involves partitioning the eigenvalues and vectors into two sets,
a set of eigenvectors associated with the largest Q eigenvalues and a set of eigenvec-
tors associated with the smallest N −Q eigenvalues of MWM . We follow Tiefelsdorf
and Griffith (2007) to identify and optimise the subset of Q eigenvectors by stepwise
integration of the eigenvectors. Including Q eigenvectors, (23) is rewritten as:

ln (x̃rs) =κ+ δ1ξr + δ2ξs + ln(Drs) +

Q∑
q=1

ψqEq + εrs (29)

where Eq is the q ∈ Q eigenvector and ψq is respective coefficient. The OLS residuals
of the non-filtered trade equation defined in (21) yield a significant Moran’s I of 0.355
on average while the same measure obtained from the filtered version of the model is
only equal to 0.035.

3.2 The construction of market access and the wage equation

In estimating the trade equation (29) we find empirical counterparts for µEP 1−σ
s as

well as τ1−σrs , which are needed to construct market capacity µEP 1σ
s τ1−σrs of a region

s. Following Redding and Venables (2004), we use those counterparts to obtain the
market access measure

M̂Ar =
∑
s

ξ̂s,s(Drs)
γ̂ = ξ̂r,r(Drr)

γ̂ +
∑
s6=r

ξ̂s,s(Drs)
γ̂ (30)

where ξ̂s,r and ξ̂s,s are the estimated importer fixed effects of region r and s respec-
tively and γ̂ the parameters vector of the components of the deterrence function Drs.
The first term of the right-hand side of (30) corresponds to the domestic MA, the
second term to the foreign MA. This again shows that MA is a trade-cost-weighted
sum of demand from all potential markets. (31) is rewritten by including the terms
of (30) which results in

ln(wr) = γ + ϕ ln(M̂Ar) + εr (31)

21see Chun 2008, Fischer and Griffith 2008, Chun and Griffith 2011, Griffith and Fischer 2013.
22Neighbours may be defined using contiguity or measures of spatial proximity such as cardinal

distance (for example, in terms of the great circle distance) or ordinal distance (for example, in terms
of k-nearest neighbours). In this application, we use the concept of k-nearest neighbours with k = 5
to define W .
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and can be estimated using standard OLS.

4 Data, Variables and Specifications

Our trade data covers bilateral trade in goods and services for six broad NACE 1.1.
sectors among 240 NUTS-2 European regions23 from 25 European countries for the
year 2010. This data set is a version of Thissen et al. (2013a,b) tailored for the use of
the RHOMOLO model, which is developed by the JRC-IPTS, European Commission,
see Brandsma et al. (2015). The IPTS kindly provided the data set for the present
paper.
In essence, national trade flows are broken down with regional data on consumption,
investment and production to generate regional make and use tables. These tables are
conform national accounts according to the WIOD database (Timmer et al, 2015).
The resulting data base is consistent with a series of macro constraints as well as
internally consistent (exports from a region A to a region B are also imports of a
region B coming from a region A). An additional feature that was taken into account
are re-exports, see Lankhuizen and Thissen (2014).
Importantly, the construction of the interregional and international trade data does
not rely on the gravity approach and does not impose any geographical structure on
the trade data (Thissen et al. 2013a). Our gravity regression does consequently not
just recover the geographical patterns from which the trade data were constructed.
Our data set thus comprises 2402 = 57, 600 observations of intra- or interregional
trade flows among European regions, after filtering out Romania, Bulgaria (trade
flows data for both countries were obtained using gravity equations, their regions
are therefore filtered out in order to avoid replication) and non-continental territories
such as the Portuguese, French and Spanish islands.24

The variables are defined as follows: geographical distance between European regions
is measured in terms of great circle distance between region’s economic centres. Ad-
ditionally, two alternatives of measuring geographical distance are tested against the

baseline great circle distance measure (d
(gcd)
rs ), namely the population-weighted geo-

graphical distance (d
(pop)
rs ) as defined in Head and Mayer (2002) and the geographical

distance approximated by travel time (d
(tt)
rs ). The population-weighted geographic

distance is defined in Head and Mayer (2002) as the sum of the shares of popula-
tion of the NUTS-3 composing the origin NUTS-2 times the sum of the shares of
population of the NUTS-3 composing the destination NUTS-2:

d(pop)rs =

(∑
k∈r

(popk/popr)
∑
l∈s

(popl/pops)d
(gcd)
kl

)
(32)

The travel time measure is obtained using the Google Maps API25, computing the
average travel time by car between two regions’ economic centers.
The estimation of the wage equation relies on a second dataset, containing the previ-
ously constructed MA measures, data for control variables as well as for instruments
of MA.
Data on regional GVA (as left-hand side of the (31) are taken from the Cambridge
Econometrics Regional Database (2015). Further control variables in the wage equa-
tion control for human capital absorption capacity of a region, often referred to as
a major determinant of income differentials (Krueger and Lindahl, 2001) as well as
for labour market characteristics (such as unemployment rate, net replacement rate).
Additionally, an index for product market regulation (PMR) tries to capture poten-
tial productivity-enhancing effects of less regulated markets (see Conway et al., 2005).
At country level, the following variables are available: Share of tertiary education in

23The complete list of NUTS-2 European regions used in this study is provided in the Appendix.
24The full detailed list of NUTS-2 regions is available in the Appendix.
25https://developers.google.com/maps/
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the population (Ter.Educ.), Number of issued patents in 2010 (Patents), Unemploy-
ment rate (Unemp.). Data for these variables are taken from the ESPON Database26

(2013). At the country level, we use Product market regulation index and Net replace-
ment rate (obtained from the Eurostat database, EMCO, 2014 and OECD Labour
Market indicators respectively).

5 Results

5.1 Trade equation

The first stage of our analysis consists of the estimation of the parameter vector γ
of the deterrence function and the corresponding market capacity proxy’s parameter
δ2 of the trade equation (29) in order to construct MA measures as defined in (30).
2402 regional bilateral trade flows are regressed on two vectors of 240 importer and
240 exporter dummies and on up to eight variables of trade barriers (i.e., geograph-
ical distance, country border, contiguity, language barrier, etc.). In order to stay as
close as possible to the theoretical model, only trade flows on NACE 1.1 sector CDE
(manufacturing) are used.
Facing a large number of candidate models, we tested several specifications of the
deterrence function and ranked them according to their estimated log-likelihood and
as well as to their information criterion. The deterrence function is construed to
include a separation distance variable, i.e., geographical distance, and spatial sepa-
ration factors depicting bilateral barriers conditional on regions’ institutional, spatial
or cultural characteristics. Comparing specifications, we chose a model that includes
four spatial separation factors, namely geographical distance drs, a country border
variable brs, country contiguity crs and language barrier lrs. Complete results for
all specifications tests are shown in Table 7 in the Appendix. Table 1 reports the
estimates of the deterrence function components as well as the measure of residuals’
autocorrelation (Moran’s I) for the preferred model.
With the exception of geographical distance, all spatial (pairwise) separation factors
are defined as binary variables taking the value of one or zero. Country border crs
is equal to one if two regions r and s are separated by a country border. Contiguity
measure takes a value of one if regions r and s share a common border (contiguous),
zero otherwise. Finally language similarity lrs is indicates whether regions’ languages
are similar (therefore equal to one), it is important to note that regional languages
are taken into consideration.
The table includes results for the three alternative proxies of geographical distance.
Column i) depicts estimates obtained with great circle distance (in km.) as proxy, col-
umn ii) population-weighted great circle distance (in km.) and column iii) travel time
(in seconds). The significance of the results only slightly differs between the three
specifications. Population-weighted great circle distance is seen as a larger barrier
than its two counterparts (−0.814 compared to −0.796 and −0.781), country contigu-
ity, however, seems to represent the most constraining burden to trade (ranging from
−0.970 to −0.977). The border effect is about half of the geographical distance effect
(ranging from −0.381 to −0.386). Overall, the trade equation seems to fit the data
well with a reported average adjusted-R2 of 0.850. Furthermore, the spatial auto-
correlation of the residuals, as seen by the reported Moran’s I, is drastically reduced
with the addition of the spatial filters (average Moran’s I is 0.032).

5.2 Wage equation

Out of the three proxies of geographical distance (great circle distance, population-
weighted population distance and travel time) three MA measures are constructed
according to (30).

26http://database.espon.eu/db2/
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Table 1: OLS estimation of the trade equation for i) logged great circle distance, ii)
logged population-weighted great circle distance, iii) logged travel time. Observations
n = 240× 240 = 57, 600

i) ii) iii)
Distance proxy gcd pop tt

Dependent Variable: Exports from r to s

Great Circle Distance d
(gcd)
rs −0.796???

(0.011)

Population Weighted d
(pop)
rs −0.814???

(0.011)

Travel Time d
(tt)
rs −0.781???

(0.011)
Border brs −0.386??? −0.385??? −0.381???

(0.036) (0.036) (0.036)
Contiguity crs −0.977??? −0.974??? −0.970???

(0.015) (0.015) (0.015)
Language lrs −0.157??? −0.160??? −0.151???

(0.028) (0.028) (0.028)

Adjusted R2 0.865 0.866 0.865
logLik. −75504.34 −75433.17 −75558.42
AIC 152534.7 152392.3 152642.8
Moran’s I (filtered) 0.032 0.031 0.033
Moran’s I (non filtered) 0.366 0.349 0.349

Notes All models include exporter (240) and importer (240) fixed effects. Model specification:
(1) logged great circle distance, (2) logged population-weighted great circle distance, (3) logged

travel time. d
gcd)
rs : logged geographical distance (in km.), d

(pop)
rs logged population-weighted

geographical distance (in km.), d
(tt)
rs : logged distance travel time (in seconds), brs: 1 if separated

by a country border, crs: 1 if share a common border, lrs: 1 if different spoken languages.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

As a benchmark for further calculations and to see how well the theoretically derived
MA performs, we also use the ad-hoc Harris market potential (HMP ), as introduced
in Harris (1954). The potential of region r is defined as the sum of gross value added
of all its export destinations weighted by their remoteness relative to r:

HMPr =
∑
s

Wrs.GV As (33)

where Wrs is an element of a n× n spatial weight matrix W that can take different
forms for modelling remoteness such as inverse geographical distance, Queen contigu-
ity, k-nearest neighbours, etc.
Two major distinctions between MA (as defined in (30)) and HMP are: First, the
neighbourhood structure in HMP is defined in an ad-hoc way, while it depends on
estimated trade costs in the case of MA. Second, HMP imposes the restriction that
market capacity is only composed by µEs, thus setting Pσ−1s equal to one. In other
words, there is no price competition assumed. The literature sometimes distinguishes
“nominal market potential” when the price is equal to one and “real market poten-
tial” when the price index is taken into account.
A set of HMP measures are obtained by using different definition of spatial weight
matrices: inverse geographical distance proxied by great-circle distance, population-
weighted great circle distance and travel time (respectively dubbed gcd, pop and tt

13



Figure 2: MA and HMP measures for 229 regions

(MA1/HMP1): measure of MA (or HMP ) obtained by using gcd as proxy of geographical distance,
(MA2/HMP2): with pop as proxy of geographical distance, (MA3/HMP3) with tt as proxy of geo-
graphical distance.
Darker shades of grey correspond to higher distribution quantiles of the MA or HMP measures.

henceforth).27 The best performing HMP based on different definition of the spatial
weight matrix is chosen based on information criterion and on the log-likelihood ob-
tained from the estimation of the wage equation. Results are, however, available for
all possible HMP candidates in Table 8 in the Appendix.
Constructed MA measures are illustrated in Fig. 2 on a European regional map. The
three top panels MA1, MA2 and MA3 plot constructed MA on the basis of estimated
partner fixed effect and deterrence function with gcd as geographical distance proxy,
pop as proxy and tt as proxy respectively. The three lower panels plot HMP . A clear
core can be seen in south England, Benelux and through large parts of Germany, a
semi-periphery for French regions as well as for central eastern European Countries
and a periphery for extreme south and extreme north regions. When comparing the
six measures, neither MAs nor HMP s show large discrepancies, with perhaps the
exception of Greek regions being advantaged in the MA and capital regions such as
Ile-de-France, Madrid and Lisbon (as easily seen by the darkest shades) having larger
HMP values than MA. The core is also more concentrated in the MAs than in the
HMP s. Table 2 additionally gives an overview of the top ten regions with highest
MA and underline the relative similarity of the three measures. As seen in the table,
only minor changes are observable within and between measures.
Empirically, the wage equation (31) is estimated by proxying wages wr by regional
GVA per capita weighted by (national) average working hours, using the generated

measure of MA (M̂Ar) and adding a set X of control variables and/or country fixed
effects. Thus, the empirical wage equation is written as:

ln(GV A(p.c.)
r ) = γ + ϕ ln(M̂Ar) +X ′θ + εr (34)

An overview of the relationship between the (logged) MA (hence MA) and (logged)
GVA per capita weighted by average working hours is given by the following estima-

27Further tests have been done using Queen contiguity and k-nearest neighbours (for k = 2, . . . , 10)
spatial weight matrices for the computation of HMP . Information criterion extracted from the es-
timation of the wage equation indicate that HMP s constructed with inverted geographical distance
spatial weight matrices (with gcd, pop or tt as proxy) achieved better fit and more reliable esti-
mates than any other matrices (k-2 to k-10 nearest neighbours, Queen contiguity spatial weight
matrices).The results are not shown in this working paper but are available upon request.

14



Table 2: Top 10 Regions’ MA and HMP (gcd,pop,tt)

MA gcd pop tt HMP gcd pop tt

1 UKI1 UKI1 UKI1 1 UKI1 UKI1 UKI1
2 BE10 BE10 BE10 2 BE10 BE10 BE10
3 UKI2 EL42 EL42 3 AT13 AT13 AT13
4 EL42 UKI2 UKI2 4 UKI2 DE60 DE60
5 DE30 AT13 AT13 5 DE30 DE30 DE30
6 AT13 DE30 DE30 6 DE60 UKI2 UKI2
7 DE60 DE60 DE60 7 CZ01 CZ01 CZ01
8 FI20 FI20 FI20 8 UKG3 UKG3 UKG3
9 DE50 UKG3 DE50 9 DE50 DE50 DE50

10 UKG3 DE50 UKG3 10 FR10 FR10 FR10

Mean Spearman correlation
0.917 0.916 0.894 0.913 0.909 0.910

NUTS-2 Classification Names: AT13 Vienna, BE10 Brussels-Capita Region, CZ01 Prague, DE30
Berlin, DE50 Bremen, DE60 Hamburg, EL42 South Aegean, FI20 Helsinki, FR10 Ile-de-France,
UKG3 West Midlands, UKI1 Inner London West, UKI2 Inner London East

tion:

ln(GV A(p.c.)
r ) =0.645???+0.509???ln(M̂Ar) + εr

[0.131] [0.074]

R2 =0.228

MI =0.687???

where M̂A is the mean value of the three constructed MA. The values in square
brackets are bootstrapped standard errors. The positive effect of an increase in a
region’s MA is clearly observable, however, the regressor alone does not account for
spatial autocorrelation of regional income per capita as seen by the significant high
Moran’s I measure (MI). The same observations can be made when HMP is used
as a regressor, this variable seems to explain regional income per capita variance to a
larger extent than MA and fits the data better:

ln(GV A(p.c.)
r ) =− 4.155???+0.379???ln(ĤMP r) + εr

[0.400] [0.039]

R2 =0.330

MI =0.710???

We then augment the model with factors controlling for a region’s human capital
absorption capacity, labour characteristics as well as cross-country variations (in the
form of fixed effects or country-level factors). Regional share of tertiary education
(Ter.Educ.) and the number of patents issued in 2010 (Patents) control for labour
productivity as well as accumulation of human capital that helps expand production
and income (Krueger and Lindahl, 2001). The unemployment rate (Unemp.) and
Net Replacement Rate (NRR) account for regional labour characteristics that drive
incomes down and up respectively. Product market regulation(PMR) controls for
the regulatory environment. More specifically, the coefficient estimate for PMR is
expected to be negative, as stronger burdens to competition prevent efficient of re-
sources and therefore may harm productivity that in turns affect income negatively
(Conway et al., 2005). Country cross-variations are captured either through control
variables at the country level (PMR, NRR) or through country fixed effects. The
specifications are defined as follows:
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W1: Market access + Country fixed effects

W2: Market access + Ter.Educ.+ Patents + Unemp. + PMR + NRR

W3: Market access + Ter.Educ.+ Patents + Unemp. + Country fixed effects

Altogether, for the wage equation a total of 3 ∗ 3 = 9 models (three proxies for ge-
ographical distance and three wage equation specifications) are tested.28. However,
since results between specifications are very similar, we restrict our discussion to the
MA constructed with population-weighted great circle distance (pop).
As mentioned in former studies, the wage equation suffers from endogeneity issues
which lead to inconsistent estimates and therefore incorrect conclusion about the es-
timated effect of MA on income. The departure from the assumptions of the classical
linear model can be addressed by instrumenting the endogenous regressors (MA and
HMP ), following Redding and Venables (2004), Head and Mayer (2006), Hering and
Poncet (2009). All instruments reflect geographical features of European regions such
as their interconnections, distance to the most central European region (Luxembourg,
following Redding and Venables (2004) and Breinlich (2006)) and mean inverted dis-
tance to importing partners (Bruna et al., 2015). Additionally, taking into account
that MA and HMP are constructed regressors, bootstrapped standard errors are
reported. However, for models including country fixed effects (specifications W1 and
W3) White robust standard errors are instead used.29

Table 3 presents the estimation results for the three model specifications of the wage
equation by two stages least squares (2SLS), instrumenting generated MA as well
as HMP measures. The upper panel shows the results of the second stage, i.e., the
instrumented wage equation and the lower panel the first stage, i.e., the instruments
are regressed on MA and HMP . Model selection criteria clearly advocate the use of
country fixed effects and regional control variables in the wage equation. The model
that includes only country fixed effects also performs better than specification W2:
variables aiming at controlling for cross-country variations do not seem to suffice.
The first three columns report results with MA a regressor and the last three columns
HMP . Both variable are instrumented by mean inverted distance to importers
(MIDIP) and distance to Luxembourg (DistLux). Altogether, the sample consists
of 240 European regions, but due to missing data in the variables Patents and Unem-
ployment (for 2010) the sample is reduced to 229. Data availability at the regional
level is restricted to only the share of tertiary education and issued patents. The
Wu-Hausman test of exogeneity rejects the null hypothesis of the instrumented con-
structed MA being exogenous at the 0.1% level for models including fixed effects.
This is, however, not the case for HMP . For models iv)-vi) instrumented variable re-
gressions could not be proven superior to OLS. Instruments for the 2SLS specification
are weighted inverted distance to importing partners (+) and distance to Luxembourg
(-). Inclusion of the instruments seem satisfactory as seen by the Hansen-J test (all
were not able to reject the null hypothesis of valid over-identification restrictions).
The estimate for MA remains significant throughout the three models and is equal
to +0.337 on average, which is about 66% higher than the mean HMP coefficient:
+0.202. Human capital, proxied here by the regional share of tertiary educated people
and the total number of issued patents in 2010, is a major determinant of regional
income (both variables could be included since their correlation is relatively small:
0.300). However, only the share of tertiary educated people shows robust link with
income per capita. The coefficient for the Patents variable is not statistically different
from zero when controlling for country heterogeneity. As expected, unemployment
is a strong impediment to high regional wages and NRR is highly correlated with
high income per capita. Regarding PMR, competition friendly countries (with small
values) benefit from higher per capita income. No large discrepancies are observed

28Table 6 in the Appendix summarizes the list of different deterrence function version as well as
the wage equation specifications used in our empirical exercise.

29In these cases bootstrap replications were not possible due to a too small number of observations.
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Table 3: Estimation of the instrumented Wage Equation

i) ii) iii) iv) v) vi)
Specification W1 W2 W3 W1 W2 W3

Second Stage (2SLS)

Dependent Variable: GV Apc weighted by Average Working Hours

MA 0.447??? 0.226??? 0.339???

(0.051) [0.069] (0.042)
HMP 0.246??? 0.157??? 0.203???

(0.024) [0.048] (0.023)
Ter.Educ 0.310??? 0.516??? 0.237??? 0.330???

[0.075] (0.063) [0.081] (0.066)
PMR −0.516??? −0.391??

[0.108] [0.126]
Patents 1.295??? 0.290 1.279??? 0.291

[0.276] (0.168) [0.240] (0.153)
Unemp. −0.957∗ −1.582??? −1.175? −1.789???

[0.502] (0.310) [0.516] (0.283)
NRR 0.842??? 0.885???

[0.090] [0.087]

Obs. 240 229 229 240 229 229
RMSE 0.217 0.304 0.160 0.184 0.298 0.146
adj R2 0.839 0.688 0.913 0.885 0.699 0.928
logLik. 23.369 −47.313 89.132 67.775 −36.732 132.366
AIC −2.816 −2.363 −3.380 −3.186 −2.455 −3.758
Country FE Yes No Yes Yes No Yes
Moran’s I 0.114??? 0.469??? 0.040 0.175??? 0.509??? 0.044?

(p-value) 0.000 0.000 0.119 0.000 0.000 0.098
Weak inst. 0.000??? 0.000??? 0.000??? 0.000??? 0.000??? 0.000???

Wu-Hausmann 0.000??? 0.502 0.001??? 0.658 0.521 0.698
Hansen-J test 0.519 0.982 0.874 0.351 0.937 0.458

First Stage (2SLS)

Dependent Variable: MA or HMP

MIDIP 0.526??? 0.860???

(0.032) (0.046)
DistLux −0.127??? −0.196???

(0.026) (0.037)

RMSE 0.312 0.446
adj R2 0.648 0.703

Second Stage: All models include a constant and country fixed effects. Ter.Educ: regional share
of tertiary education, PMR: product market regulation index (country level), Patents: number
of patents issued in 2010, Unemp.: regional unemployment rate, NRR: net replacement rate
(country level). MA and HMP are instrumented using MIDIP and DistLux.
First Step: All models include a constant. MIDIP: Mean inverted distance from importing
partners, DistLux: Distance from Luxembourg. Robust standard errors in parentheses. Boot-
strapped standard errors (500 replications) in square brackets.
??? p<0.01
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within models with MA and models with HMP .
As robustness checks, estimations of the wage equation were also performed using an
even larger set of variables on labour market characteristics, i.e. tax wedge (the dif-
ference between before-tax and after-tax wages), government expenditure on labour
market and the number of people involved in labour market policies. The results
are very similar to those shown in Table 3, the coefficient estimate of MA remains
positive (0.331 on average) and data fit (without country fixed effects) is equal to
0.62.
Changes in coefficients along the three specifications are discernible for MA and
HMP , both lose in magnitude when country fixed effects are excluded and the largest
significant value is obtained from the first specification W1.
An important result is also the spatial autocorrelation measure of the residuals. It
indicates that not all income per capita autocorrelation is captured by the regressors.
Models ii) and v) yield positive and strongly significant Moran’s I that approximates
those found in the literature. This indicates that MA (or HMP ) alone do not fully
control for the spatial pattern of income per capita. However, inclusion of country
fixed effects drastically reduces the measure of autocorrelation. More specifically, us-
ing regional control variables as well as country fixed effects (W3 for models iii) and
vi)) totally accounts for these spatial patterns.
In order to draw a first conclusion, the theoretical measure of regions’ proximity to
markets (MA) plays a significant role in explaining the uneven distribution of income
between European regions. Furthermore, we showed that results are comparable to
those obtained with ad-hoc HMP measures. What strongly matters, thus supporting
the findings of Bosker and Garretsen (2010), is especially the definition of the wage
equation and of its components as well as the choice of the deterrence function.30.
More specifically, as already noted in Bruna et al. (2015), the addition of control
variables at the regional level combined with country fixed effects helped partly resolve
the issue of spatially autocorrelated residuals. This further strengthens our results as
they should be more unbiased.

5.3 A Spatial Wage Equation

Although the estimations of the wage equation have brought satisfying results regard-
ing data fit, there is spatial autocorrelation left when country fixed effect are excluded
(only one Moran’s I out of six is insignificant). This might raise concerns that MA as
well as the controls for regional and country characteristics are not fully able to cap-
ture the spatial pattern of income per capita. As a robustness check, we remodel the
wage equation by adding a spatial lag component, fully controlling for the underlying
spatial autocorrelation of the regressand. A classic spatial autocorrelation regression
(dubbed SAR henceforth) is used and is defined as follows in matrix notation:

ln(GV A(p.c.)) = ρW · ln(GV A(p.c.)) + ϕ ln(MA) +X ′θ + u (35)

whereW is a 240×240 spatial weight matrix used to control for spatial autocorrelation
in the regressand and ρ is its related coefficient. As usual in the literature, the W is
defined as a k = 5 nearest neighbours spatial weight matrix. Parameters are obtained
using Maximum Likelihood estimation (ML Estimation).
A positive and significant ϕ̂ even after adding a spatial lag component should provide
a hint of robustness for the link between both MA measures and income per capita.
The parameter of the SAR model cannot be interpreted directly, so we focus on the
direct, indirect and total effects that are reported in Table 4. For all six models,
the spatial autocorrelation parameter ρ is positive significant. The point estimate is
low when country fixed effects are included (0.260 on average) and averaging 0.600
without. This indicates that even after controlling for regions’ proximity to markets

30Additionally the form of deterrence function (logged geographical distance) and the choice of
estimators (OLS vs. PPML) also have great impacts on the results. Those results are partially
shown in Appendix and are also available upon request.
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Table 4: ML Estimation of the SAR version of wage equation

MA HMP
Specification W1 W2 W3 W1 W2 W3

ρ 0.249? 0.589? 0.227? 0.308? 0.612? 0.258?

(0.057) (0.057) (0.058) (0.053) (0.053) (0.053)

MA (pop) Direct 0.307? 0.172? 0.234?

Indirect 0.097? 0.211? 0.066?

Total 0.404? 0.383? 0.300?

HMP Direct 0.253? 0.174? 0.192?

Indirect 0.106? 0.234? 0.061?

Total 0.359? 0.408? 0.253?

Ter.Educ. Direct 0.306? 0.603? 0.219? 0.397?

Indirect 0.378? 0.170? 0.296? 0.125?

Total 0.685? 0.773? 0.516? 0.523?

PMR Direct −0.116 0.070
Indirect −0.143 0.102
Total −0.259 0.178

Patents Direct 0.714? 0.312? 0.569? 0.236+

Indirect 0.882? 0.088+ 0.767? 0.074
Total 1.596? 0.400+ 1.336? 0.311+

Unemp. Direct −0.407 −1.092? −0.565+ −1.257?

Indirect −0.502 −0.308? −0.760 −0.398?

Total −0.910 −1.401? −1.325 −1.656?

NRR Direct 0.366? 0.378?

Indirect 0.452? 0.509?

Total 0.819? 0.888?

Moran’s test 0.724 0.000? 0.908 0.074+ 0.000? 0.802
AIC −49.962 16.391 −184.220 −130.910 −7.372 −221.050
Country FE Yes No Yes Yes No Yes

Notes: All models include a constant and country fixed effects. Direct, indirect and total effect
obtained out of MCMC 1000 simulations. ? p<0.05, + p<0.1
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and for human capital there still remains some unexplained spatial patterns in the
dependent variable. The addition of this spatial lag parameter successfully removed
spatial autocorrelation in the residuals for the models including country fixed effects
(insignificant Moran test), but does not seem to suffice for the second specification
W2.
On the side of the regressors, total effects are comparable to results shown in the
previous section: MA and HMP still have a positive impact on regional income
per capita whereas the latter has relatively smaller coefficients (10% smaller than
those of the MA). A high regional share of tertiary education remains an important
explanatory factor of regional incomes per capita, in contrast to unemployment. There
are no notable differences in the effects of the number of issued patents.
Looking at the direct and indirect effects of the regressors yields interesting new
findings. The indirect effect, illustrating neighbours MA (or HMP ) effect on one’s
regional income per capita, is positive and in two cases out of six, larger than the direct
effect. Human capital also shows a positive significant indirect effect, indicating that
regions with high income are very likely to be located next to other high income regions
as well as regions with high share of tertiary education and patents issuance. Domestic
unemployment rate shows no effect on the regional distribution of income when net
replacement rate is included, however, the spatial correlation becomes significant when
controlling for fixed effects instead.
In conclusion, controlling for regressand spatial autocorrelation pattern yields similar
results that are comparable with previous results using 2SLS. This further indicates
that market access is a robust and important determinant of regions income per
capita. Concerning the differences between MA and HMP , the latter still provides
the best fit as seen by the log-likelihood and information criterion (AIC), as already
shown in the previous section.

6 Concluding remarks

Using a spatially filtered gravity estimation of regional bilateral trade flows and test-
ing for different specifications of Fujita’s wage equation, we showed that proximity
to large export markets is a robust determinant of a region’s per capita income. In
other words, better access to consumer markets increases factor rewards. Our theory-
consistent measure of market access is comparable to the ad-hoc specification of the
Harris market potential and even slightly outperforms it when explaining spatial in-
come distribution. Using regional data permitted us to control for various determi-
nants of cross-regional income differences such as knowledge creation (as seen by the
number of patents issued in a region), education level and a region’s unemployment
rate, on a more disaggregated level than in previous studies. Moreover, testing for
different measures of market access (relying on distinct proxies for geographical dis-
tance and deterrence function specifications) as well as addressing endogeneity issues
with instrument variables confirmed once more that specification matters although
the overall strength of the link between market access and regional income per capita
were not significantly impacted.
This provides a solid basis for extensions and further investigation that is also called
for in the literature. First, a test whether the proposed effect of market access on
income differs between the six available NACE sectors would be of interest. Second,
alternative channels through which market access affects income could be identified.
One example is the higher incentives for (human-) capital formation in agglomerated
areas. This leads to additional robustness check, namely on the effect of alternative
sources of agglomeration on income that might get captured by our measure of market
access. The possible contribution of location fundamentals (e.g., physical geography
or infrastructure) on income differences has to also be accounted for.
Ultimately the question is of high interest from a regional policy point of view. Fur-
ther market integration in Europe could lead to higher income as a result of more
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agglomeration but also to a greater divergence within Europe and also within coun-
tries or even regions. Regional Policy aims at income convergence and a catching-up
process for the European periphery. More research is needed to understand the pos-
sible trade-offs that further integration can have for Europe and its regions.
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Bruna, F., Fáıa, A., and Lopez-Rodriguez, J. (2014). Market Potential and the curse of
distance in European regions.

21
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Appendix

NUTS is an acronym of the French for the ’nomenclature of territorial units for statis-
tics’, which is a hierarchical system of regions used by the statistical office of the Euro-
pean Community for the production of regional statistics. At the top of the hierarchy
are NUTS-0 regions (countries) below which are NUTS-1 regions and then NUTS-2
regions. This study disaggregates Europe’s territory into 240 NUTS-2 regions located
in a subset of the EU-28 member states (excluding Croatia, Romania and Bulgaria).
We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese
non-continental territories Açores and Madeira, and the French Departments d’Outre-
Mer Guadeloupe, Martinique, Guyane Française and Réunion. Thus, we include the
following NUTS-2 regions:

Austria Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg,
Steiermark, Tirol, Vorarlberg, Wien

Belgium Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Limburg
(B), Prov. Liège, Prov. Luxembourg (B), Prov. Namur, Prov.
Oost-Vlaanderen, Prov. Vlaams-Brabant, Prov. West-Vlaanderen, Région
de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest

Czech Jihovýchod, Jihozápad, Moravskoslezsko, Praha, Severovýchod,
Republic Severozápad, Stredni Morava, Stredni Cechy

Denmark Hovedstaden, Sjaelland, Syddanmark, Midtjylland, Nordjylland

Estonia Eesti

Finland Aland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi

France Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne,
Centre, Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie,
Île-de-France, Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées,
Nord-Pas-de-Calais, Pays de la Loire, Picardie, Poitou-Charentes, Provence-
Alpes-Côte d’Azur, Rhône-Alpes
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Germany Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz,
Darmstadt, Dessau, Detmold, Dresden, Düsseldorf, Freiburg, Giessen,
Halle, Hamburg, Hannover, Karlsruhe, Kassel, Koblenz, Köln, Leipzig,
Lüneburg, Magdeburg, Mecklenburg-Vorpommern, Mittelfranken, Münster,
Niederbayern, Oberbayern, Oberfranken, Oberpfalz, Rheinhessen-Pfalz,
Saarland, Schleswig-Holstein, Schwaben, Stuttgart, Thüringen, Trier,
Tübingen, Unterfranken, Weser-Ems

Greece Anatoliki Makedonia, Thraki, Attiki, Ipeiros, Voreio Aigaio, Dytiki Ellada,
Dytiki Makedonia, Thessalia, Ionia Nisia, Kentriki Makedonia, Kriti, Notio
Aigaio, Peloponnisos, Sterea Ellada

Hungary Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország, Közep-
Dunántúl, Közep-Magyarország, Nyugat-Dunántúl

Ireland Border Midland and Western, Southern and Eastern

Italy Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia
Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia,
Sardegna, Sicilia, Toscana, Trentino-Alto Adige/Südtirol, Umbria, Valle
d’Aosta/Vallée d’Aoste, Veneto

Latvia Latvija

Lithuania Lieteva

Luxembourg Luxembourg (Grand-Duché)

Netherlands Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg (NL),
Noord-Brabant, Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland

Malta Malta

Poland Dolnoślaskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Lódzkie,
Mazowieckie, Malopolskie, Opolskie, Podkarpackie, Podlaskie,

Pomorskie, Ślaskie, Świetokrzyskie, Warmińsko-Mazurskie, Wielkopolskie,
Zachodniopomorskie

Portugal Alentejo, Algarve, Centro (P), Lisboa, Norte

Slovakia Bratislavsky Kraj, Stredné Slovensko, Východné Slovensko, Západné
Slovensko

Slovenia Vzhodna Slovenija, Zahodna Slovenija

Spain Andalućıa, Aragón, Cantabria, Castilla y León, Castilla-La Mancha,
Cataluña, Comunidad Foral de Navarra, Comunidad Valenciana,
Comunidad de Madrid, Extremadura, Galicia, Islas Baleares, La Rioja, Páıs
Vasco, Principado de Asturias, Región de Murcia

Sweden Mellersta Norrland, Norra Mellansverige, Smaland med Öarna, Stockholm,
Sydsverige, Västsverige, Östra Mellansverige, Övre Norrland

United
Kingdom

Bedfordshire & Hertfordshire, Berkshire, Buckinghamshire & Oxfordshire,
Cheshire, Cornwall & Isles of Scilly, Cumbria,
Derbyshire & Nottinghamshire, Devon, Dorset & Somerset, East Anglia,
East Riding & North Lincolnshire, East Wales, Eastern Scotland, Essex,
Gloucestershire, Wiltshire & North Somerset, Greater Manchester,
Hampshire & Isle of Wight, Herefordshire, Worcestershire & Warkwickshire,
Highlands and Islands, Inner London, Kent, Lancashire, Leicestershire,
Rutland and Northamptonshire, Lincolnshire, Merseyside, North Eastern
Scotland, North Yorkshire, Northern Ireland, Northumberland and Tyne
and Wear, Outer London, Shropshire & Staffordshire,
South Western Scotland, South Yorkshire, Surrey, East & West Sussex,
Tees Valley & Durham, West Midlands, West Wales & The Valleys, West
Yorkshire
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Table 6: HMPs, Deterrence function and Wage equation specifications

First Step – Construction of MA measures

Deterrence function specification

D1: Drs = dγ1rs exp(
P−1∑
p=1

bprs ∗ γp2 + crs ∗ γ3 + lrs ∗ γ4)

D2: Drs = dγ1rs exp(brs ∗ γ2 + crs ∗ γ3 + lrs ∗ γ4)
D3: Drs = dγrs exp(brs ∗ γ2 + crs ∗ γ3 + lrs ∗ γ4 + cap ∗ γ5 + s ∗ γ6 + r ∗ γ7 + e ∗ γ8 + i ∗ γ9)

Second Step – Estimation of the Wage Equation

Wage Equation Specification

W1: ln(GV Apc) ∼ ln(MA) + CFE
W2: ln(GV Apc) ∼ ln(MA) + Ter.Educ.+ PMR+ Patents+ Unemp.+NRR
W3: ln(GV Apc) ∼ ln(MA) + Ter.Educ.+ Patents+ Unemp.+ CFE

Notes: d geographical distance, b country border, c country contiguity, l language barrier, cap
capital region, s access to the sea, r region contiguity, e East border, i island, CFE country
fixed effects, MA market access, Ter.Educ. Share of tertiary education, PMR Product Market
Regulation, Patents Number of Patents issued in 2010, Unemp Unemployment rate, NRR Net
Replacement Rate
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A - Results of three specifications of the deterrence
function Drs

Table 7 reports the parameter estimates from the trade equation obtained using i) three de-
terrence function specification (listed below), as well as three proxies of geographical distance
(gcd, pop and tt). The three specifications are:

D1: Geographical distance + 25 Country border(s)

D2: Geographical distance + Country border + Country contiguity +
Language barrier

D3: Geographical distance + Country border + Country contiguity +
Language barrier + Capital region + Access to the sea + Region contiguity +
Eastern countries border + Island

The first specification D1, listed above, includes a country border variable for each country
(therefore 25 country border variables), equal to one if a specific country border is crossed
and zero otherwise. Only one country border variable, equally defined for all the countries,
is included in the two remaining specifications D2 and D3. The variable is equal to one if
two regions are separated by a country border. Contiguity measure is proxied by a region
dummy variable taking a value of one if the regions share a common border, zero otherwise.
Analog to the contiguity measure, language similarity is a dummy variable that takes a value
of one if the regions are not located in the same language area (also taking into account
regional specificities and language minorities). Capital region accounts for the presence of
the country’s capital in at least one of the two regions. Access to the sea is likewise equal to
one if at least one region has access to the sea. Region contiguity is defined as equal to one
if both regions share a common border. Eastern countries border takes the value of one if
one of the two regions is located in an Eastern European country: Czech Republic, Slovakia,
Slovenia, Poland, Lithuania, Latvia and Hungary. Finally, Islands is a binary variable equal
to one if at least one of the two regions is located on a island (only the case for regions of
the UK, Malta and Ireland).
The most constraining barrier seems to be country contiguity, with on average −0.964. It is
followed by geographical distance with on average −0.827 for great circle distance, −0.843
for population-weighted great circle distance and −0.805 for travel time. The value of the
coefficient estimate of geographical distance is strongly significant for three specification and
independent of the proxies used, however their differences is only statistically significant at
the 5% level when comparing D1 to D2 and/or D3. The least constraining barrier according
to the OLS estimates is the landlocked characteristic of a region (the other case of the
variable access to the sea srs) with a mean negative coefficient equal to 0.087.
The trade equation fits the data relatively well as seen by the adjusted R2 that is not inferior
than 0.86. Furthermore, controlling for origin- and destination dependencies in the flows has
brought some positive results since the Moran’s I of the residuals (measure the extent to
which the models’ residuals are spatially autocorrelated) have been drastically reduced (10
times smaller than without filters).
The most striking results from the performed estimations are that i) choice of proxies of
geographical distance does not seem to matter since coefficient estimates are not statistically
different (at the 5% and especially at the 10% level) and ii) the specification of the trade
deterrence only matters for the negative effect of geographical distance on trade, being a
large impediment to exports when only country borders are taken into account and a less
of a barrier when other spatial factors such as language similarity or country contiguity are
added to the model.
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B - Market Access effects

Table 8 lists a number of 27 MA coefficients obtained from wage equations with
three specifications (W1, W2 and W3), and MA measures computed with three geo-
graphical proxies (gcd, pop and tt) and three deterrence function’s specification (D1,
D2 and D3). The coefficients are reported along to their standard errors, as well as
the measures of fit (R2) and extracted log-likelihood of the estimated wage equation.
Regarding the fit of the data, significant differences are perceived only between the
wage equation specifications. As mentioned in Bosker and Garretsen (2010), control
variables and country fixed effect as components of the wage equation explain a large
part of the variance of the MA effects. Excluding the country fixed effects of the
model results in a loss of fit, the best fit is however seen for the W3 specification that
includes those effects as well as control variables at the regional level. The smallest
mean MA effects are observed for the W2/D1 specification being equal to +0.191 on
average. Largest coefficients are obtained for the W1 specification, only controlling for
country fixed effects. As a conclusion, MA effect is not truly sensible to the choice of
geographical distance proxy, since comparing the MA effect reveals a high similarity.
Concerning the effect of the composition of the deterrence function Drs on the MA
effect, disparities are perceivable especially when comparing D2 with D1 and/or D3,
coefficients being relatively larger than their counterparts.
In other words: the specification of the trade equation and wage equation matters.
This is one of the main findings of Bosker and Garretsen (2010) who perform a meta-
study on the wage equation. They conclude that the various aspects of the trade
equation (estimation technique, controls, construction of (internal-) distance, etc.)
usually influence the results of the wage equation quite heavily.
Based on two criteria, namely the log-likelihood measure and the model fit, the pre-
ferred model combines a MA measure obtained with the D2 deterrence function and
W3 specification of the wage equation, thus including country fixed effects and control
variables available at the regional level accounting for human capital absorption and
labour market characteristics.
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