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Kurzfassung

Bayesian Model Averaging (BMA) ist eine ökonometrische Methode um für

Modellunsicherheit zu kontrollieren. Sie ermöglicht robuste Inferenz für Para-

meter durch das Schätzen einer großen Anzahl von möglichen Modellen, über

die ein Durchschnitt gebildet werden kann. Dies ist speziell in Anwendungs-

gebieten relevant, in denen keine starken theoretischen Vorgaben bezüglich der

Spezifizierung von Modellen vorliegen. Ein Beispiel hierfür ist die Analyse von

Wirtschaftswachstum, auf die sich diese Arbeit konzentriert. Diese kumulative

Dissertation widmet sich in drei Teilen den Abhängigkeitsstrukturen zwischen

Variablen, die in solch großen Modellräumen auftreten können. In einer

ersten Arbeit wird untersucht, wie sich a-priori Wahrscheinlichkeiten (priors)

auswirken, die eine bestimmte Modellklasse bevorzugen. Dies ist speziell für

Interaktionen zwischen Variablen und Daten mit hoher Multikollinearität rele-

vant. Die Arbeit baut auf einer Diskussion im Journal of Applied Econometrics auf,

in welcher der Frage nach einer unterschiedlichen Modellstruktur für Subsahara-

Afrika nachgegangen wird. Der zweite Aufsatz widmet sich der Suche nach

Modellklassen im Modellraum von BMA. Dabei wird das Werkzeug der Latenten

Klassenanalyse verwendet, um unterschiedliche Gruppen von Modellen in zwei

prominenten Wachstumsdatensätzen zu finden. Das letzte Papier beschäftigt

sich mit der Analyse von Jointness (Gemeinsamkeiten) von Variablenpaaren in

BMA. Dabei wird versucht die bisherige ökonometrische Literatur mit dem Feld

des Machine Learnings zu verbinden, um Substitute und Komplemente zwischen

Wachstumsfaktoren erkennen zu können.
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Abstract

Bayesian Model Averaging (BMA) is a common econometric tool to assess the

uncertainty regarding model specification and parameter inference and is widely

applied in fields where no strong theoretical guidelines are present. Its major

advantage over single-equation models is the combination of evidence from a

large number of specifications. The three papers included in this thesis all

investigate model structures in the BMA model space. The first contribution

evaluates how priors can be chosen to enforce model structures in the presence

of interactions terms and multicollinearity. This is linked to a discussion in

the Journal of Applied Econometrics regarding the question whether being a

Sub-Saharan African country makes a difference for growth modelling. The

second essay is concerned with clusters of different models in the model space.

We apply Latent Class Analysis to the set of sampled models from BMA and

identify different subsets (kinds of) models for two well-known growth data

sets. The last paper focuses on the application of “jointness”, which tries to find

bivariate relationships between regressors in BMA. Accordingly this approach

attempts to identify substitutes and complements by linking the econometric

discussion on this subject to the field of Machine Learning.
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Introduction

This thesis is concerned with the application of Bayesian Model Averaging (BMA)

techniques to estimate determinants of economic growth. The papers which

are presented in the following, all share this tool as a mutual methodological

basis but address different practical issues. This first chapter introduces the

shared topic of economic growth, gives a short overview of the method used,

and motivates the link between the three essays, which form this cumulative

thesis.

Economic growth is arguably one of the most pivotal topics in the field of

economics. Substantial differences in growth performance, as measured by gross

domestic products, have contributed to both convergence and global imbalances

of economic and socioeconomic factors, such as trade, production structures,

education and health outcomes. Understanding the various determinants of

growth is a key precondition to predict growth rates, plan policy interventions

and to support development in low-income countries.

Followingly, a major part of economic theory is devoted to explaining such

differing outcomes. Classical (Malthusian) growth models have focused on

the role of the primary production factors, labor and capital. Extensions to

this approach have highlighted technological change (Neoclassical models),

innovation (Schumpeterian growth), human capital and endogeneity (Lucas,

1988; Barro and Lee, 1993; Romer, 1994), and institutions (Acemoglu, Johnson,

and Robinson, 2005) as important factors that can serve as (partial) explanations

and predictors.
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Based on all of these different theories it becomes clear that economics does not

provide one recipe for explaining growth, but suggests a large set of possible

sources of contribution. This issue has been termed open-endedness of growth

theories (Brock and Durlauf, 2001) and poses challenges to empirical modeling

of growth and the testing of theoretical models.

Especially standard frequentist econometric approaches are concerned with a

single model, which has to be specified beforehand by the researcher. The choice

of covariates to be included in such a model is mostly inferred from the varying

theories or based on suggestions from related empirical literature. As a result,

the researcher needs to focus on one specific model (or a small set), which is

consistent with a specific theory and/or provides reasonable results. However

alternative specifications, based on different theories or measurements thereof,

might exist, which also explain the data well but deviate from the original model

with regard to magnitude or signs of regressors. In such a case estimates are

sensitive to the model specification and therefore to the subjective choice made

by the researcher (Hoeting, Madigan, Raftery, and Volinsky, 1999).

To robustify such an analysis a researcher would in fact need to consult a number

of different models instead of a single equation, to take the inherent model

uncertainty into account. Based on economic theory these models can involve

large sets of possible predictors (K), e.g. related to labour-force, education,

health, institutions, trade, population and production structure for the case

of economic growth. The evaluation of every possible model given this set

of candidate covariates is however often not feasible, since the model space

increases with 2K .

A common approach to address this issue is Bayesian Model Averaging, which ap-

plies the idea of averaging over a large number of models by combining posterior

distributions of all evaluated models for inference instead of just selecting one

true model. Model averaging is a natural extension in a Bayesian framework and

integrates the weighting scheme through Bayes’ rule. Still, BMA is a comparably

young field for econometrics and has only gained widespread interest due to the

rise in computational power. Especially for large model spaces, which can not be
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evaluated as a whole, the availability of e.g. Markov Chain Monte Carlo Model

Composition (MC3) algorithms have made BMA a widely used tool to address

model uncertainty (see e.g. Raftery, 1995; Fernández, Ley, and Steel, 2001b;

Masanjala and Papageorgiou, 2008; Eicher, Papageorgiou, and Raftery, 2011;

Hofmarcher, Crespo Cuaresma, Grün, and Hornik, 2014).

More technically, in BMA a model M j describing a variable y with a set of

regressors Z j ∈ Z may be written as

y = αιn + Z jβ j + ε , ε∼ N(0, Iσ2) , (1)

whereα is the intercept, ιn is an n-dimensional vector of ones and ε a disturbance

term. Bayesian inference can be carried out by multiplying the likelihood with

suitable priors on the parameters (α,β ,σ) to derive the posterior distribution

for e.g. the parameters as

Pr(β |y, M j)∝ Pr(y|β , M j)Pr(β |M j) . (2)

Priors are often chosen in such a way, that the posterior density can be solved

analytically, via so-called “natural conjugate priors”. Furthermore, many empir-

ical studies (see e.g. Ley and Steel, 2009) use non-informative priors for α and

σ such as

Pr(α) ∝ 1

Pr(σ) ∝ 1
σ

.

A default choice for the prior on β is the g-prior (Zellner, 1986)

Pr(β j|α,σ, M j)∝ f k j(β j|0,σ2 g(Z ′j Z j)
−1) , (3)

where the value of g shrinks the prior variance based on the empirical variance-

covariance matrix. For the choice of g a number of suggestions can be found,

such as the Unit Information-, Risk Criterion- or the Benchmark Prior (the so-
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called BRIC Prior), where g is 1/max(n, K2) (Fernández, Ley, and Steel, 2001a).

An alternative to specifying one g-value is the elicitation of a hyperparameter,

as suggested by Liang et al. (2008). This approach can be used to set the prior

expected shrinkage by imposing a Beta-distribution on the parameter g.

To address model uncertainty we can take the average over all (relevant) models,

that is the distribution of the parameters times their posterior model probability.

Applying Bayes rule, we can write for β

Pr(β |y)∝
2K∑
j=1

Pr(β |y, M j)Pr(M j|y) . (4)

The latter term is given by the marginal likelihood multiplied with the prior

model probability

Pr(M j|y)∝ Pr(y |M j)Pr(M j) . (5)

The prior model probability Pr(M j) can be chosen in various ways. A popular

choice is the uniform prior which assigns the same ex ante probability to each

model. This however favours mid-sized models, due to their high relative

frequency. Another solution by Ley and Steel (2009) introduces a hierarchical

Binomial-Beta prior, which imposes an equal prior model probability over models

of different size. More sophisticated prior choices include for example the class

of Heredity and Dilution Priors, which are addressed in chapter I (see e.g.

George, 1999; Chipman, 1996).

Inference for BMA models can not only be based on the posterior distribution

parameters, but also on posterior inclusion probabilities (PIP). PIPs are a rank

measure for the importance of a variable and are calculated as the share of

posterior model mass in which a certain covariate is included. While the

posterior density of a parameter gives insights in the magnitude of an effect,

PIPs can be used by the practitioner to measure its relevance.

However, the reliability of this tool may be limited in certain cases where BMA

averages over a number of very different models. For example, it may be the case

that growth can be explained equally well by two disjoint sets of covariates. In
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such a case BMA could report an averaged value of 0.5 for the PIP of a variable,

which is actually highly important for one type of model but unimportant for the

other. Furthermore it may be the case, that a certain variable exhibits a rather

high importance, but only in conjunction with another explanatory. In both cases

the overall results from BMA have to be interpreted with care.

The three essays of this dissertation all address this problem of specific model

structures in BMA from various perspectives. The first paper deals with speci-

fication issues in the presence of interaction terms. The second article takes a

different approach and tries to find classes of models in the huge BMA model

space, which vary in their properties and structure (i.e. parameter size and

PIP). The last contribution focuses on “jointness” of predictors in the model

space. This term describes, whether two variables do frequently occur together

or independently. Such an analysis of jointness allows the researcher to highlight

substitutes and complements among regressors. The following gives a brief

overview for each paper.

Dilution Priors in BMA Growth Applications with Interactions This first

paper is concerned with the implementation of suitable priors to deal with inter-

action terms in BMA for the case of Sub-Saharan African countries. In a study

by Masanjala and Papageorgiou (2008), the authors focus on the issue, whether

growth in Sub-Saharan African countries is related to other explanatories than

in the rest of the world. To assess this effect, they include interaction terms for

a Sub-Saharan country dummy in their analysis.

However, Crespo Cuaresma (2011) points out that in BMA this can lead to the

inclusion of models, which contain an interaction term but not its main effects.

Such models are considered not well-specified and are often avoided due to the

lack of interpretability or the possible omitted-variable bias (Chipman, 1996).

In BMA this issue can be addressed by choosing appropriate priors which enforce

a correct model structure. Such priors have been termed Heredity Priors and

adapt prior model probabilities depending on the number of missing parent

effects in a certain specification. Therefore, a model with an interaction but
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no parent effects will be a-priori less likely than a model which includes these

effects (Chipman, 1996). Alternatively, it can be argued that such a misspecifi-

cation is only relevant, depending on the multicollinearity between parents and

interactions. The tessellation prior of George (2010) addresses this issue and

penalizes high correlations between variables.

The contribution included in this thesis implements all of these priors in the R

BMS package (Feldkircher and Zeugner, 2009) and provides a simulation study

for the effects of these different prior choices. The results indicate that while

such stricter priors influence the choice of models and PIPs in BMA, they do not

affect predictive performance substantially.

Unveiling Covariate Inclusion Structures The second paper deals with typical

classes of models in BMA model spaces. Such model spaces consist of a poten-

tially large number of models, which are averaged to make inference on their

joint posterior distribution. Combining all these different models may involve

very different types of specifications. While many of these specifications can

have high posterior model probabilities, aggregated inference can be misleading,

depending on the covariate structure of models.

To mitigate these effects we try to cluster the matrix of sampled models and base

inference on groups of specifications where given covariates are independent

conditional on class membership, instead of the heterogeneous model space.

This allows a practitioner to disentangle effects for specific model classes with

similar posterior model probability. The paper uses Dirichlet Process Clustering

to categorize the binary matrix of variable inclusion profiles for the top models

chosen by the BMA MC3 sampler. This method has the merit that it does not

depend on a pre-defined number of clusters, and therefore adds flexibility given

the prior setting for the LCA algorithm.

By applying this method to the two growth data sets of Fernández, Ley, and

Steel (2001b) and Sala-i-Martin, Doppelhofer, and Miller (2004) we find that

the overall BMA results average-out parts of the underlying model structures.

Our approach results in a number of clusters, with differing variable PIP. This
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result indicates competing model structures, which can not be identified from

the overall BMA results.

A Comprehensive Approach to Posterior Jointness Analysis in Bayesian

Model Averaging Applications The third paper investigates so-called “joint-

ness” among growth determinants. This term was coined by Doppelhofer

and Weeks (2005) and refers to the extent, to which two variables appear

(dis-)jointly in model specifications. In BMA this analysis is based on the set of

sampled models from an MC3 exercise. Analyzing a relevant set of visited mod-

els, a researcher might be interested in the question, whether variables appear

together frequently or seem to be sampled mutually exclusively. Doppelhofer

and Weeks (2009) refer to variables in these two scenarios as “complements”

or “substitutes” respectively. This classification can be especially important

for practitioners, who need to take such dependencies between variables into

account for appropriate policy advice.

To analyze jointness, a number of different measures have been proposed in

the context of BMA (Ley and Steel, 2007; Doppelhofer and Weeks, 2009;

Strachan, 2009). However, this discussion disregarded the wide field of machine

learning, and especially that of association rules analysis. This field of research

is concerned with similar issues, for example market shopping basket analysis.

The focus of such an application is to find structures in the types of products that

customers buy in combination. Similar to the BMA discussion, a large number

of different measures have been proposed in this context, which can be used to

analyze such joint occurrences.

The contribution of this third paper lies in the integration of insights from the

association rules analysis literature into the BMA context. We review different

measures and their characteristics and propose a set of properties that jointness

indicators should fulfill for the application to BMA model spaces. We find that

especially the null-invariance property — which was also heavily discussed in

the BMA literature — plays an important role in selecting suitable measures.

Additionally to simulation results for different measures, this paper also provides

an empirical exercise for the FLS data set.
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Abstract

This paper provides a sensitivity analysis on the prior choice for inter-

action terms for the results of Masanjala and Papageorgiou (Rough and

lonely road to prosperity: a reexamination of the sources of growth in Africa

using Bayesian Model Averaging (BMA). Journal of Applied Econometrics

2008, 23: 671–682.) which has been criticized for its implementation

of interaction terms by Jesus Crespo Cuaresma (How different is Africa?

Journal of Applied Econometrics 2011, 26: 1041–1047). We perform

inference based on different prior suggestions for model spaces with inter-

action terms and provide posterior inclusion probabilities, log predictive

scores and continuous ranked probability scores. Our results show that

the alternative priors deliver a similar degree of predictive performance

compared to the original prior.

Keywords: Bayesian Model Averaging, Interaction, Dummy variable
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1 Introduction

A recent discussion in the Journal of Applied Econometrics raised the question

how to correctly implement interaction terms in Bayesian Model Averaging

(BMA) applications. BMA has become very popular in growth applications where

especially regional disparities are present.

Masanjala and Papageorgiou (2008, henceforth ‘MP’) use BMA techniques to

target the problem of parameter heterogeneity for countries of Sub–Saharan

Africa by adding regional interaction terms to their analysis. These interaction

terms are treated as normal covariates in MP’s approach.

In his comment on MP’s work, Crespo Cuaresma (2011) points out that in such a

setting models which include interaction terms and their corresponding parent

variables are treated by the modeller as being a priori as likely as models that

feature interaction terms but not (all) their corresponding parent covariates. He

argues in favor of an alternative prior specification as opposed to the uniform

model prior. In a reply Papageorgiou (2011) calls for a sensitivity analysis to

shed more light on this issue.

The issue at hand, the treatment of interaction terms in model search algorithms,

has also been raised by Chipman (1996) for the case of Bayesian Variable

Selection methods. He points out that models with interaction terms should

include all corresponding parent variables by ‘convention’, since effects may be

hard to interpret otherwise. Chipman proposes to include such beliefs through

model priors and introduces heredity priors which put a predefined penalty on

models with missing main effects. Crespo Cuaresma (2011) adopts this approach

to evaluate MP’s results and furthermore argues that the problem of interaction

terms is related to the treatment of correlated variables within BMA. He refers to

George (1999) who proposes the idea of dilution priors to compensate for model

space redundancy. Additionally, George (2010) presents several approaches for

dilution priors. Inter alia he introduces a tessellation defined dilution prior which

we include in our analysis (henceforth tessellation prior).
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All these model prior suggestions of Chipman (1996) and George (2010)

are reasonable alternatives to the uniform prior when interaction terms, and

multicollinearity, are present in a dataset, as in MP’s work. We will use the

original cross-country dataset of MP which includes 24 covariates, one Sub-

Saharan Africa dummy as well as 24 interactions for the mentioned dummy. In

a first step we will replicate the BMA exercise of MP using the BMS software

package for R1 and show that MP’s findings are consistent given their prior

assumptions. Second, we carry out a prior sensitivity analysis based on the

review of Crespo Cuaresma (2011) and alternative prior suggestions by Chipman

(1996) as well as George (2010). The performance of the different priors are

assessed both by changes in posterior inclusion probabilities as well as predictive

power. We find that the inclusion of interaction terms is sensitive to the prior

choice. Predictive abilities however remain almost unchanged compared to the

default prior of MP.

2 Alternative Prior Choices

Following the work of MP and Crespo Cuaresma we consider a regression model

of the form

y = αιn + Z1, jβ1, j + I × Z2, jβ2, j +σε, (1)

where Z1, j is a matrix of K covariates, including the Sub–Saharan African dummy

variable I and similar Z2, j ⊆ Z1, j \ I . The model spaceM includes all feasible

combinations of Z1, j, Z2, j. The design matrix of an arbitrary model M j ∈ M
will be denoted by Z j (instead of (Z1, j, I × Z2, j)) to simplify notation. Average

per capita GDP–growth is denoted by the n dimensional vector y , the intercept

is αιn and σε are the regression errors with ε ∼ N(0, 1). The unconditional

1An adapted version of the BMS package for R is available at http://www.wu.ac.at/vw1/m/
moser/mp-priors.
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posterior distribution of any parameter ∆ of interest, is the weighted average

across all possible models M j ∈M so that

p(∆|y) =
2K′∑
j=1

p(∆|y, M j)p(M j|y) (2)

with K ′ = 2K − 1. We follow MP and Crespo Cuaresma (2011) who impose

unit information priors (UIP) on the parameters∆ in each model. The posterior

model probability which controls for model uncertainty in equation 2 is given by

p(M j|y)∝ p(y |M j)p(M j). (3)

In their analysis MP assume a uniform prior over models and accordingly let

p(M j) = 2−K ′ . While this seems to be a natural choice for an ignorance–based

model selection, it prefers mid–sized models as has been argued by Ley and Steel

(2009). Similar to Chipman (1996) and George (2010), they also stress that, in a

setup with interaction terms the ‘[...] assumption of prior independent inclusion

of regressors can be contentious in some contexts.’ In MP’s view a change in the

slope of a variable for African countries doesn’t imply a level shift for African

countries, while Crespo Cuaresma (2011) and Chipman (1996) would argue in

favor of such an effect (by including both the interaction an the main effect).

We will address these issues through two alternative prior specifications.

2.1 Weak and Strong Heredity Priors

Chipman (1996) proposes to relate the inclusion probability of an interaction

term to the inclusion of the according parent variables in the model. In such

a setting, a model featuring two covariates A and B as well as their interaction

A#B is a priori more likely than a similar model which contains A#B but misses

A, B or both main effects.

If we interpret this difference in prior beliefs as a penalty on models with missing

main effects, a heredity prior can be expressed as a decreasing function of the
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number of missing parent variables in the specification. Through this penalty it

is possible to add a heredity property to a number of different priors, e.g. to the

uniform model prior,

p(M j)∝
2−K ′ if (η= 0)

2−K ′ × s
η+1 if (η > 0)

(4)

where η is a count variable for the number of missing parent variables and s ≥ 0

a scale parameter. In our calibration exercise we will assume a grid of different

scale parameters s between zero and one. Setting s = 0 results in the strong

heredity prior used by Crespo Cuaresma (2011). Please note that for a weak

heredity prior, i.e. s > 0 models with η > 0 are penalized but still admissible,

so that p(M j|η > 0) > 0, while such models are completely excluded from the

sampling procedure in Crespo Cuaresma’s approach.

2.2 Tessellation Prior

The tessellation prior belongs to the group of dilution priors (see George, 2010).

Its purpose is to avoid placing little probability on unique models while assigning

an excess mass of probability to regions of similar models (i.e. with highly

correlated variables).

Tessellation priors achieve this property by projecting the single models Z j to the

surface of a unit sphere. They assign each point on the surface the one model

whose spanned subspace minimizes the (euclidean) distance to a considered

point. This results in model regions on the unit sphere’s surface which form a

Voronoi tessellation and deliver the desired diluted prior model probabilities.

Using MC3 methods, and following George (2010), a Local–Spinner Process can

be used to achieve the tessellation property:

1. Generate Y ∗ ∼ Nn(0, I)
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2. For design matrices Z j′ in a neighborhood2 of the current used Z j se-

lect the nearest Z j′ to the hypothetical data Y ∗ by minimizing Y ∗[I −
Z j′(Z ′j′Z j′)−1Z ′j′]Y

∗/g(q j′).

Z j′(Z ′j′Z j′)−1Z ′j′Y
∗ is the orthogonal projection of Y ∗ on the subspace spanned by

the columns of Z j′. g(q j′) is a decreasing function, penalizing the dimensionality

q j′ of the matrix Z j′. Natural choices for g() would be the degrees of freedom

correction g(q j) = (n− q j) or its squared value for a stronger penalty on larger

models (see George, 2010). In the following exercise we will use the latter

option setting g(q j) = (n− q j)2.

3 Which Prior to Choose?

Using the MP dataset we evaluate the set of considered priors by comparing pos-

terior inclusion probabilities (PIP), log predictive scores (LPS) and continuous

ranked probability scores (CRPS) based on an out–of–sample prediction exercise.

To evaluate the model spaceM = 249 we will utilize Markov Chain Monte Carlo

Model Composition methods (MC3, as used in e.g. Ley and Steel (2009)3).

We use 4,000,000 drawings from which 2,000,000 are disregarded (burn-ins)

and impose a unit information prior with Zellner’s g equal to the number of

observations. For predictive inference we randomly drop {70, 50, 20, 10, 5, 1}
observations from the dataset to create a training set and a hold–out set (see

Eicher, Papageorgiou, and Raftery (2011)) for each mentioned prior. The

reported mean values for LPS and CRPS result from 1000 single replications. The

LPS is also used in Crespo Cuaresma (2011) and has been justified by Fernández,

Ley, and Steel (2001) but has also been criticized as being too sensitive to e.g.

outliers (see Eicher, Papageorgiou, and Raftery, 2011). An alternative score,

the CPRS, is defined directly in terms of the predictive cumulative distribution

functions and measures the squared error between the predicted and observed

2Here the neighborhood around model M j is defined as models which differ only by one
covariate.

3Also Eicher, Papageorgiou, and Raftery (2011) argue that this sampling procedure yields
similar results compared to the one used by MP.
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Figure I.1: Posterior Inclusion Probabilities for Top 15 Variables (all scenarios)

cumulative distributions. For a detailed discussion of CRPS see Gneiting and

Raftery (2007).

Based on the original results of MP (NH, no heredity), we impose a strong

heredity prior (SH), three weak heredity priors with different scale parameters

s (WH{0.01,0.1,0.5}) and the tessellation prior (TESS) proposed by George

(2010).

Figure I.1 reports PIP for the top 15 variables from the union of all models.

We find that for important variables whose interaction with the Sub–Saharan

Africa Dummy played a minor role in the original (NH) results, all priors produce

PIP’s within a narrow range compared to the original MP results (cf. GDP60,

YRSOPEN, PROTESTANT or CATHOLIC). For interaction terms the heredity

priors boost the importance of the parent effects, which is apparent for the

SAFRICA#MINING term. Especially in the SH setup the inclusion probability of

this interaction term decreases while the importance of the two parent variables

SAFRICA and MINING rises close to one. The same effect applies to the weak

heredity priors, however through the softer penalty results do not deviate as
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strongly from the NH scenario. We find similar effects for PRIMEXP70, PRIM-

SCH60 as well as the BRITISH colonialization dummy. Most of the interaction

terms with low posterior inclusion probabilities behave in a similar fashion as

can be seen in table I.1.

Table I.1: Posterior Inclusion Probabilities for different Model Priors

Regressors NH SH WH0.05 WH0.2 WH0.4 TESS

GDP60 1.00 1.00 1.00 1.00 1.00 1.00

YrsOpen 1.00 1.00 1.00 1.00 1.00 1.00

SAfrica#Mining 0.99 0.85 0.98 0.99 0.99 0.99

Protestant 0.95 0.96 0.95 0.95 0.95 0.95

Catholic 0.94 0.95 0.94 0.94 0.94 0.95

War 0.90 0.95 0.92 0.91 0.91 0.92

PrimExp70 0.85 0.96 0.89 0.88 0.88 0.88

LifeExp60 0.73 0.50 0.66 0.68 0.69 0.77

Invest 0.61 0.63 0.60 0.59 0.60 0.67

PrimSch60 0.61 0.92 0.72 0.69 0.68 0.66

SAfrica#PrimExp70 0.49 0.17 0.36 0.40 0.40 0.54

SAfrica#British 0.47 0.29 0.41 0.44 0.44 0.55

SAfrica#PrimSch60 0.36 0.09 0.26 0.27 0.29 0.36

Frac 0.33 0.41 0.35 0.34 0.34 0.39

Muslim 0.31 0.33 0.32 0.31 0.31 0.42

EconOrg 0.30 0.26 0.28 0.29 0.29 0.40

SAfrica#OutOrient 0.30 0.04 0.20 0.23 0.23 0.39

Mining 0.27 0.96 0.45 0.35 0.33 0.35

SAfrica#Area 0.25 0.04 0.18 0.20 0.20 0.34

SAfrica#Frac 0.24 0.04 0.16 0.19 0.19 0.30

British 0.23 0.37 0.27 0.25 0.24 0.35

RERD 0.20 0.21 0.20 0.20 0.20 0.31

SAfrica 0.20 0.97 0.56 0.46 0.45 0.14

SAfrica#GDP60 0.19 0.12 0.17 0.17 0.17 0.17

SAfrica#AbslLat 0.17 0.01 0.10 0.12 0.12 0.26

SAfrica#LifeExp60 0.17 0.05 0.12 0.14 0.14 0.17

SAfrica#Invest 0.16 0.06 0.12 0.13 0.13 0.20
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Table I.1: (continued)
Regressors NH SH WH0.05 WH0.2 WH0.4 TESS

SAfrica#Rights 0.16 0.02 0.11 0.12 0.13 0.14

SAfrica#popGrowth 0.15 0.02 0.10 0.11 0.11 0.23

SAfrica#EconOrg 0.15 0.02 0.10 0.11 0.11 0.20

SAfrica#Muslim 0.15 0.03 0.10 0.11 0.11 0.19

SAfrica#CivilLib 0.14 0.02 0.10 0.11 0.11 0.14

Area 0.14 0.17 0.15 0.15 0.15 0.25

SAfrica#Catholic 0.14 0.16 0.15 0.14 0.14 0.20

SAfrica#French 0.14 0.03 0.10 0.11 0.11 0.17

SAfrica#Protestant 0.14 0.09 0.12 0.13 0.13 0.22

popGrowth 0.14 0.16 0.14 0.14 0.14 0.22

SAfrica#War 0.14 0.10 0.12 0.12 0.12 0.20

Other 0.13 0.13 0.13 0.13 0.13 0.19

SAfrica#RERD 0.13 0.04 0.09 0.10 0.11 0.18

SAfrica#YrsOpen 0.13 0.17 0.14 0.13 0.13 0.16

Rights 0.12 0.18 0.14 0.13 0.13 0.14

SAfrica#RevCoup 0.12 0.01 0.08 0.09 0.09 0.15

AbslLat 0.12 0.13 0.12 0.12 0.12 0.18

OutOrient 0.11 0.16 0.13 0.12 0.12 0.17

SAfrica#Other 0.11 0.01 0.07 0.08 0.09 0.17

CivilLib 0.11 0.14 0.12 0.12 0.12 0.14

French 0.11 0.14 0.12 0.12 0.11 0.16

RevCoup 0.11 0.12 0.11 0.11 0.11 0.15

While the weak heredity priors adjust the inclusion probability by design in the

same direction as the strong heredity prior, this is not true for the TESS case.

More specifically it promotes many of the effects found by MP. The tessellation

prior reduces the importance of being a Sub–Saharan African country even

further than in the original results while it focuses stronger on the interaction

terms.

Considering the predictive performance of these different priors we find that

all priors predict equally well. On average the LPS in table I.2 is in favor of
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Table I.2: Out–of–sample CRPS/LPS Means for different Prior Choices
(Std. Errors in parentheses)

Predicted Obs NH SH WH0.05 WH0.2 WH0.4 TESS

70
LPS -3.4247 -3.4091 -3.4098 -3.4151 -3.4165 -3.4256

(0.0407) (0.0390) (0.0391) (0.0392) (0.0397) (0.0410)

CRPS -0.0061 -0.0063 -0.0063 -0.0062 -0.0062 -0.0061
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

50
LPS -3.4283 -3.4131 -3.4138 -3.4189 -3.4203 -3.4292

(0.0594) (0.0585) (0.0584) (0.0579) (0.0583) (0.0599)

CRPS -0.0061 -0.0063 -0.0063 -0.0062 -0.0062 -0.0061
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

20
LPS -3.4223 -3.4076 -3.4083 -3.4133 -3.4146 -3.4231

(0.1203) (0.1180) (0.1179) (0.1174) (0.1183) (0.1211)

CRPS -0.0061 -0.0063 -0.0063 -0.0062 -0.0062 -0.0061
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

10
LPS -3.4298 -3.4172 -3.4178 -3.4219 -3.4227 -3.4306

(0.1721) (0.1695) (0.1694) (0.1683) (0.1694) (0.1732)

CRPS -0.0060 -0.0063 -0.0062 -0.0062 -0.0062 -0.0060
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015)

5
LPS -3.4420 -3.4248 -3.4257 -3.4318 -3.4338 -3.4428

(0.2396) (0.2344) (0.2341) (0.2328) (0.2349) (0.2411)

CRPS -0.0060 -0.0062 -0.0062 -0.0061 -0.0061 -0.0060
(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020)

1
LPS -3.4249 -3.4081 -3.4089 -3.4151 -3.4168 -3.4254

(0.5681) (0.5645) (0.5635) (0.5575) (0.5605) (0.5718)

CRPS -0.0062 -0.0064 -0.0064 -0.0063 -0.0063 -0.0062
(0.0046) (0.0047) (0.0047) (0.0047) (0.0047) (0.0046)
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George’s Tessellation prior (TESS) which performs slightly better than the default

prior (NH). In contrast the CRPS prefers the set of heredity priors over both the

Tessellation and default scenario. The CRPS is slightly more volatile than the

LPS which can be seen from the ratio of standard errors to the means which

varies by roughly 5% and 1% respectively.

Based on these results, the prior choice for BMA setups with interaction terms is

not a definite one. From a statistical point of view it seems advisable to impose a

prior that enforces a ‘conventional’ model structure, especially if the forecasting

performance remains almost unaltered. From a practical view one might argue

that in this very case the use of a heredity or tessellation prior does not strongly

affect the results of MP, since the effect of Sub–Saharan Africa remains in all

setups.

The authors want to thank Jesus Crespo Cuaresma, Gernot Doppelhofer, Martin

Feldkircher, Bettina Grün and Eduardo Ley for discussion and expert advice.

The second author’s research is supported by the Oesterreichische Nationalbank

under the Jubiläumsfond grant 14663.
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Abstract

We propose the use of Latent Class Analysis methods to analyze the

covariate inclusion patterns across specifications resulting from Bayesian

Model Averaging exercises. Using Dirichlet Process clustering, we are able

to identify and describe dependency structures among variables in terms

of inclusion in the specifications that compose the model space. We apply

the method to two datasets of potential determinants of economic growth.

Clustering the posterior covariate inclusion structure of the model space

formed by linear regression models reveals interesting patterns of comple-

mentarity and substitutability across economic growth determinants.

JEL Classification: C11, C21, O47.

Keywords: Economic Growth Determinants, Bayesian Model Averaging, Latent

Class Analysis, Dirichlet Processes.
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1 Introduction

Bayesian Model Averaging (BMA) has become a popular tool for economic

growth applications in economics (for a comprehensive introduction to BMA, see

Hoeting, Madigan, Raftery, and Volinsky, 1999). The so-called open-endedness

of economic theory concerning the factors driving income per capita differences

across countries (Brock and Durlauf, 2001) allows the empirical researcher to

specify a large number of models to quantify the effect of potential drivers on

economic growth. The use of techniques that explicitly assess model uncer-

tainty (mostly within the class of linear regression models) has thus become

widespread in econometric research dealing with the empirical determinants

of income growth differences across countries (for some seminal contributions

to this literature, see e.g. Fernández, Ley, and Steel, 2001; Sala-i-Martin,

Doppelhofer, and Miller, 2004; Masanjala and Papageorgiou, 2008; Durlauf,

Kourtellos, and Tan, 2008; Ley and Steel, 2009b).

Economic growth applications of BMA tend to quantify the relative importance

of a given covariate by calculating its so-called posterior inclusion probability

(PIP), which is defined as the sum of posterior probabilities of specifications

which contain that particular variable. Such a statistic has become a standard

tool in econometric applications of BMA and is routinely used to measure the

relative importance of different potential drivers of income growth differences

across economies. While standard PIPs are intuitive measures that provide valu-

able insights into the overall importance of individual covariates as economic

growth determinants, they face a number of shortcomings. The PIP neglects

the heterogeneity across typical model specifications and accordingly does not

inform about whether the degree of importance of the variable is evenly spread

across potential specifications (that is, it is relatively independent of whether

other covariates are part of the model) or, on the contrary, it is particular to

specific combinations of explanatory variables.

Previous work assessing joint covariate inclusion in BMA applications has fo-

cused on capturing relevant dependency structures using bivariate measures,

that is, concentrating on the analysis of the joint posterior distribution of the
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inclusion of pairs of variables over the model space. Such a concept has been

quantified in the form of bivariate jointness measures in the context of BMA,

put forward first by G. Doppelhofer and M. Weeks in a working paper of 2005

(Doppelhofer and Weeks, 2005), which got published in a slightly different

version as Doppelhofer and Weeks (2009a). Ley and Steel (2007), Strachan

(2009) and Ley and Steel (2009a) offer alternative measures of jointness. In

particular, Ley and Steel (2007) formulate a set of properties for jointness

measures and show that Doppelhofer and Weeks’s statistics do not fulfill them.

Additionally, they propose two other indices which satisfy all of their suggested

properties. Strachan (2009) shows that the interpretability of the jointness

measure of Doppelhofer and Weeks (2009a) may be limited in contexts where

one or both of the analyzed variables have a negligible PIP and offers yet another

measure in order to tackle this shortcoming. Doppelhofer and Weeks (2009b),

on the other hand, argue that another desirable property of jointness measures

happens to be fulfilled by their indicator but not accounted for in the indices of

Ley and Steel (2007) or Strachan (2009).1

In this paper we propose an alternative approach aimed at succinctly and

comprehensibly describing the dependency structure across variables in the

model space using latent class analysis (LCA, see, e.g., Vermunt and Magidson,

2002) and apply it to economic growth regressions. This method was first intro-

duced by Lazarsfeld (1950) to describe dependency structures between observed

discrete variables based on latent traits and has gained widespread popularity

in such research fields as psychometrics or political science (see, e.g., Breen,

2000; Blaydes and Linzer, 2008). The main idea behind LCA is to relate the

realizations of observed variables to an unobserved, categorical latent variable

which captures the dependency structure between the observed variables. This

latent variable groups observations in such a way that the dependency between

1Interestingly, the measures proposed by Doppelhofer and Weeks (2009a), Ley and Steel (2007)
and Strachan (2009) were independently developed earlier in the context of data mining.
The statistic of Doppelhofer and Weeks (2005) is known as log-ratio, the measures of Ley and
Steel (2007) are related to the Jaccard index. The index of Doppelhofer and Weeks (2009a) is
known as odds-ratio and Strachan (2009)’s measure is closely related to the so-called two-way
support (see Tan, Kumar, and Srivastava, 2004; Glass, 2013).
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variables is reduced to a minimum within groups. By applying LCA methods

to the covariate inclusion structure of best models identified by BMA, we are

able to capture the dependency patterns across included covariates through a

(unobserved) latent variable which induces classes with independent covariates

conditional on class membership. Such a setting implies that PIPs within clusters

constitute sufficient information to describe the importance of the variables and

the differences of PIPs between clusters are representative of the dependencies

in the inclusion of a covariate with respect to (all) other variables.

The method proposed in this paper provides a tool for applied econometricians

that goes beyond the identification of individual robust determinants of socioe-

conomic variables by distilling the joint covariate structures that underlie the

distribution of the posterior model probability across specifications. Suitable

theoretical frameworks based on the results of the clustering can then be

inferred based on the identity of the corresponding groups of variables. In the

spirit of Durlauf, Kourtellos, and Tan (2008), the applied researcher may be

interested in incorporating prior beliefs about the relative importance of some

theoretical frameworks (defined over the joint prior inclusion probability of

certain covariate groups) in order to assess the evidence for or against them. The

modeling tool provided by our method is able to incorporate this information in

a straightforward manner.

We apply this approach to the two datasets that have been most widely used for

assessing the robustness of economic growth determinants (those in Fernández,

Ley, and Steel, 2001, and Sala-i-Martin, Doppelhofer, and Miller, 2004, hence-

forth FLS and SDM, respectively). Our results for the FLS dataset reveal patterns

of complementarity and substitutability across geographical, institutional and

religious variables. For the SDM dataset, we find that the importance of the

variable related to malaria prevalence is highly dependent on the inclusion of

other covariates in the specification. The insights gained from the clustering

exercise for the SDM dataset partly reconcile some of the contradictory results

found in the literature concerning the importance of malaria prevalence as a

determinant of income growth differences across countries (see for example
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Sala-i-Martin, Doppelhofer, and Miller, 2004; Schneider and Wagner, 2012;

Hofmarcher, Crespo Cuaresma, Grün, and Hornik, 2014).

The remainder of this paper is structured as follows. In Section 2, we present the

econometric setting used to analyze the anatomy of covariate inclusion over the

model space within BMA applications and outline the LCA approach. Section 3

presents the results of the LCA analysis applied to the set of best models identified

for the FLS and SDM datasets. Section 4 concludes and proposes further paths

of research.

2 Evaluating Covariate Inclusion Dependency

Using Latent Class Analysis

2.1 Model Uncertainty and Economic Growth Determinants:

The Econometric Framework

The standard setting for BMA analysis in the framework of cross-country growth

regressions assumes that the growth rate of income per capita (y) can be linearly

related to a group of covariates (X j) chosen from a set of potential growth

determinants (X ). Assuming that n observations are available, a typical linear

regression model (M j) is given by

y |α,β j,σ ∼ N(αι + X jβ j,σ
2I), (1)

where ι is a column vector of ones of dimension n. Assuming that a total of K

variables are available, inference on a quantity of interest (∆) is given by

p(∆|y) =
2K∑
j=1

p(∆|y, M j)p(M j|y), (2)
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where p(M j|y) is the posterior model probability, which in turn is proportional

to the product of the prior model probability p(M j) and its marginal likelihood

p(y |M j). After eliciting priors over model-specific parameters (p(β j|M j) and

p(σ|M j)), as well as over models (p(M j)), posterior model probabilities and thus

the posterior distributions given by equation (2) can be computed. The problems

caused by the exorbitantly large number of summands in equation (2) when K

is not small can be overcome in a straightforward manner by sampling from the

model space using Markov Chain Monte Carlo (MCMC) methods (Madigan and

York, 1995).

In the spirit of the literature on jointness in BMA applications, we propose to

analyze the anatomy of the set of models sampled by the Markov chain in order to

carry out inference about the covariate inclusion structures existing in the model

space. While existing jointness measures tend to concentrate on the analysis of

the K × K matrix of bivariate inclusion frequencies in the Markov chain, we

aim at gaining knowledge about the overall structure of covariate inclusion by

analyzing the full M×K matrix of inclusion profiles of the specifications sampled

by the Markov chain, where M is the number of sampled models. A model profile

γi, for i = 1, . . . , M (that is, one of the rows of the matrix), is a K-dimensional

vector of ones and zeros indicating the variables which are included in model

i, with typical element γik = 1 if variable k is part of model i and γik = 0

otherwise. We propose to perform the analysis of the inclusion patterns over the

model space assuming the existence of implicit latent groups to which model

specifications are assigned depending on their covariate inclusion pattern.

2.2 Latent Classes and Covariate Inclusion: A Bayesian

Approach Using Dirichlet Processes

We propose to use a method that resembles existing BMA applications dealing

with the computation of jointness measures among covariates. It takes a two-

step approach in terms of analyzing the posterior probability distribution over

model specifications obtained using standard BMA methods. Using clustering
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methods based on LCA, it aims at unveiling clusters of model profiles among

the specifications sampled in the Markov chain Monte Carlo model composite

procedure.

Following the methods put forward by Molitor, Papathomas, Jerrett, and

Richardson (2010), we apply Dirichlet Process Clustering (DPC) in order to carry

out inference about the latent classes governing covariance inclusion structures

in economic growth regressions. Compared to other methods in the literature

(Forgy, 1965; Hartigan and Wong, 1979; Patterson, Dayton, and Graubard,

2002), DPC eliminates the need to set the number of latent classes a priori. While

selecting a suitable number of clusters has been a widely discussed problem in

the LCA and finite mixture literatures (McLachlan and Peel, 2000, Chap. 6), the

nature of Bayesian inference using DPC allows for the automatic selection of an

optimal number of clusters for given prior settings.

We assume that γi, the K-dimensional vector summarizing the variable inclusion

profile for model i, has elements that arise from a mixture of infinitely, but

countably many distributions,

p(γi) =
∞∑
c=1

p(gi = c)
K∏

k=1

p(γik|gi = c), (3)

where p(gi = c) denotes the probability that model i is assigned to cluster c and

p(γik | gi = c) governs the inclusion probability of the k-th covariate in cluster c.

In turn, for our application we use

p(γik | gi = c)∼ Bern(πck),

πck ∼ Beta(δ,δ),

p(gi = c) = Vc

c−1∏
j=1

(1− Vj),

Vc ∼ Beta(1,α).

Such a mixture model implies, that given assignment to a cluster, the inclusion

of covariate k resembles the probabilistic process proposed, for example, in
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Ley and Steel (2009b). The inclusion probability of covariate k in a given

cluster c is thus governed by a Bernoulli distribution whose parameter follows

a Beta distribution. The probabilistic structure that governs assignment to the

different clusters, p(gi = c), on the other hand, corresponds to the so-called

stick-breaking process formulation of the Dirichlet process (see Sethuraman,

1994; Papaspiliopoulos, 2008; Liverani, Hastie, Papathomas, and Richardson,

2013). This representation can be interpreted as determining the mixing

proportions p(gi = c) by successive divisions of the unit interval whose relative

sizes are determined by independent draws from the Beta(1,α) distribution.

Posterior inference for DPC can be carried out using MCMC methods. Pa-

paspiliopoulos and Roberts (2008), for instance, present an approach using

retrospective sampling. However, identifying a DPC model is difficult due to

label switching (Redner and Walker, 1984). We follow Molitor, Papathomas,

Jerrett, and Richardson (2010) and derive a suitable partitioning of the set of

sampled model profiles using the information on co-assignment to the same

clusters during sampling. This information is collapsed into an association

matrix that can be interpreted as a similarity matrix between model profiles

when assuming that model specifications often assigned to the same cluster

are similar. A clustering technique relying only on similarity measures between

specification profiles can then be used to find the final clustering, for instance

Partitioning Around Medoids (PAM, Kaufman and Rousseeuw, 1990), which is

the approach used in our empirical application.

Once a partition has been chosen, several statistics can be used to assess the

goodness of fit of the clustering. In our application we rely on measures based

on the likelihood ratio chi-squared test statistic (G2), which measures goodness-

of-fit by relating the observed counts of specification profiles in each cluster to

the counts predicted by the estimated model. The test statistic is given by G2 =

2
∑2K

j q j ln
q j

Q j
, where q j refers to the observed number of counts of specification

profile γ j and Q j is the expected number of counts assuming independency of

the explanatory variables (see for example Brier, 1980). We calculate this G2

statistic separately for each cluster and the aggregated BMA results.
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In addition, in order to identify substitutability/complementarity of variables

based on the cluster solution, we compute a simple measure of interestingness

of a variable (IM) in the spirit of the literature on association rules. The

interestingness measure IM is determined as the square root of the mean squared

deviation of PIPs with respect to the unclustered case across clusters, weighted

by the cluster-specific mass of posterior model probabilities. Thus, this measure

reflects the stability of the relative importance of the variable across model

structures and is able to give an indication of the existence of substitutabil-

ity/complementarity inclusion patterns across covariates in the model space.

2.3 A Simulation Exercise

We assess the performance of the method by making use of a small-scale simula-

tion exercise. We consider a set of ten potential covariates, xk, k = 1, . . . , 10

and two settings based on different data generating processes. In the first

setting, the dependent variable is a linear combination of the first five covariates

and a random error term, yi =
∑5

k=1 x ik + ϵi, where ϵi ∼ N(0, 0.01) and all

covariates are drawn from standard normal distributions. In the second setting,

the dependent variable can be represented by two different linear combinations

of predictors, so that yi =
∑5

k=1 x ik + ϵi = −∑10
j=6 x ik + ϵi.

2

Using simulated datasets with 50 observations for each one of the settings, we

perform standard BMA (assuming a single cluster of model specifications) as

well as the clustering procedure proposed over the sampled model profiles.

We use a Beta-Binomial prior for covariate inclusion (Ley and Steel, 2009b)

and a unit information prior for the parameters in the BMA application. For

this small example with K = 10 a complete enumeration of all models is

performed. For the clustering procedure, we use a Gamma(2, 1) prior over

α, elicit δ = 90 and retain the top 500 models. The posterior inference is

based on 1,500 MCMC iterations, after 1,000 burn-in runs. The results for

the first (single cluster) setting are presented in Table II.1, where we report

2Technically, we implement this setting by defining x i,10 ≈ −∑9k=1 x ik.
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the posterior inclusion probabilities and the mean of the posterior distribution

of the parameters associated to each one of the covariates, averaged over 100

simulated datasets.

The standard BMA method (see results in panel (a) of Table II.1) correctly

identifies the covariates included in the true model and the mean of the posterior

distribution of the relevant parameters appear very close to the true value of

unity. The clustering approach identifies two clusters, with the first one covering

over 99% of the models in the BMA procedure and reproducing the same results

as those in the non-clustered case in terms of PIP and means of the posterior

distribution of the associated parameters (see panels (b) and (c) in Table II.1).

In the second setting, whose results are presented in Table II.2, the standard

BMA procedure averages out the effects of the two alternative data generating

processes. The PIP values obtained using BMA are around 0.6 for all variables

and the mean of the posterior distribution over the parameters is approximately

0.5 for the first five covariates and −0.5 for the rest of the variables. DPC is able

to disentangle the two competing data generating processes, assigning roughly

the same posterior mass to each one of the two clusters found. The mean of

the posterior distribution of the parameters are in line with the actual values in

the true model(s) and the covariates which are not included in the alternative

specification have a relatively low PIP and an expected effect which is very close

to zero.

3 Covariate Inclusion Clustering in Economic

Growth Regressions

The clustering method presented in Section 2 is applied to the datasets compiled

by Fernández, Ley, and Steel (2001) and Sala-i-Martin, Doppelhofer, and Miller

(2004) (henceforth, FLS and SDM datasets). These two datasets comprise

cross-country information on a large number of potential determinants of income

growth and have been extensively used to assess empirically the role played

by model uncertainty in economic growth regressions. In addition to GDP per
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Table II.1: Simulation Results: Single cluster

(a) Standard BMA

PIP P. Mean

β1 1.0000 0.9799
β2 1.0000 0.9822
β3 1.0000 0.9810
β4 1.0000 0.9828
β5 1.0000 0.9796
β6 0.2030 −0.0001
β7 0.2053 −0.0007
β8 0.2032 0.0003
β9 0.2063 −0.0002
β10 0.2053 −0.0001

(b) DPC: Cluster 1 (>99%)

PIP P. Mean

β1 1.0000 0.9799
β2 1.0000 0.9822
β3 1.0000 0.9810
β4 1.0000 0.9828
β5 1.0000 0.9796
β6 0.2009 −0.0001
β7 0.2033 −0.0007
β8 0.2011 0.0003
β9 0.2042 −0.0002
β10 0.2034 −0.0001

(c) DPC: Cluster 2 (<1%)

PIP P. Mean

β1 1.0000 0.9799
β2 1.0000 0.9824
β3 1.0000 0.9811
β4 1.0000 0.9825
β5 1.0000 0.9804
β6 0.9975 −0.0004
β7 1.0000 −0.0025
β8 1.0000 0.0010
β9 1.0000 −0.0013
β10 1.0000 −0.0010

Simulation results averaged over 100 simulated datasets. Data generating process: yi =
∑5

k=1 x ik+ϵi . Column labelled

PIP reports the posterior inclusion probability, column labelled P. Mean reports the mean of the posterior distribution of

the corresponding parameter. See text for details on the setting of the simulation.

capita growth figures, the FLS dataset is composed by 41 covariates and spans

information for 72 countries, while the SDM dataset includes information on

67 different determinants for 88 economies. The variables in both datasets are

presented in the Appendix A.

The BMA analysis of both datasets is carried out using a Beta-Binomial prior on

covariate inclusion probabilities with a prior average model size of K/2 (20.5 for

the FLS dataset and 33.5 for the SDM dataset) and the hyper g-prior proposed

in Liang et al. (2008) for the regression coefficients. We base our inference

concerning the inclusion probability of covariates on five million MCMC model

draws, whereby the first two million draws were discarded. Alternatively,

we also implemented dilution priors over the model space following George

(1999) (see also Durlauf, Kourtellos, and Tan, 2008). Such a model prior

assigns relatively lower prior probability to specifications with highly correlated

covariates by weighting the prior model probability using the determinant of

the correlation matrix of the explanatory variables. The results obtained using
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Table II.2: Simulation Results: Two clusters

(a) Standard BMA

PIP P. Mean

β1 0.6030 0.4951
β2 0.6038 0.4949
β3 0.6032 0.4931
β4 0.6039 0.4945
β5 0.6028 0.4941
β6 0.5983 −0.4854
β7 0.5989 −0.4874
β8 0.5985 −0.4853
β9 0.5983 −0.4851
β10 0.5983 −0.4857

(b) DPC: Cluster 1 (49%)

PIP P. Mean

β1 0.1995 0.0024
β2 0.2009 0.0023
β3 0.2000 0.0012
β4 0.2014 0.0018
β5 0.1991 0.0020
β6 1.0000 −0.9774
β7 1.0000 −0.9808
β8 1.0000 −0.9772
β9 1.0000 −0.9771
β10 1.0000 −0.9782

(c) DPC: Cluster 2 (51%)

PIP P. Mean

β1 1.0000 0.9817
β2 1.0000 0.9814
β3 1.0000 0.9789
β4 1.0000 0.9809
β5 1.0000 0.9801
β6 0.2009 0.0006
β7 0.2025 0.0000
β8 0.2018 0.0006
β9 0.2011 0.0008
β10 0.2009 0.0006

Simulation results averaged over 100 simulated datasets. Data generating process: yi =
∑5

k=1 x ik+ϵi = −∑10
k=6 x ik+ϵi .

Column labelled PIP reports the posterior inclusion probability, column labelled P. Mean reports the mean of the posterior

distribution of the corresponding parameter. See text for details on the setting of the simulation.

such a dilution prior are not qualitatively different from those with the standard

Beta-Binomial prior which are presented below.3

Using the top 500 unique models visited by the Markov chain (weighted by their

posterior model probability), we apply the clustering procedure described in

Section 2 in order to unveil clusters of inclusion patterns across specifications.

Technically, we create an auxiliary dataset composed by the 500 top model

profiles drawn where the number of observations of each model profile is

proportional to its posterior probability. We normalize this auxiliary dataset so

that the profile corresponding to the 500th top model is included exactly once

and the relative importance of the rest of the models is preserved. For the FLS

3For the FLS dataset, for instance, the correlation between the posterior inclusion probabilities
obtained with the dilution prior and the standard Beta-Binomial prior, as well as between
the means and standard deviations of the posterior parameter distributions, tend to be above
0.8. Detailed results of the BMA exercise using George (1999)’s dilution prior are available
from the authors upon request.
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and SDM dataset the weighted top 500 model profiles in the auxiliary datasets

span 33,480 and 28,800 model profile observations, respectively.4

Concerning prior elicitation for DPC, we use a setting that implies a relative

preference for a smaller number of broad clusters over a multitude of clusters

populated by few model structures, which may eventually lack interpretability.

We use a Gamma(2, 1) prior over α and δ = 90. Posterior inference is based

on 1,500 MCMC iterations, after 1,000 burn-in runs. This choice of priors is

relatively standard in LCA applications (see e.g. Liverani, Hastie, Papathomas,

and Richardson, 2013).5

3.1 Results for the FLS Dataset

DPC identifies an optimal partition of seven clusters of models by inclusion

structure in the FLS dataset. Table II.3 provides an overview of the main

characteristics of these different model clusters regarding the number of model

specifications in the cluster, as well as the mean model size and the average ad-

justed R2 for specifications within the cluster. These statistics are also presented

for the unclustered model space considered. Although the top 500 models used

for the analysis only cover approximately 8% of the posterior model probability

in the space of potential specifications, the overall unclustered results are very

similar to those in Fernández, Ley, and Steel (2001) concerning the PIP of

individual variables.6

4Expanding the set of top models to cover a larger part of the posterior model probability leads
to significant computational complications. For the case of the FLS dataset, which contains
less covariates, we also implemented the method for the top 1,000 models, leading to similar
results as those presented for the top 500 specifications. Such a result is not very surprising
given the fact that the increase in the posterior model probability covered by the top models
is very modest when moving from the top 500 to the top 1,000 specifications.

5We have carried out several robustness checks changing the elicitation of the priors which
did not lead to any significant differences in the inference results as long as the prior setting
implies a preference for a relatively small number of clusters.

6It should be noted that, in contrast to Fernández, Ley, and Steel (2001) and Ley and
Steel (2007), we employ a hyperprior for prior inclusion probabilities and model-specific
parameters, following Ley and Steel (2009b) and Liang et al. (2008), respectively.
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The first two clusters capture more than half of the posterior mass covered by the

set of specifications considered, while clusters 6 and 7 cover a negligible part of

the model space in terms of posterior model probability. Cluster 7 is composed

by very large models and due to its minimal importance in terms of posterior

probability does not appear particularly relevant in terms of interpretation. The

cluster-specific G2 statistics imply an improvement in fit as compared to the

unclustered results once the covariate inclusion structures are assigned to the

classes identified. The reduction in the G2 statistic is very sizable and widespread

across the clusters.

Table II.3: Summary of FLS clusters

Overall 1 2 3 4 5 6 7∑
PMP 0.08 0.03 0.02 0.01 0.01 0.01 0.00 0.00

Avg model size 10.46 10.46 8.68 8.44 11.59 10.95 18.15 41.00
Avg adj. R2 0.83 0.84 0.81 0.80 0.85 0.84 0.90 0.91
G2 stat. (×105) 3.52 0.24 0.24 0.13 0.15 0.09 0.19 0.00

Figure II.1 offers a graphical representation of the differences in PIPs for individ-

ual covariates across the identified clusters. The covariates are sorted by their

PIPs in the standard (unclustered) BMA exercise, which are plotted as a solid line

together with their corresponding within-cluster PIPs, depicted as bars. It should

be noted that the patterns of PIP across variables in all clusters differ structurally

from the unclustered BMA results, so that no individual cluster mimics the PIPs

obtained by the standard BMA exercise closely. The color of the bars in Figure

II.1 corresponds to the value of the IM statistic.

The PIPs of the four most robust variables of the FLS dataset (Confucian,

GDP60, LifeExp and Equipinv) appear stable across clusters. The variables

with a higher degree of variability in PIPs across clusters tend to be related
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Figure II.1: FLS dataset: PIPs in unclustered BMA (solid line) and by identified
cluster (bars)
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Table II.4: FLS dataset: Weighted correlation of cluster-specific PIPs for
variables with I M > 0.5max(I M)

SubSahara EcoOrg YrsOpen Muslim RuleofLaw

SubSahara 1.00 0.50 −0.65 −0.34 0.73
EcoOrg 1.00 −0.87 −0.33 0.87
YrsOpen 1.00 0.45 −0.96
Muslim 1.00 −0.31
RuleofLaw 1.00

to geography (SubSahara), institutions (EcoOrg, RuleofLaw and YrsOpen7)

and religion (Muslim). The characteristics of the inclusion structure of these

variables across clusters can be best understood by computing the weighted

correlation matrix of cluster-specific PIPs, which is presented in Table II.4. The

correlation among covariate inclusion variables reveals that SubSahara, EcoOrg
and RuleofLaw tend to contain complementary information in the sense of

appearing together in specifications. The same is true for the group of variables

formed by YrsOpen and Muslim, while the inclusion of these two sets of variables

presents sizable negative correlation. This result indicates that some of the

effects of institutions and geographical variables on economic growth can be

alternatively modeled using these two groups of covariates in a robust manner,

but that once that they are controlled for, the inclusion of variables of the other

group appears redundant.

The interplay of changes in PIPs across clusters presented in Figure II.1 indicates

that the set of religious, institutional and geographical variables used in cross-

country growth regressions often contain redundant information which can be

replicated using different subgroups of them. An example of such a phenomenon

is observed when comparing clusters 1 and 3. The importance of SubSahara
and RuleofLaw as growth determinants which can be inferred from the results

7The variable YrsOpen is based on the Sachs-Warner index of openness, which has a strong
institutional component. For example, socialist economies are automatically considered
closed to trade by this indicator.
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in cluster 1 disappears in cluster 3 and their fall in PIPs occurs in parallel to

a strong increase in PIP for YrsOpen. The set of religious variables (Muslim,

Catholic, Protestants, Hindu and, to a lesser extent, Buddha) also presents

large variation in PIPs across clusters.

3.2 Results for the SDM Dataset

Ley and Steel (2009a) found very weak (bivariate and/or trivariate) jointness in

the group of covariates included in the SDM dataset. Our procedure splits the

model space into three different model clusters by covariate inclusion patterns.

Table II.5 presents the summary statistics for the identified clusters. The top

500 unique specifications cover 40% of the posterior model probability, a much

larger proportion than in the case of the FLS dataset. The structure of variable

inclusion for the SDM dataset appears to have a different nature as compared

to the results for the FLS dataset. In addition to the lower number of identified

clusters, the first two classes of inclusion structures identified exhibit relatively

similar characteristics in terms of the posterior model probability covered. As

in the case of the FLS dataset, the cluster specific G2 statistics are lower than

the corresponding value for the model without clustering, thus supporting the

method employed.

Figure II.2 depicts the PIPs of the variables in the SDM dataset computed using

the top 500 models, as well as those derived from the models in the single

clusters.8 The results show a large degree of variability in PIPs across clusters

for many of the covariates, including those presenting the highest PIPs in the

unclustered case.

Given the large posterior probability mass over models covered by the first

two clusters, we concentrate on the differences in PIPs observed between these

two. Remarkable differences in PIPs across these two clusters can be observed

for the MALFAL66 variable, which presents a much higher PIP in the second

8Variables with PIP lower than 5% have been excluded in order to improve the readability of
the graph. For these variables no remarkable changes could be detected when comparing the
BMA results with the cluster-specific PIPs.
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Table II.5: Summary of SDM clusters

Overall 1 2 3∑
Posterior model prob. 0.40 0.21 0.17 0.03

Average model size 5.47 6.54 3.95 6.77
Average adjusted R2 0.67 0.71 0.62 0.70
G2 statistic (×105) 10.25 1.33 2.36 0.58

cluster, making it the second most important variable for models within that

cluster. Such a phenomenon is accompanied by a sizable decrease in PIP for

P60, IPRICE1, TROPICAR, GDPCH60L and DENS65C. The empirical literature

on model uncertainty in cross-country growth regressions which analyzes the

SDM dataset often reports on the effect that the use of different approaches to

parameter shrinkage has on the importance of MALFAL66. Schneider and Wagner

(2012) as well as Hofmarcher, Crespo Cuaresma, Grün, and Hornik (2014),

for instance, find that the robustness of MALFAL66 as a determinant of income

growth differences across countries improves when estimation methods based

on LASSO and elastic nets are used. In addition, the results in Schneider and

Wagner (2012) and Hofmarcher, Crespo Cuaresma, Grün, and Hornik (2014)

also indicate a loss of importance of DENS65C when methods implying a more

stringent shrinkage are used in the estimation. These are precisely two of the

variables which present the highest values of IM in our results, hinting to the

fact that their relative importance depends on the type of model (as represented

by the variable inclusion structure cluster) considered.

Such a pattern of substitutability across covariates is easily recognizable from the

weighted correlation matrix of cluster-specific PIPs for the group of variables

with the highest IM values, which is presented in Table II.6. The correla-

tion patterns present in the model space indicate that MALFAL66 tends to act

as a substitute of the group of variables composed by IPRICE1, TROPICAR,
GDPCH60L and DENS65C. The difference in average model size across these two

important clusters in the space of posterior inclusion probability structures is
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Figure II.2: SDM dataset: PIPs in unclustered BMA (solid line) and by
identified cluster (bars)

Table II.6: SDM dataset: Weighted correlation of cluster-specific PIPs for
variables with I M > 0.5max(I M)

DENS65C GDPCH60L IPRICE1 MALFAL66 TROPICAR

DENS65C 1.00 0.95 0.92 −0.93 0.97
GDPCH60L 1.00 1.00 −1.00 0.83
IPRICE1 1.00 −1.00 0.79
MALFAL66 1.00 −0.80
TROPICAR 1.00

in line with the strong impact of different parameter shrinkage approaches on

the relative importance of the variables which is highlighted in previous liter-

ature. In addition, in their study of pairwise jointness measures, Doppelhofer

and Weeks (2009a) report that P60, IPRICE1, DENS65C and TROPICAR exhibit

significant negative bivariate jointness with MALFAL66, a result that can be easily
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reconciled with the output of our analysis. While Ley and Steel (2007) find very

limited evidence for jointness structures in the SDM dataset, the only triplets of

important variables for which disjointness is reported also involve TROPICAR and

MALFAL66.

In spite of the fact that the third cluster that DPC identifies covers a very small

part of the posterior mass over models, its PIP structure also reveals interesting

patterns as compared to the other two clusters. In this group of models, two of

the most relevant variables in terms of (unclustered) PIP, EAST and TROPICAR,

lose their importance and their information is captured by a different set of

geographical and religious variables (CONFUC, LAAM and SAFRICA). The results in

Doppelhofer and Weeks (2009a) concerning the complementarity of EAST and

TROPICAR and the substitutability of EAST with respect to CONFUC, LAAM and

SAFRICA are perfectly in line with these results. In addition, Doppelhofer and

Weeks (2009a) find the latter to be complements, which is also supported by the

comparison of the PIPs in our third cluster with those in the other two.

4 Conclusions and Future Paths of Research

In this contribution we are concerned with covariate inclusion patterns of BMA

exercises with large model spaces. Recent research on such jointness structures

tends to choose a low-dimensional approach to such an analysis and thus

concentrates on bivariate or trivariate approaches, by calculating the inclusion

relationships of few explaining factors at a time. We propose a novel approach by

utilizing LCA techniques and apply DPC to two well known datasets in the BMA

growth literature. The clustering method put forward in our contribution aims

at unveiling commonalities in the joint inclusion of variables and thus offering

the applied econometrician evidence about the competing structures (as formed

by groups of variables that appear together) that are covered by the posterior

over the model space.

Our results indicate that within the set of models sampled by the Markov chain in

the BMA analysis of determinants of economic growth, several distinct clusters
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of models by covariate inclusion can be identified. For the FLS data, we identify

seven clusters of models which differ in the inclusion structure for geographic,

institutional and religious covariates. In contrast, the SDM dataset only reveals

three latent classes with very different dependency structures. The inclusion

of the variable measuring malaria prevalence is shown to vary strongly across

clusters, with its effect on economic growth being captured often by other factors

such as the fraction of tropical area and coastal population density.

We show that the study of dependency structures in covariate inclusion for

large model spaces appears particularly relevant in order to understand the

nature of the factors affecting global patterns of income growth. The proposed

method lends itself to further straightforward expansions such as the use of

low-dimensional jointness measures for the analysis of within-cluster inclusion

patterns for small groups of covariates. The assessment of covariate inclusion

clusters in the model space under different shrinkage priors can also shed

light on the effects of multicollinearity on the robustness of economic growth

determinants to model uncertainty.

In order to make our method and results comparable to those in the literature

on jointness measures, we decided to follow a two-step procedure and use the

clustering method on the model profiles visited by the Markov chain of the BMA

procedure. The LCA and DPC methods proposed in this contribution would

also lend themselves to create priors over suitable covariate combinations in

the specifications that compose the model space. This path of further research,

which we are pursuing at the moment, appears particularly promising in order

to unify the literature on jointness and dilution priors in BMA applications.
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A Datasets

Table A.1: Variable names and descriptive statistics — FLS

Abbreviation Variable Mean Std. Dev.

1 Abslat Absolute latitude 25.73 17.250
2 Age Age 23.71 37.307
3 Area Area (Scale Effect) 972.92 2051.976
4 BlMktPm Black Market Premium 0.16 0.291
5 Brit British Colony dummy 0.32 0.470
6 Buddha Fraction Buddhist 0.06 0.184
7 Catholic Fraction Catholic 0.42 0.397
8 CivlLib Civil Liberties 3.47 1.712
9 Confucian Fraction Confucian 0.02 0.087
10 EcoOrg Degree of Capitalism 3.54 1.266
11 English Fraction of Pop. Speaking English 0.08 0.239
12 EquipInv Equipment investment 0.04 0.035
13 EthnoL Ethnolinguistic fractionalization 0.37 0.296
14 Foreign Fraction speaking foreign language 0.37 0.422
15 French French Colony dummy 0.12 0.333
16 GDP60 GDP level in 1960 7.49 0.885
17 HighEnroll Higher education enrollment 0.04 0.052
18 Hindu Fraction Hindu 0.02 0.101
19 Jewish Fraction Jewish 0.01 0.097
20 LabForce Size labor force 9305.38 24906.056
21 LatAmerica Latin American dummy 0.28 0.451
22 LifeExp Life expectancy 56.58 11.448
23 Mining Fraction GDP in mining 0.04 0.077
24 Muslim Fraction Muslim 0.15 0.295
25 NequipInv Non-Equipment Investment 0.15 0.055
26 OutwarOr Outward Orientation 0.39 0.491
27 PolRights Political Rights 3.45 1.896
28 Popg Population Growth 0.02 0.010
29 PrExports Primary exports, 1970 0.67 0.299
30 Protestants Fraction Protestant 0.17 0.252
31 PrScEnroll Primary School Enrollment, 1960 0.80 0.246
32 PublEdupct Public Education Share 0.02 0.009
33 RevnCoup Revolutions and coups 0.18 0.238
34 RFEXDist Exchange rate distortions 121.71 41.001
35 RuleofLaw Rule of law 0.55 0.335
36 Spanish Spanish Colony dummy 0.22 0.419
37 stdBMP SD of black-market premium 45.60 95.802
38 SubSahara Sub-Saharan dummy 0.21 0.409
39 WarDummy War dummy 0.40 0.494
40 WorkPop Ratio workers to population −0.95 0.189
41 y GDP per capita growth 0.02 0.018
42 YrsOpen Number of Years open economy 0.44 0.355
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Table A.2: Variable names and descriptive statistics — SDM
Abbreviation Variable Mean Std. Dev.

1 ABSLATIT Absolute latitude 23.21 16.843

2 AIRDIST Air distance to big cities 4324.17 2613.763

3 AVELF Ethnolinguistic fractionalization 0.35 0.302

4 BRIT British colony 0.32 0.468

5 BUDDHA Fraction Buddhist 0.05 0.168

6 CATH00 Fraction Catholic 0.33 0.415

7 CIV72 Civil liberties 0.51 0.326

8 COLONY Colony dummy 0.75 0.435

9 CONFUC Fraction Confucian 0.02 0.079

10 DENS60 Population density costal 1960’s 108.07 201.445

11 DENS65C Population density 1960 146.87 509.828

12 DENS65I Interior density 43.37 88.063

13 DPOP6090 Population growth rate 1960-1990 0.02 0.009

14 EAST East Asian dummy 0.11 0.319

15 ECORG Capitalism 3.47 1.381

16 ENGFRAC English-speaking population 0.08 0.252

17 EUROPE European dummy 0.22 0.414

18 FERTLDC1 Fertility in 1960’s 1.56 0.419

19 GDE1 Defense spending share 0.03 0.025

20 GDPCH60L GDP 1960 (log) 7.35 0.901

21 GEEREC1 Public education spending share in GDP in 1960’s 0.02 0.010

22 GGCFD3 Government consumption share deflated with GDP prices 0.05 0.039

23 GOVNOM1 Nominal government GDP share 1960’s 0.15 0.058

24 GOVSH61 Government share of GDP 0.17 0.071

25 GR6096 Average growth rate of GDP per capita 1960-1996 0.02 0.019

26 GVR61 Government consumption share 1960’s 0.12 0.075

27 H60 Higher education in 1960 0.04 0.050

28 HERF00 Religous intensity 0.78 0.193

29 HINDU00 Fraction Hindu 0.03 0.125

30 IPRICE1 Investment price 92.47 53.678

31 LAAM Latin American dummy 0.23 0.421

32 LANDAREA Land area 867188.52 1814688.290

33 LANDLOCK Landlocked country dummy 0.17 0.378

34 LHCPC Hydrocarbon deposits in 1993 0.42 4.351

35 LIFE060 Life expectancy in 1960 53.72 12.062

36 LT100CR Fraction of land area near navigable water 0.47 0.380

37 MALFAL66 Malaria prevalence in 1960’s 0.34 0.431

38 MINING Fraction GDP in mining 0.05 0.077

39 MUSLIM00 Fraction Muslim 0.15 0.296

40 NEWSTATE Time of independence 1.01 0.977
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Table A.2: (continued)

Abbreviation Variable Mean Std. Dev.

41 OIL Oil-producing country dummy 0.06 0.233

42 OPENDEC1 (Imports+exports)/GDP 0.52 0.336

43 ORTH00 Fraction Orthodox 0.02 0.098

44 OTHFRAC Fraction speaking foreign language 0.32 0.414

45 P60 Primary schooling 1960 0.73 0.293

46 PI6090 Average inflation 1960-1990 13.13 14.990

47 POP1560 Fraction population less than 15 0.39 0.075

48 POP60 Population in 1960 20308.08 52538.387

49 POP6560 Fraction population over 65 0.05 0.029

50 PRIEXP70 Primary exports in 1970 0.72 0.283

51 PRIGHTS Political rights 3.82 1.997

52 PROT00 Fraction Protestant 0.14 0.285

53 RERD Real exchange rate distortions 125.03 41.706

54 REVCOUP Revolution and coups 0.18 0.232

55 SAFRICA African dummy 0.31 0.464

56 SCOUT Outward orientation 0.40 0.492

57 SIZE60 Size of the economy 16.15 1.820

58 SOCIALIST Socialist dummy 0.07 0.254

59 SPAIN Spanish colony 0.17 0.378

60 SQPI6090 Square of inflation 1960-1990 394.54 1119.699

61 TOT1DEC1 Terms of trade growth in 1960’s 0.00 0.035

62 TOTIND Terms of trade ranking 0.28 0.190

63 TROPICAR Fraction of tropical area 0.57 0.472

64 TROPPOP Fraction population in tropics 0.30 0.373

65 WARTIME Fraction spent in war 1960-1990 0.07 0.152

66 WARTORN War participation 1960-1990 0.40 0.492

67 YRSOPEN Years open 0.36 0.344

68 ZTROPICS Tropical climate zone 0.19 0.269
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B Posterior Inclusion Probabilities by Cluster

Table B.1: PIPs within detected clusters — FLS

Overall 1 2 3 4 5 6 7 IM

GDP level in 1960 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Fraction Confucian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Life expectancy 0.97 0.99 0.99 0.97 1.00 0.82 1.00 1.00 0.00
Equipment investment 0.96 0.98 1.00 1.00 0.73 0.95 1.00 1.00 0.01
Sub-Saharan dummy 0.85 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.13
Rule of law 0.69 1.00 0.35 0.03 0.82 1.00 1.00 1.00 0.14
Fraction Muslim 0.67 0.90 0.75 0.96 0.02 0.00 0.66 1.00 0.13
Degree of Capitalism 0.59 0.99 0.05 0.04 0.95 1.00 0.12 1.00 0.21
Fraction Protestant 0.55 0.52 0.25 0.67 0.92 0.98 0.05 1.00 0.07
Non-Equipment Investment 0.54 0.81 0.14 0.24 0.63 0.90 0.40 1.00 0.09
Fraction GDP in mining 0.48 0.30 0.61 0.36 0.95 0.25 0.96 1.00 0.06
Number of Years open economy 0.37 0.10 0.80 1.00 0.00 0.02 0.00 1.00 0.16
Black Market Premium 0.21 0.19 0.12 0.01 0.57 0.08 0.71 1.00 0.04
Latin American dummy 0.20 0.02 0.11 0.00 1.00 0.22 0.54 1.00 0.10
Fraction Hindu 0.19 0.04 0.00 0.00 0.43 0.63 1.00 1.00 0.09
Primary School Enrollment, 1960 0.17 0.02 0.20 0.39 0.00 0.00 0.90 1.00 0.05
Fraction Buddhist 0.15 0.29 0.07 0.06 0.06 0.00 0.15 1.00 0.02
Fraction Catholic 0.10 0.03 0.01 0.04 0.01 0.78 0.00 1.00 0.06
Civil Liberties 0.10 0.02 0.04 0.19 0.02 0.03 0.82 1.00 0.04
Size labor force 0.09 0.01 0.01 0.04 0.14 0.04 1.00 1.00 0.05
Ethnolinguistic fractionalization 0.08 0.01 0.02 0.00 0.04 0.04 1.00 1.00 0.05
Higher education enrollment 0.07 0.01 0.00 0.00 0.08 0.00 1.00 1.00 0.05
Political Rights 0.05 0.04 0.01 0.06 0.03 0.13 0.12 1.00 0.00
Fraction of Pop. Speaking English 0.05 0.03 0.01 0.00 0.00 0.00 0.55 1.00 0.02
Primary exports, 1970 0.04 0.02 0.07 0.10 0.00 0.03 0.00 1.00 0.00
French Colony dummy 0.04 0.01 0.01 0.00 0.00 0.00 0.54 1.00 0.02
Spanish Colony dummy 0.04 0.01 0.00 0.00 0.01 0.01 0.54 1.00 0.02
British Colony dummy 0.04 0.01 0.00 0.00 0.00 0.00 0.54 1.00 0.02
Exchange rate distortions 0.03 0.01 0.01 0.17 0.00 0.00 0.02 1.00 0.01
Outward Orientation 0.03 0.00 0.00 0.01 0.01 0.00 0.41 1.00 0.01
Age 0.03 0.02 0.02 0.02 0.08 0.00 0.05 1.00 0.00
War dummy 0.02 0.01 0.03 0.00 0.01 0.03 0.02 1.00 0.00
Public Education Share 0.02 0.00 0.00 0.00 0.08 0.00 0.05 1.00 0.00
Fraction speaking foreign language 0.02 0.01 0.00 0.06 0.00 0.00 0.00 1.00 0.00
SD of black-market premium 0.01 0.00 0.01 0.02 0.00 0.00 0.00 1.00 0.00
Absolute latitude 0.01 0.01 0.00 0.01 0.00 0.00 0.00 1.00 0.00
Ratio workers to population 0.01 0.01 0.00 0.01 0.00 0.00 0.00 1.00 0.00
Population Growth 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Revolutions and coups 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Area (Scale Effect) 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Fraction Jewish 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
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Table B.2: PIPs within detected clusters — SDM
Overall 1 2 3 IM

East Asian dummy 0.92 0.99 1.00 0.00 0.06

Primary schooling 1960 0.76 0.99 0.43 0.99 0.08

Investment price 0.67 0.95 0.28 0.98 0.11

Fraction of tropical area 0.60 1.00 0.21 0.03 0.17

GDP 1960 (log) 0.58 0.83 0.24 0.79 0.08

Population density 1960 0.46 0.86 0.01 0.27 0.17

Malaria prevalence in 1960’s 0.34 0.02 0.78 0.00 0.14

Spanish colony 0.11 0.01 0.25 0.01 0.01

Life expectancy in 1960 0.10 0.04 0.18 0.03 0.00

Fraction Confucian 0.08 0.02 0.03 0.84 0.04

Latin American dummy 0.08 0.00 0.05 0.82 0.04

African dummy 0.07 0.03 0.00 0.81 0.04

Ethnolinguistic fractionalization 0.07 0.10 0.03 0.04 0.00

Government consumption share 1960’s 0.05 0.02 0.08 0.09 0.00

Political rights 0.05 0.09 0.00 0.00 0.00

Years open 0.05 0.04 0.05 0.04 0.00

Fraction Muslim 0.04 0.03 0.03 0.15 0.00

Fraction Buddhist 0.04 0.04 0.00 0.28 0.00

Fraction GDP in mining 0.04 0.03 0.02 0.15 0.00

Population density costal 1960’s 0.03 0.06 0.00 0.08 0.00

Higher education in 1960 0.03 0.03 0.03 0.00 0.00

(Imports+exports)/GDP 0.03 0.03 0.02 0.02 0.00

Government share of GDP 0.02 0.01 0.02 0.14 0.00

Fraction speaking foreign language 0.02 0.02 0.02 0.03 0.00

Primary exports in 1970 0.02 0.00 0.04 0.00 0.00

Air distance to big cities 0.02 0.04 0.00 0.00 0.00

Real exchange rate distortions 0.02 0.02 0.01 0.02 0.00

Fraction population less than 15 0.02 0.03 0.01 0.00 0.00

Government consumption share deflated with GDP prices 0.01 0.01 0.00 0.10 0.00

Fraction Protestant 0.01 0.01 0.02 0.01 0.00

Fraction population in tropics 0.01 0.01 0.01 0.03 0.00

Absolute latitude 0.01 0.01 0.01 0.00 0.00

Civil liberties 0.01 0.01 0.00 0.00 0.00

Colony dummy 0.01 0.01 0.01 0.00 0.00

Revolution and coups 0.01 0.01 0.01 0.00 0.00

Outward orientation 0.01 0.01 0.00 0.00 0.00

Fraction Hindu 0.01 0.01 0.00 0.00 0.00

Average inflation 1960-1990 0.01 0.01 0.00 0.00 0.00

European dummy 0.00 0.00 0.00 0.01 0.00

Size of the economy 0.00 0.01 0.00 0.00 0.00
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Table B.2: (continued)

Overall 1 2 3 IM

Hydrocarbon deposits in 1993 0.00 0.01 0.00 0.00 0.00

Fertility in 1960’s 0.00 0.01 0.00 0.00 0.00

Fraction population over 65 0.00 0.00 0.00 0.00 0.00

British colony 0.00 0.01 0.00 0.00 0.00

English-speaking population 0.00 0.00 0.01 0.00 0.00

Square of inflation 1960-1990 0.00 0.01 0.00 0.00 0.00

Defense spending share 0.00 0.01 0.00 0.00 0.00

Landlocked country dummy 0.00 0.01 0.00 0.00 0.00

Religous intensity 0.00 0.01 0.00 0.00 0.00

Oil-producing country dummy 0.00 0.01 0.00 0.00 0.00

Time of independence 0.00 0.01 0.00 0.00 0.00

Socialist dummy 0.00 0.01 0.00 0.00 0.00

Fraction Catholic 0.00 0.00 0.00 0.01 0.00

Population growth rate 1960-1990 0.00 0.00 0.00 0.00 0.00

Nominal government GDP share 1960’s 0.00 0.01 0.00 0.00 0.00

Public education spending share in GDP in 1960’s 0.00 0.00 0.00 0.00 0.00

Capitalism 0.00 0.01 0.00 0.00 0.00

Terms of trade growth in 1960’s 0.00 0.00 0.00 0.00 0.00

Tropical climate zone 0.00 0.00 0.00 0.00 0.00

Fraction spent in war 1960-1990 0.00 0.00 0.00 0.00 0.00

War participation 1960-1990 0.00 0.00 0.00 0.00 0.00

Land area 0.00 0.00 0.00 0.00 0.00

Population in 1960 0.00 0.00 0.00 0.00 0.00

Fraction Orthodox 0.00 0.00 0.00 0.00 0.00

Fraction of land area near navigable water 0.00 0.00 0.00 0.00 0.00

Interior density 0.00 0.00 0.00 0.00 0.00

Terms of trade ranking 0.00 0.00 0.00 0.00 0.00
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Abstract

Posterior analysis in Bayesian model averaging (BMA) applications often

includes the assessment of measures of jointness (joint inclusion) across

covariates. We link the discussion of jointness measures in the econometric

literature to the literature on association rules in data mining exercises.

We analyze a group of alternative jointness measures that include those

proposed in the BMA literature and several others put forward in the

field of data mining. The way these measures address the joint exclusion

of covariates appears particularly important in terms of the conclusions

that can be drawn from them. Using a dataset of economic growth

determinants, we assess how the measurement of jointness in BMA can

affect inference about the structure of bivariate inclusion patterns across

covariates.

JEL Classification: C11, C55, O40.

Keywords: Bayesian Model Averaging, Jointness, Robust Growth Determinants,

Machine Learning, Association Rules.
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1 Introduction

Addressing model uncertainty concerns in econometric applications through the

use of Bayesian model averaging (BMA) is becoming a standard practice in

empirical studies where no unique theoretical guidelines exist. One of such

areas in economics where BMA has established itself as a useful tool of analysis

is economic growth. A growing number of studies aims at identifying robust

determinants of income per capita growth differences across countries without

having to rely on specific theoretical frameworks (see for example Fernández,

Ley, and Steel, 2001b; Brock and Durlauf, 2001; Sala-i-Martin, Doppelhofer,

and Miller, 2004; Moral-Benito, 2012; Eicher, Helfman, and Lenkoski, 2012;

Moral-Benito, 2014). In these studies, the robustness of individual covariates

as determinants of income growth differences is routinely measured through

posterior inclusion probabilities (PIP), i.e., the posterior probability covered by

all models that contain that particular variable. This represents an average over

a (possibly) large number of very different models.

Moving beyond the development of robustness measures based on individual

covariates, some contributions in the literature aim at identifying particular

structures in the posterior distribution of joint covariate inclusion. The literature

tends to concentrate on the assessment of measures based on bivariate inclusion

structures and uses the term jointness to refer to the dependence in the inclusion

of groups (most often, pairs) of variables. Doppelhofer and Weeks (2005),

Ley and Steel (2007, henceforth LS), Doppelhofer and Weeks (2009a, hence-

forth DW) and Strachan (2009) are the most relevant references dealing with

measuring posterior inclusion dependence of regressors in economic growth

applications. Using a different approach from these studies, Crespo Cuaresma

et al. (2015) employ clustering methods to identify covariate inclusion patterns

over the structure revealed by the posterior model probabilities of BMA exercises.

To quantify the association of covariate inclusion, the BMA literature has pro-

posed several measures of jointness. These measures and the properties that

define them have been studied in a strand of independent literature in the field of

data mining, which aims at evaluating the quality of so-called association rules.
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A common example for such a problem in data mining is finding sets of products

that tend to be purchased together in a shopping basket. The development of

rules that define the inclusion patterns existing between two or more items

is conceptually very similar to finding jointness structures for a given set of

covariates in the model space after the posterior model probabilities have been

computed. However, the choice of measures to quantify these associations has

generated a vivid discussion in the machine learning literature. Several studies

provide comparisons of a large number of concepts and try to identify suitable

measures through the kind of properties they fulfill (Geng and Hamilton, 2006;

Glass, 2013). Besides these attempts to select measures based on objective

criteria, some authors also adopt a subjective approach, in which the researcher

tries to quantify a priori expectations (Tan, Kumar, and Srivastava, 2004). Some

studies also show that many of the proposed measures produce similar rankings

and therefore can be used exchangeably in many applications (Vaillant, Lenca,

and Lallich, 2004; Tew, Giraud-Carrier, Tanner, and Burton, 2014).

The controversy around measuring jointness in BMA applications was born from

the contributions by Ley and Steel (2009a), Strachan (2009) and Doppelhofer

and Weeks (2009b). In their exchange of ideas the different authors raised

concerns about how the different measures in the BMA context were defined.

These discussions especially revolved around cases were several measures are

undefined, or give contradictory results. Especially the question of whether

the probability that two variables are not included in a model should influence

the value of a jointness measure or not was debated vividly. We bring insights

from the literature on association measures used in data mining and provide

a thorough analysis of the differential characteristics of a larger set of jointness

measures which nests those proposed hitherto in BMA applications. More specif-

ically, we review properties of jointness measures, which have been proposed in

the machine learning literature and focus on the property of null-invariance. We

show that, while most measures in the BMA literature have this property, it is not

favorable in BMA applications. Based on this discussion, we select a subset of

measures that fulfill the afore discussed properties and use them to investigate

jointness in the data set of Fernández, Ley, and Steel (2001b).
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The paper is structured as follows. In section 2 we briefly review the standard

implementation of jointness measures in the context of BMA. We present a short

summary of relevant concepts from the literature on association rule analysis

and how these are related to jointness in section 3. The empirical application

based on the cross-country growth regression dataset in Fernández, Ley, and

Steel (2001a), is carried out in section 4. Section 5 concludes and puts forward

avenues of further research.

2 BMA and Jointness Measures: A Review

BMA methods aim at obtaining posterior distributions of the quantities of interest

in a regression model which incorporate the uncertainty concerning model

specification. Let our quantity of interest be related to the parameters of a linear

regression model of the form

y |α,β j,σ ∼ N(αι + X jβ j,σ
2I), (1)

where y is an n×1 vector whose elements are the observations of the dependent

variable of interest, ι a vector of ones of the same length and the n×k matrix X j

is composed by the observations of k variables out of a total set of K covariates.

Model uncertainty can be explicitly addressed by basing our inference on the

parameters of interest on the posterior distribution

p(α,β ,σ|y) =
2K∑
j=1

p(α,β ,σ|y, M j)p(M j|y), (2)

where each specification-specific posterior distribution p(α,β ,σ|y, M j) is

weighted by the corresponding posterior model probability p(M j|y). The poste-

rior model probability is in turn proportional to the marginal likelihood of the

model multiplied with the prior model probability,
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p(M j|y)∝ p(y |M j)p(M j). (3)

It is standard in BMA applications to elicit improper non-informative priors on

α and σ, so that p(α)∝ 1 and p(σ)∝ σ−1. A common choice for the prior of

the slope coefficients β is Zellner’s g–prior (Zellner, 1986),

p(β |M j,σ)∼ N(0,σ2(
1
g0

X ′jX j)
−1) , (4)

so that the prior variance matrix is scaled by the parameter g0 and has the

structure of the covariance matrix of the OLS estimator. Several fixed values

for the g parameter have been proposed (see e.g. Foster and George, 1994;

Fernández, Ley, and Steel, 2001a). To allow for more flexibility, hyperpriors on

g have also been put forward in the literature by Liang et al. (2008), Feldkircher

and Zeugner (2009), and Ley and Steel (2012).

For the prior model probabilities, a straightforward approach is to elicit a flat

prior over all specifications entertained, so that p(M j) = 2−K for all j. Given that

this prior embodies a preference for models of size around K/2, Ley and Steel

(2009b) argue for a binomial-beta prior on covariate inclusion, a setting which

is able to achieve a very flexible prior structure over model size and includes a

purely uninformative distribution over the number of included covariates.

Since analyzing the whole model space of 2K models is often computationally

infeasible, the relevant parts of the model space can be explored via Markov

Chain Monte Carlo Model Composition (MC3) methods (Madigan and York,

1995) in order to compute the relevant posterior distributions.

Among the many interesting features of the posterior over model specifica-

tions, the joint distribution of covariate inclusion constitutes the basis to create

measures of jointness. Following Doppelhofer and Weeks (2009a), let model

specifications be represented by a 0-1 vector of covariate inclusion profiles (as

defined by the inclusion variables γk, k = 1, . . . , K), so that
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p(M j|y) = p(γ1 = c1,γ2 = c2, ...,γK = cK |y) , (5)

where ck is the binary variable representing the inclusion of covariate k in the

model. Given these inclusion profiles, jointness quantifies to which degree two

variables A and B tend to appear jointly across models
�
p(A∩ B|y) ≡ p(AB|y)�

as opposed to the posterior probability to appear without the respective other

variable
�
p(A∩ B̄|y)≡ p(AB̄|y) and p(Ā∩ B|y)≡ p(ĀB|y)�.

The comparison of these probabilities allows to consider two covariates as com-

plements, substitutes or independent a posteriori, given their relative (common)

appearance. The group of jointness measures that have been proposed in the

BMA context uses these probabilities to generate a single statistic which allows

a categorization of such pairs (or eventually, triplets) of variables. Positive

values for these indicators typically refer to joint appearance (and therefore a

certain degree of complementarity between them), while negative values are

related to the fact that the two covariates act as substitutes in specifications. So

far, five different measures of jointness have been proposed in the econometric

literature dealing with BMA, which differ in the way they incorporate the

different marginal and joint inclusion probabilities.

The earliest jointness measure in the BMA context is attributed to Doppelhofer

and Weeks (2005), who propose to use

J = ln
�

p(AB)
p(A)× p(B)

�
, (6)

which resembles the logarithm of the posterior odds ratio. The use of posterior

odds ratios as jointness indicator was criticized by Ley and Steel (2007), who

note that the measure may be misleading for variables with high PIP and that

the measure hardly allows for comparisons across different pairs of variables.

In a later study Doppelhofer and Weeks (2009a) propose a cross-product ratio

of inclusion probabilities as another measure,
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J = ln

�
p(AB)× p(ĀB̄)
p(AB̄)× p(ĀB)

�
. (7)

In a reply Ley and Steel (2009a) are again not in favor of this approach, since

the DW measure is not defined in cases where a variable has a PIP of 1 or 0.

Instead LS highlight two alternative measures (Ley and Steel, 2007):

J ∗ = p(AB)
p(A) + p(B)− p(AB)

(8)

J ′ = p(AB)
p(AB̄) + p(ĀB)

. (9)

While J ′ relates the joint inclusion to the probability of including either one of

the two variables, J ∗ uses the probability of including either one but not both

variables in the denominator.

Another measure was introduced by Strachan (2009), who proposes to only look

at relevant variables in terms of PIP. This is accomplished by adapting DW’s cross-

product ratio in such a way, that it includes the marginal probabilities of both

variables,

J̃ = p(A)p(B) ln

�
p(AB)

p(AB̄)× p(ĀB)

�
. (10)

A major discussion in the jointness literature also involves the treatment of

p(Ā ∩ B̄|y) ≡ p(ĀB̄|y). This exclusion margin indicates to which extent both

variables do not tend to appear together in specifications and therefore may be

considered as representing a measure of (un)importance of bivariate jointness.

While DW stress the importance of this aspect in the discussion (Doppelhofer

and Weeks, 2009b), this property is not included in the jointness measures

proposed by Strachan (2009) and Ley and Steel (2009a). The treatment of the

information concerning joint exclusion of covariates constitutes a differential
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characteristic across association measures known as null-invariance in the data

mining literature (Glass, 2013).

3 From Association Rules to Jointness Measures

The measures used in the literature on jointness of covariates in BMA analysis

are often applied in data mining when describing association rules, although

the linkages between the two strands of literature has not been explicitly

acknowledged hitherto. Data mining is often concerned with the exploration of

huge datasets of so-called transactions, which may for example each represent

shopping baskets with different sets of items (products). Association analysis

aims at finding patterns in these data structures to learn about consumer

behavior and the interrelation across purchased items. The major tool used are

association rules of the form A−→ B (if A is included in the basket, B tends to be

included), where A and B can include either individual items or disjoint itemsets.

For a large number of items, the count of rules can potentially grow very large.

The number of itemsets is 2K − 1 for K items (variables) which implies 3K −
2K+1 + 1 possible association rules (excluding empty sets) between itemsets of

all sizes. Therefore association rules are routinely mined to only include such

rules which are “interesting” for the application. This refers on the one hand

to associations which are frequent, as measured by the support. On the other

hand, rules should be strong as measured by the confidence, which relates the

occurrence of a pattern to the number of counterexamples in the data.

The most common strategy to extract such rules is the apriori algorithm (Ag-

garwal and Yu, 1998; Hahsler, Grün, and Hornik, 2005), which reduces the

complexity of the problem by reasoning that all item subsets of a frequent

itemset must also be frequent and vice versa. This approach is also related to

support-based pruning and has been applied by a large number of studies in the

data mining literature (Tan, Kumar, and Srivastava, 2004).
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In addition to support and confidence — which are relevant to achieve compu-

tational feasibility — the interestingness of these rules can be quantified using

several measures. Similar to the jointness literature, a number of such indicators

has been proposed in the data mining context. Recent surveys in this field collect

as many as 40 different measures and try to provide a structural overview of

the alternative measures available (Glass, 2013; Geng and Hamilton, 2006;

Tan, Kumar, and Srivastava, 2004).1 Some of these measures resemble the

ones proposed in the BMA jointness literature. The first jointness measure of

Doppelhofer and Weeks (2005) is equivalent to the Log-Ratio or equivalently,

the log of the Interest (Lift) measure (Geng and Hamilton, 2006). Ley and Steel

(2007)’s J ∗ is identical to the long-used Jaccard index and their J ′ measure

is a derivation thereof. As another alternative, Strachan (2009) introduces a

measure (J̃ ) that has been known as the Two-Way support (Geng and Hamilton,

2006). Finally, the statistic proposed by Doppelhofer and Weeks (2009a) has also

been known as the Odds-Ratio in the field of data mining (Tew, Giraud-Carrier,

Tanner, and Burton, 2014).

Another similarity between the two strands of literature is the debate on which

measure is the most appropriate for a given application. Tan, Kumar, and

Srivastava (2004) propose the use of subjective measures, which depend on

the user to rank a small predefined set of associations for a specific application.

Using this approach, an appropriate measure can be selected, which reproduces

the user’s ranking. More generally, objective measures have been analyzed based

on certain properties they are expected to fulfill. Ley and Steel (2007) propose

four properties, that BMA jointness measures should fulfill: An indicator should

be interpretable in such a sense, that it has a “clear intuitive meaning” and is well

calibrated against a clearly defined scale. Furthermore, the property of extreme

jointness states that a measure should reach its maximum when both variables

always appear together. Also, a measure should always be defined (definition)

when either variable is included with positive probability. In contrast, the

association analysis literature tends to impose a larger number of characteristics

that are expected to be fulfilled. In the following section we shortly review the

1A detailed overview of interestingness measures can be found in Appendix A.1.

74



most important properties proposed in the literature, discuss their implications

for jointness and relate them to the measures in the BMA literature where

applicable.

3.1 Desirable Properties of Interestingness Measures for BMA

The properties that have been independently discussed in the BMA context,

partly reflect those which are used in the machine learning (ML) literature.

Finding a suitable measure clearly depends on the properties that are required

for a certain application. For example, while machine learning problems are

often concerned with positive association, BMA results additionally need to

reflect negative association in the form of variable substitutes. Furthermore the

type of assertion that is being made, needs to be considered and especially the

question whether two variables are considered exchangeable, so that A→ B ≡
B → A. In the following we select four properties, which can be considered

crucially relevant for jointness based on the insights from the BMA and ML

discussions.

Interestingness vs. Confirmation A confirmation measure is an interesting-

ness measure m that, for a given threshold τ, satisfies that

m(A, B)> τ ⇐⇒ Pr(A|B)> Pr(A),

m(A, B) = τ ⇐⇒ Pr(A|B) = Pr(A),

m(A, B)< τ ⇐⇒ Pr(A|B)< Pr(A).

The indicator is thus anchored at some threshold value τ that defines statistical

independence (e.g. 0 for DW’s Odds-Ratio). For the case of jointness indicators

discussed in the BMA literature, this property is implicitly given for all proposed

measures and seems to be a reasonable characteristic to be fulfilled. We therefore

limit our empirical analysis to the set of confirmation measures that have been

proposed in the data mining context (Glass, 2013).
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Symmetry Implication rules that imply that the proposition A→ B differs from

B→ A are asymmetric. Since jointness measures are interested in measuring the

common appearance (or lack thereof) of two explanatory variables, a suitable

measure should therefore be symmetric with regard to the ordering of variables.

The assertion that certain covariates are “substitutes” or “complements” implies

thus commutativity.2 All jointness measures proposed in the BMA literature

fulfill this requirement. A number of measures from the data mining literature

are however asymmetric and thus excluded from the empirical analysis carried

out in the following sections.3

Monotonicity and Maximality The range of interestingness measures should

be bounded and monotonically increasing between the two extreme cases. This

property is partly reflected in the more restrictive Piatesky-Shapiro conditions:

m = 0 if p(AB) = 0, m monotonically increases with p(AB) and m monoton-

ically decreases with p(A) or p(B) (Piatetsky-Shapiro, 1991; Tan, Kumar, and

Srivastava, 2004). Maximality corresponds to extreme jointness, the property

introduced by Ley and Steel (2007) in the jointness literature. This property

defines that a measure should reach its maximum when both variables always

appear together.

Table III.1: Interestingness Measures for Jointness

Value Range k

Non null-invariant

Collective Strength ln
�

Pr(AB)+Pr(ĀB̄)
Pr(A)Pr(B)+Pr(Ā)Pr(B̄) × 1−Pr(A)Pr(B)−Pr(Ā)Pr(B̄)

1−Pr(AB)−Pr(ĀB̄)

�
]−∞,∞[

Relative Risk ln
�

Pr(B|A)
Pr(B|Ā)
�

]−∞,∞[
Yule’s Q Pr(AB)Pr(ĀB̄)−Pr(AB̄)Pr(ĀB)

Pr(AB)Pr(ĀB̄)+Pr(AB̄)Pr(ĀB) [−1,1]

Normalized Difference Pr(B|A)− Pr(B|Ā) [−1,1]

ϕ-Coefficient Pr(AB)−Pr(A)Pr(B)p
Pr(A)Pr(B)Pr(Ā)Pr(B̄)

[−1,1]

2This property is often called commutative symmetry (Glass, 2013).
3Tan, Kumar, and Srivastava (2004) suggest to symmetrize measures by using

max(p(A|B), p(B|A)).
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Table III.1: (continued)

Value Range k

Null-invariant

Two-Way Support Pr(AB) ln
�

Pr(AB)
Pr(A)Pr(B)

�
[0,∞[

AllConf min(Pr(B|A), Pr(A|B)) [0,1] −∞
Coherence (Pr(A|B)−1 + Pr(B|A)−1 − 1)−1 [0,1] −1

Cosine Pr(AB)p
Pr(A)Pr(B)

[0,1] 0

Kulczynski (Pr(A|B) + Pr(B|A))/2 [0, 1] 1

MaxConf max(Pr(B|A), Pr(A|B)) [0, 1] +∞

Null-invariance Measures that are null-invariant ignore so-called null trans-

actions, in which neither A nor B occur. Whether null-invariance is a desirable

property for an association measure depends on the nature of the empirical

application under scrutiny. For the case of jointness measures in BMA analysis,

different views concerning the desirability of null-invariance have been voiced

in the literature. Doppelhofer and Weeks (2009b) criticize null-invariance, since

“[...] jointness can manifest itself in both the inclusion and exclusion margin

of the joint posterior distribution”. In contrast, Strachan (2009) and Ley and

Steel (2009a) stress the effect of low-probability models, which are represented

only sparsely in the model matrix and which would be “uninteresting” for

most non null-invariant measures where the common exclusion probability is

respected.

3.2 Confirmation Measures for Jointness Analysis

Based on the extensive surveys of interestingness measures in the data mining

literature (Tan, Kumar, and Srivastava, 2004; Geng and Hamilton, 2006; Glass,

2013; Tew, Giraud-Carrier, Tanner, and Burton, 2014), we select a subset of

indicators which fulfill the properties put forward above and that are therefore
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potentially suitable to analyze jointness in BMA applications. More specifically,

all interestingness measures analyzed here are (a) confirmation measures, (b)

symmetric around a threshold that implies inclusion independence and (c) reach

their maxima when both variables are highly complementary. We group these

measures by whether they fulfill null-invariance or not. Table III.1 provides an

overview of these indicators.4

Table III.2: Comparison of Interestingness Measures: Independency

(1) (2) (3) (4) (5) (6) (7) (8)

Probabilities
p(A) 0.10 0.50 0.90 0.70 0.50 0.60 0.50 0.90
p(B) 0.10 0.10 0.10 0.20 0.50 0.40 0.90 0.90
p(A|B) 0.10 0.50 0.90 0.70 0.50 0.60 0.50 0.90
p(B|A) 0.10 0.10 0.10 0.20 0.50 0.40 0.90 0.90
p(AB) 0.01 0.05 0.09 0.14 0.25 0.24 0.45 0.81
p(AB̄) 0.09 0.05 0.01 0.06 0.25 0.16 0.45 0.09
p(ĀB) 0.09 0.45 0.81 0.56 0.25 0.36 0.05 0.09
p(ĀB̄) 0.81 0.45 0.09 0.24 0.25 0.24 0.05 0.01

Non null-invariant
Collective Strength 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Relative Risk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Yule’s Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normalized Difference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ϕ-Coefficient 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Null-invariant
Two-Way Support 0.00 0.01 0.03 0.05 0.12 0.12 0.30 0.73
AllConf 0.10 0.10 0.10 0.20 0.50 0.40 0.50 0.90
Coherence 0.05 0.09 0.10 0.18 0.33 0.32 0.47 0.82
Cosine 0.10 0.22 0.30 0.37 0.50 0.49 0.67 0.90
Kulczynski 0.10 0.30 0.50 0.45 0.50 0.50 0.70 0.90
MaxConf 0.10 0.50 0.90 0.70 0.50 0.60 0.90 0.90

Note: Independency defined as p(AB) = p(A)p(B)

This choice of measures subsumes all the indicators used in the BMA jointness

literature, while we adhere to the naming conventions used in data mining. We

replace the Odds Ratio with its projection on the [−1, 1] interval, which is known

as Yule’s Q.5 The Collective Strength measure was introduced by Aggarwal and

Yu (1998) and compares the violation rate of an itemset to its expected value

4A full list of the interestingness measures used in the literature and that have been considered
to select the particular indicators considered here is presented in Appendix A.1.

5The Odds Ratio, Yule’s Q, and the log transformation of Yule’s Q, Yule’s Y, produce the same
rankings of association rules and are therefore considered equivalent (Tew, Giraud-Carrier,
Tanner, and Burton, 2014).
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under statistical independence. It is defined between zero and∞, where a value

of unity signals statistical independence, a lower value indicates substitutability

and a larger value complementarity. We use the log transformed measure which

is defined around 0 as the independence threshold. Relative Risk is a measure

widely used in case studies, where an exposed group (numerator) is compared

to a non-exposed group (denominator). Log-transforming this measure, we

define independence at a value of zero and substitutes (complements) below

(above) this value. Normalized Difference is simply the difference between

two probabilities and hence defined in [−1, 1]. The ϕ-Coefficient is basically

a correlation measure and closely related to the χ2 statistic, bounded in the

interval [−1, 1].

Table III.3: Comparison of Interestingness Measures: Complementarity

Substitutes Complements
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Probabilities
p(A) 0.10 0.90 0.70 0.50 0.70 0.10 0.50 0.90 0.30 0.40
p(B) 0.10 0.10 0.20 0.50 0.30 0.10 0.40 0.10 0.30 0.20
p(A|B) 0.01 0.09 0.07 0.05 0.07 0.90 1.00 1.00 1.00 1.00
p(B|A) 0.01 0.01 0.02 0.05 0.03 0.90 0.80 0.11 1.00 0.50
p(AB) 0.00 0.01 0.01 0.02 0.02 0.09 0.40 0.10 0.30 0.20
p(AB̄) 0.10 0.09 0.19 0.48 0.28 0.01 0.00 0.00 0.00 0.00
p(ĀB) 0.10 0.89 0.69 0.48 0.68 0.01 0.10 0.80 0.00 0.20
p(ĀB̄) 0.80 0.01 0.11 0.03 0.02 0.89 0.50 0.10 0.70 0.60

Non null-invariant
Collective Strength -0.12 -2.48 -1.43 -2.94 -2.80 2.38 2.20 0.13 Inf 1.15
Relative Risk -2.40 -4.51 -3.43 -2.94 -3.43 4.39 Inf Inf Inf Inf
Yule’s Q -0.85 -1.00 -0.98 -0.99 -1.00 1.00 1.00 1.00 1.00 1.00
Normalized Difference -0.10 -0.90 -0.60 -0.90 -0.90 0.89 0.80 0.11 1.00 0.50
ϕ-Coefficient -0.10 -0.90 -0.69 -0.90 -0.90 0.89 0.82 0.11 1.00 0.61

Null-invariant
Two-Way Support 0.00 0.00 0.00 0.00 0.00 0.08 0.36 0.03 0.30 0.14
AllConf 0.01 0.01 0.02 0.05 0.03 0.90 0.80 0.11 1.00 0.50
Coherence 0.01 0.01 0.02 0.03 0.02 0.82 0.80 0.11 1.00 0.50
Cosine 0.10 0.30 0.37 0.50 0.46 0.10 0.45 0.30 0.30 0.28
Kulczynski 0.01 0.05 0.04 0.05 0.05 0.90 0.90 0.56 1.00 0.75
MaxConf 0.01 0.09 0.07 0.05 0.07 0.90 1.00 1.00 1.00 1.00

Notes: Substitutes defined as p(AB) = 0.1× p(A)p(B)
Complements defined as p(AB) =min(1,9× p(A)p(B))

As described by Wu, Chen, and Han (2010), five common null-invariant mea-

sures can be represented by the generalized mean of the two conditional

probabilities p(A|B) an p(B|A) with parameter k. This representation nests the
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AllConf measure (Confidence), Coherence (Jaccard, Ley and Steel (2007)), Cosine

(similar to Doppelhofer and Weeks (2005)), Kulczynski and MaxConf, which

we employ as examples of alternative null-invariant measures. These measures

present themselves as differently weighted means, so that Coherence describes

the harmonic mean, Cosine the geometric and Kulczynski the arithmetic mean

of the two probabilities (Wu, Chen, and Han, 2010). Additionally, we include

Strachan (2009)’s measure, which is known as Two-Way-Support in the data

mining literature. This measure is a combination of two basic interestingness

indicators and can be reproduced by scaling the log Lift with the Support of a

rule (Yao and Zhong, 1999).

Based on the reasoning by Doppelhofer and Weeks (2009b) concerning the

fact that a sensible jointness measure should equal zero for independence, we

provide a synthetic example for different measures in Table III.2. The eight

columns provide scenarios where A and B are statistically independent, so that

p(AB) = p(A)p(B), but differ in the values for P(A) and P(B). Based on this

assumption, we calculate the different jointness measures for each scenario.

Column 5 depicts the scenario described in Doppelhofer and Weeks (2009b),

which is the special case of p(A) = p(B) = 0.5. While Doppelhofer and

Weeks (2009b) only argued based on an example with equal posterior inclusion

probability across covariates (p(A) = p(B)), we also consider differing individual

posterior probabilities of inclusion in Table III.2.

As expected, the non null-invariant measures regard all eight scenarios presented

in Table III.2 as independent, since they explicitly take care of the exclusion

margin p(ĀB̄). In contrast, the null-invariant measures only agree in terms

of the absolute size of the indicator for cases where the posterior inclusion

of both variables is equally likely (see columns 1, 5 and 8). Even in these

scenarios, the measures do not provide a clear independence threshold. The

value defining independence varies with p(A) and p(B), the posterior inclusion

probabilities of both variables. AllConf and MaxConf, which only consider the

minimum or maximum of the two conditional probabilities, P(A|B) and P(B|A),
are exceptions. It has been argued that null-invariant measures are hardly able

to correctly quantify positive and negative association, since they do not account
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for varying sizes of the exclusion margin (Glass, 2013). This can be considered

less of a problem for certain applications in data mining, where only a small set of

positive relationships out of a large set of transactions containing many zeros is

of interest. However for the application to jointness the researcher mostly faces

“balanced” datasets, where variable inclusion and exclusion are both similarly

frequent.

Table III.3 provides insights to the reaction of these different measures to

substitutes and complements. We choose substitution relations in joint inclusion

(columns 1 to 5) in such a way that the probability of common occurrence

is one tenth of the independence threshold, or P(AB) = 0.1 × p(A)p(B). We

find that non null-invariant measures regard all these scenarios as substitutes,

leading to jointness values below zero. Yule’s Q is in this regard very consistent,

as it finds values close to its absolute minimum of −1 for all five cases. As

a counterexample, Normalized Difference and the ϕ-Coefficient agree in the

scenarios entertained where the exclusion margin is low (columns 2, 4 and

5) by regarding the pair as highly substitutes, but gain in value (towards

independence) when this margin increases (columns 1 and 3). For the extreme

case of p(A) = p(B) = 0.1 this results in a large exclusion margin of 0.8, while

at the same time both indicators approach zero (−0.1).
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Figure III.1: Cosine (black) and Yule’s Q (red) for p(AB) = 0.2
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While the independence threshold is not uniquely defined for null-invariant mea-

sures, most of these present very low values, close to their common lower bound

of zero. Two-way-support is exactly at its lower bound of zero for all our scenarios

involving substitutes. Still, it is hard to gauge substitutability with this measure,

since its independence level is also very close to zero (0, 0.03, 0.05, 0.12, 0.07)

for most of the five scenarios. Another example is Cosine, whose value is in every

scenario identical to the independence threshold.

Columns 6–10 in Table III.3 present five examples of bivariate complements,

where p(AB) is set to be a multiple of the independence threshold, Pr(AB) =
9 × Pr(A)Pr(B). Our findings for non null-invariant measures suggest that we

correctly identify complements in all of these five scenarios. For p(A|B) = 1

the Relative Risk measure is infinite by construction. As before, the Normalized

Difference and the ϕ-Coefficient are more ambiguous in their assertion of the

complementarity relationships between pairs. Especially for cases which have a

high level of mutual exclusion (column 8) — p(ĀB) = 0.8 in this case — both

measures shift in value towards independence. A similar case can be made for

Collective Strength and for the scenario depicted in column 10.

Identifying complements via null-invariant measures seems to be a harder

task, since we need to interpret these values relative to the (non unique)

independence point. MaxConf always represents p(A|B), which was chosen to be

large, and therefore also ranges at its upper border of unity. AllConf, Coherence

and Kulczynski all represent similar patterns to Normalized Difference and the

ϕ-Coefficient, that is, high values when mutual exclusion is low and a drop in

the indicator level as soon as either of these probabilities rise.

The effect of extreme values for the exclusion margin can also be grasped by

assessing the jointness measures graphically. Figure III.1 depicts the sensitivity

of two measures, Cosine (null-invariant) and Yule’s Q (Odds Ratio, non null-

invariant) for a given level of joint occurrence p(AB) = 0.2 and varying values

of p(A) and p(B) (X-, Y-axes). The Cosine measure is represented by a slightly

convex plane, varying between 0.33 and 1, whereas mean and median lie close

to 0.45. The maximum of the measure is found at the minimum values of p(A)
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and p(B), which correspond to the joint probability of 0.2. The measure then

decreases towards the extreme values {1, 0.2} and {0.2, 1}. In both cases the

exclusion margin p(ĀB̄) is zero, however the probabilities of p(AB̄) and p(ĀB)
vary and cause the measure to react. The non null-invariant measure, Yule’s Q,

varies in a stronger fashion in an interval between 0.2 and its absolute minimum

of −1. We find that this indicator is rather stable for individual inclusion values

up to 0.4, which is twice the value of p(AB), and for cases where p(A)≫ p(B)
or vice versa. For cases where the inclusion probabilities of both variables

become large, the measure drops sharply indicating substitutability instead of

complementarity. In our opinion this is a desirable indication. If the joint

probability of occurrence if far below the marginal inclusion probabilities of the

two variable, a measure should not classify them as complements.

4 Jointness of Economic Growth Determinants

Revisited

Table III.1: Results of the BMA routine for the FLS data set

PIP Post Mean Post SD

GDP60 1.000 -0.016 0.003
Confucian 0.993 0.060 0.016
LifeExp 0.971 0.001 0.000
EquipInv 0.907 0.124 0.062
SubSahara 0.885 -0.016 0.008
Mining 0.815 0.031 0.020
Hindu 0.717 -0.050 0.042
NequipInv 0.696 0.034 0.029
RuleofLaw 0.666 0.008 0.007
LabForce 0.655 0.000 0.000
EcoOrg 0.614 0.001 0.001
Muslim 0.598 0.007 0.008
BlMktPm 0.566 -0.004 0.004
LatAmerica 0.563 -0.006 0.007
EthnoL 0.561 0.006 0.007
Protestants 0.559 -0.005 0.006
HighEnroll 0.554 -0.049 0.055
PrScEnroll 0.495 0.008 0.011
CivlLib 0.430 -0.001 0.002
Spanish 0.427 0.004 0.006
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In our empirical application we apply alternative jointness measures to the

dataset used in Fernández, Ley, and Steel (2001b, henceforth FLS), which

includes information on income per capita growth and 41 potential determinants

of economic growth differences for 72 countries.6 In a first step, we apply

BMA methods to obtain the posterior inclusion probabilities for all variables,

as well as the mean and standard deviation of the posterior distribution of the

parameters associated with each covariate. For this application we employ a

hyper-g prior over the parameters (Liang et al., 2008) and a Binomial-Beta

model prior following Ley and Steel (2009b). The BMA results are obtained

using five million Markov Chain Monte Carlo iterations over the model space,

where the first two million are disregarded as burn-in. Out of the three million

visited models, approximately two thirds are unique, with a mean number of

19.8 included explanatory variables. Table III.1 presents the posterior inclusion

probabilities for the top 20 variables, together with the mean and standard

deviation of the posterior distribution of their respective parameters. The BMA

results confirm the robustness of several economic growth determinants such as

GDP60, Confucian, LifeExp or EquipInv, which have a PIP above 0.9.

Using the top 10, 000 unique models weighted by posterior model probabilities,

we construct the binary matrix of model profiles, defined by the inclusion binary

variables, γ j. Since the top 10, 000 models have been included approximately

130, 000 times in the three million MCMC draws, this matrix has dimensions

130, 000×41, where each cell describes whether covariate 1–41 is included (1)

or not (0) in a given model. From this model profile matrix we can construct

rules based on joint inclusion of variables.7 A common further step in association

analysis involves support-based pruning, where the rules are reduced given a

minimum and/or maximum value for support, i.e., the frequency of a rule, and

confidence, which measures the occurrences of a rule relative to the number of

counterexamples. Pruning with respect to support eliminates infrequent rules,

which only appear very rarely in the data. Table III.2 shows the number of

6See Appendix B.1 for a description of the variables, as well as some descriptive statistics.
7We concentrate on bivariate jointness. A straightforward extension would be to analyze

jointness based on triplets, for which tools such as the apriori algorithm can be used.
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bivariate rules found for the FLS data set given different thresholds for support

and confidence. We find a total of 1, 640 bivariate rules if we impose no

restrictions, which is no lower bounds for support or confidence. Twelve rules

satisfy the most rigorous pruning, implied by only keeping highly frequent pairs

which have a support value larger than 0.9. Following the association rules

analysis literature, we use a low level of support pruning (0.1), so that we end

up with a set of 582 distinct rules to analyze. In addition, we prune rules with

extremely high support, namely the twelve resulting from a support level of

0.9. These may be of interest in the data mining context, but do not provide

enough variation to analyze whether the covariates involved are substitutes or

complements in the jointness context. The rules selected involve 29 of the 41

covariates.

Table III.2: Number of rules by minimum confidence and support

Support/Confidence 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1640 1002 750 611 530 467 403 347 291 217
0.1 304 304 264 227 215 201 168 145 128 101
0.2 154 154 154 140 133 124 99 83 75 62
0.3 110 110 110 110 106 102 81 66 59 48
0.4 88 88 88 88 88 86 70 60 55 44
0.5 74 74 74 74 74 74 61 53 48 41
0.6 38 38 38 38 38 38 38 34 30 25
0.7 28 28 28 28 28 28 28 28 25 20
0.8 20 20 20 20 20 20 20 20 20 16
0.9 12 12 12 12 12 12 12 12 12 12

For the overall set of identified joint variable inclusions and the pruned subset

we obtain the interestingness measures described in Table III.1 and calculate

Spearman rank correlations, to quantify the concordance of the orderings

implied by the different measures. Table III.3 presents the results from this

exercise. In the lower triangle, the results for the total of 1, 640 rules are

presented, while in the upper-right triangle we show the correlations for the

pruned subset. The rank correlations within the group of non null-invariant

measures imply highly congruent rankings by these indicators. These measures

provide rankings that are only loosely correlated with those delivered by their

null-invariant counterparts. Comparing rank correlations for the full and pruned
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sets of associations, we find that the agreement increases above the diagonal

in Table III.3, which indicates that the exclusion of extreme cases causes the

rankings implied by the measures to converge.

Within the set of null-invariant measures we find significantly less within-group

correlation. While the measures Coherence, Cosine and Kulczynski tend to agree

in terms of ranking bivariate inclusion relationships, this is not the case for

AllConf and MaxConf. Since these two measures actually represent minima and

maxima functions over the conditional inclusion probabilities p(A|B) and p(B|A),
they frequently take extreme values at 0 or 1 and therefore produce rankings

with a large number of ties around these values. Similarly, the rank correlations

for the pruned set of bivariate inclusions are higher than for the full set.

Given these results, we restrict our subsequent analysis to four distinct measures.

On the one hand, we select the Yule’s Q (an Odds-Ratio transformation) and the

ϕ-Coefficient, which have been shown to react differently to the exclusion margin

in the simulations. On the other hand, we concentrate on the null-invariant

measures Cosine (Jaccard) and Kulczynski.

86



Ta
bl

e
II

I.
3:

Sp
ea

rm
an

C
or

re
la

ti
on

of
R

an
ke

d
M

ea
su

re
s

N
on

n
u

ll
-i

n
va

ri
an

t
N

u
ll

-i
n

va
ri

an
t

1
2

3
4

5
6

7
8

9
10

11

N
on

n
u

ll
-i

n
va

ri
an

t
1

C
ol

le
ct

iv
e

St
re

ng
th

0.
89

0.
91

0.
93

0.
99

0.
19

0.
38

0.
39

0.
36

0.
28

0.
14

2
R

el
at

iv
e

R
is

k
0.

83
0.

91
0.

86
0.

90
0.

03
0.

24
0.

24
0.

22
0.

19
0.

10
3

Yu
le

’s
Q

0.
81

0.
94

0.
87

0.
93

0.
20

0.
34

0.
36

0.
38

0.
38

0.
34

4
N

or
m

al
iz

ed
D

if
fe

re
nc

e
0.

95
0.

86
0.

87
0.

94
0.

18
0.

33
0.

35
0.

34
0.

30
0.

19
5
ϕ

-C
oe

ffi
ci

en
t

0.
99

0.
82

0.
86

0.
94

0.
26

0.
43

0.
44

0.
43

0.
37

0.
26

N
u

ll
-i

n
va

ri
an

t
6

Tw
o-

W
ay

Su
pp

or
t

-0
.1

5
-0

.2
0

-0
.1

1
-0

.0
1

-0
.0

4
0.

82
0.

87
0.

97
0.

92
0.

78
7

A
llC

on
f

0.
04

-0
.1

5
-0

.0
8

0.
13

0.
13

0.
86

0.
99

0.
86

0.
64

0.
38

8
C

oh
er

en
ce

0.
03

-0
.1

2
-0

.0
3

0.
13

0.
14

0.
92

0.
98

0.
91

0.
71

0.
47

9
C

os
in

e
0.

05
-0

.0
6

0.
04

0.
16

0.
17

0.
94

0.
94

0.
99

0.
93

0.
76

10
Ku

lc
zy

ns
ki

-0
.0

2
-0

.0
1

0.
11

0.
13

0.
13

0.
93

0.
81

0.
91

0.
95

0.
93

11
M

ax
C

on
f

-0
.2

2
0.

12
0.

25
-0

.0
3

-0
.0

6
0.

54
0.

17
0.

32
0.

43
0.

64

N
ot

es
:

Lo
w

er
-l

ef
t

tr
ia

ng
le

:
R

an
k

co
rr

el
at

io
ns

fo
r

al
l1

64
0

ru
le

s
U

pp
er

-r
ig

ht
tr

ia
ng

le
:

R
an

k
co

rr
el

at
io

ns
fo

r
56

8
pr

un
ed

ru
le

s
(s

up
po

rt
m

in
0.

1/
m

ax
0.

9)

87



Figures III.1 and III.2 represent graphically the degree of jointness implied by

these four measures. The pairs of variables in these figures are ordered in

such a way that high jointness patterns can be found along the diagonal of

the matrix depicted in them (Hahsler, Hornik, and Buchta, 2008; Tan, Kumar,

and Srivastava, 2004). For Yule’s Q in Figure III.1a, we find a number of

strong complementary relationships, represented by the blue shaded tiles. These

clusters are primarily composed of the colonial dummies (Brit, English, Spanish

and French) as well as geographical factors (Latin America, SubSahara, EthnoL).

We also find a number of complements in the set of economic system-related

variables, OutwardOrientation, RuleOfLaw, LabForce and BlackMarketPremium.

In contrast, Yule’s Q unveil very few substitutability relationships between pairs

of variables. These are mainly related to religious variables (Muslim, Confucian)

and their relation to the Sub-Saharan African dummy.

The ϕ-Coefficient (see Figure III.1b) presents a similar picture with respect to

colonial variables and RuleOfLaw or OutwardOrientation. However, it highlights

even less substitutability relationships than Yule’s Q besides the connection

between SubSahara and YrsOpen.

The two null-invariant measures in Figure III.2 show very similar patterns for

complementarity of colonial and geographical variables. However, they tend to

emphasize bivariate relationships of variables that have very high PIPs in the

BMA exercise. For these covariates there are hardly any models where they do

not appear together, so that these types of measures consider them to be strongly

related in a complementarity sense. This applies to all the variables that present

very high PIPs: GDP60, Confucian, EquipInv or LifeExp. The Cosine and the

Kulczynski measures also find a number of substitutes, with YearsOpenEconomy

and NequipInv being an example of these.
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To sum up, both types of measure provide similar insights into the bivariate

covariate inclusion structure in the model space. On the one hand, the addi-

tional weighting for the probability of joint exclusion in the non null-invariant

measures causes relationships with high individual PIPs to lose importance

as compared to the bivariate jointness of variables with average PIP. On the

other hand, null-invariant measures ignore this exclusion margin and stress the

importance of variable relationships where both variables have a high individual

PIP.

In contrast to the results of LS for this data set, the jointness results found here

are not exclusively related to variables with high PIP. For the measures introduced

by LS, high jointness is concentrated among the top 5 regressors (GDP60,

Confucian, LifeExp, EquipInvest and Sub-Sahara). This can be reproduced by

restricting the analysis to the two null-invariant measures considered here. If

however, the exclusion margin is included into the analysis, other jointness

relationships are discovered. One example for these are colonial variables, which

are less frequent, but still exhibit complementary behavior.

In their analysis, DW employ the dataset of Sala-i-Martin, Doppelhofer, and

Miller (2004, SDM data set), for which PIPs tend to be more concentrated on a

few variables. Accordingly LS also find less jointness in this data set, using their

null-invariant measures.
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5 Conclusion

In this paper we investigate the issue of measuring jointness of robust growth

determinants as raised by Ley and Steel (2007), Doppelhofer and Weeks (2009a)

and others in the BMA literature. We link the measurement of joint inclusion

of covariates to the field of assessing association in data mining, where similar

problems are studied. We argue that the search for substitutes and complements

in model profiles is similar to the data mining issue of finding “interesting”

combinations of e.g. products in a shopping basket.

We link the properties that have been introduced for jointness to the concepts

that are used for categorizing interestingness measures for association rules

analysis. In particular, the jointness literature in BMA is concerned with a

subset of these interestingness measures, referred to as confirmation measures.

Furthermore, we highlight the role of null-invariance, that is, the effect of cases

were both variables in a bivariate inclusion relationship are excluded. Based on

these properties we select a set of interestingness measures and show how they

relate to the jointness indicators proposed in the literature.

We show that null-invariant measures fail to give a comprehensive view on

jointness since they cannot gauge the effect of statistical independence con-

sistently across different dependence structures. We examine further how

sensitive different measures are with regard to varying dependence structures

across included covariates. Finally, we provide an empirical application of these

measures to the well known dataset of economic growth determinants used

by Fernández, Ley, and Steel (2001b) and discuss the complementarity and

substitutability inclusion structures found.

Using non null-invariant measures, such as Yule’s Q, we find a large number of

complementary relationships but only few substitutes among bivariate pairs of

variables. The latter are primarily related to the combination of socioeconomic

specifics (Confucian, Muslim) and geographical variables (SubSahara). Com-

plementary relationships are manifold and can be found for example between

different colonial variables, such as Brit, English, Spanish or French. Furthermore
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the quality of institutions (RuleOfLaw) and economic variables (OutwardOrien-

tation, BlackMarketPremium) seem to exhibit such relationships.

As highlighted by Doppelhofer and Weeks (2009b), the treatment of the exclusion

margin is highly relevant for an analysis of jointness. Null-invariance may

lead to ambiguous results since these measures cannot quantify substitutes and

complements in an appropriate fashion (Glass, 2013). Given this theoretical

justification, we do find differences in the rank correlations between the two

types of measures, but these only partly influence the general picture of comple-

mentary and substitute covariates found in the FLS dataset.
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A Review of measures of interestingness and

confirmation

Table A.1: Definition of Jointness measures
# Measure Value

1 ϕ ϕ-Coefficient Pr(AB)−Pr(A)Pr(B)p
Pr(A)Pr(B)Pr(Ā)Pr(B̄)

2 AV Added Value Pr(B|A)− Pr(B)
3 AC AllConf min(Pr(B|A), Pr(A|B))
4 b Carnap Pr(AB)− Pr(A)Pr(B)
5 cf Certainty Factor Pr(B|A)−Pr(B)

1−Pr(B) if Pr(B|A)> Pr(B)

6 χ2 Chi-square (χ2) (Pr(AB)−Pr(A)Pr(B))2N
Pr(A)Pr(Ā)Pr(B)Pr(B̄)

7 κ Coehen’s Kappa (κ) Pr(B|A)Pr(A)+Pr(B̄|Ā)Pr(Ā)−Pr(A)Pr(B)−Pr(Ā)Pr(B̄)
1−Pr(A)Pr(B)−Pr(Ā)Pr(B̄)

8 coh Coherence (Pr(A|B)−1 + Pr(B|A)−1 − 1)−1

9 cs Collective Strength ln
�

Pr(AB)+Pr(ĀB̄)
Pr(A)Pr(B)+Pr(Ā)Pr(B̄) × 1−Pr(A)Pr(B)−Pr(Ā)Pr(B̄)

1−Pr(AB)−Pr(ĀB̄)

�
10 conf Confidence Pr(B|A)
11 conv Conviction ln

�
Pr(A)Pr(B)

Pr(A,B̄)

�
12 IS Cosine Pr(AB)p

Pr(A)Pr(B)

13 G Gini index Pr(A)(Pr(B|A)2 + Pr(B̄|A)2) + Pr(Ā)(Pr(B|Ā)2 + Pr(B̄|Ā))− Pr(B)2 − Pr(B̄)2

14 IR Imbalance Ratio |Pr(A|B−Pr(B|A|
Pr(A|B)+Pr(B|A)−Pr(A|B)Pr(B|A)

15 I Interest Pr(AB)
Pr(A)Pr(B)

16 J J-Measure Pr(AB) log Pr(B|A)
Pr(B) + Pr(AB̄) log Pr(B̄|A)

Pr(B̄)

17 ζ Jaccard (ζ) Pr(AB)
Pr(A)+Pr(B)−Pr(AB)

18 k Kemeny-Oppenheim Pr(A|B)−Pr(A|B̄)
Pr(A|B)+Pr(A|B̄)

19 kl Klosgen
p

Pr(AB)×max(Pr(B|A)− Pr(B), Pr(A|B)− Pr(A))
20 kulc Kulczynski (Pr(A|B) + Pr(B|A))/2
21 L Laplace N×Pr(AB)+1

N×Pr(A)+2

22 l Lift Pr(B|A)
Pr(B)

23 ll Log-Likelihood ln
�

Pr(A|B)
Pr(A|B̄)
�

24 r Log-Ratio ln
�

Pr(B|A)
Pr(B)

�
25 MC MaxConf max(Pr(B|A), Pr(A|B))
26 M Mutual Information

Pr(AB) log Pr(AB)
Pr(A)Pr(B) + Pr(AB̄) log AB̄

Pr(A)Pr(B̄)

+ Pr(ĀB) log Pr(ĀB)
Pr(Ā)Pr(B) + Pr(ĀB̄) log Pr(ĀB̄)

Pr(Ā)Pr(B̄)

27 s Normalized Difference Pr(B|A)− Pr(B|Ā)
28 α Odds Ratio ln

�
Pr(AB)Pr(ĀB̄)
Pr(A,B̄)Pr(ĀB)

�
29 ows One-Way Support Pr(B|A) ln� Pr(AB

Pr(A)Pr(B

�
30 PS Piatetsky-Shapiro’s N × (Pr(AB)− Pr(A)Pr(B))

31 rr Relative Risk ln
�

Pr(B|A)
Pr(B|Ā)
�

32 sup Support Pr(AB)

33 tws Two-Way Support Pr(AB) ln
�

Pr(AB)
Pr(A)Pr(B)

�
34 yq Yule’s Q Pr(AB)Pr(ĀB̄)−Pr(AB̄)Pr(ĀB)

Pr(AB)Pr(ĀB̄)+Pr(AB̄)Pr(ĀB)

35 yy Yule’s Y
p

Pr(AB)Pr(ĀB̄)−pPr(AB̄)Pr(ĀB)p
Pr(AB)Pr(ĀB̄)+

p
Pr(AB̄)Pr(ĀB)
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B Data description

Table B.1: Variable Names and Descriptive Statistics — FLS

Abbreviation Variable µ σ

1 Age Age 23.71 37.307
2 Area Area (Scale Effect) 972.92 2051.976
3 BlMktPm Black Market Premium 0.16 0.291
4 Brit British Colony dummy 0.32 0.470
5 Buddha Fraction Buddhist 0.06 0.184
6 Catholic Fraction Catholic 0.42 0.397
7 CivlLib Civil Liberties 3.47 1.712
8 Confucian Fraction Confucian 0.02 0.087
9 EcoOrg Degree of Capitalism 3.54 1.266
10 English Fraction of Pop. Speaking English 0.08 0.239
11 EquipInv Equipment investment 0.04 0.035
12 EthnoL Ethnolinguistic fractionalization 0.37 0.296
13 Foreign Fraction speaking foreign language 0.37 0.422
14 French French Colony dummy 0.12 0.333
15 GDP60 GDP level in 1960 7.49 0.885
16 HighEnroll Higher education enrollment 0.04 0.052
17 Hindu Fraction Hindu 0.02 0.101
18 Jewish Fraction Jewish 0.01 0.097
19 LabForce Size labor force 9305.38 24906.056
20 LatAmerica Latin American dummy 0.28 0.451
21 LifeExp Life expectancy 56.58 11.448
22 Mining Fraction GDP in mining 0.04 0.077
23 Muslim Fraction Muslim 0.15 0.295
24 NequipInv Non-Equipment Investment 0.15 0.055
25 OutwarOr Outward Orientation 0.39 0.491
26 PolRights Political Rights 3.45 1.896
27 Popg Population Growth 0.02 0.010
28 PrExports Primary exports, 1970 0.67 0.299
29 Protestants Fraction Protestant 0.17 0.252
30 PrScEnroll Primary School Enrollment, 1960 0.80 0.246
31 PublEdupct Public Education Share 0.02 0.009
32 RevnCoup Revolutions and coups 0.18 0.238
33 RFEXDist Exchange rate distortions 121.71 41.001
34 RuleofLaw Rule of law 0.55 0.335
35 stdBMP SD of black-market premium 45.60 95.802
36 SubSahara Sub-Saharan dummy 0.21 0.409
37 WarDummy War dummy 0.40 0.494
38 WorkPop Ratio workers to population −0.95 0.189
39 YrsOpen Number of Years open economy 0.44 0.355
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