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Abstract

Experimental tests of choice predictions in one-shot games show
only little support for Nash equilibrium (NE). Poisson Cognitive Hier-
archy (PCH) and level-k (LK) are behavioral models of the thinking-
steps variety where subjects differ in the number of levels of iterated
reasoning they perform. Camerer et al. (2004) claim that substituting
the Poisson parameter τ = 1.5 yields a parameter-free PCH model
(pfPCH) which predicts experimental data considerably better than
NE. We design a new multi-person game, the Minimizer Game, as a
testbed to compare initial choice predictions of NE, pfPCH and LK.
Data obtained from two large-scale online experiments strongly reject
NE and LK, but are well in line with the point prediction of pfPCH.
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1 Introduction

1.1 Nash equilibrium in one-shot games

Nash equilibrium (NE) is the central solution concept in noncooperative game

theory, but it is well known that NE imposes extremely demanding assump-

tions on players’ rationality as well as on the consistency of their beliefs

(Aumann and Brandenburger, 1995). Experimental tests of game theoretic

strategy choice predictions in one-shot games, where players are inexperi-

enced and have no possibility of learning, have consistently shown only little

support for NE except in rather specific games (Camerer, 2003). Game the-

orists have therefore worked out a variety of alternative explanations and

models for prediction of choices in one-shot games. One such approach is to

keep the rationality assumption and weaken the mutual consistency require-

ments. Any concept following this approach must address the question of

how players form their beliefs about other players’ actions. This has led to

the formulation of so-called thinking steps models.

1.2 Level-k models

The basic assumption of the thinking steps approach is that players differ

in the number of steps of iterated reasoning they apply when deliberating

which strategy they should pick in a strategic choice problem. Nagel (1995)

used a simple thinking steps model to explain the results of her experiments

about number choices in the p-beauty-contest game (or p-guessing game),

where players choose a number from [0, 100] and whoever comes closest to

p times the average of the chosen numbers wins a fixed prize. Her model

explains the “spikes” around choices of 33 and 22, which are often observed

in experimental data for the typical parameter p = 2/3. Similar thinking

steps models have been proposed by Stahl and Wilson (1994, 1995) and by

Ho et al. (1998).

2



The most prominent model of the thinking steps variety is the level-k

model (LK-model) introduced by Costa-Gomes et al. (2001). It proposes

that most players can be classified as level-k (lk) types, which anchor their

beliefs in an l0 type who does not think strategically at all but just chooses

from a uniform random distribution on the set of pure strategies.1 lk then

simply best responds (possibly with noise) to l(k − 1). These lk types are

complemented by types dk, who best respond to a uniform distribution of

beliefs on strategies surviving k rounds of iterated dominance, respectively.

Finally, some players might be equilibrium types, choosing an equilibrium

strategy, or sophisticated, best responding to an accurate distribution of be-

liefs on other types. LK models have been applied in econometric analyses of

various experimental data by Costa-Gomes and Crawford (2006), Crawford

and Iriberri (2007a, 2007b), and Costa-Gomes et al. (2009), among others.

These studies spawned a large body of literature (see the recent review by

Crawford et al., 2013). By and large, the common view that emerged from

this literature is that l1 and l2 types are predominant in subject populations,

complemented by smaller fractions of l3 and possibly l4, d1 and equilibrium

types. l0 as well as l5 or higher, d2 or higher, and sophisticated types,

however, are virtually absent from the population.

1.3 The Poisson Cognitive Hierarchy model

A closely related thinking steps model is the Poisson Cognitive Hierarchy

model (PCH-model) of Camerer et al. (2004). This model uses only a single

parameter, τ . It is based on the view that players differ in their level k of iter-

ated thinking, and that k is distributed in the population of players following

1A vast majority of applications uses this specification of l0 behavior. Alternatively
l0 has also been suggested to choose the most salient strategy in games with non-neutral
frames (Crawford and Iriberri, 2007b), but this approach is not without problems itself
(Heap et al., 2104). Burchardi and Penczynski (2014) use an innovative experimental
design to identify l0 reasoning in beauty-contest games. For a recent systematic approach
to l0 behavior see Wright and Leyton-Brown (2014a).
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a Poisson distribution with mean (and therefore variance) τ . Moreover, while

a level-k (Lk) player thinks that all other players do less steps of reasoning

than he himself, he is aware of the presence of all levels of reasoning from 0

to k − 1 in the population. The frequency he believes these lower levels to

occur are the true (Poisson) frequencies, truncated at k − 1 and normalized

so as to add up to 1.

The PCH-model has been shown to predict reasonably well in a variety

of games, among them p-beauty-contest games with p < 1, market entry

games, 3× 3 bimatrix games (Camerer et al., 2004), coordination games

(Costa-Gomes et al., 2009), and the action commitment game (Carvalho and

Santos-Pinto, 2014). While, as expected, the best-fitting value of τ is game-

and population-specific, Camerer et al. (2004) report that a value of τ = 1.5,

corresponding to a population dominated by L1 and L2 types, is able to

explain experimental data considerably better than Nash equilibrium across

a variety of experimental games.

While the PCH-model is simple to apply and has proven useful in a

number of games, it also seems to fail in some specific classes of games. For

example, it is well known that in Prisoners Dilemma games and in Public

Good games initial cooperation levels are substantial (see Camerer, 2003).

Such behavior cannot be explained by a PCH model, since there all types

but L0 optimize and hence never choose dominated strategies. For the same

reason, PCH cannot account for the puzzling majority choices of dominated

strategies in the two-person beauty contest of Grosskopf and Nagel (2008).

As Camerer et al. (2004) report, the PCH-model also predicts almost random

choice in p-beauty-contest games with p > 1. Another problem arises in

games with large strategy spaces. Camerer et al. (2002) mention that in such

games PCH predicts only a small fraction of the strategies actually chosen.

An example for this is found in Gneezy (2005), where prior to grouping the

data PCH cannot account for bid choices in a first-price auction with 100

pure strategies.
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Camerer et al. (2002) devote section 4.1 of their working paper to in-

vestigate what went wrong in games 2, 6, and 8 of the 12 games of Stahl

and Wilson (1995). These are symmetric 3×3-games where the best-fitting

PCH-model is τ = 0, predicting purely random choice. But actually roughly

half of the subjects picked their Nash equilibrium strategy in these three

games. Camerer et al. (2002) speculate that the experimental procedure of

Stahl and Wilson may have catalyzed a large fraction of Nash play. However,

a more parsimonious explanation derives from the observation that in these

three games the Nash equilibrium strategy also happened to be the unique

maximin choice. Maximin choices actually predict the majority choices in

ten out of the 12 Stahl-Wilson games. In games where strategic thinking

is cognitively demanding, the nonstrategic and risk-averse maximin choice

is an easy option and might often be a more salient anchor than uniform

randomization for level-0 types (see also Van Huyck et al., 1991).

1.4 Predicting choice with the parameter-free Poisson

Cognitive Hierarchy model

As noted by Wright and Leyton-Brown (2014b), the bulk of the literature on

thinking steps models is concerned more with explaining than with predicting

behavior. Typically, type distributions and other parameters are estimated

from experimental training data while direct prediction performance com-

parisons are rare. In this paper we focus on prediction in a very strict sense.

What we aim at is the prediction of initial choices without any prior pa-

rameter estimation. For this we need a parameter-free model which can be

directly pitted against Nash equilibrium.

To our knowledge, within the thinking steps variety the only parameter-

free model to be found in the literature is the PCH model which results from

substituting τ = 1.5 for the Poisson parameter, suggested by Camerer et

al. (2004). In their abstract they state that [a]n average of 1.5 steps fits data

from many games (p. 861); they note that values of τ between 1 and 2 explain
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empirical results for nearly 100 games, suggesting that assuming a τ value

of 1.5 could give reliable predictions for many other games as well (p. 863)

and that the data suggest that the Poisson-CH model with τ = 1.5 can be

used to reliably predict behaviors in new games. In their conclusion, Camerer

et al. (2004) stress that [t]he value τ = 1.5 is a good omnibus guess which

makes the Poisson-CH theory parameter-free and is very likely to predict as

accurately as Nash equilibrium, or more accurately, in one-shot games (p.

890).

We call the PCH model with τ = 1.5 the parameter-free PCH-model

(pfPCH-model). The pfPCH-model states that the population wide frequen-

cies of levels L0, L1, L2, and L3 are given by 22.3%, 33.5%, 25.1%, and

12.6%, respectively, with only 6.6% accruing from levels 4 and higher. The

value τ = 1.5 for the mean (and the variance) of the number of thinking-steps

is based on experimental data from various games scrutinized by Camerer

at al. (2004). Does this value also predict reasonably out of sample, i.e. in

games beyond the classes of games it was derived from? To evaluate the pre-

dictive performance of the pfPCH-model we use it to predict the distribution

of initial choices in a new game, the minimizer game described below, which

we motivate and construct specifically for this purpose.

We do not only compare the pfPCH-prediction to the Nash prediction,

but also to the LK-model’s prediction. The LK-model is not parameter-

free and we are not aware of any suggestions for a “good omnibus guess”

of LK type frequencies from the literature. We therefore take a generous

approach and allow for all type distributions of the LK-model. We find that

in our minimizer game the pfPCH prediction easily outperforms both Nash

equilibrium and all LK-model specifications. Indeed, the pfPCH prediction

is not even statistically significantly different from the distribution observed

in the experiment.
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2 The Minimizer Game

How well does the pfPCH-model predict players’ initial response to a strate-

gic choice problem? We planned to answer this question experimentally and

started by asking what kind of game would be appropriate for an experimen-

tal test of this question. In our opinion, three issues had to be considered:

• Experimental outcomes in Prisoners Dilemma games, Public Goods

games, Dictator games, Ultimatum games and the like are strongly in-

fluenced by the presence of altruistic motives, fairness considerations,

or other social preferences. These preferences “contaminate” the ex-

perimental results, since they may override the strategic incentives cre-

ated by the monetary payoffs.2 We should therefore avoid games where

choices are sensitive to the presence of social preferences. This basically

rules out almost all two-player games. It seems therefore wise to look

for a multi-person game where other-regarding preferences are unlikely

to influence choices.

• Since the premise of the thinking steps models is that given their be-

liefs, players optimize, we should choose a simple game for our test. If

due to computational complexity subjects get the arithmetics wrong

when optimizing, choices will be biased even if the PCH-model accu-

rately describes belief formation and the distribution of thinking steps.

It is to a large extent a matter of taste what kind of game to deem sim-

ple. However, bearing in mind Grosskopf and Nagel’s (2008) stunning

results for two-person beauty contest games, where even a majority of

professionals failed to realize that 0 is a dominant strategy, we would

strongly opt for avoidance of the need of any arithmetics having to

be done by subjects trying to optimize. Moreover, simplicity seems to

2Wright and Leyton-Brown (2014a) find that the feature of fairness of an action is
especially prone to influence level-0 behavior.
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require a rather small set of possible choices, since with a larger num-

ber of choices both formation of beliefs and optimization given beliefs

become computationally demanding.

• A third aspect to be aware of are attitudes towards risk. Strategic

uncertainty may lead subjects with different risk attitudes to different

choices, which could then falsely be attributed to different levels of

iterated reasoning. As discussed above, nonstrategic and strongly risk-

averse subjects might tend to choose their maximin strategy in the

face of strategic uncertainty, again biasing the distribution of think-

ing steps. Ideally we would therefore construct an experimental game

where maximin does not restrict the set of available choices.

2.1 Definition of the minimizer game

Considering these three points we specifically designed a game for our ex-

periments which has to the best of our knowledge not been studied before.

For reasons which will become clear in a moment, we call this game the

minimizer game (MG). The formal definition of an MG is the following.

Let P = {1, . . . , I} be a finite set of players, let N be a finite subset of N,

and let n = |N | be the size of N . Players’ strategy sets are Si = N for all i,

so each player chooses a number from the set N . For a pure strategy profile

s = (si)i∈I and for k ∈ N let ck(s) = |{i ∈ P : si = k}| count the number of

players choosing k in the profile s. LetM(s) = argmink∈N{ck(s) : ck(s) ≥ 1}
be the set containing the numbers which have been chosen least often among

those chosen at all in profile s. Let m(s) = minM(s) be the smallest of these

numbers. The payoff function is identical for all players and is given by

ui(s) = m(s) c−1m(s)(s) if si = m(s) and ui(s) = 0 else.

Despite its technically sounding definition, it is easy to explain the MG

in an extremely simple and intuitive way. The rules of the game state that

each subject may choose its desired payoff from a given set of possible integer
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payoffs. The ‘winning amount’ is the amount chosen least often in total -

the minimizer. Among all players who chose the minimizer, one player is

randomly drawn to receive this amount, while all others receive zero.3 Ties

are broken by declaring the smallest of the least often chosen amounts to be

the minimizer.

While this is neither necessary nor specified in the definition, when it

comes to experiments we implicitly think of the MG as being played with a

small number of possible choices and a large number of players. The reasons

for this are explained in the section on equilibrium analysis of the MG.

2.2 Advantages of the MG

The MG appears markedly dissimilar from strategic choice situations which

are frequently encountered in everyday life. It may thus be considered artifi-

cial, but we consider this an explicit advantage. The reason is that we focus

on choices in truly one-shot games, and for this we have to make it unlikely

that subjects can transfer experiences from related games they “played” in

the past. We think that this is the case for the MG. While the MG has

many features of a congestion game,4 its peculiar rules make it very unlike

the “typical” congestion games people unconsciously play, like e.g. choosing

the fastest road to their office in the morning.

Let us now reconsider our list of three points.

3An even simpler, deterministic variant of the MG lets all players having chosen the
minimizer receive this amount, i.e. ui(s) = m(s) if si = m(s) and ui(s) = 0 else. While
this variant was the first we came up with, it is technically almost infeasible in our large-
population online experimental approach, which is why we proceeded to work with the
stochastic variant of the MG described here.

4The MG should not be confused with the superficially similar minority game, which
builds upon the El Farol bar problem (Arthur, 1994) and has been studied intensively in
the statistical physics literature. It is related, but not identical to the LUPI Lottery game
(Östling et al., 2011) either. Note that in the LUPI game, contrary to the MG, the prize
for the winner is independent of the winning number. Moreover, if there is no uniquely
chosen number, then all payoffs are zero in the LUPI game. Thus, the LUPI game is
interesting if there are many more available choices than players, while we study the MG
in the exactly opposite case.
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• Social preferences do not interfere in the MG, at least if the number

of players I is large. Since the influence of one’s own choice on the

overall minimizer is typically negligible, there is no obvious way social

preferences, even if present, could influence choice behavior.

• When it comes to optimizing, the MG is extremely simple. Given

a belief about the individual distribution of number choices of other

players, maximization of expected payoff is straightforward if I is large:

Choose the number which has the lowest frequency. As opposed to

beauty contest games, bimatrix games, or first-price auction games,

this does not require subjects to perform any arithmetical operations.

• In the MG, any choice might result in a zero payoff in the worst case.

Therefore maximin has no bite in this game.

Taken together, these advantages indicate that the MG (with large I and

small n) is better suited than known experimental games to test the pfPCH-

model in a “purified” context.5 Note, however, that we do not bias our test

in favor of pfPCH. In principle, eliminating the three confounders could work

for or against the pfPCH-prediction.

2.3 Nash equilibria of the MG

Consider a MG with n ≥ 2 and let s be a pure-strategy profile with ck(s) ≥ 2

for all k and |M(s)| ≥ 2. By the tie-breaking rule, the smallest element of

M(s) is the minimizer and only the players having chosen this minimizer

get a nonzero expected payoff. But no player has an incentive to deviate

5A potential exception is Arad and Rubinstein (2012), who proposed the 11-20 Money
Request Game as a simple game which elicits LK-reasoning and used somewhat similar
arguments as we do here. (At the time we designed the MG their paper had not yet
been circulated.) However, they do not try to predict choice behavior. Moreover, as they
explain, the 11-20 game is not well suited to distinguish between LK- and PCH-models.
According to our criteria it would also not qualify as “pure”, since it has a unique maximin
choice.
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unilaterally, because switching to the minimizer causes this amount to lose

its minimizer status and leads to a zero payoff. Hence s is a Nash equilibrium.

The MG has a variety of such (and other) asymmetric equilibria. However, all

these asymmetric equilibria, requiring explicit coordination in a symmetric

one-shot setting, are implausible solutions. Classical game theoretic choice

prediction would instead point to a symmetric Nash equilibrium of the MG.

Such an equilibrium always exists, since the game is symmetric and finite.

The MG can not be solved analytically and the simplifying approach

of modeling the MG as a Poisson game (Myerson, 1998, 2000) does not

work.6 However, for our purposes we do not need to explicitly calculate

an equilibrium. Indeed, every symmetric equilibrium of the MG approaches

the uniform distribution on the set N of available choices as the number I of

players grows to infinity.7 Since we have a large number of participants in our

experiments, we can therefore safely approximate the symmetric equilibrium

by the uniform distribution. As an example, if N = {100, 150, 200}, as

in our basic experimental treatment, then the equilibrium distribution is

E ≈ (0.320, 0.329, 0.351) for I = 300 players. Whenever the subject pool is

sufficiently large, the distribution of choice frequencies as predicted by the

Nash hypothesis will be close to uniform.

2.4 PCH predictions for the MG

What choice frequencies (p1, p2, p3) does the PCH-model predict in the MG

with N = {1, 2, 3} in a large population? The answer depends on the exact

6The latter route proved successful for LUPI games (Östling et al., 2011) and lowest
unique bid auctions (Pigolotti et al., 2012), but the uniqueness of winning choices in
these games, which the MG lacks, is crucial for the Poisson games approach to generate a
tractable solution.

7Let e be in the ω-limit of the sets of symmetric equilibria for I →∞. Assume e is not
uniform. Then there are integers k̂ and ǩ such that ek̂ > eǩ are the maximal and minimal
frequencies, respectively. But then by the law of large numbers we can make it arbitrarily
more likely for ǩ to be the minimizer than k̂ by choosing the number I of players large
enough. This contradicts equality of expected payoffs in mixed equilibria.
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values of τ and I, but for large I the prediction is that p1 < p2 < p3 holds

uniformly for 0 < τ < τ̄ , where τ̄ ≈ 1.8. To see this, note that the nonstrate-

gic L0 types choose each number with probability 1/3 by assumption. Hence

L1 types believe that choices are distributed uniformly and maximize their

payoff by picking the highest number, 3. L2 types believe that all others are

L0 and L1, hence in their opinion 3 will be chosen most often and 1 and 2

have equal chances of turning out as minimizers. L2 types therefore choose

2, if I is large. For the same reason L3 types opt for 1 as the minimizer. The

choices of L4 and higher-level types are less straightforward, as they depend

on the order of the frequencies of L1, L2, and L3. However, numerical com-

putation shows that if 0 < τ < τ̄ , then the lowest number, 1, has the lowest

frequency according to the beliefs of L3 and all higher types, which therefore

also pick 1, if I is not too small.

For τ > τ̄ the PCH-prediction is near and for τ → ∞ converges to the

equilibrium E which equals the uniform distribution for an infinite number

of players. In the range τ ∈ [0, τ̄ ], the PCH-predictions for increasing τ

describe a loop as depicted in Figure 1.8 The loop starts at E, dives into the

triangular section of the simplex where p1 < p2 < p3, takes a turn at around

τ = 0.8 and heads back towards E until it intersects itself at τ = τ̄ . The

pfPCH point prediction is (p1, p2, p3) ≈ (0.266, 0.325, 0.409).

2.5 Level-k predictions for the MG

Level-k models have several parameters, viz. the frequencies of the various

types of players. These frequencies have to be estimated from the data or

transferred from estimations in similar games, so unlike Nash equilibrium or

the pfPCH-model, an unconstrained level-k model does not give a point pre-

diction for the MG. For predictions we therefore take the generous approach

8Technically, this loop is not smooth near E if I is finite, since for every given I there
exists a threshold value of τ below which the L2 type picks 3 instead of 2. But for large I
this threshold value and the resulting discontinuity in the loop are so small that the latter
is not visible in Figure 1.
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to allow for all point predictions possibly arising from the “typical” esti-

mates outlined in section 1.2 above: The population predominantly consists

of l1 and l2, complemented by smaller fractions of l3, l4, d1, and equilib-

rium types. We call the level-k model with these characteristics the standard

level-k model or SLK-model.

In the MG, the SLK-model’s types l0, l1, and l2 are behaviorally indistin-

guishable from the PCH-model’s corresponding types L0, L1, and L2. These

types choose uniformly, 3, and 2, respectively. Note, however, that contrary

to the PCH-model higher types in the SLK-model, by best responding to

level-(k − 1), never choose number 1 but switch between choosing 3 and 2

only. The dominance type d1 behaves like l1 and chooses 3, since there are

no dominated strategies. Finally, the equilibrium type of the SLK-model

behaves like the l0 type, since the symmetric equilibrium has an approxi-

mately uniform distribution of number choices. An important constraint in

the SLK-model is that, as l1 and l2 are predominant, any other type’s fre-

quency is restricted to be at most 1/3. For the MG this means that at least

2/3 of the population chooses 3 or 2 (types l1 to l4 and d1) and at most 1/3

chooses uniformly (equilibrium type). This translates into the “prediction

set” {(p1, p2, p3) : p1 ≤ min(p2, p3, 1/9)} for the SLK-model. This prediction

set is depicted by the shaded area in Figure 1. Note that at most about 11%

of all choices fall on the low amount 1, since this amount is only picked by

1/3 of the equilibrium type, whose frequency is itself constrained to be less

than 1/3.

3 Experiments

3.1 Basic setup and hypotheses

Since the predicted choice frequencies of the pfPCH-model are not too far

from the Nash equilibrium E, rejecting the Nash hypothesis with an adequate

statistical power requires a large number of experimental subjects. We there-
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Figure 1: Nash (E), SLK (shaded area), and PCH predictions (loop) in the
simplex

fore conducted two large-scale online experiments. A total of 1360 subjects

were recruited from first-year undergraduates at the Vienna University of

Economics and Business. These subjects were unlikely to have been exposed

to game theory, as this is only taught later on.

To provide appropriate, yet feasible incentives, we decided to use sub-

stantial amounts of money as prizes. The basic setup of the game required

participants in the experiment to choose between the three amounts: e100,

e150, and e200. All experiments presented in the following use variations

of this basic game.

Based on the Nash equilibrium of this game for a sufficiently large subject

pool and on the prediction set of the SLK-model, we can state the following

two null-hypotheses:

(H0a) Choice frequencies are uniformly distributed (p1 = p2 = p3).

(H0b) Choice frequencies belong to the SLK-model’s prediction set {(p1, p2, p3) :

p1 ≤ min(p2, p3, 1/9)}.
Opposed to these two benchmarks, the predictions derived from the PCH-
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model gives rise to three increasingly sharp hypotheses:

(H1) The choice frequencies p are ordered p1 < p2 < p3.

(H2) The choice frequencies p can be derived from a PCH-model for some

Poisson parameter τ .

(H3) The choice frequencies p can be derived from the pfPCH model,

i.e. from the PCH-model with Poisson parameter τ = 1.5.

For hypotheses testing and reporting of significant results we apply a

1% level of significance. Summarizing the results, we found a statistically

significant deviation both from Nash equilibrium and from SLK predictions,

while we were not able to reject any of the three hypotheses (H1)-(H3). The

best-fitting Poisson parameter value was τ = 1.37.

3.2 Experiment 1

The first experiment provides an initial analysis of the one-shot minimizer

game. It gathers first evidence on the choice distribution in this game, tests

the null-hypothesis that the distribution is consistent with a Nash equilibrium

and, additionally, examines the predictions of the PCH-model and the SLK

predictions.

When implementing a game for the first time, appropriate incentives are

a main concern. Experimental studies frequently investigate whether behav-

ior is sensitive to changes in incentives. This question becomes even more

central in the domain of cognitive models, where incentives might crucially

affect subjects’ cognitive effort. To address this issue appropriately, our first

experiment varies the stakes of the game in a between-subjects design. We

denote the basic setup of Experiment 1 described above as the low-stakes

treatment of Experiment 1. In addition, we introduced a high-stakes treat-

ment where the amounts to choose from were quadrupled to e400, e600

and e800. If choice distributions are equal across both treatments, the basic

findings of our experiment are not the result of a specific level of incentives.
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3.2.1 Procedure

To conduct the online experiment we chose to use the free software LimeSur-

vey. A cohort of 3824 first-year undergraduate students from the Vienna

University of Economics and Business were invited by e-mail. The e-mail

asked students to participate in an online experiment that could earn them

a substantial amount of money while requiring only a few minutes of their

time. To reduce the transaction costs of participating as much as possible,

the invitation e-mail contained a link to the university web page hosting the

experiment. Each invited student was randomly assigned to one of the two

treatments and received a unique seven-digit identification number to ensure

that he or she could participate only once. Additionally, the e-mail invitation

told subjects how many fellow students had been invited to the experiment

as well, which helped them to assess the strategic situation and create homo-

geneous expectations about the possible pool of participants. 1905 students

were invited to the low stakes treatment, of which 312 (154 females and 158

males) actually took part. For the high stakes treatment, 1919 students were

invited of which 305 (164 females and 141 males) actually participated.9 The

experiment was open for participation for four days.

On the experiment website subjects were instructed that they will have to

choose one of three options that correspond to three different payoff levels.10

They were told that the ‘winning number’ is the one that is chosen least

often among all participants in the treatment. After their choice among

the three amounts of money, subjects had to state their gender and age

before submitting their choice and completing the experiment. The winning

number was announced in an e-mail after the experiment was closed and all

participants were invited for the public draw of the winner.

9After clicking the link to the web page in the invitation e-mail virtually no-one dropped
out of the experiment.

10For instructions and screen shots, see the Appendix.
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3.2.2 Results

As the predictions for the distribution of choices across the three options are

independent of the stake size, we denote the three amounts – irrespective of

the treatment – Small (corresponding to e100 or e400), Medium (e150 or

e600) and Large (e200 or e800). Table 1 presents absolute (n) and relative

(f) choice frequencies for the three amounts in each treatment.

Table 1: Experiment 1: Summary of results

Treatment Low stakes High stakes Pooled
Payoff n f n f n f
Small 64 0.21 69 0.23 133 0.22
Medium 108 0.35 103 0.34 211 0.34
Large 140 0.45 133 0.44 273 0.44
Total 312 1 305 1 617 1

Table 1 suggests that the distribution of choices across the three possible

amounts is nearly identical across treatments. Indeed, a χ2-test cannot reject

the null hypothesis of equality of distributions across the low and high stakes

treatment (p = .8160); columns 6 and 7 therefore show absolute and relative

frequencies of choices when pooling the two treatments.

The choice frequencies of the three payoffs in both treatments are, how-

ever, significantly different from a uniform distribution (χ2-Tests, both p <

.0001) and thus from the Nash equilibrium. The minimizer is always the

small amount, while the most frequently chosen number is the large amount.

The difference in choice frequencies between the three amounts, and therefore

the ranking of payoffs with respect to the choice frequencies (p1 < p2 < p3)

is highly significant in all pairwise comparisons (one sample test of propor-

tions, p < .0001 for p1 = p2 and p = .0004 for p2 = p3 for both, low and

high stakes). These decreasing choice frequencies from the large to the small

17



amount support an explanation in line with the PCH-model.11 Since the low

amount is chosen much more frequently than allowed by the SLK-model, the

choice frequencies are also significantly different from those predicted by the

SLK-model (p < .0001 for both treatments).

Evidence of this first experimental test of the minimizer game seems to

be well in line with the PCH-model and rejects the classical game theoretic

predictions of the Nash equilibrium as well as the predictions arising from

the SLK-model.

3.3 Experiment 2

Experiment 2 basically replicates the low stakes treatment of Experiment 1,

but here the three amounts to choose from were permuted to avoid possible

framing by the increasing order in which the amounts were presented in

Experiment 1.12 As in the previous experiment, a (fresh) cohort of first-year

undergraduate students were approached by e-mail invitations. 3680 e-mails

were sent, resulting in a total number of 743 participants (404 females and

339 males).13 All other procedural details were the same as in the previous

experiment.

3.3.1 Results

Table 2 provides an overview of the choice distribution across the three pay-

offs. The distribution is significantly different from a uniform distribution

11The background characteristics of participants allows to look into potential gender
differences with respect to thinking steps. Tests on the equality of distributions across
female and male participants, as well as across stakes for both females and males, do not
reveal any significant differences with respect to gender.

12Actually, Experiment 2 consisted of six rounds of the minimizer game. The intention
of this was to enable the analysis of potential learning effects, the results of which will be
published elsewhere. Here we focus on one-shot games and therefore consider exclusively
data from the first round of Experiment 2.

13The slightly higher response rate to the invitations might be due to increased adver-
tising efforts for experiments at the university.
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(χ2-Test, p < .0001) as well as from all SLK predictions (p < .0001). The

ranking of choice frequencies (p1 < p2 < p3, significant at p < .0001 for

p1 = p2 and p = 0.0054 for p2 = p3) replicates the findings of the previous

experiment and encourages an interpretation of the data in line with the

PCH-model.

Table 2: Experiment 2: Summary of results

Low stakes
Payoff n f
Small 183 0.25
Medium 260 0.35
Large 300 0.40
# of subjects 743 1

3.4 Aggregate data

Data aggregation is facilitated by the fact that the basic game structure

remains constant across both experiments. Indeed, the choice distributions

in Experiment 1 and in Experiment 2 are not significantly different (χ2-Test,

p = .2684), and both exhibit the expected ranking of p1 < p2 < p3. This

result suggests that the underlying Poisson distribution of thinking steps and

its parameter τ are indeed fairly constant across initial plays of the minimizer

game. We thus pooled the data of Experiments 1 and 2 and present aggregate

data the last two columns of Table 3.

Table 4 presents the pooled choice frequencies vis-a-vis the Nash pre-

diction, the closest of all SLK predictions14, and the parameter-free PCH

prediction. Like for the single experiments, the overall choice distribution

14This is the maximum-likelihood point-prediction within the prediction set of the SLK-
model.
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Table 3: Aggregate choice frequencies

Experiment 1 Experiment 2 Pooled
Payoff n f n f n f
Small 133 0.22 183 0.25 316 0.23
Medium 211 0.34 260 0.35 471 0.35
Large 273 0.44 300 0.40 573 0.42
Total 617 1 743 1 1360 1

is significantly different from uniform (p < .0001), rejecting the Nash pre-

diction (hypothesis H0a), and the closest from the set of SLK predictions

(hypothesis H0b, p < .0001). Moreover, the observed ranking p1 < p2 < p3 is

highly significant in all pairwise comparisons (p < .0001 for each one). Hence

we cannot reject hypothesis H1.

Table 4: Model predictions vs. choice frequencies

Nash SLK PCH actual choice
Small 0.33 0.11 0.27 0.23
Medium 0.33 0.40 0.33 0.35
Large 0.33 0.49 0.41 0.42

Figure 2(a) shows this aggregate choice distribution in relation to theo-

retically expected ones under the PCH-model. The grey shaded area is a 99%

pointwise confidence band along the loop and represents choice distributions

in the simplex that are consistent with a PCH prediction but neither the Nash

nor the SLK prediction. The aggregate distribution, marked by “pooled”,

lies within this area. This illustrates that we cannot reject hypothesis H2

and our aggregate findings are well in line with the PCH prediction.

τ -values ranging from τ = 1.20 to τ = 1.52 predict choice frequencies

which are statistically indistinguishable on a 1% margin from the sample
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(a) significance band (b) τ -values

Figure 2: (a) Aggregate choice distribution and significance band along the
loop. (b) PCH-predictions that are not significantly different from the pooled
data.

distribution based on our pooled data. Figure 2(b) illustrates this interval of

τ -values as the corresponding loop segment of choice frequencies. According

to a maximum likelihood estimator, the best fitting value for τ under the

assumption that the PCH-model applies is 1.37. Remarkably enough, we

cannot even reject the point prediction from the pfPCH-model, i.e. hypothesis

H3 (p = 0.0187). On the contrary, our results corroborate the suggestion of

Camerer et al. (2004) that the PCH-model with a parameter of 1.5 could be

used as a parameter-free model of choice prediction.

4 Conclusion

We discussed the question why the PCH-model seems to predict well in some

games and fails in others. Based on conjectures about possible biases due
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to social preferences, complexity-induced infeasibility of maximizing behav-

ior, and maximin-principle interference, we constructed a multi-player game,

the minimizer game, that avoids these obstacles. We then formulated three

increasingly sharp hypotheses from the PCH approach, where the last one

corresponds to a context- and parameter-free prediction. We tested these

hypotheses in two large-scale Internet experiments. Despite considerable

statistical power, none of the three hypotheses could be rejected. We thus

confirmed the PCH-prediction in its strongest, parameter-free form. Stake

size did not appear to influence the distribution of thinking steps. The com-

peting predictions derived from Nash equilibrium and the SLK-model are

clearly rejected by the data from our experiments.

We do not mean to imply that τ = 1.5 is the best overall choice for the

PCH-model; we just used this suggestion to avoid any appearance of post

hoc model fitting. But we believe that our results show that when a game is

“pure” and “simple”, i.e. stripped of all complications introduced by social

preferences, algebraic complexities and risk issues, then the thinking steps

approach to predicting behavior is useful. Furthermore, the pfPCH-model

seems to predict remarkably well, while no specification of the standard level-

k model is able to do so, since it ignores subjects’ taking into account that

the behavior of others might be heterogenous. We therefore propose the

pfPCH model as a useful context- and parameter-free alternative to Nash

equilibrium in predicting initial choices in simple games.
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A Appendix: Instructions

These instructions have been translated from German. Original instructions

are available from the authors upon request.

A.1 Experiment 1: Instructions and choice screen

Screen 1: Instructions

Experiment 1 
 
Screen 1: Instructions 
 
 

Thank you for participating in this online experiment! 
 

Instructions 
 
On the following page, you will find three amounts of money to choose from. Please select one of the 
three amounts! 
 
The amount that is selected least often by all participants is the winning amount. 
 
Of all participants who selected this winning amount, one will be randomly drawn as the winner. This 
participant will be paid out the winning amount. 
 
Note: 
To keep the chances of being drawn the winner, you have to select the amount that you believe will 
be selected least often in total. 
 
     
 
 
 
Screen 2: Choice in low (high) stakes treatments 
 
 
Please choose one of the three amounts: 
 
100 € (400 €) 
150 € (600 €) 
 200 € (800 €) 
 
Help: Here are the rules again: The amount that is chosen least often by all participants is the 
winning amount. Of all participants who have selected this winning amount, one will be randomly 
drawn as the winner. She/he receives this winning amount as payoff. 
 
 
 
 
  

 Proceed >> 

 Proceed >> 

Screen 2: Choice in low (high) stakes treatment
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Experiment 1 
 
Screen 1: Instructions 
 
 

Thank you for participating in this online-experiment! 
 

Instructions 
 
On the following page, you will find three amounts of money to choose from. Please select one of the 
three amounts! 
 
The amount that is selected least often by all participants is the winning amount. 
 
Of all participants who selected this winning amount, one will be randomly drawn as the winner. This 
participant will be paid out the winning amount. 
 
Note: 
To keep the chances of being drawn the winner, you have to select the amount that you believe will 
be selected least often in total. 
 
     
 
 
 
Screen 2: Choice in low (high) stakes treatments 
 
 
Please choose one of the three amounts: 
 
 100 € (400 €) 
 150 € (600 €) 
 200 € (800 €) 
 
Help: Here are the rules again: The amount that is chosen least often by all participants is the 
winning amount. Of all participants who have selected this winning amount, one will be randomly 
drawn as the winner. She/he receives this winning amount as payoff. 
 
 
 
 
  

 Proceed >> 

 Proceed >> 

A.2 Experiment 2: Instructions and choice screen

Screen 1: Instructions

Experiment 3 
 

 
Screen 1: Instructions 
 

 
Thank you for participating in this online experiment! 

 
Instructions 

 
1. This online experiment consists of 6 rounds. In each of the following 6 rounds, you must select 

one of 3 amounts of money. 
2. When all participants have completed the experiment, one of the 6 rounds is randomly drawn. 

This round is called decision round. 
3. The amount of money that is in the decision round selected least often by all participants is the 

winning amount. 
4. Of all participants who have chosen the winning amount in the decision round, one participant 

is randomly drawn. She/he is notified by mail and receives the winning amount in cash. 

 Note: Each round can be the decision round. To keep the chances of being drawn the winner, you 
have to select the amount that you believe will be selected least often in this round. 

 
 
 
 

 
 
Screen 2: Choice 
 
 
 Round 1: 
 Please choose one of the three amounts: 
 
 
   100 €   200 €   150 € 
 
 
 Help: This is round 1. If this round is drawn as the decision round, the amount that is chosen least 

often by all participants in this round is the winning amount. Of all participants who have chosen 
the winning amount in this round, one will be randomly drawn as the winner. She/he receives the 
winning amount in cash. 

 
   
 
 
 
 
 
 
 

 Proceed >> 

 Proceed >> 

Screen 2: Choice in round 1
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Experiment 3 
 

 
Screen 1: Instructions 
 

 
Thank you for participating in this online experiment! 

 
Instructions 

 
1. This online experiment consists of 6 rounds. In each of the following 6 rounds, you must select 

one of 3 amounts of money. 
2. When all participants have completed the experiment, one of the 6 rounds is randomly drawn. 

This round is called decision round. 
3. The amount of money that is in the decision round selected least often by all participants is the 

winning amount. 
4. Of all participants who have chosen the winning amount in the decision round, one participant 

is randomly drawn. She/he is notified by mail and receives the winning amount in cash. 

 Note: Each round can be the decision round. To keep the chances of being drawn the winner, you 
have to select the amount that you believe will be selected least often in this round. 

 
 
 
 

 
 
Screen 2: Choice 
 
 
 Round 1: 
 Please choose one of the three amounts: 
 
 
   100 €   200 €   150 € 
 
 
 Help: This is round 1. If this round is drawn as the decision round, the amount that is chosen least 

often by all participants in this round is the winning amount. Of all participants who have chosen 
the winning amount in this round, one will be randomly drawn as the winner. She/he receives the 
winning amount in cash. 

 
   
 
 
 
 
 
 
 

 Proceed >> 

 Proceed >> 

A.3 Both experiments: final screens

Screen: Gender

 
 
 
 
 
All experiments 
 
Screen: Gender 
 
 
Please state your gender: 
 
 Female 
 Male 
 
  
 
 
Screen 4: Final submission  
 
 
To finally submit your choice(s), please click on the submit button. 
 
  
 
 
Screen 5: Confirmation 
 
 
Thank you for participating! 
 
To confirm that we received your decision, you will obtain an e-mail shortly. In case you are the lucky 
winner, you will be notified by e-mail as well. 
 
 
 

 Proceed >> 

 Submit >> 

Screen: Submission

 
 
 
 
 
All experiments 
 
Screen: Gender 
 
 
Please state your gender: 
 
 Female 
 Male 
 
  
 
 
Screen 4: Final submission  
 
 
To finally submit your choice(s), please click on the submit button. 
 
  
 
 
Screen 5: Confirmation 
 
 
Thank you for participating! 
 
To confirm that we received your decision, you will obtain an e-mail shortly. In case you are the lucky 
winner, you will be notified by e-mail as well. 
 
 
 

 Proceed >> 

 Submit >> 

Screen: Confirmation
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All experiments 
 
Screen: Gender 
 
 
Please state your gender: 
 
 Female 
 Male 
 
  
 
 
Screen 4: Final submission  
 
 
To finally submit your choice(s), please click on the submit button. 
 
  
 
 
Screen 5: Confirmation 
 
 
Thank you for participating! 
 
To confirm that we received your decision, you will obtain an e-mail shortly. In case you are the lucky 
winner, you will be notified by e-mail as well. 
 
 
 

 Proceed >> 

 Submit >> 
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