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Abstract

In the past decades, organizations had to face numerous challenges due to
intensifying globalization and internationalization, shorter innovation cycles
and growing IT support for business. Business process management is seen as
a comprehensive approach to align business strategy, organization, controlling,
and business activities to react flexibly to market changes. For this purpose,
business process models are increasingly utilized to document and redesign
relevant parts of the organization’s business operations. Since companies tend
to have a growing number of business process models stored in a process
model repository, analysis techniques are required that assess the quality of
these process models in an automatic fashion. While available techniques can
easily check the formal content of a process model, there are only a few tech-
niques available that analyze the natural language content of a process model.
Therefore, techniques are required that address linguistic issues caused by the
actual use of natural language. In order to close this gap, this doctoral thesis
explicitly targets inconsistencies caused by natural language and investigates
the potential of automatically detecting and resolving them under a linguistic
perspective. In particular, this doctoral thesis provides the following contri-
butions. First, it defines a classification framework that structures existing
work on process model analysis and refactoring. Second, it introduces the
notion of atomicity, which implements a strict consistency condition between
the formal content and the textual content of a process model. Based on
an explorative investigation, we reveal several reoccurring violation patterns
are not compliant with the notion of atomicity. Third, this thesis proposes
an automatic refactoring technique that formalizes the identified patterns
to transform a non-atomic process models into an atomic one. Fourth, this
thesis defines an automatic technique for detecting and refactoring synonyms
and homonyms in process models, which is eventually useful to unify the
terminology used in an organization. Fifth and finally, this thesis proposes a
recommendation-based refactoring approach that addresses process models
suffering from incompleteness and leading to several possible interpretations.
The efficiency and usefulness of the proposed techniques is further evaluated
by real-world process model repositories from various industries.





Zusammenfassung

In den vergangenen Jahren mussten sich Unternehmen vielen Herausforderun-
gen aufgrund von Globalisierung, kürzer werdenden Innovationszyklen und
zunehmender IT-Unterstützung stellen. Geschäftsprozessmanagement wird als
ein umfassendes Werkzeug zur Ausrichtung von Geschäftsstrategie, Organisa-
tion, Controlling und operativer Geschäftstätigkeiten gesehen, um auf diese
Marktänderungen flexibel zu reagieren. Dazu werden Prozessmodelle eingesetzt,
die den relevanten Ausschnitt der Geschäftstätigkeiten dokumentieren und als
Grundlage für eine Umstrukturierung dienen. Da Unternehmen eine immer
größer werdende Zahl von Prozessmodellen pflegen, wird die Nachfrage nach
automatischer Qualitätskontrolle zunehmend größer. Von Forschunsseite wur-
den diesbezüglich zahlreiche Techniken zur automatischen Qualitätssicherung
hervorgebracht. Während bereits zahlreiche Forschungsansätze zur Analyse
formaler Eigenschaften eines Prozessmodells existieren, gibt es nur wenige
Beiträge, die auf eine Analyse von natürlicher Sprache abzielen. Insbesondere
wurde die spezifische Verwendung von natürlicher Sprache und das Erkennen
und Auflösen von sprachlichen Inkonsistenzen nur unzureichend untersucht.
Um diese Forschungslücke zu schließen leistet diese Dissertation die folgenden
Beiträge: Zum Ersten stellt sie einen Klassifikationsrahmen zur Einodnung
bestehender bestehender Forschungsarbeiten bereit. Zum Zweiten wird in
dieser Arbeit die Idee der Atomarität für Prozessmodelle vorgestellt, welche
eine Konsistenzbedingung für den formalen und textuellen Inhalt eines Prozess-
modells vorsieht. Basierend auf einer explorativen Untersuchung von mehreren
Prozessmodellsammlungen wurden wiederkehrende Muster identifiziert, die das
Kriterium der Atomarität verletzen. An dritter Stelle wird eine automatische
Technik definiert, welche die zuvor identifizierten Muster formalisiert und
nicht-atomare Prozessmodelle in atomare Prozessmodelle transformiert. Als
Viertes stellt diese Dissertation eine Technik zur Erkennung und Korrektur se-
mantischer Inkonsistenzen vor, welche die Nutzer bei der Vereinheitlichung der
verwendeten Terminologie unterstützt. Zuletzt wird eine Technik präsentiert,
welche unvollständig benannte Modellelemente korrigiert und somit unter-
schiedliche Interpretationen eines Modells verhindert. Alle vorgeschlagenen
Techniken wurden mit Hilfe realer Modelle aus der Praxis evaluiert, um deren
Effizienz und Nutzen zu demonstrieren.
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1

Introduction

This chapter provides an introduction of this doctoral thesis. Section 1.1
motivates the research presented in this thesis and emphasizes the general
need for analysis techniques for the textual content of process models. Section
1.2 clarifies the research contributions of this thesis in order to address this
need. In Section 1.3, we discuss the methodological background of this thesis,
before Section 1.4 provides an outlook of the thesis structure. Finally, Section
1.5 lists the papers that have been published in the course of this thesis.

1.1 Motivation

This doctoral thesis is located in the field of Business Process Management
(BPM). BPM has evolved to a mature discipline that enables organizations
to flexibly react to emerging changes within their business environment. The
relevance of BPM in practice is, for example, reflected by the growth of BPM-
related products and services. A market analysis of Forrester estimates the
BPM market growth with 18.7% reaching a volume of 7.5 billion US Dollars
in 2016 [207]. Academia emphasizes the relevance of BPM with a number of
important text books (see e.g. [407, 193, 408, 55, 437, 108, 179]) and dedicated
conferences and conference tracks (see e.g. the International Conference on
BPM [375] or the International Conference on advanced Information Systems
Engineering [450]). The range of topics goes from organizational BPM aspects,
such as BPM adoption, success factors, as well as technical aspects, such as
the creation, implementation, and discovery of business process models. Due
to the importance of business process models for documenting and redesigning
business processes as well as designing and implementing process-related
information systems, researchers have focused on topics with regard to process
model design and quality. However, there are still open problems, for which
hardly any solution has been proposed.

A specific problem in this regard is how to properly handle natural language
in process models. Prior research clearly demonstrated the importance of
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natural language in process models in terms of understanding and modeling
quality [285] which has been manifested in many naming recommendations from
research and practice [395, 283, 399]. Moreover, prior research has facilitated
the analysis of the textual content by recognizing the syntactic structure of
model element labels [249] and rearranging them according to desired naming
guidelines [238]. Nevertheless, these approaches provide only little insight into
linguistic issues that are caused by the actual use of natural language to
describe model elements such as activities and events. These linguistic issues
cannot be resolved by the help of available techniques since they assume regular
linguistic structures of model element labels which do not hold in a real-world
setting [275, 285]. Issues that relate to the specification of process behavior with
natural language, the usage of ambiguous terminology, or the incompleteness
and underspecification of model elements remain unresolved. In consequence,
the results of available techniques, especially those that rely on textual elements
of process models (e.g. [101, 240, 245]), are not reliable and may result in
wrong conclusions [144]. This problem is further intensified by taking into
account that many organizations create several hundreds or thousands of
process models and organize them in large process model repositories [369].
The amount of process models makes the manual maintenance more and more
unfeasible. Therefore, there is a general need to extend prior research on model
analysis and refactoring techniques to successfully handle language-related
problems in process models.

1.2 Research Contributions

The goal of this doctoral thesis is the extension of model analysis and refac-
toring techniques by integrating and applying concepts from the branches of
Linguistics. It links linguistic concepts and ideas in order to develop analysis
techniques with regard to the branches of syntax, semantics, and pragmatics.
In particular, this doctoral thesis is providing the following contributions:

• Framework of Process Model Analysis: So far, available process
model analysis techniques emphasize the correctness of the formal part
of the process model. The formal part relates to the modeling language
which provides a set of symbols and rules to combine them. Although the
natural language part of process models equally contributes to the overall
quality [236], there are only partial solutions available. Therefore, this
doctoral thesis will complement the idea of process model analysis and apply
natural language processing (NLP) techniques to the textual part of process
models. In Chapter 3, a classification framework is provided that integrates
the linguistic branches with the well established conceptualization of a
modeling language. The framework is further used to review prior research
on process model analysis and to identify research gaps and emerging
requirements. Additionally, future research approaches of process models
analysis may be distinguished based on the provided framework.
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• Conceptualization of Atomicity for Process Models: Many model-
ing initiatives in practice include casual modelers that are not sufficiently
trained [369, 419] and thus use an arbitrary style of naming model elements
[285]. While specific naming styles are automatically detected and refac-
tored [238], there is a lack of recognizing and reworking element names,
when modelers use natural language to express control-flow logic, such as
parallel execution or decisions. Expressing control-flow logic with natural
language makes it impossible to draw conclusions from formal analysis
techniques and at least difficult to develop process-related systems based
on such ill-defined requirements. This thesis will introduce the notion of
atomicity that ensures a strict separation between modeling and natural
language. In Chapter 5, the notion of atomicity is introduced and language
patterns that violate this notion are identified. The notion of atomicity
serves as a baseline for available language analysis techniques in process
models and increases the reliability of their results.

• Detection and Refactoring of Syntactic Ambiguity: An initial anal-
ysis of process model collections from practice revealed that many process
models suffer from syntactic ambiguities caused by non-atomic process
model elements. This thesis formalizes the notion of atomicity and uses
the non-atomicity patterns as an input in order to facilitate the refac-
toring of non-atomic process models and to provide automatic support.
To this end, Chapter 5 also introduces an approach that automatically
detects and refactors non-atomicity issues. Furthermore, this approach
is experimentally evaluated by employing four real-world process model
collections.

• Detection and Refactoring of Semantic Ambiguity: A fixed termi-
nology represents an important asset in an organization to avoid misun-
derstandings and to ensure a precise communication of business goals
and requirements. Additionally, in situations when organizations merge
or acquire another one, the terminology may differ with regard to their
meaning. Chapter 6 proposes an automatic technique for synonym and
homonym detection and refactoring to facilitate the detection and refactor-
ing of terminology ambiguity. Both techniques are evaluated by the help
of real-world process models and native speakers.

• Detection and Refactoring of Pragmatic Ambiguity: According to
Stachowiak [410], models are characterized by relevance and pragmatism.
A process model is used by modelers as a substitution of the original object
by reducing this object on the relevant parts. However, in many cases,
process models do not provide sufficient details to specify the relevant
parts of the underlying business process. Process models thus appear to
be incomplete with regard to the naming of process model elements which
makes it hard for model readers to understand and make sense out of the
process model. Since process model might allow for several alternatives, this
thesis proposes a recommendation-based approach that explicitly considers
the context of the incomplete model element. The approach to refactor
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incomplete model elements as well as the evaluation of these techniques is
discussed in Chapter 7. As an overall result, the refactoring of incomplete
elements is reduced to the task of selecting a candidate on a ranked list.

1.3 Methodological Background

The goal of information systems research is the acquisition of knowledge on
how to understand and improve how socio-technical systems gather, process
and present data, information and knowledge to users, in particular with regard
to the organizational workplace. In order to acquire such knowledge, there
are two complementary but distinct paradigms, behavioral science and design
science [162, 146, 322]. Behavioral science seeks to develop and verify theories
that explain or predict human or organizational phenomena surrounding
the analysis, design, implementation, management, or use of information
systems [162]. The resulting theories inform researchers and practitioners
of the interactions among people, technology, and organizations that must
be managed, so that the information system can achieve its stated purpose.
Design science has its roots in engineering and the sciences of the artificial
and is primarily a problem-solving paradigm [400, 162]. It seeks to create
innovative artifacts that define ideas, practices, technical capabilities, and
products through which the analysis, design, implementation, management, and
use of information systems can be effectively and efficiently accomplished [162].
Examples of design artifacts are constructs, models, methods, and instantiations
[263].

This doctoral thesis will employ both design science as well as behavioral
science methods. While the contributions represent novel design science arti-
facts and provide a solution to the problem at hand, the evaluation of these
artifacts uses methods from behavioral science, such as the formulation of
hypotheses, the collection of suitable evaluation data and the test of hypotheses
with statistical methods. Nevertheless, the main contributions are the result
of design science research and thus need to address unsolved problems in a
unique or in a more efficient way. Therefore, the contributions of this thesis
are discussed with regard to the design science guidelines to illustrate their
scientific character.

Hevner et al. [162] propose seven guidelines to conduct, evaluate and present
design science contributions. This set of seven guidelines represents a widely-
accepted reference to assist researchers as well as reviewers to understand and
assess the value of design science artifacts. In the following, the contributions
are related to these guidelines to discuss in how far they meet information
systems research standards.
Guideline 1: Design as an Artifact. The result of design science research
is, by definition, a purposeful IT artifact which is created to address a relevant
organizational problem. It must be described effectively to enable its imple-
mentation and application in the respective domain in the form of a construct,
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a model, a method, or an instantiation [162]. In this thesis, existing process
models analysis techniques are enriched with novel techniques inspired by
branches of linguistics. This thesis formalizes syntactical language patterns, se-
mantic ambiguity conditions and pragmatic completeness criteria as constructs
that enable the detection of linguistic issues in process models. Furthermore,
we define methods for the refactoring of syntactical, semantic, and pragmatic
issues in process models. Lastly, each of these methods is implemented as a
Java prototype which instantiates the aforementioned methods on the one
hand and shows the applicability and feasibility of these methods for realistic
scenarios.
Guideline 2: Problem Relevance. The relevance of any design science con-
tribution is constituted by developing technology-based solutions to important
business problems. These problems are given by the practitioners who are
concerned with the planning, management, design, implementation, operation,
and evaluation of information systems. Thus, design science research must
address those problems faced and the opportunities afforded by the interaction
of people, organizations, and information technology [162]. The general need
of this thesis stems from the increasing adoption of BPM in organizations
(see e.g. [344, 401, 181]) and the associated creation of several hundreds and
thousands of process models [369]. In particular, the amount of such a big
number of process models makes the manual maintenance and quality assur-
ance a labor-intensive and time-intensive task. As a result, the techniques of
this thesis contribute to the quality maintenance of process model collections
and to the time-savings related to this task.
Guideline 3: Design Evaluation. Evaluation is a crucial component of
the design science research process as it needs to rigorously demonstrate the
utility, quality, and efficacy of a design science artifact. In order to evaluate
the artifact, it is necessary to employ well-executed evaluation methods and
metrics that show the benefits of the artifact with regard to the problem [162].
In this thesis, the utility of the proposed techniques is shown by employing
them onto several process model collections from practice and measuring their
utility with established metrics from information retrieval, namely precision,
recall, and the f-measure [21]. On the one hand, we use precision and recall
to measure the utility of the syntactical and pragmatic refactoring approach.
Regarding the semantic refactoring we use a combination of precision and
recall and the ambiguity metrics Words per Sense and Senses per Word which
reflect the overall degree of homonym and synonym ambiguity in a process
model collection.
Guideline 4: Research Contributions. Effective design science research
must provide contributions based on the novelty, generality, and significance
of the designed artifact. These contributions may address the design artifact
itself as well as the design construction knowledge or the design evaluation
knowledge [162]. The contributions of this thesis have already been presented
in Section 1.2. They include a new classification framework for process models
analysis techniques, a formalization of the atomicity notion enabling a con-
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sistent analysis of process models. Furthermore, this thesis proposes novel
refactoring techniques for the textual elements in process models with regard
to the syntactical, semantic, and pragmatic perspective. Each of these contribu-
tions are considered to be a significant contribution to the body of knowledge,
i.e. techniques for the automatic quality assurance of process models.
Guideline 5: Research Rigor. Rigor addresses the way in which research is
conducted in order to build and design the artifact. An essential requirement
in this context is the effective use of the knowledge base and the associated
foundations and methodologies. Therefore, this thesis constantly refers to
existing knowledge, techniques and artifacts to build and evaluate the artifact.
Among others, the techniques of this thesis make use of prior research on
existing natural language parsers [199, 200, 409], process model parsers [249],
as well as computational lexicons [292, 291, 304].

Guideline 6: Design as a Search Process. Design is essentially a search
process for an effective solution of a problem that uses available means (actions
and resources) to reach a set of desired goals by respecting laws within the
environment [400]. Given the nature of many information systems design
problems, it may however not possible to consider all relevant means, ends,
or laws [424]. There might be several solutions to a problem which leads to a
big and complex solution space with regard to one particular problem [162].
In such situations, it is recommended to search for satisfactory solutions
without explicitly specifying all possible solutions [400]. The the design task
involves the construction of an artifact that works well for a specified class of
problems considering specific assumptions. Against this background, this thesis
focuses on problems with regard to syntactical, semantic and pragmatic issues.
For example, the semantic refactoring techniques concentrate on particular
problems of semantic inconsistencies, namely synonymy and homonymy, and
provides a working solution to reliably detect and resolve them. Nonetheless,
it has to be noted that there might exist other semantic problems, for example
with regard to hyponyms or meronyms. Therefore, it is important to identify
and design one solution for which its utility and adequateness is demonstrated
by a meaningful evaluation.
Guideline 7: Communication of Research. The results of the design sci-
ence research process need to be be presented to both, technology-oriented as
well as management-oriented audiences. Technology-oriented audiences need
sufficient detail to enable the described artifact to be constructed and used
within an appropriate organizational context. Management-oriented audiences
need sufficient detail to determine if the organizational resources should be
committed to constructing and using the artifact within their specific orga-
nizational context [162]. The results of this thesis have lead to one journal
publication and five workshop and conference publications are thus already
publicly available as part of the body of knowledge on process model analysis.

Relating the contributions of this thesis to the design science guidelines
emphasizes that the thesis complies with international research standards and
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Fig. 1.1: Design Science Process, adapted from Peffers et al. [321, 322]

complements the body of knowledge of the information systems discipline with
regard to innovative process model analysis techniques.

1.4 Thesis Structure

Before looking deeper into the chapters, it has to be noted that the presentation
of the design artifacts follows an acknowledged procedure for design science
research. In particular, the presentation uses the framework of Peffers et
al. [321, 322] that provides a methodology for design science research and that
meets the stated objectives, processes, and outputs. Figure 1.1 depicts the
general process and its core activities. Accordingly, each of the design artifacts
will further discuss the following activities:

1. Problem identification and motivation: This activity addresses the
identification of the specific research problem and the justification of the
value of its solution. This activity mainly accomplishes two things: first, it
motivates the researcher and the audience of the research to strive for a
solution, to accept the results, and to understand the reasoning associated
with the researchers understanding of the problem [321]. Each technique
of this paper implements this activity by carefully reviewing the body of
knowledge with regard to the problem and the importance of its solution
according to standard guidelines [435, 56].

2. Objectives of a solution: This activity is concerned with the definition of
the objectives and requirements of a solution from the problem definition. In
general, the objectives can be quantitative, e.g., terms in which a desirable
solution would be better than current ones, or qualitative, e.g., where a new
artifact is expected to support solutions to problems not addressed [321].
This activity is realized by identifying essential requirements of a solution
which arise after the identification of the problem and the review of current
body of knowledge.

3. Design and development: This activity involves the creation of the
artifact, such as constructs, models, methods, or instantiations [162]. It also
includes the specification of desired functionality, of underlying concepts,
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and of the architecture [321]. This presentation of the artifacts realizes this
activity by formalizing the essential concepts, methods, and algorithms of
the respective artifact in detail which leverages the reconstruction of their
functionality.

4. Demonstration: This activity demonstrates the efficacy of the artifact
to solve the problem. It involves the deployment of the artifact in experi-
ments, simulations, case studies, or other appropriate activities [321]. In
many cases, demonstrating the artifact’s capabilities is linked with the
subsequent evaluation with the help of performance metrics. In this thesis,
the developed artifacts are applied to real world process model collections
to demonstrate their capabilities in realistic scenarios.

5. Evaluation: The evaluation observes and measures how well the artifact
supports a solution to the problem. This activity involves comparing the
objectives of a solution to the actual observed results of the demonstration.
It further involves the definition of relevant metrics and analysis techniques
that quantify the performance and the utility of the artifact or that compare
it with existing solutions [321]. This thesis realizes this activity with the
help of performance metrics from information retrieval and a comparison
with existing solutions, if applicable.

6. Communication: The final activity is concerned with the communication
of the relevant results of the preceding activities to researcher’s and other
relevant audiences, such as practicing professionals [321]. As already in the
guideline discussion, the results of this thesis have already been published
in journals as well as conference and workshop proceedings. Section 1.5
lists the respective publications.

This thesis is subdivided into nine chapters in total. It begins with an
overview of the field of business process management and a discussion of prior
research in process model analysis. Afterwards, it provides an introduction to
the field of linguistics and elaborates on the employed ideas and concepts to
address the identified research gaps. In the subsequent chapters, the thesis
introduces the novel design artifacts to refactor process models according to
the syntax, semantics, and pragmatics of their textual elements.

• Chapter 1: Introduction. In this chapter, we motivate the research
topic of semiotic process model refactoring, highlight the specific research
contributions, discuss the research design and methods, and present the
related publications of this thesis.

• Chapter 2: Business Process Management. The next chapter pro-
vides an overview of the discipline of business process management and
process modeling. Afterwards, we particularly focus on process models as
the central concept of this thesis and operationalize them for the design
artifacts.

• Chapter 3: Analysis of Business Process Models. In this chapter,
we introduce the concept of process model refactoring and elaborate on
different dimensions that may be target of such actions. Afterwards, the



1.5 Related Publications 9

chapter provides an extensive overview of recent analysis approaches and
which dimension they address. Finally, we identify requirements, which
arise from the review of recent approaches.

• Chapter 4: Overview of Linguistics. This chapter provides a short
overview of the discipline of linguistics and the relevant subfields, namely
syntax, semantics and pragmatics. Afterwards, we turn towards the field
of natural language processing and introduce relevant techniques of this
thesis, i.e. natural language text corpora, parsers, taggers, lexical databases,
and finally word sense disambiguation.

• Chapter 5: Syntactical Refactoring of Process Models. This chap-
ter presents an artifact for the syntactical refactoring of process models. As
a basis, we introduce the notion of atomicity and identify several patterns
that violate this notion by using three large process model collections from
practice. Building on these insights, we define an approach that can detect
and rework non-atomic process models. The capabilities of this technique
are evaluated with four real-world process model collections containing
more than 2800 process models.

• Chapter 6: Semantic Refactoring of Process Models. This chapter
introduces the artifact for the semantic refactoring of ambiguities in process
models. To this end, we operationalize the concept of a word sense and
formulate reliable conditions for synonyms and homonyms. Afterwards, we
present the techniques to detect and refactor ambiguous textual elements
in process models. Again, we apply the techniques on process model
collections from practice and evaluate their performance by comparing
the performance of the novel artifact with a naive approach of ambiguity
detection and refactoring.

• Chapter 7: Pragmatic Refactoring of Process Models. This chapter
presents the artifact for the pragmatic refactoring. This artifact is built
upon on the insight that syntactically and semantically refactored process
model elements may still be imprecise with regard to the overall context
of the process model. We propose a recommendation-based approach
that supports the detection and refactoring of imprecisely labeled model
elements which is again evaluated with available process model collections
from practice.

• Chapter 8: Conclusion. Finally, this chapter summarizes the results
of this thesis and gives an outlook of future research activities. Further,
it discusses the implications of the findings for the linguistic analysis in
conceptual models and for the quality of business process models.

1.5 Related Publications

This thesis has lead to several publications that are related to the analysis and
the refactoring of process models. The following list provides an overview of
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accepted publications and submitted work.

Publications related to Syntactical Refactoring

• Fabian Pittke, Henrik Leopold, Jan Mendling: When Language meets
Language: Anti Patterns Resulting from Mixing Natural and Modeling
Language. In: 5th International Workshop on Process Model Collections:
Management and Reuse (PMC-MR 2014), 118-129, 2014. [330]

• Fabian Pittke, Benjamin Nagel, Gregor Engels, Jan Mendling: Linguistic
Consistency of Goal Models. In Proceedings of the 19th International
EMMSAD Conference, 393-407, 2014. [333]

Publications related to Semantic Refactoring

• Fabian Pittke, Henrik Leopold, Jan Mendling: Automatic Detection and
Resolution of Lexical Ambiguity in Process Models. IEEE Transactions on
Software Engineering. 41(6): 526-544, 2015. [331]

• Fabian Pittke, Henrik Leopold, Jan Mendling: Spotting Terminology Defi-
ciencies in Process Model Repositories. In: BPMDS13 Working Conference
(BPMDS 2013), 292-307, 2013. [329]

Publications related to Pragmatic Refactoring

• Fabian Pittke, Pedro Henrique Piccoli Richetti, Jan Mendling, Fernanda
Araujo Baião: Context-Sensitive Textual Recommendations for Incomplete
Process Model Elements. In: International Conference on Business Process
Management (BPM 2015), 189-197, 2015. [334]

Publications related to Process Modeling and Language Analysis
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tion from Business Process Model Repositories via Semantic Technology.
Journal of Systems and Software. 108(1): 134147, 2015. [247]
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Heiner Stuckenschmidt, Jan Mendling: Towards the Automated Annota-
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• Henrik Leopold, Fabian Pittke, Jan Mendling: Towards Measuring Process
Model Granularity via Natural Language Analysis. In: 4th International
Workshop on Process Model Collections: Management and Reuse (PMC-
MR 2013), 417-429, 2013. [246]
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• Fabian Pittke, Henrik Leopold, Jan Mendling, Gerrit Tamm: Enabling
Reuse of Process Models trough the Detection of Similar Process Parts. In:
3rd International Workshop on Reuse in Business Process Management
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2

Business Process Management

This chapter provides an introduction to business process management and
business process models. First, Section 2.1 provides an overview of business
process management, its core concepts, and recognizes business process models
as being a central artifact. Section 2.2 particularly elaborates on the modeling
process and on the building blocks of process models. Based on these insights,
Section 2.3 provides a precise characterization of process models. Finally,
Section 2.4 summarizes the most important things of this chapter.

2.1 Overview of Business Process Management

The roots of BPM date back to the 18th century. As one of the very first persons,
Adam Smith illustrated the benefits of a process-oriented manufacturing of
products in his example of a pin factory [406]. The output of the manufacturing
process could be increased by subdividing it into several steps that can be
done by the most appropriate workers. Following this idea, Frederick Winslow
Taylor proposed a systematic analysis to identify the best way to perform
these steps [415, p. 117] by ”selecting the quickest way [..], eliminating all false
movements, slow movements, and useless movements [..], and collecting into
one series the quickest and best movements”. As an implementation of this
type of organization, Henry Ford invented the assembly line. He reports on a
notable reduction of the assembly time of manufacturing a flywheel magneto
in an initial experiment. As a result, the overall time was reduced by more
than 75% and the idea was applied to all aspects of car manufacturing [130,
pp. 80-90].

From an academic perspective, Nordsieck was one of the first researchers
who pointed out the general necessity of a process-oriented organizational
design [309, p. 9]. He described several types of workflow diagrams for the
subdivision of labor, the identification of activity sequences and the assignment
of tasks to people. However, the adoption of the proposed design took place
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much later since the focus of organizational research put more emphasis on
the structural aspect (see e.g. [213, 148]).

With increasing relevance of office automation, a stronger focus has been
put on the flow of information and the need of understanding the underlying
processes [438, 116] and arrange them in a value-creating chain that deliv-
ers a product to the market as advocated by Porter [342]. The value chain
model enables the identification activity sequences, which consequently lead to
reengineering approaches to achieve productivity, competitiveness and process
innovation by technology [87]. In this context, Kaizen [175] and Business Pro-
cess Reengineering [154] have been proposed as specific process reengineering
methodologies. Building on these management concepts and the insights on
the role of integrated information systems by Scheer [382], companies widely
started to adopt process orientation.

Today, business process management has become a well-established ap-
proach in research and practice alike. Due to its roots in organizational the-
ories and due to the increasing technology adoption, it has evolved to a
inter-disciplinary field that combines techniques and approaches from business
administration, organizational theory, computer science and information sys-
tems research. These insights have been adopted by numerous companies and
established a market for BPM software solutions and consultancy.

Before we elaborate on the modern understanding of BPM, it is useful
to have a look on business processes first, i.e. the core artifact of BPM. The
different influences of business process management are also reflected by the
various definitions of business processes. Thereby, these definitions emphasize
different facets of business processes. Nordsieck introduces a business process
as being a sequence of activities to produce an output. In his definition, an
activity is the smallest unit of work that is performed by people [309, pp. 27-29].
Similarly, Hammer and Champy understand a business process as a collection
of activities that transforms several inputs into a defined output. Additionally,
the authors explicitly emphasize the customer value of the products [154, p. 38].
Davenport [87, p. 5] extends the previous definitions and includes a particular
order and specific conditions of the activities as being necessary to produce
the output.

Other authors also emphasize the relevance of the business strategy [386,
pp. 4-5] and the use of information and communication technology [137] to
perform the process tasks. A comprehensive definition has been provided by
Weske [437, p. 5] who combines the aforementioned characteristics:

Definition 2.1. (Business Process). A business process consists of a set of
activities that are performed in coordination in an organizational and technical
environment. These activities jointly realize a business goal. Each business
process is enacted by a single organization, but it may interact with business
processes performed by other organizations.

Based on these definitions, BPM can be described as summarizing all
managerial activities that are related to business processes. It integrates
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Fig. 2.1: Business Process Management Life Cycle, adapted from [108, p. 21]

management, organization, controlling and improvement of business processes
to fulfill customer needs and to contribute to the strategic and operational
goals of the organization [386, pp. 4-5]. Ideally, these management activities
related to business processes are arranged in a life cycle as proposed by many
authors (e.g. [5, 298, 55, 437, 108]). This doctoral thesis takes the life cycle of
Dumas et al. [108, p. 21] into account, because it is particularly concerned with
business process models as an artifact. Figure 2.1 depicts the aforementioned
life cycle including all artifacts as results of each life cycle activity. The life
cycle comprises the management activities of identification, discovery, analysis,
redesign, implementation, as well as monitoring and controlling:

• Process Identification: The life cycle is entered by an initial analysis
activity. In this phase, a business problem is posed and affected processes
are identified and related to each other. This phase results in a process
architecture that provides a comprehensive view of the organization’s
processes and their interrelationships.

• Process Discovery : This phase is also termed as-is modeling or process
design and describes the activity of documenting the current state of all
affected processes. In most of the cases, a set of as-is process models are
created for the subsequent analysis.
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• Process Analysis: In this phase, the previously developed process models
are inquired with regard to specific issues causing the business problem.
These issues are then documented and quantified by performance measures,
if possible. As a result, this phase produces a structured overview of all
issues and weaknesses that can be prioritized in terms of impact and
resolution efforts.

• Process Redesign: The process redesign phase identifies feasible changes
to the current processes that solve the identified problems on the one
hand and that allow the organization to fulfill its goals on the other hand.
Therefore, several scenarios are elaborated and compared according to
the performance measures. This implies that process redesign and process
analysis complement each other as the scenarios are evaluated based on
different analysis techniques. The output of this phase is a set of improved
to-be process models.

• Process Implementation: This phase prepares and conducts necessary
changes in order to transform as-is processes into to-be processes. Typi-
cally, process implementation involves organizational and infrastructural
change. Organizational change covers all activities that are related to
change management, while infrastructural change is concerned with the
development and deployment of IT systems that support the execution
of to-be processes. This phase thus results in a set of executable process
models.

• Process Monitoring and Controlling : Finally, after the implementation
of the new processes, process-related data is collected and analyzed to
quantify the process performance with regard to measures and objectives.
Hence, it is possible to identify and correct recurrent errors or minor
deviations. In case of major issues, the life cycle needs to be repeated again
with the performance insights gained from monitoring the processes.

The life cycle shows that process models play an important role in several
phases, such as discovery, analysis, and redesign. These process models serve
as a valuable artifact to document the current process status within the
organization, to analyze the processes with regard to issues and problems, and
to design an improved version of the processes. Therefore, the next section
further elaborates on business process models and business process modeling.

2.2 Overview of Business Process Models

Before we turn to the business process model as the central artifact of this
thesis, we need to discuss the principles of general models. Based on these
principles, it is possible to extend the discussion to business process models
and to provide a definition (Section 2.2.1). Afterwards, we turn to the creation
of process models (Section 2.2.2) and their essential building blocks (Section
2.2.3).
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2.2.1 Principles of Models

From a general viewpoint, a business process model is a specific type of a model.
The word model originates from the Latin word modulus and was frequently
used in the Renaissance to describe an architectural benchmark. In modern
times, the meaning of the term changed and refers to a scheme or blueprint of
real objects [371]. Thereby, models have three characteristics as identified by
Stachowiak [410, pp. 131-132]:

• Mapping : Models are mappings of naturally existing or artificial originals,
which can be models by themselves.
• Reduction: Generally, a model does not include all attributes and charac-

teristics of the originals. Instead, it only considers those that are relevant
for model users.

• Pragmatism: The model is used by a modeler as a substitution of the
original for a certain time and for a certain purpose.

With these characteristics, a model is defined as a simplified mapping of
an original, which was created at a specific point of time and for a specific
purpose. Moreover, this conceptualization has been widely applied by numerous
seminal works, such as (organizational) system engineering [216, 215], enterprise
architectures [314], meta-models and ontologies [160], and software engineering
[258, 272].

However, it needs to be mentioned that this conceptualization is not
free of criticism. Authors criticize that Stachowiak’s conceptualization of a
model abstracts from the subjective perception of the modeler [390, 355, 274].
Among those, Schuette and Rotthowe [390, p. 242] argue that, if a model
had some similarity with the reality, we would have to assume that there is
a reality independent from the observer. In consequence, we would also have
to assume single objectivity of reality that is inherent to the epistomological
position of positivism. Hence, only if each subjective observation of the reality
corresponded exactly to reality itself, a mapping-driven definition of the
term model would be acceptable. Instead, Schuette and Rotthowe propose
an alternative position that regards a model as the result of a construct of a
modeler who examines the elements of a system for a specific purpose at a given
point of time with a specific language [390, p. 243]. The authors propose a shift
from the formal mapping as proposed by Stachowiak towards a construct of
the modeler. Considering a model to be a mapping of an object as subjectively
perceived by a person and taking the definition of Mendling [274] into account,
a business process model is defined as follows:

Definition 2.2. (Business Process Model). A business process model is
the result of creating a mapping of a business process as perceived by a modeler.
The business process can be a real-world process, or a process which has been
conceptualized by the modeler.

The definition shows the dependency of a business process model on the
perception of a modeler. In consequence, different modelers will create different
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models of the same underlying process which makes model creation a complex
task [365]. The complexity of the modeling task arises due to the fact that the
model itself has to comply with certain rules and that each perception has to
be reconciled to represent the original object [134]. Hence, there is a demand
for model creation rules to achieve comparable results.

In order to achieve comparability and inter-subjectivity among process
models, it is necessary to require specific modeling rules and guidelines. These
guidelines facilitate the comprehensibility of the model creation process and
leverage a simplified integration of different models into an enterprise model.
Ultimately, the danger of a defective integration can be reduced [390]. For that
purpose, we can apply the Guidelines of Modeling (GoM) [33, 390, 34] which
contain six principles to enhance the quality of process models. These are the
principles of correctness, relevance, economic efficiency, clarity, comparability,
and systematic design. While the first three principles are mandatory for model
quality, the remaining three principles are considered to be optional.

• Correctness: The guideline of correctness involves two aspects. First, the
model needs to be correct in terms of syntax, i.e. the consistent use of
constructs from the employed modeling notation. Second, the model needs
to be correct with regard to semantics, i.e. the structure and the behavior
of the model is consistent with the underlying business process.

• Relevance: The guideline of relevance demands that only those objects
are represented in the model that are crucial to the universe of discourse
and that they are presented by a suitable modeling notation.

• Economic Efficiency: This guideline imposes an economic restriction
on process models and tries to prevent an over-estimation of the other
guidelines. Hence, it directly relates to the benefits and costs of including
specific aspects of the universe of discourse into the model. For example, it
might be acceptable to not include all elements of the universe of discourse
(and to violate correctness or clarity), if time and costs exceed defined
limits.

• Clarity: The guideline of clarity is concerned with the readability and
the understandability of the process model by different persons. Clarity is
extremely subjective since the understandability depends on the person’s
background and knowledge. For these reasons, clarity is mainly achieved
by layout or naming conventions.

• Comparability: As its name implies, comparability demands the consis-
tent use of all guidelines within a modeling project. This guideline may
refer to layout and naming conventions that are consistently applied on
all process models of such a modeling project. As a result, it is possible
to use process models for inter-model comparisons and draw meaningful
conclusions from them.

• Systematic Design: The guideline of systematic design requires well-
defined relationships between models that belong to different views, for
instance process models and data models. A prominent example that
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Fig. 2.2: Information Modeling Process, adapted from [134, p. 9]

implements this guideline is the ARIS approach [383, 384, 385] which
provides models for specific views as well as a model that presents the
integration of these views.

Despite the guidance that is provided by the GoM and specific process
modeling guidelines (see e.g. [283, 395, 261]), a large number of process models,
in particular in practice, still do not comply with these guidelines [275, 285].
Thus, it is necessary to rework these models in order to ensure the overall
model quality as intended by the GoM. This is of particular importance, if
the process models are used for analysis and simulation scenarios [98, 108] or
for process implementation [109, 37]. Hence, we need to discuss the process of
business process modeling and their building blocks in order to understand
how the guidelines affect the reworking of process models.

2.2.2 Process of Business Process Modeling

A prominent example of creating process models is given by Frederiks and
van der Weide [134] who investigate the process of information modeling, the
required competencies of its participants and determinants of its quality. The
authors propose four core activities that are arranged in a cycle. This procedure
also applies to the creation of process models since they are a subclass of
information models. Moreover, this procedure is also employed by prior research
approaches related to process models (see e.g. [275, 248, 61, 327, 328, 432, 360]).
Figure 2.2 illustrates the four activities, i.e. elicitation, modeling, verification
and validation.
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The cycle is initiated by the elicitation phase. In this phase, the modeler
collects all relevant information objects from the universe of the discourse,
which typically refers to the application domain. Afterwards, the identified
objects need to be verbalized in a common language. In the next step, the initial
specifications are rewritten into a unifying format which results in a semi-formal
specification of the application domain. Typically, the informal specification
is a natural language text which is understandable by all stakeholders [10].
The modeling phase is concerned with the transformation of the informal
specification into a formal specification. Hence, the modelers need to discover
the significant modeling concepts and their relationships. Afterwards, they
need to match sentence structure on modeling concepts, i.e. the elements that
are provided by the selected modeling notation. This phase results in a formal
specification of the domain. In the phase of verification, the formal specification
is checked for internal consistency. In case of process models, this may include
a check for syntactical errors of the modeling notation [4, 274, 286], a control
flow check for soundness and other properties [41, 122, 397], or a check for
naming conventions [238]. In the final validation step, the model is assessed
with regard to the consistency with the universe of discourse which often
requires the consultation and the discussion with process stakeholders. Hence,
a textual description of the conceptual model is created by paraphrasing the
model with the help of information grammars and a lexicon. The textual
description is then compared with the informal specification. However, the
validation remains a very ambiguous task which requires the stakeholders
to find a mapping of the paraphrased text and the informal specification.
Therefore, this step cannot be solved by algorithms [394].

The process of modeling has been further investigated by current research
and provided further insights. The modeling process has been studied by using
specific tools that track the interaction of a modeler with a modeling tool
[326]. This tracking produces event logs that can be analyzed using process
mining techniques [79]. It has been found that good models are correlated with
certain behavioral patterns of modeling [78]. Moreover, the structured process
modeling theory (SPMT) also identifies individual fitting and serialization to
positively influence the resulting process model [77]. In consequence, a good
process model reduces the efforts for the subsequent activities of verification
and validation.

However, process modeling is often conducted in an unstructured way [78]
and requires a rework of the final models, such that verification and validation
of process models is still necessary to achieve high quality models. Closing
the circle to the GoM, verification leverages the guidelines of correctness,
systematic design, and comparability, while validation techniques are inline
with clarity and relevance. Based on the guidelines, verification and validation
techniques will uncover inconsistencies in process models. However, these
inconsistencies may be rooted in different aspects of process models which we
discuss as the building blocks of process models in the next section.
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Fig. 2.3: Conceptualization of a Modeling Technique, adapted from [189]

2.2.3 Building Blocks of Process Models

In order to understand the building blocks, it is helpful to start with the notion
of a modeling technique as depicted in Figure 2.3. Karagiannis and Kühn [189]
identify two major parts of a modeling technique, i.e. a modeling procedure
and a modeling language. On the one hand, the modeling procedure describes
the necessary steps of using the modeling language to create conceptual models.
As an example of a modeling technique, the framework of Frederiks and van der
Weide [134] has been discussed in the previous section. On the other hand, the
modeling language defines the elements with which the model is built. Generally,
any graphical modeling language is described by its syntax, semantics, and
notation. The syntax provides a set of constructs and rules to combine the
model constructs and to create models according to the model grammar. The
semantics describe the meaning of a modeling language and its constructs.
Finally, the notation defines the visualization of a modeling language and
provides a set of graphical symbols that represent the constructs along with
their meaning. Examples of process model languages are the Business Process
Model and Notation (BPMN) [312], the Event-driven Process Chains (EPC)
[384], and Petri Nets [324]. Each of these modeling languages provides graphical
symbols with a specific syntax and semantics to be combined according to
specific rules. Therefore, we consider the notation, the syntax and the semantics
as the building blocks of any process modeling language.

One aspect that is not covered by this framework is the textual annotation
of process model constructs. The task of labeling is, however, important as it
determines the intuitive understanding of process models [285] (principle of
clarity) and thus contributes to the overall quality [220]. Moreover, these labels
are further required for several searching [110, 222, 444, 445] or matching
approaches [436, 245, 202]. It does not make much sense to base a mapping
of process models only on behavioral characteristics of the process models
because they might not necessarily stem from the same business domain and
depict a completely different business process [203]. Indeed, recent research has
shown that the labels of model constructs convey a large share of the overall
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Fig. 2.4: Conceptualization of a Modeling Technique Including Natural Lan-
guage [238]

model semantics [238, 203] which requires an extension of the Karagiannis’
and Kühn’s framework with natural language.

This extension has been conceptualized by Leopold [238, p. 12] who defines
the overall semantics of a process model to be the combination of a modeling
language and a natural language. Hence, modeling language and natural
language are independent concepts which are combined for the purpose of
process modeling. In consequence, the modeling procedure does not only define
rules and guidelines to properly use the modeling language, but also to properly
describe model constructs with natural language. A natural language is based
on an alphabet which comprises a finite set of words to express a specific
scenario. Syntax defines rules on how these words should be combined to
form proper sentences. Semantics defines the meaning of words. Reconsidering
the building blocks of process models, it is apparent that natural language
contributes equally to the overall semantics of a process model and that it also
needs to be part of process models. Consequently, verification and validation
also need to take the natural language into account in order to improve the
overall quality of process models.

2.3 Conceptualization of Business Process Models

Prior conceptualizations of process models describe their characteristics from a
structural and behavioral perspective. Structural formalizations are concerned
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with the symbols of a notation and describe formal rules and relations on how
to combine these symbols. The behavioral formalizations of process models
refer to the execution semantics and describe the behavior of the process model
in an information system. In this context, the behavior of process models is
described by the help of Petri Nets [2]. While this thesis will focus on the
structural dimension of process models, this section will only elaborate a
structural conceptualization which corresponds to the syntax of a modeling
language according to Karagiannis and Kühn [189].

Prior research has introduced syntactical process model definitions that
are dependent on specific modeling notations, such as BPMN or EPC. For the
EPC notation, van der Aalst [3], La Rosa et al. [224], Mendling [274], and van
Dongen et al. [106] give formal definitions of EPCs. Likewise, Dijkman et al.
[104] formally describe the syntax of BPMN process models. In general, all
these definitions agree on the fact that a process model consists of a set of
activities, events, and control flow gateways as well as a binary relation which is
a directed arc between these elements. These common characteristics have been
aggregated into an abstract syntactical definition of process models by several
authors, such as La Rosa et al. [225], Ouyang et al. [316, 317], Polyvyanyy et
al. [339, 340], Weske [437], and Leopold [238]. Indeed, the abstract definition
is more useful in the context of this thesis because it presents techniques that
are independent from particular modeling languages.

The abstract definitions of process models share common properties that
are beneficial for a definition of process models in an operational sense. La Rosa
et al. [225] provide a meta model of process models to leverage the advanced
functionality of the APROMORE model repository. The meta model covers all
necessary elements of a process model, but is not specific enough to define a
process model in an operational sense. The proposed definitions of Ouyang et
al. [316, 317], Polyvyanyy et al. [339, 340], and Weske [437] are, by far, more
specific and propose a format that distinguishes between activities, events,
gateways, and control flow relations. Among the first authors, Dijkman et al.
[102, 103] introduce a process model definition that also considers the labeling
of elements to be an essential part. These ideas have been adopted by Leopold
[238] who provides a comprehensive definition with explicit consideration of
element labeling. This thesis makes use of the definitions given by Leopold [238]
as it aims for an explicit analysis of the natural language labels. Accordingly,
a process model is defined as follows:
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Definition 2.3. (Process Model). A process model P = (A, E, G, F , R,
P , L, ρ, π, λ, γ, τ) consists of six finite sets A, E, G, R, P , L, a binary
relation F ⊆ (A ∪ E ∪G)× (A ∪ E ∪G), a surjective function ρ : A 7→ R, a
surjective function π : R 7→ P , a partial function λ : (A∪E ∪G∪F ∪R) 7→ L,
a function γ : G 7→ {andS , andJ , orS , orJ , xorDS , xorES , xorJ}, and a function
τ : Eint 7→ A, such that

− A is a finite non-empty set of activities.
− E is a finite set of events.
− G is a finite set of gateways.
− N denotes all nodes of the process model, i.e., N = A ∪ E ∪G.
− R is a finite set of resources.
− P is a finite set of pools.
− L is a finite set of text labels.
− F is a finite set of sequence flows. Each sequence flow f ∈ F represents a

directed edge between element types.
− U represents all units of the process model which can carry a label, such

that U = N ∪ F ∪R ∪ P .
− The surjective function ρ specifies the assignment of a resource r ∈ R to

an activity a ∈ A.
− The surjective function π specifies the assignment of a resource r ∈ R to a

pool p ∈ P .
− The partial function λ defines the assignment of a label l ∈ L to a process

model unit u ∈ U .
− The function γ specifies the type of a gateway g ∈ G as andS , andJ , orS ,
orJ , xorDS , xorES , xorJ . The subscripts J and S denote joins and splits,
and the superscripts D and E denote the distinction between data and
event-based split gateways.

− The function τ assigns an intermediate event eint ∈ Eint to an activity
(attached event). If such an event occurs, the execution of the respective
activity is interrupted.

We illustrate the previous definition for an exemplary process model,
before we define further properties of process models. Consider the depicted
job application process of Figure 2.5. The process is started after an application
was received by a company. In the subsequent step, the application is checked
for completeness. In case that the application documents are incomplete,
the missing documents are requested from the applicant. Afterwards, these
documents are evaluated by the help of a particular software application.
Finally, a decision has to be taken which either results in accepting or rejecting
the applicant. This last step finishes the application process.
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Fig. 2.5: An Example for a Job Application Process

According to definition 2.3, the job application process is described by P =
(A, E, G, F , R, P , L, ρ, π, λ, γ, τ) such that

A = {a1, a2, a3, a4, a5}
E = {e1, e2}
G = {g1, g2}
F = {(e1, a1), (a1, g1), (g1, g2), (g1, a2), (a2, g2), (g2, a3), (a3, a4),

(a4, a5), (a5, e2)}
R = ∅
P = ∅
L = {Check application, Request missing papers, Evaluate via

application, Decision, Accept/reject the applicant, Application

received, Application finished, Documents complete?}
λ(a1) = Check application, λ(a2) = Request missing papers

λ(a3) = Evaluate via application, λ(a4) = Decision

λ(a5) = Accept/ reject the applicant

λ(e1) = Application received, λ(e2) = Application finished

λ(g1) = Documents complete?

λ((g1, g2)) = yes

λ((g1, a2)) = no

γ(g1) = xorES , γ(g2) = xorJ

This thesis also uses existing notations for predecessors and successors of
nodes, incoming and outgoing flows, paths [237] in order to allow for a more
concise specification of process models and to facilitate the conceptualization
of the techniques.

Definition 2.4. (Predecessors and Successors of Nodes). Let N be a
set of nodes of a process model P and F ⊆ N ×N a binary relation over N
representing the sequence flows. For each node n ∈ N , the set of preceding
nodes is given by •n = {x ∈ N | (x, n) ∈ F}, and accordingly the set of
successing nodes is given by n•= {x ∈ N | (n, x) ∈ F}.
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Definition 2.5. (Incoming and Outgoing Flows). Let N be a set of nodes
of a process model P and F ⊆ N ×N a binary relation over N representing
the sequence flows. For each node n ∈ N , the set of incoming flows is given by
nin = {(x, n) | x ∈ N ∧ (x, n) ∈ F}, and accordingly the set of outgoing flows
is given by nout = {(n, x) | x ∈ N ∧ (n, x) ∈ F}.
Definition 2.6. (Path). Let P = (A, E, G, F , R, P , L, ρ, π, λ, γ, τ) be
a process model, and N a set of nodes. There is a path between two nodes
x ∈ N and y ∈ N , denoted with x  y, if there exists a sequence of nodes
n1, ..., nk ∈ N with x = n1 and y = nk such that for all i ∈ 1, ..., k − 1 holds:
(ni, ni+1) ∈ F .

Once again, the Definitions 2.4 and 2.5 are illustrated by referring to the job
application process depicted in Figure 2.5. Consider the gateway g1 ∈ G ⊆ N .
Then, the set of predecessors (•g1) and successors (g1•) as well as the sets of
incoming flows (gin1 ) and outgoing flows (gout1 ) is given as follows:

− •g1 = {a1}
− g1•= {a2, g2}
− gin1 = {(a1, g2)}
− gout1 = {(g1, a2), (g1, g2)}

Further, we consider the activities a1 and a3. There is a path that connects
these two nodes a1  a3, since there is a sequence of nodes 〈a1, g1, g2, a3〉 and
a set of flow relations (a1, g1), (g1, g2), (g2, a3).

Moreover, we define several subsets, which are of particular interest for
characterizing process models and specifying the techniques of this thesis [237].

Definition 2.7. (Subsets). For a process model P = (A, E, G, F , R, P , L,
ρ, π, λ, γ, τ) the following subsets are defined for events and labeled model
elements:

– Estart = {e ∈ E | •e = ∅}, being the set of start events.

Eint = {e ∈ E | •e 6= ∅ ∧ e• 6= ∅}, being the set of intermediate

events.

Eend = {e ∈ E | e• = ∅}, being the set of end events

– S = {g ∈ G | γ(g) = andS

∨ γ(g) = xorDS

∨ γ(g) = xorES

∨ γ(g) = orS}, being the set of split gateways.

– J = {g ∈ G | γ(g) = andJ

∨ γ(g) = xorDJ

∨ γ(g) = xorEJ

∨ γ(g) = orJ}, being the set of join gateways.
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– AP
λ = {a ∈ A | a ∈ dom(λ)}, being the set of labeled activities.

EP
λ = {e ∈ E | e ∈ dom(λ)}, being the set of labeled events.

GP
λ = {g ∈ G | g ∈ dom(λ)}, being the set of labeled gateways.

FP
λ = {f ∈ F | f ∈ dom(λ)}, being the set of labeled sequences

flows.

RP
λ = {r ∈ R | r ∈ dom(λ)}, being the set of labeled resources.

PP
λ = {p ∈ P | p ∈ dom(λ)}, being the set of labeled pools.

We consider again the example process models from Figure 2.5. Definition
2.7 reveals the following subsets for the job application process:

− Estart = {e1}
− Eint = ∅
− Eend = {e2}
− S = {g1}
− J = {g2}
− AP

λ
= {a1, a2, a3, a4, a5}

− EP
λ

= {e1, e2}
− GP

λ
= {g1}

− FP
λ

= {(g1, g2), (g1, a2)}
− RP

λ
= PP

λ
= ∅

Finally, we also introduce the notion of a process model repository as being
the set of several process models [431, 350]. Along with that, we define useful
subsets for a process model repository P.

Definition 2.8. (Process Model Repository). Let Pi = (Ai, Ei, Gi, Fi,
Ri, Pi, Li, ρi, πi, λi, γi, τi) (i = 1, · · · , n) be a number of n different process
models. A process model repository P is defined as being the set of all n
process models:

P =
⋃

i=1,...,n

Pi

Moreover, let APi

λ
be the set of all labeled activities, EPi

λ
the set of all labeled

events, GPi

λ
the set of all labeled gateways of a given process model Pi of a

repository P. For a process model repository, we define the following subsets:

− AP
λ

=
⋃

i=1,...,n

APi

λ
the set of all labeled activities of the repository.

− EP
λ

=
⋃

i=1,...,n

EPi

λ
the set of all labeled events of the repository.

− GP
λ

=
⋃

i=1,...,n

GPi

λ
the set of all labeled gateways of the repository.
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A process model has to fulfill a set of specific requirements in order to
be syntactically correct. Accordingly, the following definition summarizes the
rules for syntactic correct process models [311, 277, 238].

Definition 2.9. (Syntactical Correctness of Process Models). A process
model P = (A, E, G, F , R, P , L, ρ, π, λ, γ, τ) is called syntactically correct,
if it fulfills the following requirements:

1. A process model contains at least one activity: |A| ≥ 1.
2. Each node, that is not a start or end event, is on a path from a start to an

end event: ∀n ∈ (N \ (Estart ∪ Eend)) : ∃estart ∈ Estart, eend ∈ Eend, such
that estart  n eend.

3. The latter rule implies that the sets of start and end events are never
empty: Estart 6= ∅ ∧ Eend 6= ∅.

4. Start events and attached intermediate events have no incoming and exactly
one outgoing flow: ∀e ∈ Estart ∪ dom(τ) : |•e| = 0 ∧ |e•| = 1.

5. Non-attached intermediate events have exactly one incoming and one
outgoing flow: ∀eint ∈ (Eint ∪ dom(τ)) : |•eint| = 1 ∧ |eint•| = 1.

6. End events have exactly one incoming and no outgoing flow: ∀eend ∈ Eend :
|•eend| = 1 ∧ |eend•| = 0.

7. Activities have exactly one incoming and one outgoing flow: ∀a ∈ A :
|•a| = 1 ∧ |a•| = 1.

8. Split gateways have exactly one incoming and at least one outgoing flow:
∀g ∈ S : (|•g| = 1 ∧ |g•| > 1).

9. Join gateways have at least one incoming and exactly one outgoing flow:
∀g ∈ J : (|•g| > 1 ∧ |g•| = 1).

10. The process model may not contain unlabeled activities: |Aλ| = |A|.

In the following, we discuss the syntactical correctness of the example
process model from Figure 2.5. Accordingly, the process is checked against
each of the requirements from definition 2.9. The job application process is
correct with regard to the model syntax as it fulfills the following requirements:

1. The job application process has five activities in total: |A| = 5.
2. All nodes of the process model are on a path from the start event to the end

event, because there is no isolated node in the process model. Moreover,
the defined flow relations always link the start event to a specific node
n ∈ N and also link n with the end event.

3. The process has at least one start event and at least one end event:
|Estart| = 1 ∧ |Eend| = 1.

4. The start event of the job application process has no incoming flow (•e1| =
0) and exactly one outgoing flow (|e1•| = 1). Further, it does not specify
any intermediate events such that the requirements on the number of
incoming and outgoing flows does not apply here.

5. The job application does not specify any non-attached intermediate events
such that the requirements on the number of incoming and outgoing flows
for non-attached intermediate events does not apply here.
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6. The end event of the process has exactly one incoming flow (•e2| = 1) and
no outgoing flow (|e2•| = 1).

7. Each activity of the job application process has exactly one incoming
and one outgoing flow. The process meets the condition ∀a ∈ A : |•a| =
1 ∧ |a•| = 1.

8. The process model specifies exactly one split gateway g1 ∈ G. This gateway
has one incoming flow (—•g1| = 1) and two outgoing control flows (|g1•| =
2) which fulfill the respective requirement.

9. The process model specifies exactly one join gateway g2 ∈ G. This gateway
has two incoming flows (—•g2| = 2) and one outgoing control flow (|g2•| =
1) which fulfill this requirement.

10. All activities of the process model are labeled: |A| = |Aλ| = 5

The previous definitions have provided a baseline to assess the correctness
from a syntactical perspective. However, it has to be noted that these criteria
for syntactical correctness only apply to the modeling constructs and do not
take the quality of the text labels into account. The only requirement associated
with labeling refers to the labeling of activities. Theoretically, this requirement
would allow to label each activity with an abstract letter that does not convey
any particular meaning. Apparently, such process models have serious issues
with regard to the clarity principle and are not of much use when analyzing
them. Thus, deficient models need to be reworked in a subsequent step which
restores the quality of process models and textual labels alike. In the next
section, we will therefore investigate particular analysis techniques to improve
process model quality.

2.4 Summary

This chapter has provided a general overview to business process management.
The chapter explains the main concepts and highlights the importance of
business process models within the life cycle of BPM. A deeper investigation
into the nature of process models has revealed the subjective nature of process
models and motivates the need for modeling principles to facilitate inter-
subjectivity and comparability of related process models. Since a considerable
number of process models does not comply with these principles, it is necessary
to rework them in order to remove clarity and consistency issues. These issues,
however, may affect different aspects of the process model. We have argued
that these aspects either relate to the formal content of the modeling language
or the textual content of the natural language. We have further identified
that both modeling and natural language require syntax and semantics in
order to describe process models. For a modeling language, the syntax defines
how modeling symbols are combined in a meaningful way while the semantics
provide an interpretation of these symbols. For a natural language, the syntax
describes grammatical rules on how to combine words to sentences and the
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semantics defines the meaning of words and sentences. Based on these building
blocks, we have provided a formal conceptualization, the basic characteristics,
as well as a formal definition of syntactical correctness of process models. If we
apply the correctness definition on an example process model, we have observed
observe that the correctness criteria mainly focus on the modeling language
aspect, but neglect model element labels. In order to assess the quality of
these element labels, we require a further insights into different refactoring
and analysis techniques.



3

Refactoring of Business Process Models

This chapter is concerned with the refactoring of process models that do not
comply with the syntactical and semantic rules of the modeling or the natural
language. To this end, Section 3.1 presents the current state of process modeling
in practice . Afterwards, Section 3.2 discusses correction and refactoring
approaches of process models which have been developed by prior research.
Section 3.3 will then summarize the main results of the literature review and
identify open research gaps. Finally, Section 3.4 gives a conclusion of the main
insights of the chapter.

3.1 Process Model Refactoring

This section is dedicated to process model refactoring, which aims for im-
proving the quality of process models with regard to understandability and
maintainability. Thus, we begin with a motivation of refactoring by discussing
empirical insights on the quality of process models in Section 3.1.1. Afterwards,
Section 3.1.2 develops a framework which structures prior research on process
model refactoring along with several categories.

3.1.1 Empirical Insights on Process Model Correctness

Several researchers have investigated correctness aspects of process models, its
determining factors and consequences thereof. In general, we can distinguish
between empirical studies that provide insights on the usage of modeling
language and on specific inconsistencies affecting the process model quality. In
the first group, Recker [357] investigated the actual BPMN usage by conducting
a world-wide survey with 590 BPMN users. Among others, his findings provide
insights into the problems and desires practitioners have with respect to the
notation. For example, practitioners wish for more possibilities to model the
organization in terms of roles and business areas, while decreasing the number
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of different event types at the same time [357], which would significantly
increase the ease of use and the correctness of process models [356].

In the second group of studies, Mendling et al. [279, 284, 286] extensively
analyze the connection between formal errors and a set of metrics that capture
various structural and behavioral aspects of a process model. Their findings
demonstrate that errors do not occur by chance and that certain characteristics
like structuredness are desirable to avoid errors in process models. Moreover, it
is desirable to restrict the number of model elements and arcs between them to
decrease the error probability of the process model and to support the model
comprehension task. Leopold et al. [235] enrich these insights by identifying
inconsistencies rooted in the structure, layout, and labeling of process models
from the perspective of practitioners. The authors report that particularly
representational choices for splits and joins, the correct use of message flow,
the proper decomposition of models, and the consistent labeling appear to be
connected with quality issues and give five specific recommendations how these
issues can be avoided in the future and how the comprehension of process
models can be increased. Specifically, adjusting the model granularity to user
preferences [211] and using an imperative style of labeling [285] are further
examples.

Despite these rich insights into model correctness and comprehension,
the knowledge has not been transferred to industry yet. In the beginning,
studies report error rates between 10% to 20% caused by the erroneous
combination of elements in process models [286, 275]. Similarly, Weber et al.
[431] identify a rate of unsound models that ranges from 3.3% up to 37.5%.
Most recently, Leopold et al. [235] investigate 585 process models from six
companies for quality issues. The authors revealed that, although the models
comply with syntactical modeling and layout rules, there are inconsistencies,
such as inconsistency among process model hierarchies (80% of models affected),
process model size (around 48% of models affected) as well as the labeling (40%
to 47%), that affect the correctness of process models. Moreover, these numbers
are reported in situations in which organizations tend to model all business
process [369] and to create several hundreds or thousands of separate process
models in a process model repository [370]. Since process model repository
technology is increasingly emerging [115, 114, 113, 225], there is a general need
to maintain process model quality.

For this purpose, verification and validation techniques are two comple-
mentary steps [174, p. 452]. Verification addresses the general properties of a
process model and ensures that the formal representation of the process model
is correct. Validation is concerned with the consistency of the model and the
universe of discourse and ensures that the model resembles the object it is
supposed to. While verification typically can be supported by formal analy-
sis techniques, validation requires the consultation and the discussion with
involved business experts. Thus, it is nearly impossible to perform validation
steps in a fully automatic way [242].
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Another possibility to maintain process model quality is given by process
model refactoring. Process model refactoring stems from software engineering
[313] and refers to the process of changing a software system in such a way that
it does not alter the external behavior of the code, yet improves its internal
structure [131]. Analogously, process model refactoring improves the internal
quality of a model such that it becomes easier to read and maintain without
affecting the semantics or behavior of the respective process model.

Research has proposed a considerable number of approaches to assess the
quality of process models. For these reasons, the next section elaborates a
structure to categorize such approaches.

3.1.2 Refactoring Categories

We use the two essential building blocks as elaborated in the framework by
Leopold [237, p. 12] in order to derive different structure-given categories
of analysis approaches. The framework distinguished between the modeling
language and the natural language which are combined for the purpose of
creating process models (cf. Figure 2.4). The formal content of a process model
relates to the modeling language, which provides symbols and rules to combine
these symbols. Typically, the formal content describes the structure and the
execution behavior of the underlying business process. The textual content
refers to the natural language part of process models and enriches the formal
description of the process model with additional semantics of the business
domain. Hence, we use the formal content and the textual content as the
main categories to classify the existing approaches. Additionally, we further
elaborate suitable sub categories for each of the main categories.

With regard to the formal content of a process model, we consider the
framework of Karagianis and Kühn [189] as well as from Leopold [237, p. 12].
All of these authors argue that the formal content of a process model can
be discussed in terms of syntax and semantics. The syntax defines a set of
constructs and rules on how to combine these constructs. Semantics describes
the meaning of these constructs. Similarly, Lindland et al. [255] as well as
Krogstie et al. [219, 220] also recognize syntax and semantics to contribute to
the overall quality of a process model. In addition to that, the authors propose
pragmatics to be part of the formal content which refers to the purposefulness
and comprehensibility of a process model. Therefore, we do not only consider
syntax and semantics but equally include pragmatics to be a sub category to
structure the model analysis techniques.

With regard to the textual content of a process model, we use again the
framework of Leopold [237, p. 12] to develop suitable sub categories. The author
discusses the textual content in terms of syntax and semantics. The syntax
inquires the formal and structural relations between words, while semantics
investigate the meaning of words and the relationship that arise from the
various meanings of words. In addition to that, we can extend the discussion of
the textual content with the studies of pragmatics. Ferdinand de Saussure, the
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Fig. 3.1: Categorization Framework for Process Model Analysis Techniques

founder of our modern understanding of linguistics, views natural language as
a system of signs and relations between these signs [381, p. 16] and proposes
to further investigate language from the pragmatic perspective. Pragmatics
is concerned with the relation of words to interpreters [296, pp. 6-7] and how
they understand these words in a given context or discourse [43, p. 152]. Thus,
we can also include the dimensions syntax, semantics, and pragmatics into the
categorization structure.

In addition to the distinction of the formal content and the textual content,
we further enrich the framework with a consideration of coverage and the degree
of automation. The coverage (Cov) is motivated by the work of Mendling
et al. [278], who identify several challenges with regard to semantic process
modeling. The authors define the coverage as being the extent of process model
elements that are covered by analysis approaches. Accordingly, we differentiate
between approaches that focus on single model elements (SE), on the entire
process model (PM), or on a repository of several process models (PMC). The
extension of the categories with regard to the degree of automation (DoA) is
particularly interesting from the perspective of a model repository [370]. Since
the assessment of such a large repository can be hardly done in a manual way
[35], we are interested to what extent the user is involved when the approaches
are applied. Thus, we distinguish between non-automatic approaches (NA),
semi-automatic approaches (SA) and fully automatic approaches (FA). Non-
automatic techniques require the user to perform an extensive amount of
manual work to apply the proposed approach. Semi-automatic techniques
perform a considerable amount of work in an automatic way and involve the
user for important decisions. Fully automatic techniques autonomously perform
all necessary steps and present the final result to the user according to given
input parameters. Typically, these approaches do not require any further user
assistance.
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Figure 3.1 gives an overview of the framework and its criteria. This frame-
work is used to categorize existing work and to structure the following discussion
of relevant approaches and techniques of process model refactoring.

3.2 Classification of Refactoring Approaches

In the subsequent sections, we discuss available approaches according to the
categorization structure. Section 3.2.1 presents relevant approaches that are
concerned with the refactoring of the flaws of the formal content of process
models. Section 3.2.2 discusses those approaches that improve the textual
content of process models.

3.2.1 Refactoring of the Formal Content

Table 3.1 provides an overview of analysis and refactoring approaches that
address the syntax of the formal content of a process model. In this way, we
roughly distinguish between approaches that either provide fundamental formal-
ization of syntactical properties or technical capabilities to detect and refactor
violations of these properties. Note that some of the discussed approaches are
not refactoring techniques in the aforementioned sense. Nevertheless, they are
considered in the discussion because they may trigger refactoring initiatives
to improve the quality of the process model. Regarding the formalizations of
syntactical properties, van der Aalst [1] introduces the notion of a workflow
net which imposes specific conditions on Petri net-based process models to be
sound. It requires that a process model has exactly one initial node and one
final node. Moreover, it demands that each node in a Petri Net should be on a
directed path from initial node to a final node. Following this idea, Puhlmann
and Weske [347] as well as Weske [437, pp. 270-271] introduce structural
soundness to business process models in any modeling language. Nüttgens and
Rump [311], Mendling et al. [277], and Laue and Mendling [230] provide a set
of criteria for syntactically correct EPCs. The introduced criteria have been
adapted by Definition 2.9. Moreover, Mendling and Nüttgens [280] introduce
the concept of implicit element and arc types, which fosters the automatic
evaluation of syntactical correctness and connector validity by looking at the
implicit arc type group of the ancestor and descendant arcs.

Regarding the detection of errors, Mendling and Nüttgens [281] provide an
implementation of the given EPC syntax definition in XML and use Schema-
tron to automatically verify the syntactical correctness of EPCs. Puhlmann
and Weske [347] also provide technical means to verify structural soundness
of process models. Sadiq and Orlowska [377, 378] propose a syntactical ver-
ification technique that relies on reduction. The technique is available via
the modeling and verification tool FlowMake. Gruhn and Laue [149, 150] use
logical programming with Prolog to verify structural properties of process
models. The approach identifies those models that violate the given properties
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Table 3.1: Overview of Syntactical Refactoring Techniques for the Formal
Content of Process Models

Author Approach Cov. DoA

Formalizing Syntactical Properties

van der Aalst [1] Concept of Workflow Nets PM NA
Puhlmann and Weske [347], Definition of Structural Soundness PM NA
Weske [437, pp. 270-271]
Nüttgens and Rump [311], Definition of Syntactically Correct EPCs PM NA
Mendling et al. [277],
Laue and Mendling [230]
Mendling and Nüttgens [280] Definition of Implicit Arcs for Syntacti-

cal Correctness of EPCs
PM NA

Error Detection and Syntax Refactoring

Mendling and Nüttgens [281] Syntactical Verification of EPCs with
Implicit Arcs

PM FA

Puhlmann and Weske [347] Structural Soundness Verification with
π-Calculus

PM FA

Sadiq and Orlowska [377,
378]

Syntactical Verification with Graph Re-
duction Techniques

PM FA

Gruhn and Laue [149, 150] Verification of Structural Properties
with Prolog

PM FA

Gruhn and Laue [152] Error Detection with Label Analysis PM FA
Awad and Puhlmann [20] Syntactical Error Detection with Queries PM FA
Verbeek et al. [423], Petri Net Editors with Syntactical Check PM FA
Wolf [442]
Mendling et al. [286, 274] Metric-based Error Detection and Pre-

diction
PM FA

La Rosa et al. [223, 226] Syntax Refactoring Patterns PM NA
Gambini et al. [138] Error Correction with Simulated Anneal-

ing
PM FA

by translating process models and structural properties into Prolog facts. An
enhanced version of their approach [152] uses text label analysis of activities
and events to detect logical errors in the model structure. For example, an
application cannot be rejected and accepted at the same time. Awad and
Puhlmann [20] use queries to detect a broad range of common structural
error patterns leading to deadlocks. Verbeek et al. [423] develop a workflow
verification tool called Woflan. Woflan uses Petri net-based analysis techniques,
which ensure, among others, the free-choice or the well-structuredness property
of Petri nets. Similarly, the LoLA tool [442] detects syntactical errors in Petri
nets and notifies the user about them. Mendling et al. [274, 286] have developed
a set of metrics that assess different syntactical aspects of process models,
such as density, partitionability, cyclicity or concurrency, which aim for the
detection and prediction of formal errors in process models. By employing a
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Table 3.2: Overview of Semantic Refactoring Techniques for the Formal Content
of Process Models

Author Approach Cov. DoA

Formalizing Semantic Properties
Murata [299] Formalization of Liveness and Bounded-

ness for Petri Nets
PM NA

Desel and Esparza [99] Introduction and Characterization of
Free-Choice Petri Nets

PM NA

van der Aalst [1] Definition of Soundness Criterion for
Workflow Nets

PM NA

Martens [267, 269] Definition of Weak Soundness PM NA
Dehnert and Rittgen
[94]

Definition of Relaxed Soundness PM NA

Mendling [273] Formalization of EPC soundness PM NA

Detection and Refactoring of Semantic Violations

Kemper and Bause [191] Verification Algorithm for Liveness and
Boundedness of Petri Nets

PM NA

Verbeek et al. [423], Petri Net Editor with Semantic Checks PM FA
Wolf [442]
Fahland et al. [122] Verifying Soundness with SESE decom-

positions
PM FA

Puhlmann and Weske
[347]

Soundness Verification with π-Calculus PM FA

Puhlmann [346]
Martens [268] Verification of Weak Soundness PM FA
Mendling and van der
Aalst [276]

Verification of EPC Soundness PM FA

Gruhn and Laue [151] Detection of Control Flow Errors with
Prolog

PM FA

Fahland and van der
Aalst [124, 123]

Repairing Process Models according to
Observed Behavior

PM FA

Buijs et al. [63] Adjusting Models on the Basis of Event
Logs

PM FA

logistic regression, these error metrics then predict the error probability of a
business process model without any deeper analysis. La Rosa et al. [223, 226]
introduce a set of modification patterns that improve the syntax of a process
model in order to increase its understandability. Among others, the authors
propose to use block-structuring or duplication measures, which involves a
modification of the model syntax and an improvement of the internal structure
of the model. The technique of Gambini et al. [138] uses simulated annealing on
Petri nets to compute a number of change-minimal corrections that transform
a syntactically erroneous net into a correct one.
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In Table 3.2, we summarize those approaches that evaluate the semantics
of the formal content and detect problems that relate to the general behavior
and the execution semantics of process models. We also discuss approaches
which put a stronger focus on semantic correctness because they may trigger
refactoring initiatives to improve the quality of the process model. From a
general perspective, there are semantic approaches that formalize semantic
properties or provide technical support for the detection and refactoring of
semantic violations.

Among the approaches that formalize semantic properties, Murata [299]
summarizes prior work on semantic properties of Petri nets. Among others,
he discusses the notion of liveness and boundedness and their relevance for
Petri Nets. While liveness ensures that Petri Net transitions may fire in every
reachable marking, boundedness ensures that a Petri net does not contain
more than a specific number of tokens in all reachable markings. Desel and
Esparza [99] introduce free-choice Petri nets as a specific class of Petri nets and
further conceptualize desirable properties of these nets, such as the liveness
and boundedness property. Van der Aalst [1] builds upon these works and
introduces the criterion of soundness to Petri nets used to model workflow
systems. The soundness criterion demands that for any case, a process instance
will terminate eventually and that at the moment the instance terminates
there is a token in the final node and all the other nodes are empty. Besides the
classical notion of soundness, several authors introduce less strict definitions
of soundness, such as weak soundness [267, 269], relaxed soundness [94], or
lazy soundness [346]. There is also the notion of EPC soundness as formalized
by Mendling [273].

Among the approaches that detect and refactor semantic violations, Kemper
and Bause [191] introduce an efficient algorithm to assess the liveness and
boundedness property of Petri nets in polynomial time. However, since their
approach provides only a theoretical construct to assess these properties, the
tools Woflan [423] and LoLA [442] offer technical means for semantic checks.
Woflan analyzes process models in Petri net notation with regard to several
desirable properties, such as boundedness, liveness, and soundness. Similarly,
LoLA also analyzes Petri nets with regard to these properties by creating
and exploring a reduced state space. With regard to the soundness property,
Fahland et al. [122] use single-entry-single-exit (SESE) decompositions. In
contrast to the aforementioned approaches, the authors’ approach scales well
with the model size and is capable to determine the soundness property
within milliseconds, even for large process models from industry. Martens
[268] also proposes a technical implementation to check the weak soundness
criterion. Puhlmann and Weske [347] as well as Puhlmann [346] use the π-
calculus to formalize the aforementioned soundness properties and describe
technical means for their automatic assessment. With regard to EPC soundness,
Mendling and van der Aalst [276] employ a set of reduction rules for the
automatic verification of the EPC-specific soundness property. An approach
based on logical programming is proposed by Gruhn and Laue [151]. The
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Table 3.3: Overview of Pragmatic Refactoring Techniques for the Formal
Content of Process Models

Author Approach Cov DoA

Rework of Model Layout
Effinger et al. [111] Analysis of Layout Preferences in Mod-

eling Tools
PM NA

Effinger and Siebenhaller
[112]

Auto-Layout Algorithm for Process
Models

PM FA

Gschwind et al. [153] Auto-Layout Algorithm embedded in
Modeling Editor

PM FA

Malesevic et al. [259] Auto-Layout Algorithm for Process
Models in UML activity diagram nota-
tion

PM FA

Visualization

Mendling and Recker [282] Enriching Activities with Graphical
Icons

SE NA

La Rosa et al. [223, 226] Modification of Process Model Layout PM NA
Reijers et al. [358] Symbol Highlighting SE NA

Detection and Refactoring of Comprehensibility Issues

Gruhn and Laue [151] Detection of Bad Modeling Style in Pro-
cess Models with Prolog

PM FA

Polyvyanyy et al. [338, 337] Block Structuring of Unstructured Pro-
cess Models

PM FA

Reijers et al. [359] Identifying Suitable Fragments for Build-
ing Modular Sub Processes

SE FA

authors develop a heuristic approach that identifies several behavioral violations
in process models by translating EPC process models and desirable properties
into Prolog facts. The Prolog inferences are then capable to detect behavioral
errors, such as deadlocks and livelocks. The approaches of Fahland and van der
Aalst [124, 123] and Buijs et al. [63] go one step further and provide technical
means to automatically correct semantic inconsistencies. While the approach
of Fahland and van der Aalst [124, 123] investigates the problem of adjusting
and aligning a process model with regard to the process that is taking place
in reality, Buijs et al. [63] present a technique that automatically improves the
process model on the basis of the observed behavior as recorded in the event
logs.

Table 3.3 gives an overview of recent approaches that address the pragmatic
aspect in a process modeling language. As mentioned, pragmatics is concerned
with the comprehensibility of a process model in a given context. Thus, most
cases of pragmatic issues are related to the layout of process models which
complicates its comprehensibility. Accordingly, we distinguish approaches that
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rework the layout of a process model, improve the visualization of specific
aspects, and detect or refactor comprehensibility issues.

In order to rework the layout of a process model, several researchers have
investigated automatic layout capabilities for process models. Effinger et al.
[111] analyze layout preferences of user groups when modeling with BPMN.
The authors present a set of layout criteria that are formalized and then
confirmed by a user study. The study reveals preferences of single user groups
with respect to secondary notation and layout aesthetics. From their results,
proposals for adaptions of software tools towards different BPMN users can
be derived. Moreover, Effinger and Siebenhaller [112] propose an approach
to increase the readability of process visualizations. The approach is based
on a graph-geometric algorithm that performs constrained cuts on given
model visualizations. Malesevic et al. [259] develop a software tool for the
automatic visualization of process model represented by UML activity diagrams.
The implemented tool takes the XMI-based representation of the activity
diagram as input and automatically generates its layout in accordance with
the UMLDI specification. Gschwind et al. [153] propose a modeling editor
that composes process models with larger process fragments that foster the
creation of business process models of higher quality. Their approach also offers
auto-layout capabilities that organize the process model in a structured way.

Approaches that improve the visualization of process models provide em-
pirical evidence on the effects of highlighting relevant elements in process
models such that the sense-making of process models is supported. For that
purpose, Mendling et al. [282] develop a systematic approach to graphically
represent verb classes through the use of graphical icons such that the resulting
process models are easier and more readily understandable by end users. As
a result, the authors enrich the activities that convey a particular verb class,
e.g. to process or to modify, with icons that graphically represent the action
that has to be carried out. La Rosa et al. [223, 226] propose and introduce
a set of layout patterns to handle the complexity of process models and to
improve model comprehension. They also provide empirical evidence how the
introduced measures positively impact model comprehension. Reijers et al.
[358] adapt the concept of syntax highlighting to process models in order to
support human sense making of these models. In particular, the approach
employs coloring of matching gateways to emphasize the beginning and the
end of a gateway block. The experimental evaluation shows that users with
colored models performed significantly better than those with regular models
and were able to draw correct conclusions from the model.

Regarding the detection and refactoring of comprehensibility issues, Gruhn
and Laue [151] make use of logical programming to detect bad modeling
practice. Here, the authors formalize patterns that hinder the understandability
of process models. For example, these rules point to instances where process
models excessively use OR gateways that could be replaced by a simple XOR
gateway. Moreover, they identify cases when an XOR gateway splits the control
flow and results in two or more alternative events which do not affect the future
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execution of the process. Polyvyanyy et al. [338, 337] propose techniques that
transform unstructured graph-based process models into block-structured ones.
The advantage of such block-structured models is that every split gateway has
a corresponding join gateway resulting in a self-contained block. This block
is then easier to comprehend and less error-prone [229, 231]. Reijers et al.
[359] explore different criteria to automatically derive process fragments that
are worth capturing as sub processes. These criteria implement the concepts
of block-structuredness, connectedness, and label similarity to identify sub
process fragments.

3.2.2 Refactoring of the Textual Content

Similarly to the previous section, we will discuss existing approaches to assess
the correctness of the textual content of process model, i.e. the correctness
and the consistency of the process model elements labels.

Table 3.4 provides an overview of the relevant approaches that address the
quality and correctness of text labels in process models. Syntactical approaches
investigate the grammatical structure of text labels and provide means to
improve the labels with regard to understandability. First of all, there exist
several guidelines that particularly address the labeling of process model
elements [283, 395, 261]. For example, these guidelines suggest that activities
in process models should begin with an action verb which is followed by an
object. Leopold et al. [248, 249] propose a refactoring technique that reworks
the syntactical structure of labels in order to correct text labels that do not
comply with these guidelines. The authors employ different layers of label
context for an accurate classification of the labeling style. After the label style
has been recognized, the label is parsed and transformed according to the
aforementioned naming guidelines. This approach has also been extended to
the languages German and Portuguese [238]. Becker et al. [31, 32] develop a
tool that provides modeling support for the naming of process model elements.
The tool already enforces specific naming conventions during the process of
modeling and ensures that they are automatically fulfilled. Thus, it is not
necessary to correct the labels afterwards. Similarly, Delfmann et al. [96] as
well as Havel et al. [157] introduce a prototype which guides users through
the process of resolving naming violations by providing an automatic list of
correct phrases.

Semantic approaches investigate the meaning of labels and the relationship
of the concepts they refer to. Van der Vos [425] uses a semantically based
lexicon to check the quality of text elements. It ensures that words and phrases
of model element labels are used in a linguistically meaningful and sense-
making way. For that purpose, the technique checks if the label correctly
refers to a concept or an object of the real world and if the relation between
several objects makes sense in the context of a model. Weber et al. [433, 434]
propose a semantic annotation approach that enriches process model activities
with preconditions and effects and propagate those for semantic consistency
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Table 3.4: Overview of Refactoring Techniques for the Textual Content of
Process Models

Author Approach Cov. DoA

Syntax
Sharp and McDermott
[395],

Naming Conventions for Process Model
Elements

SE NA

Mendling et al. [283],
Malone et al. [261]
Leopold et al. [248, 249] Parsing and Refactoring of Activity La-

bels
SE FA

Leopold et al. [238] Detecting and Correcting Naming Vio-
lations

SE FA

Becker et al. [31, 32] Enforcing of Naming Conventions during
Modeling

SE SA

Delfmann et al. [96], Prototype for Naming Convention En-
forcement

E SA

Havel et al. [157]
Semantics
Van der Vos [425] Verifying Concept Relationships with a

Semantic Lexicon
SE NA

Weber et al. [433, 434] Semantic Annotation and Verification
with Preconditions and Effects

PM SA

Friedrich [135] Measuring Ambiguity of Process Model
Labels

SE FA

Becker et al. [31, 32] Preventing Ambiguity with a Domain
Thesaurus

SE SA

Havel et al. [157] Resolving Synonyms with User-defined
Dominant Synonyms

SE SA

Pragmatics
Friedrich [135] Metrics for the Specificity of Labels SE FA
Leopold et al. [246] Label Granularity Measurement with

Language Analysis
PM FA

Koschmider and Blan-
chard [208]

Identification of Non-Uniformly Speci-
fied Elements

SE SA

Leopold et al. [243, 244] Generating Abstract Model Element
Names

PM FA

Smirnov et al. [403, 404,
405]

Activity Aggregation based on
Meronymy Relations

SE FA

Richetti et al. [363]

verification. For example, it is only possible to send a cancellation of a purchase
order if it has not been conformed yet. Friedrich [135] proposes semantic metrics
that quantify the understandability and integratability of text labels in process
models. In particular, the author develops a consistency metric that measures
the degree of ambiguity of a particular word. The metric considers the number
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of occurrences of the given word divided by the total number of occurrences of
its synonyms in a model repository. This metric thus points to labels with a
high chance of ambiguity. The approach of Becker et al. [31, 32] was already
introduced and enforces specific naming conventions in process models. Due
to the linkage with a domain thesaurus, the tool is also capable of proposing
alternative terms and preventing naming conflicts and ambiguity in advance.
The research prototype of Havel et al. [157] is also corrects synonym terminology
by selecting the dominant synonym among a set of ex-ante defined synonyms.

Pragmatic approaches are concerned with the interpretation and under-
standability of process models in a given context. Another metric of Friedrich
[135] quantifies the specificity of a text label in terms of depth within the
WordNet hyponym tree. Apparently, the deeper the word is located in the
hyponym tree, the higher is its specificity. The metric serves as an indicator
to maintain a consistent level of detail in process models. Similarly, Leopold
et al. [246] propose and evaluate a set of syntactic and semantic metrics that
measures the granularity of a single process model. Their evaluation results
suggest that these metrics are suitable to quantify the granularity of a process
model within a process hierarchy or process architecture. Koschmider and
Blanchard [208] propose a semi-automatic approach to detect non-uniformly
specified process elements. The approach analyzes text labels with regard to
their level of detail and highlights process model elements that strongly devi-
ate from that level. Finally, it obliges the user to align the deficient elements
and improve process model consistency. Leopold et al. [243, 244] propose a
technique to infer suitable names for process models to facilitate simplification
and abstraction of process models. The technique helps in understanding
process models as it abstracts from details and reduces the complexity of
the process model repository. Similarly, Smirnov et al. [403, 404, 405] have
proposed techniques on process model abstraction. The idea is to aggregate
fine-grained activities or model fragments into a coarse-grained one. This is
achieved by employing the meronymy-relation, i.e., part-of relation, defined
between activities. Finally, Richetti et al. [363] introduce a technique that
reduces complexity of declarative process models by aggregating activities
according to inclusion and hierarchy semantic relations.

3.3 Discussion and Problem Statement

The review of prior research illustrates that errors that relate to the textual
dimension of process models have only been addressed to a limited extend.
Prior research approaches focus on the modeling language and offer help to
correct errors with regard to the syntactic, semantic and pragmatic dimension
of the modeling language.

Nevertheless, it has also been shown that a large share of the overall se-
mantics of a process model is conveyed by natural language. As illustrated
in Leopold [237, pp. 9–10], it is not possible to infer any conclusions from
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Fig. 3.2: Job Application Process with Linguistic Inconsistencies

a process model containing no labels or only abstract element labels. Con-
sequently, it is hardly possible to use such process models for meaningful
applications such as model matching [436, 245, 202], model analysis [98], or
legal compliance checking [54, 140, 86]. In general, it can be stated that natu-
ral language substantially affects the quality of a process model. If a model
contains ambiguous or non-intuitive terms, the model reader might not be
able to properly infer its full semantics [339]. It is therefore important to
assure the consistency of text labels and to elaborate techniques that improve
these labels. We use the example process model as depicted in Figure 3.2 to
illustrate the necessity for such techniques. In contrast to the previous section,
the application process highlights particular linguistic issues that cannot be
addressed by prior research.

Concerning the importance of labeling quality, prior research has also pro-
posed various label analysis techniques. As discussed before, these techniques
ensure that the element labels comply with naming guidelines and rework
them if these guidelines are violated. Additionally, prior approaches provide
possibilities to measure the degree of ambiguity and specificity of text labels.
Despite these efforts, there are still notable gaps that have not been addressed
so far. With regard to the syntax, the available techniques are capable of
reworking the syntactical structure labels if they describe only one single
stream of action (see e.g. activity Check application). However, they only
provide parts of a solution if labels are built with complex phrases, such as
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conjunctions, conditions, and hidden decisions. These phrases then contain
information about the order of performing particular tasks and influence the
control flow of the entire process. As an example, consider the activity Accep-
t/reject the applicant which describes two different activities, i.e. the rejection
and the acceptance of an applicant. We also observe that this activity implies
a decision, since it is absurd to reject and accept the same applicant at the
same time. This decision, however, is not expressed in the process model and
completely hidden to available model checking techniques. With regard to the
semantics, we discussed several research approaches that use semantic metrics
and knowledge sources to handle ambiguous terminology. However, they are
of limited use to reliably detect an ambiguous term and to provide support for
its resolution. For example, the ambiguity metrics might correctly consider the
word application as an ambiguous one, but do not provide sufficient support
to correct this case, e.g. replacing it with job application in the first place and
with software application in the second place. Moreover, it has to be considered
that not every word that has the potential to be ambiguous is used in an
ambiguous way. Thus, we require additional means to distinguish between
true and false ambiguities. With regard to pragmatics, prior research focuses
on term specificity and the identification of cases in which the specificity of
a label is violated, as in the activities Decision. However, these approaches
are of little help to correct such issues. As example, consider the issue of
underspecification arising from missing information within a model element,
e.g. the labels Evaluate via application and Decision. In this case, the inter-
pretation of the activities might be affected since we do not know what the
evaluation and the decision aim for. Possible interpretations might be that the
vocational aptitude of the candidate is evaluated and finally decided or that
all application candidates are evaluated together followed by a decision for the
best one. Consequently, our understanding of the process is still limited, since
this necessary information is not provided in the process model. Therefore,
approaches are required that employ concepts and techniques from the field of
linguistics to address the aforementioned issues.

The review of related approaches also shows two important shortcomings.
First, most of the textual analysis techniques only cover issues on the level
of process model elements. Overall, only the pragmatic dimension revealed
approaches that address the process model as a single unit. However, these
approaches are of limited use if linguistic issues affect the process model
repository on a global level. For example, if we consider the activities Documents
complete? and Request missing papers from Figure 3.2. On a local level, these
labels might not conflict with each other, since the labels clearly refer to a
particular object of interest. On the level of a process model however, we
might encounter a semantic inconsistency. Since both terms documents and
papers may refer to the same object, i.e. a piece of writing holding relevant
information, it is unclear whether these terms actually refer to the same object
or not. This problem is intensified if the number of process models increases.
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Table 3.5: Overview of Requirements

Requirement Description Relevant Chapters

Requirement 1 (R1) Identification of Applicable Linguistic
Concepts

4

Requirement 2 (R2) Formalizing Detection Rules for Lin-
guistic Ambiguities

5, 6, 7

Requirement 3 (R3) Formalizing Refactoring Measures for
Detected Linguistic Ambiguities

5, 6, 7

Requirement 4 (R4) Ensuring a Sufficient Degree of Au-
tomation

5, 6, 7

Hence, process models and the model repository should also be covered by
such techniques.

Second, the review also reveals an insufficient degree of automation for
most of the techniques. While the syntactic reworking can be handled in an
automatic way, this is much harder for semantic and pragmatic approaches.
In many cases, the user or the model creator need to be involved in order to
refactor the model. The reason is that most semantic and pragmatic problems
require additional knowledge about the environment and domain in order
to remove an ambiguous term or to align the specificity of an activity. This,
however, cannot be achieved by current algorithms and is still an unsolved
problem in artificial intelligence [300, 49]. Therefore, a fully automatic approach
is not feasible at this stage. Nevertheless, as the trend is towards large process
model repositories, it is further necessary to provide (semi-)automatic support
to assess a large number of process models and to point users to the critical
cases. Moreover, the users should be supported as good as possible, e.g. by
providing meaningful recommendations for rework, which requires a good
performance and a high reliability of the techniques.

In order to address the identified gaps, we require a deeper insight into
linguistic issues that are caused by the actual use of natural language in process
models. These linguistic issues cannot be resolved with the help of available
techniques as they only address parts of the aforementioned inconsistencies.
As examples, consider the label refactoring approach of Leopold et al. [238]
assuming regular label structures without textually incorporated process logic,
or the approach of Havel et al. [157] reworking only user-defined synonyms
but no homonyms. Accordingly, we formulate the following requirements (see
Table 3.5):
Requirement 1 (R1): Identification of Applicable Linguistic Con-
cepts. Requirement 1 emphasizes the necessity to acquire knowledge from the
science of linguistics and to identify relevant concepts, ideas, and technologies.
The identified concepts and technologies are then adapted to process models
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and provide an understanding why particular text labels are inconsistent.
Moreover, they provide means to detect and rework existing inconsistencies.
Requirement 2 (R2): Formalizing Detection Rules for Linguistic
Ambiguities. The insights from Requirement 1 are an important asset for
Requirement 2. In general, a reliable technical support for addressing the
identified problems needs to consider knowledge about the phenomenon. This
knowledge facilitates the definition and formalization of reliable detection rules
that help users in detecting linguistic issues in process models.
Requirement 3 (R3): Formalizing Refactoring Techniques for De-
tected Linguistic Ambiguities. It is necessary to conceptualize refactoring
techniques that resolve linguistic issues after having detected them. Similar
to the previous requirement, the insights from Requirement 1 also foster the
definition and formalization of reliable refactoring techniques that support
users in refactoring these issues.
Requirement 4 (R4): Ensuring a Sufficient Degree of Automation.
Finally, we need to consider the situation in which the proposed detection
and refactoring techniques are applied. In particular, Requirement 4 considers
process model repositories which hinders the application of non-automatic
techniques. Therefore, Requirement 4 demands a sufficient degree of automation
as well as a reliable performance of the techniques.

In this doctoral thesis, requirements 2 to 4 should hold for each of the
proposed techniques. Therefore, we show for each of the proposed techniques
how the requirements are fulfilled and under which assumptions they are
valid. Since all these requirements rely on linguistic concepts, the next sections
introduce to linguistic studies and identifies relevant concepts and technology
from the field of linguistics and natural language processing.

3.4 Summary

This chapter has provided an overview of prior research that is concerned
with the refactoring of process models. The overview has been divided into
approaches that consider the formal dimension and the textual dimension
of process models. Moreover, the discussion has distinguished between the
sub-dimensions syntax, semantics, and pragmatics which is appropriate to
discuss the quality of conceptual models in general and to investigate natural
language. Since this thesis is concerned with a large number of process models
maintained in a repository, it is beneficial to further classify these approaches
depending on their degree of automation and their coverage. The overview has
revealed a notable gap of approaches addressing the use of natural language in
process models and the phenomena that arise from it. Therefore, this doctoral
thesis aims at closing this gap and providing techniques that support users in
maintaining language consistency within process model repositories.
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Concepts of Linguistics and Natural Language
Processing

This chapter introduces the research field of linguistics and natural language
processing and discusses the most relevant concepts in order to analyze and
improve the labels of process model elements. Section 4.1 starts with a short
overview of linguistics and its most important schools of thought and their
contribution to the different branches of linguistics. Section 4.2 continues with
an elaboration on the branches syntax, semantics, and pragmatics in more detail.
Afterwards, Section 4.3 introduces to the field of natural language processing
(NLP) and gives a summary of available techniques to perform syntactical,
semantic and pragmatic analyses. Afterwards, we investigate how natural
language processing leverages language analysis with specific technology. To
this end, Section 4.4 discusses technology to analyze the syntactic structure of
sentences and further explains the necessary steps of syntactically processing
short natural language fragments of process models. Section 4.5 gives an
overview of technology that facilitate the semantic analysis of words, before
Section 4.6 focuses on techniques for pragmatic analysis. Finally, Section 4.7
summarizes the most important points of this chapter.

4.1 Overview of Linguistics

In general, linguistics is concerned with the scientific study of all phenomena
involved with language, including its structure, its use and the implications
of these [30, p.11]. In this context, language does not refer to a particular
language, such as English or German, but to a system of symbols [366].
Linguistics attempts to study general principles of language organization and
language behavior, often by referring to an actual language. This typically
involves an investigation of the language mechanisms, its parts, and how
all these parts fit together to perform particular functions [414, pp. 12-13].
There are, however, several possibilities and angles to study language-related
phenomena.
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Fig. 4.1: Linguistic Sign Model by Saussure, adapted from [381, pp. 65-67]

On the one hand, linguistic research may be distinguished by its main
purpose. We can distinguish between descriptive, comparative, and historical
linguistics [414, pp. 16-18]. The main concern of descriptive linguistics is to
describe a language system, to study its nature, and to establish a theory of it. It
seeks to study the components of a language system and to provide explanatory
statements on the system’s mechanics. Historical linguistics studies the change
of a language system over a specific period of time and develops theories about
how and why it has changed. If the history is also taken into account to study
the relatedness and to identify particular language families, we are in the field
of comparative linguistics. On the other hand, linguistics may also be divided
into theoretical and applied linguistics. Theoretical linguistics, which is still
considered to be the core of linguistic research, focuses on the description of
language and the development of models that map the linguistic knowledge
[64, pp. 27-28]. Applied linguistics is using what theoretical linguistics knows
about language, how language is learned and used in order to achieve some
purpose or to solve problems of the real world [388, p. 1].

In linguistics, there exist three different schools of thought that shaped the
field up until now. The modern understanding of linguistics is significantly based
on the ideas of the Swiss linguist Ferdinand de Saussure who was responsible
for a dramatic change of direction in the early 20th century. He proposed to
focus on the structure of a language system by abstracting from the concrete
individual use of language (parole) to generic elements of a language system
(langue). His ideas founded the linguistic school of structuralism. Structuralism
aims at the description of the elements of the language system as well as
their interrelations. The elements and their interrelations are investigated at
different structural levels. These levels are reflected by Saussure’s model of
the linguistic sign [381, pp. 65-67] (see Figure 4.1). He conceptualizes the
linguistic sign to consist of two inseparable parts, i.e. the concept (signifié)
and the sound pattern (signifiant). The sound pattern determines how the
sign is expressed in a language, while the concept determines the meaning of
the sign. He further emphasizes that there is no natural connection between
the sound and the concept and that this link has been created arbitrarily by
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convention. Considering the animal that is expressed by the word dog as an
example, we refer to the same animal as Hund in German or chien in French.

Another important school of linguistics is commonly referred to as func-
tionalism or the Prague School of functionalism. This school of thought partly
extended the structuralism ideas, but it puts emphasis on the function of
language and individual linguistic features. It argues that the structures of
a language system are best understood with reference to the functions they
carry out. In this context, Karl Bühler [62] has to be mentioned as one of
the most popular functionalist scholars. In his work, Bühler introduced the
organon model and identified three main functions of language: an expressive
function that allows the adressers to express their own beliefs and feelings, a
representative function that allows talking about the world, and an appelative
function that allows the request or issue of a command [62, pp. 34-36]. In
contrast to the structuralist approach, functional theories pay attention to the
way language is actually used in communicative context, and not just to the
structural relations between linguistic elements and thus emphasizes purpose
and pragmatics of language [307].

Finally, by the mid 1950s, the linguistic school of formalism or generative
linguistics has become increasingly influential. The term generative has been
introduced by Noam Chomsky in his famous work Syntactic Structures [75]. He
considers grammar to consist of a system of rules that is intended to generate
exactly those combinations of words which form grammatical correct sentences
in a given language. Thus, it is possible to produce a theoretically unlimited
number of sentences from a limited number of means, i.e. words and grammar
rules. Due to the strong grounding in well formed rules and expressions,
generative linguistics has proposed several grammatical structures (see e.g.
relational grammar [44], the generalized phrase structure grammar [139], or the
head-driven phrase structure grammar [336]). The field of generative linguistics
is most influential in the sub field of syntax, which focuses on the analysis of
phrases and sentences.

In modern linguistics, the three schools of linguistics exist side by side.
Moreover, the insights from theoretical linguistics are now applied within many
other disciplines such as psychology, sociology, philosophy, and literature studies
[414, pp. 21-26] which also lead to new branches within applied linguistics.
Additionally, linguistics has found its way to computer science (computational
linguistics) and artificial intelligence and resulted in promising application
scenarios, such as machine translation [205, 170, 59], speech recognition [351,
178], or speech understanding [117]. To this end, computational linguistics
makes use of concepts and models of theoretical linguistics to apply them on
real world problems related to language ([388, p. 1],[414, p. 26]). However,
these problems might also point to new issues or problems that are a concern
for theoretical linguistics. Figure 4.2 depicts the various branches of linguistics
and shows the interrelations between related areas of study.

As far as this thesis is concerned, the presented linguistic streams are
complementary to each other and equally used to improve different aspects of
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Fig. 4.2: Overview of Linguistic Fields, adapted from [414, p. 26]

process model labels. In general, this thesis applies available constructs and
models from linguistics and adopts them in process models. We apply concepts
from the branch of syntax in order to improve the text labels by studying
and describing the structure of text labels. As far as the interpretation of
labels is of interest, this thesis employs applicable concepts from the field of
semantics. Finally, this thesis also investigates the text labels with regard to
their comprehensibility in particular contexts, which refers to the functional
aspect of linguistics and is particularly related to the field of pragmatics. The
next section introduces the essential branches of linguistics and the essential
underlying concepts and technologies in order to provide the means to analyze
the text labels in process models adequately.

4.2 Fields of Theoretical Linguistics

According to Saussure, a language of any sort represents a system of signs
and relations between these signs [381, p. 16]. He proposes to investigate
the language with regard to the three branches of semiotics, i.e. syntactics,
semantics, and pragmatics [296]. The next subsections are dedicated to these
branches and discuss the main concepts and models. Section 4.2.1 will focus
on the branch of syntax, Section 4.2.2 discusses the main ideas with regard to
semantics, and finally, Section 4.2.3 introduces the branch of pragmatics.
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Fig. 4.3: Structure of Words into Phrases, Clauses, and Sentences [43, p. 100]

4.2.1 Syntax

The linguistic field of syntax is concerned with the combination of words into
larger grammatical units, such as phrases, clauses, and sentences [43, p. 100].
Thereby, words are combined into phrases, phrases are combined into clauses
and clauses may either be sentences by themselves or combined into complex
sentences. We thus observe a strict hierarchy of combining words into complex
grammatical units as depicted in Figure 4.3.

In the following, the concepts of words, phrases, etc. are discussed based
on a running example. Consider the exemplary sentence:

The user creates a new business process model.

On the level of words, syntax is concerned with classifying the words of a
sentence into different syntactical categories, also referred to as parts of speech
[184, pp. 137-138]. On a very general level, the English language categorizes
words into the following syntactic categories ([217, p. 38], [184, pp. 138-142]):

− Noun (N): Subjects or Objects of a sentence, such as user, business, process,
model.

− Verb (V): Predicate of a sentence, such as create
− Adjective (Adj): Modifier of a noun, such as new.
− Adverb (Adv): Modifier of a verb, adjective, or adverbs, e.g. thoroughly.
− Preposition (Prep): Expressing spatial or temporal relations, e.g. towards,

in or before.
− Determiners (Det): Expressing the reference of a noun in a context, e.g.

the, a.
− Conjunctions (Con): Joining two or more clauses, e.g. and, or.

The next level of the sentence model involves phrases. Phrases are groups
of at least one word that function as a constituent within a sentence [217, p.
26]. This means that they build a single unit of several words that are closely
related with each other ([217, p. 26],[43, p. 109]). Usually, such phrases contain
a head word which is defining the type of the phrase. Similar to the different
syntactical categories of a word, we can distinguish several types of phrases.
The most important phrases of the English language are:
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− Noun phrase (NP): Contains a single proper noun or a combination of
several nouns, a determiner, and/or a adjective.

− Verb phrase (VP): Contains a single head verb or a combination of verb
and noun phrase.

− Adjective phrase (AdjP): Contains a single adjective or a combination of
these.

− Prepositional phrase (PrepP): Contains one preposition together with a
noun phrase.

− Determiner phrase (Det): Contains a single determiner or a combination
of these (e.g. all the, every)

For visualization purposes, the different phrases are depicted in a phrase
structure tree. A phrase structure tree illustrates the linguistic structure of
a grammatical unit and provides the syntactical category of the unit (noun,
verb, etc.) as well as its size (word, phrase, clause, sentence) [217, p. 39].
As an example, Figure 4.4 depicts the phrase structure tree of the example
sentence introduced earlier. The example sentence consists of two phrases, a
noun phrase and a verb phrase. The noun phrase is given by the noun user
and the verb phrase is given by the verb creates. The verb phrase further
consists of a complex noun phrase with the head word model. Since the head
word is further specified by the two nouns business and process as well as the
adjective new, it is necessary to create additional phrase layers of adjective
and noun phrases to capture all of the words.

Finally, words and word phrases are used to build clauses and sentences.
A clause is the smallest grammatical unit which can express a complete
proposition [217, p. 26]. A sentence on the other hand is understood as a
complete thought and thus might consist of several clauses. Depending on the
number of clauses, a sentence is either simple, or compound, complex [43, pp.
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107-108]. A simple sentence can stand on its own and only contains one clause.
It is thus called a main clause. The example sentence above is an example of
a main clause. However, sentences may also consist of more than one clause.
A compound sentence is a combination of main clauses that are linked by
a coordinating conjunction, such as and, or, but etc. As an example for a
compound sentence, consider the sentence:

The user creates a process model and analyzes it for weaknesses.

A complex sentence contains only one main clause with at least one subordinate
clause. A subordinate clause cannot stand on its own and is always dependent
on the main clause. Typically, subordinate clauses are introduced by specific
subordinate conjunctions, such as although, because, or when. The following
sentence is an example of a complex sentence:

The user creates a process model, because his boss told him to.

The introduced concepts from the branch of syntax leverage the description
and analysis of any natural language sentence. Although process models labels
do not represent proper English sentences with regard to the syntax [285], it
is still possible to use these concepts and describe them in terms of words,
phrases, and clauses.

4.2.2 Semantics

The branch of semantics deals with the systematic study of meaning in human
language. While the philosophical perspective is more interested in the way
and the circumstances under which objects are interpreted to convey specific
meanings [443, 440], the linguistic branch investigates meaning that is conveyed
by words, phrases, and sentences [43, p. 128]. Accordingly, the field of linguistics
distinguishes between the lexical semantics (the meaning of words) and the
sentential semantics (the meaning of phrases, clauses, and sentences). Since
process models do not include proper English sentences [285], this thesis puts
more emphasis on the lexical semantics and presents the most important
concepts of this sub field of semantics.

Lexical semantics investigates the meaning of words in terms of meaning
relations (or sense relations). These relations express a connection between
two words of a certain language that semantically links these words with each
other via a common concept. For example, consider the words dog and barker
and the animal they refer to. While both terms refer to the same animal, the
word barker is far more informal and negatively connotated expression to point
to the animal. Nevertheless, these words are semantically related with each
other since they both describe the same animal. Lexical semantics is concerned
with a number of these sense relations. The most important sense relations,
also in this thesis, are synonymy, homonymy, hyponomy, and meronymy [163,
pp. 150 - 160].
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In general, the synonym relation of two words is characterized by the
fact that these two words may share the same or nearly the same meaning.
Traditionally, the synonym relation between two words is defined as words
that have exactly the same meaning (perfect synonymy) [163, pp. 157]. In
practice, the share of words that have exactly the same meaning is, however,
very rare. Some authors also argue that the phenomenon of perfect synonymy
is theoretical, since there is no such pair of words that is interchangeable in
every context of use [136, p. 181]. Hence, linguists have proposed to define
synonymy in terms of semantic similarity, which has lead to a non-perfect
synonymy relation [43, p. 129]. Accordingly, non-perfect synonyms share a
common set of contexts in which they are mutually exchangeable. Examples
for such synonyms are:

− bill ↔ invoice: Sharing the meaning of an itemized statement of money
− goods ↔ products: Sharing the meaning of commodities offered for sale
− buy ↔ purchase: Sharing the meaning of acquiring something for payment

We already observed that the meaning of a word might change depending
on the context of its use. It is frequently the case that a word has a number
of different meanings and thus refers to different concepts of the real world.
Considering Saussure’s model, this is either caused by the sound sequence that
referring to different concepts (Homophony) or by one equally spelled word
that refers to different concepts of the real world (Homonymy). Since this
thesis is mainly concerned with written words, it considers only the homonymy
relation. Homonym examples include:

− application
• In the sense of a job application
• In the sense of a software program

− bank
• In the sense of a financial institution
• In the sense of a river bank

− bill
• In the sense of an itemized statement of money
• In the sense of a banknote

The concept of Hyponomy defines hierarchies between sense relations and
describes the phenomenon when the meaning of one word is included in the
meaning of another one [43, p. 135]. In case of nouns, the subordinate words
are referred to as hyponyms and the superordinate is called a hypernym. For
verbs, the respective verbs are called troponyms. Hyponym and troponym
examples are given as follows:

− order is a hypernym of
• credit order
• production order
• purchase order
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− software is a hypernym of
• upgrade
• freeware
• groupware

− to control is a troponym of
• to manage
• to handle

A specific hierarchy relation is given by the meronomy relation as it refers
to words which are part of a whole concept [43, p. 135]. In this case, the parts
are referred to as meronyms, while the whole is called holonym. For verbs, this
relation is called entailment [292]. Meronym examples may be taken from the
following list:

• tree is a holonym of
– trunk
– branch
– leave

• car is a holonym of
– car engine
– tire
– vehicle body

• to apply is a holonym of the verbs
– to snore
– to rest

This thesis is particularly concerned with semantic relations. These relations
associate a word and its phonetic representation with a concept of the real
world and defines a particular meaning of this word [381, pp. 65-67]. In many
cases, these associations allow several words to refer to one concept (synonymy)
or allow one word to be associated with several concepts (homonymy). For
these reasons, the associated meanings of a word are best represented by so
called word senses which implement them in a technical context [300]. There
are, however, different approaches on how these word senses are organized, i.e.
the generative approach and the enumerative approach.

The generative approach by Pustejovsky [348, 349] creates related word
senses based on rules which capture regularities and properties of the referred
concept. Word senses are expressed in terms of qualia roles that structure the
basic knowledge about this concept. These qualia roles go back to Aristoteles
basic elements to describe the meaning of lexical items, i.e. formal (identification
of the object), constitutive (parts and constitution of an object), telic (the
purpose of the object), and agentive (involved factors of the objects origin)
[180]. The combination of qualia roles allows the creation of a particular word
sense.

As an example for this representation, consider the following possible
generative entry for the word job application in the notation of Pustejovsky
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ARGSTR     = 
  

ARG1 = x: physical object 
ARG2 = y: request 
ARG3 = z: job 
ARG4 = v: applicant 
ARG5 = w: company 

EVENTSTR =   E1 = e1: process 
E2 = e2: transition 

job application 

QUALIA       =   

FORMAL           
CONSTITUTIVE    
 
TELIC 
 AGENTIVE 

= hold(x,y) 
= {Motivation Letter, CV,  
    Attachments, ...} 
= employment(e1,v,z) 
= hire_act(e2,v,w) 

Fig. 4.5: Example Qualia Roles of a Job Application

[348]. As depicted in Figure 4.5, the definition of the qualia roles of a job
application first requires the definition of several arguments (the physical object,
the request, the job, the applicant and the company) as well as two events
(transition and process). Afterwards, the four qualia are defined. The formal
qualia is given by a relation of the physical object holding all information
regarding the request. The parts of the job application are given by the
constitutive parts, such as motivation letter, CV, diploma, etc. The purpose
of a job application is defined as an employment act that is described at a
process which brings the applicant into the job. Finally, the agent qualia of a
job application is given by a hire act that involves a transition of the applicant
conducted by the company.

As an alternative to the generative approach, the enumerative approach lists
all objective word senses in a sense inventory. If possible, the sense inventory
partitions should only contain discrete word senses that cannot be reduced any
further [300]. This approach is frequently adopted by several paper-based and
machine-readable dictionaries. Due to the widespread adoption, this thesis will
also follow the enumerative approach to refer to the word senses of a specific
word. The association of discrete word senses is defined as follows:

Definition 4.1. (Word Senses). Let D be a dictionary of words, the senses
of a word are defined by the function SensesD : W × POS → 2S , such that

− W is the set of words denoted in dictionary D.
− POS = {n, v, a, r} is the set of open-class parts of speech (nouns, verbs,

adjectives, and adverbs).
− S is the set of word senses that are encoded in the dictionary D. 2S denotes

the powerset of senses.
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To illustrate the enumerative approach, consider again the word application.
Among others, the following distinct word senses si of the noun application
may be distinguished, i.e. si ∈ SensesD(application,n):

− s1: a written request for employment
− s2: the action of using something for a particular purpose
− s3: a software program that is used by humans to accomplish a task

An essential component of Definition 4.1 is the sources of word senses.
In general, word senses are provided by dictionaries that contain conceptual
knowledge about the world. There is a plethora of such dictionaries, such as
thesauri, machine-readable dictionaries, and computational lexicons. Thesauri
provide information about the words and their interrelationships, such as
synonymy or antonymy [195]. Consequently, the word senses of a word are
defined via the semantic relations to other words. A frequently employed
thesaurus is the Rogets International Thesaurus [72] which contains 250,000
word entries organized in six classes and 1000 categories. Machine-readable
dictionaries are dictionaries that provide various information about words
in a particular language. Among others, this information includes possible
meanings, etymologies, or phonetics. Examples are the Oxford Advanced
Learners Dictionary of Current English [165], the Oxford Dictionary of English
[412], and the Longman Dictionary of Contemporary English [345]. Finally,
computational lexicons encode a rich semantic network of concepts, similar
to ontologies. The most popular computational lexicon is WordNet, which
captures various semantic relationships in a structured way [291, 292]. A
similar resource is the BabelNet lexicon [302], which combines WordNet senses
with the web encyclopedia Wikipedia and which provides support for different
languages.

4.2.3 Pragmatics

The branch of pragmatics is concerned with the systematic study of how
people understand and communicate more than the literal meaning of words or
sentences when they interpret or produce utterances. Utterances are understood
as spoken or written contributions that derive their meaning partly from the
context of their appearance [43, p. 152]. There might not be a big difference
between semantics and pragmatics, since both branches are interested in
the original meaning of words and sentences in a particular context. While
semantics is more interested in the meaning of words and sentences themselves,
pragmatics brings the sender and recipient of the sentences into the focus and
emphasizes the meaning of the sentence in the specific situation [176, p. 1]. Thus,
pragmatics may be regarded as the study of meaning in context. Accordingly,
it also takes the context into account, i.e. the discourse that surrounds a
language unit. Moreover, pragmatics acknowledges that the context determines
the interpretation of a language unit and that the context may be subject
to change during the interaction with other people. In order to correctly
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interpret the meaning of a sentence according to its context, it is necessary
that it complies with two essential concepts of pragmatics, i.e. deixis and the
cooperative principle.

The term deixis corresponds to the Greek verb deiknynai and translates to
to point or to show. In pragmatics, it refers to all linguistic means that point to
a specific context in which a sentence or statement has been uttered and within
which it has to be interpreted. These deictic expressions point to those things
that build the context of a statement and may involve persons, places, objects,
actions, or time ([176, p. 191-194],[163, p. 319-323]). All deictic expressions
have in common that they require a larger context, since they cannot be
understood independently of it. Understanding the context of a statement
involves the identification of the perspective from which something has been
communicated. This perspective is called the deictic center [43, p. 154]. If
the deictic center cannot be found, it is hard to interpret and understand a
statement and act accordingly. This is illustrated by the following example.

Imagine to find yourself in the situation in which the usual BPM lecture
room is empty and the following notice is found on the door:

Introduction to Business Process Management
We are here today:

Guest Lecture of Prof. Dr. Marlon Dumas
D2.105

Since you are a participant in the lecture, you will know how to interpret
this notice although you are not in the same context as the authors of the
notice. This is achieved by some deictic expressions that clearly point to a
specific group of persons and to a specific place. The expression We refers to all
persons that are related to the lecture and indicates that only a specific group
of people is addressed by the notice. Moreover, the expression here is usually
used for locations close to the speaker and thus indicates a specific room at
the university (D2.105). Altogether, it is possible to identify the deictic center
as among the participants of the lecture and being reminded on the guest
lecture. However, if you are external to the lecture, you might have difficulties
in interpreting this notice since you might not be aware that the last line
refers to a room or that the first line refers to a particular group of persons.
In particular, you would not have any information about the time of the guest
lecture, since you do not attend the lecture as part of your studies.

In order to avoid such interpretation bias, it is helpful to structure any
written or spoken communication according to the cooperative principle by H.
Paul Grice [147, p. 45]:

”Make your conversational contribution such as is required, at the
stage at which it occurs, by the accepted purpose or direction of the
talk exchange in which you are engaged.”
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From this principle, four maxims have been derived to structure communi-
cation [147, p. 45-46]:

1. The Maxim of Quantity: Make the contribution as informative as required,
not more.

2. The Maxim of Quality: Make the contribution true (no false or unproven
statements).

3. The Maxim of Relation: Make the contribution relevant.
4. The Maxim of Manner: Make the contribution clear, i.e. free of obscurity

or ambiguity.

Applying these maxims to the example reveals that the notice itself is
already in a good shape. It fulfills the maxims of quality, (the guest lecture is
taking place in the respective room and at the time of the lecture), relation
(the room is empty and the note gives an explanation why), and manner (it
is free of ambiguity). Nevertheless, there might be some problems with the
maxim of quantity since the note does not specify any time at which the guest
lecture is scheduled. The readers need to know about the scheduled date and
time are infer it from their regular lecture schedule. However, an arbitrary, yet
interested reader may not be able to infer time and date because he or she is
not part of the regular BPM lecture.

This thesis also investigates the pragmatic dimension of the textual labels
of process models. In this setting, it is important that the textual information
in process models complies with the cooperative principle and the derived
maxims. It is important that the text labels of process models meet the
maxims of quantity and manner, i.e. that they provide sufficient information
to understand the process model and to derive a set of actions from it. The
maxims of quality and relevance are hard to assess for process models. The
reason is that such an assessment would require additional information from
the modeling domain and context. If this information is missing, it is not
possible to check the truth of text labels and their relevance for the underlying
business process.

4.3 Overview of Natural Language Processing
Techniques

Natural language processing (NLP) is concerned with the interactions between
computers and human natural language [221, p. 1]. NLP is an interdisciplinary
field of computer science, linguistics, and psychology [289] and is applied to
various language tasks, such as machine translation [205, 170, 59], speech
recognition [351, 178], speech understanding [117], text generation and sum-
marization [262, 169, 306], or word sense disambiguation [172, 11, 300]. Since
the field of natural language processing is considerably big, we will first pro-
vide a general overview of the most relevant techniques leveraging syntactical,
semantic, and pragmatic analysis.
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Table 4.1: Overview of Syntactical NLP Techniques

Purpose Approach Author

Text
Analysis
with
Corpora

American National Corpus
(ANC)

Ide and Suderman [171]

British National Corpus (BNC) BNC Consortium [83]
Brown Corpus Francis and Kucera [133]
Corpus of Contemporary Ameri-
can English (COCA)

Davies [89]

Natural
Language
Tagging

Rule-based POS Taggers Voutilainen [427, 428]
Chang and Manning [70]

Statistical POS Taggers Brants [53]
Schmid [387]
Ratnaparkhi [352]
Toutanova and Manning [418]

Natural
Language
Parsing

Rule-based Parsing Stahl et al. [411]
Yngve [448]
Dowding et al. [107]

Probabilistic Parsing Collins [82]
Klein and Manning [200, 199]
Charniak [74]

Table 4.1 gives an overview of syntactical NLP techniques. In general, we
distinguish between the analysis of natural language corpora, natural language
tagging, and natural language parsing. Natural language corpora are large
collections of natural language texts consisting of thousands and millions
of words. Corpora contain a representative sample of a particular type of
naturally occurring language to investigate several quantitative and qualitative
characteristics, such as frequencies or collocations of words [23, p. 2]. In many
cases, these corpora have been further enriched by additional information to
foster corpus-based linguistic research. This processing is also known as corpus
annotation [23, p. 2].

Natural language tagging implements the process of assigning a part-of-
speech (POS) or another syntactic word class to each word in a sentence,
paragraph, text, or corpus [184, p. 147]. These techniques typically get a
string of words as well as a specified tagset as an input. The result is a single
POS tag for each word that best reflects the syntactic class of the word in
the given text string. As shown in the table, there are mainly two classes of
tagging techniques, i.e., rule-based taggers and stochastic taggers [184, p. 137].
Rule-based taggers generally employ a large database of hand-written grammar
rules to resolve conflicts of ambiguous tags. Opposed to that, stochastic taggers
use statistical methods to determine the best POS tag. Therefore, stochastic
parsers require training on large text corpora.
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Table 4.2: Overview of Semantic NLP Techniques

Purpose Approach Author

Lexical
Semantic
Analysis

WordNet Miller et al. [293, 292, 291]
EuroWordNet Vossen [426]
BabelNet Navigli and Ponzetto [302]
VerbNet Schuler [389]
Proposition Bank Palmer et al. [318]

Semantic
Field
Analysis

FrameNet Baker et al. [22]
VerbNet Schuler [389]
ConceptNet Liu and Singh [256]
PhraseNet Li et al. [251]

Word
Sense
Disam-
biguation

Supervised WSD Cai et al. [65]
Agirre and Lopez de Lacalle [12]
Niu et al. [308]

Unsupervised WSD Pederson [320]
Kern et al. [192]
Koeling and McCarthy [206]

Knowledge-based WSD Navigli and Velardi [305]
Chan et al. [69]
Novischi [310]

Natural language parsing maps a sentence consisting of several tagged
words to its phrase structure tree which represents the internal structure of
the sentence. This syntactical sentence structure then serves as an important
input for semantic analysis techniques, such as question answering [354, 449]
or information extraction [128, 118]. In general, the literature distinguishes
between approaches that use a context-free grammar and that use statistical
methods. Examples for such parsers are given in the table.

Table 4.2 distinguishes semantic NLP techniques that enable the analy-
sis of lexical semantics, semantic fields, as well as techniques for word sense
disambiguation (WSD). We already mentioned that lexical semantics inves-
tigates the meaning of words in terms of sense relations, such as synonymy
or hyponymy. For the analysis of lexical semantics, computational lexicons
implement a traditional lexicons and contain a collection of words with infor-
mation regarding usage, definitions, etymologies, phonetics, pronunciations,
or translation. Moreover, they also encode a rich semantic network among
the words and concepts to which these words refer [300]. Examples include
WordNet [293, 292, 291], EuroWordNet [426], VerbNet [389], the Proposition
Bank [318], and BabelNet [302].

Semantic fields comprise a set of words that are semantically close or
related to each other [120, p. 14]. This means that words in a semantic field
are not necessarily synonyms, but are all used to talk about the same general
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phenomenon [15, p. 239]. For this type of analysis, one can employ the systems
VerbNet [389], FrameNet [22], ConceptNet [256], or PhraseNet [251].

Word sense disambiguation describes the task of automatically identifying
the word senses of each word in a sentence or text. WSD is comparable to
POS tagging [23] or text categorization [393] where to each element is assigned
a predefined tag or a category. However, the WSD task is more complex since
the set of classes, i.e. the word senses, typically changes depending on the
word to be assigned. Consequently, each word has its own set of word senses
among which the most suiting one has to be selected. For these reasons, WSD
is regarded as an AI-complete problem [260], which refers to problems whose
difficulty is equivalent to solving central problems of artificial intelligence
such as the Turing Test [421]. There are several methodological approaches to
perform WSD, i.e. supervised WSD, unsupervised WSD, and knowledge-based
WSD. Supervised methods use machine-learning to train a classifier from
sense-annotated text corpora. Afterwards, this classifier is used to assign the
correct word sense. Among the most successful supervised WSD systems, we
mention the approaches by Cai et al. [65], Agirre and Lopez de Lacalle [12], and
Niu et al. [308] achieving an accuracy of more than 86%. Unsupervised WSD
methods are based on unlabeled corpora and do not exploit any manually sense-
tagged corpus to select a suitable word sense. Among the approaches, those
of Pederson [320], Kern et al. [192], and Koeling and McCarthy [206] are the
most successful. Knowledge-based WSD systems make use of external lexical
resources, such as machine-readable dictionaries, thesauri, and computational
lexicons to assign the appropriate word sense. With regard to performance,
the systems by Navigli and Velardi [305], Chan et al. [69], and Novischi [310]
achieve a F1-score of at least 81.45%. Most recently, BabelNet also includes
a knowledge-based disambiguation approach that can compete with these
state-of-the-art systems. On average, it achieves a F1-score of 82.5%.

Finally, Table 4.3 gives an overview of important techniques for pragmatic
purposes. In general, the literature identifies discourse interpretation, language
generation, and machine translation as major areas of pragmatic techniques
[184]. Discourse interpretation is concerned with the analysis of a group of
collocated and related sentences, which builds the discourse. For the auto-
matic interpretation of such discourses, we distinguish between plan-inference
interpretation and cue-based interpretation approaches. The plan-inference
approaches make use of the belief-desire-intention model (BDI) for intelli-
gent agents. This model represents the agent’s beliefs, desires and intentions
and uses these concepts to solve a particular problem, i.e. in our case the
interpretation and comprehension of the contextual meaning of the discourse
[16]. The cue-based approaches use of different sources of knowledge (cues)
for the discourse interpretation task, such as lexical, collocational, syntactic,
or conversational cues and combine them with machine-learning algorithms,
trained on a corpus of hand-labeled discourses. Examples of these approaches
may be taken from the table.



4.4 Relevant Techniques for Syntactical Analysis 65

Table 4.3: Overview of Pragmatic NLP Techniques

Purpose Approach Author

Discourse
Interpreta-
tion

Plan-Inferential Interpretation Allen and Perrault [16]
Raux and Eskenazi [353]
Loisel et al. [257]

Cue-based Interpretation Hinkelmann and Allen [164]
Jurafsky et al. [183]
Webb [430]

Language
Genera-
tion

KPML-System Bateman [28]
Amalgam Corston-Oliver et al. [84]
RealPro Lavoie and Rambow [232]
Atlas.txt Thomas and Sripada [416]
Artequakt Kim et al. [196]

Machine
Transla-
tion

Statistical Machine Translation Brown et al. [60]
Supervised Machine Translation Koehn et al. [205]
Rule-based Machine Translation Forcada et al. [129]
Machine Translation with Neu-
ral Networks

Devlin et al. [100]

Language Generation is the process of constructing natural language out-
puts from non-linguistic inputs. The goal of this process is to map from
meaning to understandable natural language text by applying the steps of
selecting the relevant content and words, structuring a single sentence, and
finally structuring the entire discourse [184, pp. 761-762]. Language generation
is frequently employed in application areas where the output texts should
comply with a desirable format, such as weather forecasts, stock markets,
documentations, and technical manuals. Accordingly, the depicted systems of
the table may be used to generate natural language texts for these purposes.

Finally, machine translation is concerned with the automatic translation of
texts from one language into another [184, pp. 797]. Research in this field has
brought forth a number of translation techniques that make use of statistics
[60], machine-learning techniques [205, 100], or specific translation rules for
word pairs [129].

After this general overview of language processing techniques, we will now
further detail those techniques that are most relevant for this thesis.

4.4 Relevant Techniques for Syntactical Analysis

In this section, we focus on NLP techniques that leverage the analysis of
natural language syntax and that are used in the course of this thesis. In
particular, we will provide a deeper understanding of available text corpora in
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Section 4.4.1. Afterwards, we turn the focus on tagging and parsing of natural
language texts in Section 4.4.2 and of process models in Section 4.4.3.

4.4.1 Natural Language Corpora

We already mentioned that a natural language corpus is a large collection of
texts consisting of thousands and millions of words that are used for several
quantitative and qualitative investigations of texts and words, such as fre-
quencies or co-occurrence [23, p. 2]. Moreover, corpora are frequently enriched
by additional linguistic information [23, p. 2] to make them accessible for
various NLP approaches. This typically involves the assignment of syntactical
categories (verb, noun, adjective, etc.) to each word of the corpus in the form
of POS tags, which is referred to as part-of-speech tagging (POS-tagging).
In some cases corpora may also incorporate information about the syntactic
sentence structure in form of a phrase structure tree or about the meaning
of words and sentences. A big achievement in this field was the creation of
the so called Penn Treebank [265]. The Penn Treebank consists of over 4.5
million words of American English and includes POS information as well as
a parsing of sentence structures and semantic annotations [197]. The Penn
Treebank also introduced a POS tagset which has been widely adopted by
state of the art tagging and parsing software, such as the Stanford Tagger
and Parser [200, 199]. Appendix A provides an overview of the Penn Treebank
POS tags.

Table 4.4 summarizes the main characteristics of English and German text
corpora. Moreover, nearly all of them have been annotated with syntactical
categories. In some cases, these corpora have also been parsed manually by
linguists which ensures a high quality of these information. However, this is
not usual since the human annotation is costly in terms of human efforts
and time. Thus, it is common to parse a subset of a corpus by hand, while a
machine is parsing the whole corpus.4 Additionally, the table reveals a notable
difference in terms of size and sources. Frequently, the size of the corpus is
directly related to the corpus sources from which texts have been sampled. For
example, the ANC corpus is one of the largest corpora in the table and has
been built from newspapers, research articles, fiction and non-fiction books,
other documents such as brochures, booklets, and flyers. However, this does not
imply that this corpus is the best choice for each linguistic analysis. Considering
a domain-specific language analysis, it might be more appropriate to use texts
from books, articles, or documents of the respective domain. Therefore, the
language analyst needs to pay careful attention when selecting a corpus to
develop tools that rely on such data sources.

This thesis proposes refactoring techniques for the textual content of
English process models. For this reason, the selection of corpora is restricted to

4 This procedure has been applied for the OANC corpus which was parsed by a
machine. A subset of the OANC, the MASC (Manually Annotated Sub-Corpus),
has been annotated and parsed by human annotators.



4.4 Relevant Techniques for Syntactical Analysis 67

Table 4.4: Overview of Text Corpora

Corpus No. Words Features Text Sources

E
n
g
li
sh

Google N-Gram
Corpus1

155 billion - Books retrieved from Google
Books

American National
Corpus (ANC) [171]

40 – 50 million T+P newspapers, research articles,
fiction and non-fiction books,
other documents

Open ANC (OANC)2 15 million T+P Subset of ANC
British National
Corpus (BNC) [83]

100 million T newspapers, research articles,
fiction and non-fiction books,
other documents

Brown Corpus [133] 1 million T books, newspapers, scientific
articles, other documents

Corpus of Contem-
porary American En-
glish (COCA) [89]

450 million T academic journals, newspa-
pers, fiction books, and mag-
azines

G
er

m
a
n

TIGER Corpus [52] 900,000 T+P newspapers
LIMAS Corpus [141] 1 million - books, newspapers, other

documents
Leipzig Corpora
Collection 3

425 million - newspapers

Legend: T: Corpus has been tagged, T+P: Corpus has been tagged and parsed

English corpora only. Moreover, since most of the process models cover a large
spectrum of fields and interests, we require a corpus that also includes texts
from various areas. Therefore, we use the Open American National Corpus
(ANC) for this thesis since it offers a sufficient subset of texts stemming from
various sources of knowledge, such as newspapers, research articles, fiction and
non-fiction books, as well as other documents. Moreover, the corpus has also
been tagged and parsed in advance, which saves valuable preprocessing time.

4.4.2 Tagging and Parsing of Natural Language Text

We also introduced tagging as being the process of assigning a POS tag or
other syntactic word classes to each word in a sentence, paragraph, text, or
corpus [184, p. 147] as well as several available taggers. To illustrate the basic
idea of tagging, we use the example sentence of section 4.2.1. Depending on
the underlying tagset, the single tags vary with regard to specific tags. In the
example, we use the Stanford tagger and parser and get the following result
of the tagging process. We recognize the aforementioned word classes in the
tagging example, i.e. determiners (DT), nouns (NN), verbs (VBZ), adjectives
(JJ):

The/DT user/NN creates/VBZ a/DT new/JJ business/NN pro-
cess/NN model/NN ./.
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It has to be noted that the automatic assignment of tags is not a trivial
task, even for small and simple examples. For humans, it is relatively easy to
recognize nouns and verbs and to resolve ambiguous cases which have more
than one possible POS tags. For instance, the word process might be ambiguous
as it can either be a noun (a set of activities in a particular order) or a verb
(to deal with something in a routine way). Therefore, a main problem of POS
tagging is to resolve these ambiguities and choose the appropriate tag for the
given context [184, p.149].

There are different possibilities to resolve ambiguities on word level, i.e. rule-
based taggers and stochastic taggers. As already mentioned, rule-based taggers
generally employ a large database of hand-written grammar rules to resolve
conflicts of ambiguous tags. This means that rule-based taggers do not rely on
statistical inferences, but employ predetermined rules to eliminate ambiguous
cases. For example, these rules specify that a word is a noun rather than a verb,
if it follows a determiner. The works on rule-based tagging approaches mainly
build on approaches from the sixties and seventies [156, 201, 145]. Today, the
capabilities of these approaches are enhanced by integrating bigger rule sets
and comprehensive dictionaries [184, pp. 137-139]. The basic architecture of
a rule-based tagging algorithm is a two-stage approach. At the first stage, a
dictionary is consulted to derive a list of potential POS tags for each word.
At the second stage, the rule set is used to reduce the set of potential parts
of speech to a single tag. Examples of rule-based taggers involve the EngCG
tagger [427, 428] or the Stanford Temporal Tagger for temporal expressions
[70]. Stochastic taggers use statistical methods to determine the best POS tag.
Therefore, stochastic parsers are trained on large corpora. Popular algorithms
for POS-tagging make use of the Hidden Markov Model (HMM) [184, pp.
182-185] or the Maximum Entropy model (MaxEnt) [184, pp. 199-207]. The
goal of statistical tagging is finding the best sequence of tags that corresponds
to a particular input sequence. Prominent examples for stochastic taggers
involve the Trigrams’n’Tags [53], the TreeTagger [387], or MaxEnt taggers as
proposed by Ratnaparkhi [352] and Toutanova and Manning [418].

Parsing addresses the problem of mapping a sentence consisting of several
tagged words to its phrase structure tree which represents the structure of the
sentence. This syntactical sentence structure then serves as an important input
for further linguistic analysis techniques. In general, the literature distinguishes
between approaches that use a context-free grammar and that use statistical
methods.

Context-free Grammar parsers try to build a parse tree by applying declar-
ative rules that are given by context-free grammars. The creation of the phrase
structure tree thus resembles a search problem. The search space is only limited
by the input itself and the grammar. The former guarantees that leaves of such
a tree equal the input sentence, while the latter guarantees that the root must
be a sentence. Accordingly, we may distinguish between parsers that build the
sentence structure by beginning from sentence level (the root), as presented in
the approach by Stahl et al. [411], and those who start with the input words
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Fig. 4.6: Example of Ambiguous Phrase Structure Trees

(the leaves) to identify the sentence structure. Yngve [448] and Dowding et al.
[107] have proposed parsers that apply the bottom-up approach.

A particular challenge for context-free grammar parser is structural ambi-
guity, which arises when the parsing algorithm needs to choose among several
possible phrase structure trees [217, pp. 51-52]. To illustrate the problem of
structural ambiguity, we use the example sentence John saw the man on the hill
which leads to the two phrase structure trees as depicted in Figure 4.6. Both
trees are valid interpretations of the sentence with, however, slightly different
meanings. In Tree 4.6(a), the sentence tells us that a particular man is seen,
i.e. the man on the hill, whereas, in tree 4.6(b), the observer John was on a hill
when he saw the man. The fact that there are many, also unreasonable, phrase
structure trees for sentences is a common problem that affects all parsers.
Parsers need to be able to choose the correct phrase structure tree among all
possible ones. Unfortunately, this task requires additional knowledge which is
not readily available during syntactic processing.

Probabilistic parsers are used in order to solve the problem of structural
ambiguity. A probabilistic parser offers a solution to the ambiguity problem
by employing a statistical syntax model. This model assigns probabilities
to each phrase structure tree. These probabilities are learned by supervised
training of a statistical model from tree-banks and parse trees provided by
human linguists, such as the Penn Treebank [265]. Afterwards, the tree having
the highest probability is chosen as the most-probable interpretation of a
given input sentence. In fact, due to the prevalence of ambiguity, most modern
parsers are of necessity probabilistic. The simplest augmentation of the context-
free grammar with probabilistic elements is the Probabilistic Context-Free
Grammar (PCFG), first proposed by Booth [48]. Other prominent examples
include the parsers developed by Collins [82], by Charniak [74], and by Klein
and Manning [200, 199].

In this thesis, we will use the statistical tagger and parser which have been
developed by Toutanova and Manning [418] as well as Klein and Manning
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Table 4.5: Typed Dependencies for the given Example Sentence

Type Governor Dependent Explanation

det ( user-2 , The-1 ) determiner relation
nsubj ( creates-3 , user-2 ) subject-verb relation
det ( model-6 , a-4 ) determiner relation
compound ( model-6 , process-5 ) compound words relation
dobj ( creates-3 , model-6 ) verb-object relation
cc ( creates-3 , and-7 ) and-conjunction relation
conj ( creates-3 , analyzes-8 ) relation of conjuncted elements
dobj ( analyzes-8 , it-9 ) verb-object relation
case ( weaknesses-11 , for-10 ) object of the preposition
nmod ( analyzes-8 , weaknesses-11 ) noun modifier relation

[200, 199] at Stanford University. The main advantage of this technology
is that both techniques have been integrated into one self-contained piece
of NLP software that performs tagging and parsing with high quality and
performance. Moreover, it has been extended by additional features which
leverage additional syntactical analyses based on the parsing result. One of
these features is capable to recognize syntactical elements of a given sentence,
e.g. subjects and predicates. For that purpose, this parser also supports the
extraction of syntactical elements and grammatical relationships from natural
language texts [90] and represents them in specific data structures, i.e. typed
dependencies [92].

Typed dependencies consist of a triplet that specifies the name of the
relation, the governor (the head of the dependency) and dependent (the word
that is dependent from the head word) [91]. We consider the following example
sentence to illustrate the concept of typed dependencies: The user creates a
process model and analyzes it for weaknesses. We receive the output shown
in Table 4.5 by using the Stanford Parser for dependency determination [68].
Among others, the sentence contains one subject-predicate dependency (nsubj)
and two verb-object dependencies (dobj). The subject-predicate dependency
is formed between the noun user and the verb creates, while the verb creates
and the noun model are in a direct-object dependency. Furthermore, we also
have information about the position of the single words within a sentence. For
instance, the noun model in the direct-object dependency is found on position 6
of the input sentence. Finally, we conceptualize the typed dependency relations
in order to correctly refer to correctly refer to the set of typed dependencies.
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Definition 4.2. (Set of Typed Dependencies) Let C be a corpus of natural
language text. The set of typed dependencies DepC of a corpus C is a triple
(T ×W ×W ), such that

− T contains the different kinds of typed dependencies as defined by Marneffe
et al. [91].

− W is the set of all words, such as nouns, verbs, determiners, prepositions,
conjunctions, etc.

Using the syntactical information in natural language sentences is essential
for further analysis with regard to semantics and pragmatics. This also counts
for process models which, however, only have fragments of natural language
that do not represent proper English sentences. Since tagging and parsing
technology require appropriate sentence structures, the performance of these
technologies is limited when applied to process models [249]. For these reasons,
we have a closer look on parsing the text fragments of process models in the
next section.

4.4.3 Parsing of Process Model Elements

There is one major challenge that prevents tagging and parsing techniques to
be directly applicable on process models and to perform with reliable results
[249],[237, p. 52], i.e. the shortness of model element labels. The shortness of
element labels limits the quality of tagging and parsing results, because the
introduced parsers require a certain degree of context in form of a sentence
or a paragraph as well as a tagged training corpus to correctly derive phrase
structure trees and typed dependencies. Such a resource is, however, not
available for process models, such that a tagger and parser cannot be trained
as usual. Moreover, the process model labels do not even specify a regular
grammatical sentence, but use different grammatical styles to describe the
model element [285]. These styles are not covered in available linguistic corpora
which makes it even more difficult for taggers and parsers to identify the correct
word classes and phrases. In consequence, we require alternative approaches
to use the linguistic information in process models.

A comprehensive solution of parsing process models and their labels has
been proposed by Leopold [237, pp. 49–80]. The author has developed a
parsing and annotation technique particularly tailored for process models
that outperforms current natural language parsers. In order to deal with the
challenge of textual shortness of labels, the technique makes use of specific
naming styles of modeling elements to parse the element labels. These parsing
rules are grounded on prior study on activity labeling styles by Mendling
et al. [285]. In this study, the authors identified different activity labeling
styles and investigated if the labeling style influences model users in intuitively
understanding the labels assigned to the construct. This was confirmed in
an empirical questionnaire in which participants were required to answer
model-related comprehension questions. Moreover, the authors also revealed
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Table 4.6: Labeling Styles of Process Model Elements, adapted from [237, pp.
53-57]

Labeling Style Syntactical Structure Example

Verb-Object VP NP Check application, Request missing
papers

Action-Noun (regular) NP Application check, Missing papers
request

Action-Noun (of) NP of NP Check of application, Request of
missing papers

Action-Noun (gerund) VBG NP Checking application, Requesting
missing papers

Descriptive NP VBZ NP Manager checks application, Missing
papers are requested

Participle NP VBN Application checked, Missing papers
requested

Modal NP MD VB VBN Application must be checked, Miss-
ing papers can be requested

Adjective NP ADJ Application is correct, Documents
are complete

Categorization NP VB NP Customer is member

Participle-Question NP VBN . Application checked?, Missing docu-
ments requested?

Infinitive-Question VP NP . Check application?, Request missing
papers?

Adjective-Question NP ADJ . Application is correct?, Documents
are complete?

Legend: NP: Noun Phrase (e.g. data, application, customer documents) VP: Verb
Phrase (e.g. check, requests, requested)

components that an activity label should contain, i.e. an action, a business
object, and an additional information fragment. The action specifies a specific
stream of tasks that needs to be carried out in a process. The business object
describes a work item on which the action is applied. The additional fragment
brings further information to the model reader and may help to improve the
understandability of the construct. As an example, consider the activity Check
application from the process model in Figure 2.5. This activity contains the
action to check and the business object application. However, it does not
describe any additional information fragment. Alternatively, the same activity
could also be described with the label Application check. In this case, the
grammatical style of the activity has changed capturing the action as a noun.
These different components and the style in which they are communicated are
the foundation of the parsing rules.
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In order to derive the parsing rules, several process model collections have
been manually annotated to gain a deeper understanding of the labeling prac-
tice [237, p. 53]. This annotation process included process modeling collections
that varied along several dimensions, such as modeling notation, model size,
business domain, and labeling quality. In this work, 1,450 process models
with almost 30,000 labels have been annotated and aggregated to represen-
tative labeling styles for activities, events, and gateways. Table 4.6 provides
an overview of these regular labeling styles, including their syntactical core
structure and examples. For the description of the syntactical structure, the
syntactic categories of the Penn Treebank are used (see Appendix A).

In case of activity labels, there are three main classes of labeling styles
[237, pp. 53-54]. In verb-object labels, the action is given as an imperative verb
in the beginning of the label, followed by the business object. The business
object either consists of a single noun or a compound of several nouns. The
activity labels Check application or Request missing papers are examples of
the verb-object style. Action-noun labels express the action in form of a noun
and use different grammatical structures to link it with the business object.
Frequently, the action of an activity is nominalized and provided after the
business object (Action-noun (regular)), such as in Application check or Missing
paper request. Alternatively, the preposition of is used to link the nominalized
action with the business object (Action-noun (of)). As examples, consider Check
of application or Request of missing papers. The action-noun style (gerund)
contains a gerund in the beginning of the label which is then followed by
the business object. Examples are Checking application or Requesting missing
papers. Finally, descriptive labels provide a text fragment that is most similar
to a comprehensive sentence, as it contains a subject-predicate-object structure.
In many cases, this style also specifies the role executing this activity. Examples
of descriptive labels are Manager checks application or Missing papers are
requested.

Events represent a specific state within the process. Obviously, events need
to be expressed in different ways than activities [237, p. 54]. In total, there are
four classes of event labeling styles. The first event labeling style (Participle
Event) combines a business object with a past participle construction of a verb.
The labels Application checked or Missing papers requested are instances of this
labeling style. Similar to that, the modal event style incorporates an additional
modal verb such as can, must, or shall into the label. Then, the model verb
is followed by an auxiliary and a participle verb, such as in Application must
be checked or Missing papers can be requested. Event labels that fall into the
adjective event style use an adjective construction at the end of the label.
As examples, consider the events Application is correct or Documents are
complete. The categorization event style combines two nouns with each other,
such that the second noun represents a category or class for further processing.
The event label Customer is member is an example of this labeling style.

Gateways indicate that a particular decision needs to be taken in order to
continue a particular path in a process model. Hence, all gateway labels usually
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Fig. 4.7: Job Application Process with Annotated Elements

end with a question mark to explicitly point to this decision. Again, three main
classes of gateway labels have been derived by Leopold [237, pp. 54-55]. The
first class of gateway labels combines a business object with a past participle
construction of a verb. The labels Application checked? or Missing documents
requested? are examples of the participle-question style. The infinitive-question
style combines a verb-object construct with a question mark. Generally, the
infinitive verb is positioned in the first position of the label followed by the
business object and a question mark. Check application? or Request missing
papers? are instances of this gateway style. The adjective-question style is
similar to the adjective-event style. It uses a business object in the beginning
and an adjective construction at the end of a label, such as in Application is
correct? or Documents are complete?.

Based on these general labeling styles, a process model parser has been
developed by Leopold [237, p. 58–70] that annotates a model element with the
relevant components. A comprehensive discussion and evaluation of the model
parser is provided in [249] and [238, p. 71-78]. For these reasons, we focus on the
application of the model parser to an example process and provide a formalism
to refer to the different label components. Consider again the example process
model as depicted in Figure 4.7. The figure shows the job application process
from section 2.4, Moreover, all of the labeled elements have been annotated
with the respective components by the model parser. For example, the activity
Request missing papers is annotated with the action to request and the business
object missing papers. The additional information component is left empty,
because the label does not specify any further information. Next to it, the
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activity Evaluate via application contains the action to evaluate and the
additional fragment via application. However, a business object is missing.
Both of these activities are instances of the verb-object style. Looking at the
start event Application received, the model parser classifies this label as a
participle-event and accordingly identifies the object application and the past
participle of the verb to receive.

As this thesis further investigates the label components of the process
model elements, the parsing and annotation technique of Leopold is used to
access the textual information in a standardized way. We use the following
definitions to refer to the components of activities, events, and gateways [247]
in order to consistently refer to the respective component of a process model
element. These definitions are explained by taking the process model in Figure
4.7 as an example.

Definition 4.3. (Label Components of Process Model Activities). Let
P = (A, E, G, F , R, P , L, ρ, π, λ, γ, τ) be a process model, and a ∈ AP

λ
a

labeled activity of process model P. Further, let WV be the set of all verbs and
WN be the set of all nouns. Accordingly, the label components of an activity
label l = λ(a) are given by the following functions:

− αA : L 7→WV refers to the action of the activity a.
− βA : L 7→WN refers to the business object of the activity a.
− γA : L 7→WN refers to the additional information fragment of the activity
a.

As an example, consider the activity a1 ∈ Aλ from the process model
in Figure 4.7. The label of this activity is given with la1 = λ(a1) = Check
application. According to definition 4.3, the components are given as follows:

− αA(la1) = to check
− βA(la1) = application
− γA(la1

) = ∅

Definition 4.4. (Label Components of Process Model Events). Let
P = (A, E, G, F , R, P , L, ρ, π, λ, γ, τ) be a process model, and e ∈ EP

λ
a

labeled event of process model P. Further, let WV be the set of all verbs, WN

be the set of all nouns, and WADJ be the set of all adjectives. Accordingly,
the label components of an event label l = λ(e) are given by the following
functions:

− αE : L 7→WV refers to the action of the event e as given by the participle
event style.

− βE : L 7→WN refers to the business object of the event e.
− σE : L 7→ WADJ refers to the status of the event e as given by the

adjective-event style.

In case of the event annotation, we consider the end event e2 ∈ Eλ from
the process model in Figure 4.7. The label of the event is given with λ(e2) =
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Application finished. According to definition 4.4, the components are given as
follows:

− αE(le2) = to finish
− βE(le2) = application
− σE(le2) = ∅

Definition 4.5. (Label Components of Process Model Gateways). Let
P = (A, E, G, F , R, P , L, ρ, π, λ, γ, τ) be a process model, and g ∈ GP

λ
a

labeled gateway of a process model P. Further, let WV be the set of all verbs,
WN be the set of all nouns, and WADJ be the set of all adjectives. Accordingly,
the label components of a gateway label l = λ(g) are given by the following
functions:

− αG : L 7→ WV refers to the action of the gateway g as given by the
participle and infinitive question style.

− βG : L 7→WN refers to the business object of the gateway g.
− σG : L 7→ WADJ refers to the status of the gateway g as given by the

adjective-question style.

Finally, consider the gateway g1 ∈ Gλ and its label λ(g1) = Documents
complete? of the process model in Figure 4.7. According to definition 4.5, the
following gateway components are retrieved:

− αG(lg1) = ∅
− βG(lg1) = documents
− σG(lg1) = complete

By using the discussed model parser, it is possible to access the text
information from labels in a structured way and to make them available for
further semantic analysis. The relevant techniques for semantic analysis are
discussed in the next chapter.

4.5 Relevant Techniques for Semantic Analysis

This section is concerned with NLP technologies that leverage the analysis of
semantics in the course of this thesis. In particular, we will provide a deeper
understanding of computational lexicons and their capabilities to implement
word senses and semantic relations in Section 4.5.1. Afterwards, we turn the
focus on word sense disambiguation and illustrate the main idea of these
techniques in Section 4.5.2.

4.5.1 Computational Lexicons

Due to the importance of computational lexicons for semantic analysis [173, 13],
we further investigate how computational lexicons operationalize word senses
and which semantic relations they cover. We use WordNet and BabelNet as
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illustrative examples in order to explain the concept of computational lexicons.
On the one hand, WordNet is a large lexical database for the English language
[293, 292, 291]. It organizes nouns, verbs, adjectives and adverbs into sets of
synonym words, i.e., synsets, to express a distinct concept. The synsets are
interlinked by means of semantic relations and span a network of meaningfully
related words and concepts. In total, WordNet contains 155,287 words which
are grouped into 117,659 synsets. WordNet also provides short definitions and
usage examples for each synset which clarifies the intended word sense. It
can be regarded as a extended thesaurus since it groups words based on their
word sense and supports users to disambiguate closely related words in the
network. On the other hand, BabelNet [302] is a multilingual encyclopedic
knowledge source which combines all features of a dictionary and a semantic
network. Accordingly BabelNet covers a broad range of lexicographic and
encyclopedic concepts and connects these concepts with semantic relations
similar to WordNet. In total, BabelNet contains more than 13 million concepts,
called Babel synsets, which represent a given meaning and which contain
all their synonyms. Concepts and their relations have been harvested from
WordNet, Wikipedia, and most recently, from OmegaWiki, Wiktionary, and
Wikidata and integrated into one unified knowledge source by applying intelli-
gent mappings between these sources. Additionally, it contains translations
obtained from sense-annotated sentences such that it incorporates more than
270 languages. Both lexicons offer a web interface to explore word senses and
semantic relations as well as a Java API to integrate these sense extraction
functionality and semantic analysis into software tools.

Obviously, the concept of synsets play an important role in both lexicons. A
synset typically represents a particular word sense by grouping together those
words, that express approximately the same meaning. As an example of the
word sense representation with synsets, consider the synsets that are retrieved
for the noun application. Depending on the lexicon, we may use application
in either 7 or 10 different contexts as depicted in Table 4.7. The table also
lists the members of the respective synsets together with a description when
employing WordNet or BabelNet. For instance, we learn that we can use
the word application in the sense of a job application (Synset 2) and in the
sense of a software program (Synset 4). Besides these obvious senses, we also
learn that the word application describes the action of bringing something
to bear, i.e. to use something for a particular purpose (Synset 1). We also
learn synonymous words which can be used interchangeably for the word
application. For example, we can also use the word lotion if we refer to a liquid
in a medical treatment (Synset 5). Besides, BabelNet adds three more synsets
which have been discovered in the other knowledge sources, such as the sense
of determination to perform a task (Synset 8) or of an application for sole
rights to an invention (Synset 10).

Computational lexicons also provide several sense relations between synsets
and words, such as synonymy, homonymy, hyponomy, and meronymy. The
synset representation of word senses directly implements the synonym relation
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Table 4.7: Synsets Retrieved from WordNet and BabelNet for the Noun
Application

Description WordNet BabelNet

1 the act of bringing something
to bear

{application, practi-
cal application}

{application, practi-
cal application}

2 a verbal or written request
for assistance or employment
or admission to a school

{application} {application}

3 the work of applying some-
thing

{application, coating,
covering}

{application, coating,
covering}

4 a program that gives a com-
puter instructions that pro-
vide the user with tools to
accomplish a task

{application, applica-
tion program, applica-
tions programme}

{application, applica-
tion program, applica-
tion software }

5 liquid preparation having a
soothing or antiseptic or
medicinal action when ap-
plied to the skin

{lotion, application} {application, lotion}

6 a diligent effort {application, dili-
gence}

{application, dili-
gence}

7 the action of putting some-
thing into operation

{application} {application}

8 persevering determination to
perform a task

N/A {diligence, industri-
ousness, industry,
assiduity, application
(virtue)}

9 in United States law, a mo-
tion is a procedural device
for decision

N/A {Motion in United
States law, applica-
tion (legal)}

10 an application for sole rights
to an invention

N/A {patent application,
application (patent)}

because it describes a particular word sense in terms of interchangeable words
combined with a short description. Moreover, this representation also points
to homonym words, as it lists all possible interpretations of a given word.
However, in order to capture the other semantic relations, it is necessary to
explicitly define these relations between the synsets. Thus, the synsets of a
computational lexicon are also linked via lexical and semantic relations [293].
Semantic relations apply to all members of a synsets, while lexical relations are
defined between single words of different synsets. As an example of semantic
relations, we already introduced the hyponym and meronym relation for nouns
and the troponym relation for verbs. The antonomy relation would be an
example for a lexical relation between words. This relation expresses the
opposite of concept of a word, such as the word good would be the opposite to
the word bad.



4.5 Relevant Techniques for Semantic Analysis 79

application 

credit application 

request, petition, 
postulation 

job application 

loan application 

mortgage 
application 

patent application 

put in 

submit 

apply 

is_A 

is_A 

is_A 

is_A 

is_A 

part_Of 

part_Of 

derivationally 
related 

is_A 

Fig. 4.8: Exerpt of the BabelNet Semantic Graph for Application

Both lexicons, WordNet and BabelNet, may be interpreted as a graph.
Nodes of the graph refer to synsets and edges represent lexical and semantic
relations between the synsets or words. Figure 4.8 shows a fragment of the graph
for the word application and Synset 2. The figure also depicts several hyponym
relations, two hypernym relations, one derivation relation as well as two
meronym relations. The derivation relation is a lexical relation and is thus only
defined for one word in the respective synset. In this case, the derivation relation
expresses that the verb to apply verbalizes the noun application. The hyponym
relations expresses that one synset is subsumed by another less specific synset.
For example, the synsets credit application, job application, loan application, and
patent application are all hyponyms of the synset application. The hypernym
relation is the inverse relation to the hyponym relation. Accordingly, the
synset application is a hypernym of the synset loan application, while loan
application is a hypernym of mortgage application. Finally, the entailment
relation describes that the verb to apply consists of several parts. In the figure,
we identify that the verbs to put in and to submit are both entailed in the
action of applying.

We define several functions to describe the concept of synsets as well
as the required semantic relations in order to precisely refer to the specific
concepts of a computational lexicon. These functions focus on the BabelNet
lexicon. This choice is motivated by the fact that BabelNet significantly
outperforms WordNet in terms of knowledge coverage and its fitness for word
sense disambiguation [302]. We adapt definition 4.1 and express word senses
with the help of synsets in order to refer to the synsets of the BabelNet
dictionary. Accordingly, BabelNet synsets are defined as follows [300]:



80 4 Concepts of Linguistics and Natural Language Processing

Definition 4.6. (BabelNet Synsets). Let BN be the BabelNet dictionary,
the senses of a word are defined by the function SensesBN : W × POS →
2Synsets, such that

− W is the set of words denoted in the BabelNet dictionary BN .
− POS = {n, v, a, r} is the set of open-class parts of speech (nouns, verbs,

adjectives, and adverbs).
− Synset is the entire set of synsets encoded in the BabelNet dictionary BN .

2Synset denotes the powerset of synsets.

As an example of this definition, consider Table 4.7 which shows the synsets
for the word application. The function SensesBN (application,n) would describe
the set of synsets which is shown in the right column of the table. In order to
refer to the i-th synset of the set of synsets, we will use an index i ∈ N , such
that si ∈ SensesBN (application,n). Accordingly, the fourth synset is refered
to as s4 = {application, application program, application software}.

Finally, we also specify functions to refer to the hyponyms and hypernnyms
of a specific synset. Since the hyponym and hypernym relation are defined
between synsets, it is not sufficient to provide only the word and its POS
tag. Instead, this function requires a specific word sense which is given by a
particular synset. Accordingly, the hyponym and hypernym relations can be
defined as follows:

Definition 4.7. (Hypomym and Hypernym Relation). Let BN be the
BabelNet dictionary. The hyponym and hypernym relations are defined by the
functions hypoBN : Synset→ 2Synset and hyperBN : Synset→ Synset, such
that

− Synset denotes the entire set of synsets encoded in the BabelNet dictionary
BN

− 2Synset denotes the powerset of synsets.
− hypoBN retrieves the set of all hyponym synsets.
− hyperBN retrieves the set of all hypernym synsets.

As an example, consider again the graph fragment of BabelNets hy-
ponymy tree for the word application as shown in Figure 4.8. It illus-
trates that BabelNet provides four different hyponym synsets for the synset
s2 = {application} ∈ SensesBN (application,n)}. Accordingly, these hyponyms
are given by hypoBN (s2) = {{job application}, {patent application}, {credit
application}, {loan application}}. Moreover, is also shows one hypernym synset
which is given by hyperBN (s2) = {request, petition, postulation}.

So far, we paid considerable attention to represent semantic concepts and
relations with technical means. However, we still miss a link between the
semantic processing of text with these semantic relations. To this end, it is
necessary to annotate words with their respective meaning in a given sentence.
The task of assigning the most likely word sense to a word is known as word
sense disambiguation (WSD) and is comparable to syntactic tagging and
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parsing. The next section is dedicated to a short discussion of word sense
disambiguation.

4.5.2 Word Sense Disambiguation

In general, WSD describes the task of automatically assigning the appropriate
word senses to all or some of the words of a given input text. If we consider a
text as a sequence of words (w1, w2, ..., wn) ∈ (W ×W × ...×W ), WSD needs
to identify a mapping from a word wi to its word senses, i.e.:

A : W × (W ×W × ...×W ) 7→ SensesD, such that

− A(wi, (w1, w2, ..., wn)) ⊆ SensesD(wi, p)
− A(wi) is the subset of the word senses of wi which are appropriate for

the word sequence

The mapping can assign more than one word sense to each word wi ∈
T , although typically only the most appropriate word sense is selected. As
discussed earlier, there are a number of WSD approaches and systems to identify
the correct word sense. In this thesis, we will employ the multilingual knowledge-
based WSD approach of Navigli and Ponzetto [302, 303, 304] because it is
integrated into the BabelNet lexicon and because it can compete with available
systems by achieving a F1-score of 82.5%.

The BabelNet WSD approach aims for the construction of a directed graph
G = (V,E) for a target word w′ and an input word sequence (w1, ..., wn)
representing the context. In this case, the node set contains all word senses
of the input word sequence, while the edges are given by semantic relations.
The graph is constructed by employing a depth-first-search for one node to
another and adding all intermediate nodes if BabelNet specifies a path of
semantic relations between these nodes [301]. The result of this procedure is
a subgraph of BabelNet which contains all senses of the words in the input
word sequence, as well as all edges and intermediate senses found in BabelNet.
Given that representation, WSD is then regarded as a ranking problem [304].
Each node of the subgraph G representing a word sense is ranked by applying
a connectivity measure given by the function score(.). The most appropriate
word sense for w′ and the POS tag p is then given by

s∗i = argmax
s∈SensesBN (w′,p)

score(s) (4.1)

Experiments of different centrality concepts revealed that the degree cen-
trality performs best for the WSD task [301, 341]. Degree centrality relies
on the notion of vertex degree and ranks the senses of a given word in the
subgraph G based on the number of their outgoing edges. The connectivity
measure assumes that the most appropriate sense is always involved when
comparing other senses of the graph and accordingly assigns a higher degree
to it. This scoring method is described as follows:
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score(s) = |{(s, v) ∈ E | v ∈ V }| (4.2)

In this thesis, we will employ the BabelNet system to learn about word
senses and the integrated graph-based disambiguation approach to assign the
respective word sense to a target word. The relevant techniques for pragmatic
analysis are discussed in the next section.

4.6 Relevant Techniques for Pragmatic Analysis

Finally, we discuss relevant techniques for the pragmatic analysis. With this re-
gard, we already discussed techniques from the area of discourse interpretation,
language generation, and machine translation.

Discourse interpretation is concerned with the analysis of with a group
of collocated and related sentences, i.e. a discourse [184, p. 663-664]. For the
automatic interpretation of such discourses, we mentioned several approaches
that make use of the BDI model or other sources of knowledge for the discourse
interpretation task. Unfortunately, the adoption of such techniques for process
model labels is rather limited which mainly has two reasons. First, a process
model does not represent a proper discourse of sentences leading to the fact
that it cannot easily be analyzed with regard to its beliefs, desires, or intentions.
The second reason is that these approaches provide only very little help for the
aforementioned pragmatic issues where the context of a process model and its
activities is insufficiently specified. They might be helpful to identify process
models without a clear intention, but do not provide help in refactoring such
issues.

Language Generation is the process of constructing natural language out-
puts from non-linguistic inputs. The goal of this process to map from meaning
to understandable natural language text by applying the steps of selecting the
relevant content and words, structuring a single sentence, and finally structur-
ing the entire discourse [184, pp. 761-762]. Indeed, there are also approaches
available that generate natural language texts from process models (see e.g.
[241, 242]) and other conceptual models (see e.g. [93, 143, 295]). Although
these approaches support users, which are not familiar with a specific modeling
notation, to understand the process model, the approaches themselves do not
directly help in refactoring pragmatic issues in process models where essential
information in the process model is missing. It would be up to the user to
read through the generated process description and improve it wit hregard to
specificity. A similar argument applies to approaches of machine translation
that are is concerned with the automatic translation of texts and process
models from one language into another [29].

For these reasons, this thesis does not employ any of the aforementioned
techniques belonging to the pragmatic NLP techniques and seeks alternatives
to address the issue of pragmatic inconsistencies caused by insufficient context
information in a process model.
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4.7 Summary

This chapter has provided a general introduction into the field of linguistics,
the different schools of thought, and the basic ideas. In order to analyze the
textual information in process models elements, this chapter has also discussed
the involved branches of theoretical linguistics, namely syntax, semantics,
and pragmatics. We have also provided a short introduction to the field of
natural language processing and available techniques to analyze the syntactical,
semantic, and pragmatic aspects of natural language.

Moreover, this chapter has further presented the most important concepts
of each linguistic branch which are required for the model analysis techniques of
this thesis. From a syntactical perspective, this chapter has discussed available
technical means to annotate process model elements with their components
which enable a deeper investigation and serve as an input for semantic tech-
nology. Regarding semantics, this chapter has given an introduction to the
most relevant semantic technologies, i.e. computational lexicons and the ap-
proaches of word sense disambiguation. Moreover, it has motivated the choice
for the computational lexicon BabelNet and its integrated WSD algorithms.
Equipped with these linguistic and technical concepts, this thesis will now
present approaches that further analyze the model element labels and correct
them, if desired.





5

Refactoring of Syntactical Ambiguity

This chapter discusses the problem of detecting and refactoring syntactical
ambiguity in process models. Syntactical ambiguity refers to such cases where
text labels encode other aspects of the process model, such as the control
flow or resources. Section 5.1 further details the problem of complex label
phrases and discusses the consequences thereof. It motivates the notion of
atomicity as a new correctness criterion for process models, which is then
operationalized in Section 5.2. Since a considerable number of industrial process
models do not comply with the atomicity notion, it is necessary to refactor
deficient process models in an automated way. For this purpose, Sections
5.3 describes nine atomicity violation patterns that have been discovered in
process model repositories from industry. Based on these violation patterns,
Section 5.4 presents an approach that automatically detects and refactors
non-atomic process models. In Section 5.5, this approach is then evaluated by
four process model collections from practice. Finally, Section 5.6 discusses the
results and implications of the evaluation, before Section 5.7 summarizes the
main achievements of this chapter.

5.1 Syntactical Ambiguity in Process Models

The text labels assign an element of a process model to a name and thus
contribute to the overall semantics of a process model. These labels have in
common that they are subject to linguistic variation in terms of structure and
wording. There exist several ways to express the same semantics with different
text labels. In order to unify the structure and to avoid misinterpretation
of text labels, modeling guidelines recommend specific labeling styles for
different process model elements [283, 395, 261], such as the verb-object style
for activities. However, these guidelines only cover those labels that refer
to one single stream of action. If, however, the text label describes complex
phrases incorporating several streams of action or control flow information,
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Fig. 5.1: Process Model with Mixing Natural Language and Modeling Language

these guidelines and the available correction techniques address only parts of
the problem.

We use an exemplary BPMN process model as depicted in Figure 5.1 in
order to elaborate on the problem of complex label phrases. It shows a process
model of a company receiving new goods for its inventory. The process starts by
screening the documents of the delivery. Subsequently, the delivery is identified
within the company before the inspection of the delivery begins. Afterwards,
it needs to be determined if the delivery is complete or not. Depending on
the result, the missing items are either requested from the supplier or the
inventory is updated and the delivery documents are archived. Finally, the
delivered goods are moved to the warehouse which resembles the end of the
process.

Figure 5.1 depicts a number of process model elements that go beyond the
simple verb-object style. For example, the activity Screen delivery documents if
necessary instructs the model quickly check the delivery documents. Implicitly,
it further instructs the user to make a decision. Since the phrase if necessary
adds optionality to the activity, the user has to decide depending on the
situation, if he checks these documents or not. In consequence, it would be
more consistent to explicate this optional activity by using an exclusive choice
gateway with an empty path on the one hand and the respective activity on
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the other hand. The next example involves the activity Delivery identification
before inspection. This activity describes a sequence of two activities with a
particular order. Indeed, the delivery is first identified within the company and
then inspected accurately. In this case, it would be more consistent to create
two separate activities in a direct sequence. Although both cases represent
an inconsistent mix of natural and modeling language, it has to be noted
that the interpretation of these text labels is clear. Nevertheless, there are
also less understandable cases. For example, consider the ambiguous label of
the activity Update inventory and archive delivery documents. Although the
activity tells us to update the inventory and to archive the delivery documents,
it is unclear about the sequence of these activities, because the intention of
the and-conjunction is not obvious. In the example, it may be interpreted as a
parallel sequence of activities or in a direct sequence. These complex labeling
phrases do not only affect the ability of a reader to properly understand the
model and to develop a solid understanding of the underlying process, but
also complicates the application of the process model for other purposes, such
as model compliance, process model analysis, as well as system design and
analysis.

Process model compliance ensures that business processes, operations and
practice are in accordance with a prescribed agreed set of norms [376, 140].
Frequently, compliance requirements may stem from legislature and regulatory
bodies (see e.g. Sarbanes-Oxeley Act [380] or Basel III [25]. In such a setting,
process models are annotated with additional compliance conditions and
assessed by inference techniques to verify the compliance requirements [376, 86].
However, if model elements are non-atomic and incorporate several activities,
the annotation of a such an element with compliance conditions does not reveal
to which activity it refers. In consequence, an inference on these conditions
might evaluate the process as compliant although it violates specific compliance
requirements. Ultimately, the process model cannot be used to prove the
implementation of compliance requirements.

Process analysis and monitoring is concerned with a quantitative and
continuous assessment of processes and evaluating them according to defined
performance measures and objectives [108]. Alternatively, processes may also
be simulated to detect bottlenecks or resources with high workload [420, 98].
In order to conduct such analyses, the process models need to be enriched
by additional information, such as activity costs, resources, roles, or time,
typically specified for each activity [98, 8]. Similar to the aforementioned case,
the analysis approaches consider each activity to be atomic and do not detect
non-atomic activities. In consequence, the annotated information is not broken
down to the incorporated activities, but remains unchanged. For example, if a
process is analyzed for its execution time, a non-atomic activity would mingle
waiting time and processing time of its nested activities instead of correctly
distributing these times on the nested activities. Thus, the analysis results and
the key performance indicators are imprecise and do not reflect the current
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Table 5.1: Refined Overview of Textual Model Refactoring Approaches and
their Focus on Atomicity

Authors Approach Atomicity

Sharp and McDermott [395], Naming Conventions for Process None
Mendling et al. [283], Model Elements
Malone et al. [261]
Leopold et al. [248, 249] Parsing and Refactoring of Activity

Labels
Partly

Leopold et al. [238] Detecting and Correcting Naming
Violations

Partly

Becker et al. [31, 32] Enforcing of Naming Conventions
during Modeling

Partly

Delfmann et al. [96], Havel et al.
[157]

Prototype for Naming Convention
Enforcement

Partly

state within the process which may ultimately lead to wrong business decisions
[144].

System design and analysis is concerned with the study of organizations and
systems in order to identify their goals and purposes and to create innovative
systems that will achieve new requirements in an efficient way [37]. In this
context, process models help to document relevant parts of the system [88]
and to design systems [109]. In particular, process models may be transformed
into executable process-aware systems by using established standards such as
BPMN [399] and BPEL [182]. Prior research has also proposed techniques to
automatically generate executable BPEL code from process models in BPMN
and UML notation [315, 317]. The weak point of these approaches is that they
consider each model activity to refer to a single system function that needs to
be implemented. Thus, the translation approaches are not capable of detecting
nested functions and of correctly mapping them to executable code. Therefore,
the final system might be incomplete with regard to the required functionality.

Apparently, the implications of complex labeling phrases in process models
are potentially severe. It is beneficial to verify a process model with regard
to this property in order to avoid the aforementioned issues. Accordingly,
we investigate whether the previously discussed approaches are capable to
deal with complex label phrases and to resolve them. Table 5.1 refines the
overview of existing syntax verification approaches. Moreover, the table also
investigates approaches from other domains and how they implement the
notion of atomicity.

We already discussed the naming guidelines for process model elements
which recommend the verb-object style of labeling [283, 395, 261]. However,
the guidelines do not provide any restriction on the quantity of verbs or
actions of a single text label and are not fully applicable to prevent this issue.
Leopold et al. [248, 249, 238] propose a refactoring technique that reworks the
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syntactical structure of English and German labels. Their approach marks
complex element labels as a guideline violation, but does not rework these
labels comprehensively. The tools by Becker et al. [31, 32], Delfmann et al.
[96], and Havel et al. [157] provide modeling support for the naming of process
model elements. These tools enforce specific linguistic naming conventions
during the process of modeling and ensures that particular naming guidelines
are fulfilled. In this way, the tool indirectly keeps model element labels simple
and prevents the specification of complex labels. Overall, these approaches
do not explicitly consider the problem of complex labels and provide only
building blocks to tackle it. A comprehensive solution to that problem has not
been developed so far. Therefore, this thesis proposes a theoretical concept,
denoted as atomicity, which imposes an additional condition on process model
elements. It demands that process model elements should not incorporate
multiple actions and business objects at once. Hence, they clearly refer to one
distinct stream of action without specifying additional information of other
perspectives of the process, such as the control flow or the data and resources
perspective. In this way, atomicity defines a correctness criterion for process
models that, if fulfilled, provides the basis for their meaningful analysis.

In order to establish the atomicity concept in process models, we need to
address the following requirements:

1. RQ1: Operationalization of the atomicity concept
2. RQ2: Automatic detection of non-atomic instances
3. RQ3: Automatic resolution of non-atomic instances

The first requirement involves the completeness of cases that correctly and
incorrectly apply the notion of atomicity in process models. Generally, the
first requirement has to be approached in an inductive way by generalizing
reoccurring patterns. Based on these patterns, we can provide an operational-
ization of atomicity and of the problematic cases. The other two requirements
are concerned with the adoption of the atomicity concept into modeling prac-
tice. They involve a deductive step with which deficient process models are
detected and refactored. The second requirement particularly addresses the
necessity of detecting non-atomic instances in a reliable way which requires a
formal specification of the basic characteristics of the non-atomicity patterns.
The third requirement is concerned with the automatic rework of detected
non-atomicity instances and makes use of the general structure of violation
patterns.

5.2 Operationalizing the Concept of Atomicity

As aforementioned, the notion of atomicity represents a correctness criterion
on process models and its element labels. It demands that all process model
elements should not incorporate several actions and business objects at once.
This condition ensures that the elements clearly describe one specific stream
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of action that is not impacted by any additional information relating to other
process perspectives. Moreover, atomicity ensures that both building blocks,
i.e. the modeling language and the natural language, are distinctly separated
from each other, such that process model analysis techniques can focus on the
respective block.

We refer to the definition of a process model as given by Definition 2.3 in
order to formulate the notion of atomicity. This definition allows the assignment
of arbitrary labels to process models elements which may involve several
actions, business objects, or control flow restrictions. As shown in Fig. 5.1,
the activity Update inventory and archive delivery documents comprises two
actions (to update, to archive) as well as two business objects (inventory,
delivery documents) resulting in two individual activities combined with either
a direct or a parallel sequence. According to the discussion from the previous
section, the text label should be free of such information. Relying on the
Definition 4.3 that introduced the different label components of a process
model parser, the notion of atomicity is defined as follows:

Definition 5.1. (Atomicity). A process model P = (A, E, G, F , R, P , L,
ρ, π, λ, γ, τ) is atomic if each labeled activity has exactly one action, one
business object, and no more than one addition. Formally:

∀a ∈ AP
λ : |α(λA(a))| = 1 ∧ |βA(λ(a))| = 1 ∧ |γA(λ(a))| ≤ 1.

Applying this definition to the process model in Fig. 5.1 reveals that
the model does not comply with this the notion of atomicity. One of the
reasons is the activity label Update inventory and archive delivery documents
which comprises several business objects, i.e. |β(l)| = |{inventory, delivery
documents}| 6= 1, and several actions |α(l)| = |{to update, to archive}|. A
similar argument applies to the activity label Delivery identification before
inspection, which comprises two actions, i.e. |α(l)| = |{to identify, to inspect}| 6=
1. In consequence, both violations mark the example process model to be non-
atomic and to violate the notion of atomicity.

Indeed, the number of atomicity violations are worth considerable. In order
to quantify the extent of non-atomic process models, Definition 5.1 has been
checked for several process model collections from various industries. Table 5.2
gives an overview of affected process models that have at least one non-atomic
element as well as the average number of non-atomic elements per model. The
selected process model collections are rather heterogeneous with regard to
the different characteristics and show notable differences with regard to size,
standardization, the expected degree of modeling quality, and the modeling
domain:

• SAP Reference Model: The SAP Reference Model (SRM) contains 604
Event-Driven Process Chains organized in 29 different functional branches
[190]. Examples are procurement, sales, and financial accounting. The
model collection includes 2,432 activity labels. Since the SAP Reference
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Table 5.2: Atomicity Violations in Process Model Repositories from Industry

Characteristic SRM IMC AIC TC

No. of Models 604 349 1,091 979
No. of Labels 2,432 1,840 8,339 12,088
Modeling Language EPC EPC BPMN EPC
Domain Independent Insurance Academic Training Communication
Standardization High Medium Low Medium
Total No. of
Violations

160 (26%) 232 (67%) 444 (41%) 445 (45%)

Avg. No. of Non-
Atomic Elements

2.44 2.59 2.31 3.98

Legend: SRM: SAP Reference Model Collection, IMC: Insurance Model Collection,
AIC: Academic Initiative Collection, TC: Telecommunication Model Collection

Model was designed as an industry-independent recommendation, we
expect a high degree of standardization and a high model quality which
should result in smaller numbers of non-atomic pattern occurrences.

• Insurance Model Collection: The Insurance Model Collection (IMC)
contains 349 EPCs dealing with the claims handling activities of a large
insurance company. In total, the models include 1,840 activities and hence
are slightly smaller than the models from the SRM. Compared to SRM,
we expect a bigger number of pattern occurrences due to the low level of
competence of casual modelers [369, 419] and higher error rates in industry
model collections [274].

• Academic Initiative Collection: The models from the Academic Ini-
tiative Collection (AIC) stem from academic training and cover diverse
domains1. From the available models, we filtered those with proper En-
glish labels. The resulting subset includes 1,091 process models with 8,339
activity labels. Since the collection targets no specific industry and has
been mainly created by students, the number of pattern occurrences is
expected to be the highest among all considered collections.

• TC Collection: The TC collection contains the processes from an inter-
national telecommunication company. It comprises 803 process models
with 12,088 activities in total. Thus, the TC collection is the biggest model
collection which we employ for our experiments. Similar to the IMC collec-
tion, the TC collection was also created by casual and semi-professional
modelers which leads to the assumption that the techniques will detect
pattern occurrences between the SRM and the AIC collection.

Apparently, the issue of non-atomic process models affects a notable number
of process models in the model repositories. It has been revealed that between
26% and 67% of process models specify elements containing non-atomic element

1 Please refer to: http://bpmai.org
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labels. Within the affected models, we identified on average 2.31 to 3.98 model
elements that violate the atomicity criterion. These numbers also reflect
standardization and experience of the modelers who created the respective
models. In the SRM collection, we have found the smallest number of non-
atomic process models. Surprisingly, the AIC collection having the smallest
degree of standardization has less problems with atomicity than the process
models stemming from the insurance and communication domain.

It is, however, necessary to increase our current understanding of non-
atomic cases in order to leverage the automatic refactoring of the affected
process models. Therefore, we discuss our explorative methodology as well as
specific non-atomicity patterns in the next section.

5.3 Atomicity Violation Patterns

In order to increase the current understanding of non-atomicity patterns, we
adopt the explorative approach by Weber et al. [431] to identify refactoring
opportunities in process models. The manual analysis of industry process
models includes the following steps to derive a list of generic patterns that
violate the notion of atomicity.

1. Pattern Extraction: The first step consists of two iterations. In the
first iteration, each non-atomic instance has been explored for interesting
phrases and annotated with an initial code. This procedure has been
continued until a point of saturation has been reached [73], which describes
the situation when no new and interesting construct was emerging. The first
iteration ended by creating an initial list of violation patterns. In the second
iteration, the initial set of violation patterns has been further refined. These
patterns have been characterized according to their disjunctive properties.
As a result, we aggregated those patterns which turned out to be special
cases of others. Afterwards, the entire set of patterns has been annotated
again with the refined pattern set.

2. Pattern Interpretation: In the second step, we further investigated the
refined set of violation patterns and analyzed how the atomicity notion may
be restored. We thus considered each violation pattern and interpreted it
with respect to the natural language and the modeling language it implies.
The second step resulted in a set of violation patterns with their possible
interpretation as well as their core structure.

3. Pattern Classification: In the last step, we further investigated these
patterns and classified them according to the process model perspective
they refer. We classified each pattern as either affecting the control flow or
data and resources as well as describing implicit objects. All three classes
describe patterns which mix natural language and modeling language in an
inconsistent way, but still have only one possible interpretation. Moreover,
there are also patterns that are ambiguous in such a way that two or more
interpretations are possible.
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As a result of this process, a set of nine atomicity violation patterns has
been identified. We discuss the identified patterns and represent their structure
with the help of syntactical concepts in order to leverage the forthcoming
automatic refactoring of these patterns. We distinguish between patterns that
concern the control flow (Section 5.3.1), the resources and data perspective
(Section 5.3.2), and implicit model elements (Section 5.3.3).

5.3.1 Non-Atomic Control Flow Patterns

In total, we found five non-atomicity patterns that relate to the control flow
of process models. Table 5.3 provides an overview of these patterns, their
syntactical structure, and their interpretation.

Violation Pattern 1. Activities suffering from the Sequence pattern in-
corporate sequential text information. This information imposes additional
conditions on the task by stating that the task has to be executed in prepa-
ration for or as a consequence of another task. The pattern directly relates
to the basic sequential flow of activities [7, 317, 437]. Typically, this pattern
links two distinct activities by using temporal prepositions, such as before

or after, to express the order of activities. The atomicity of these labels is
violated due to the inclusion of several actions, business objects, or additional
information fragments. Hence, we describe the set of labels of a process model
P that fall into the Sequence pattern as follows:

V P
Sequence ={a ∈ AP

λ : l = λ(a) ∧m(l, *(before|after)*)

∧ (|αA(l)| 6= 1 ∨ |βA(l)| 6= 1 ∨ |γA(l)| > 1)},
(5.1)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

Violation Pattern 2. Elements suffering from the Parallel Activities pattern
combine several actions, business objects or combinations of these in a single
activity element. Hence, a single activity element instructs people to perform
multiple individual streams of action. Typically, this pattern includes the
conjunction and or special characters such as +, &, or / to indicate several
distinct activities. Moreover, the interpretation of this pattern is not obvious
since the meaning of the conjunctions is not clearly defined. Consequently, the
label may refer to a sequence of activities as well as to a parallel execution of
multiple activities, which is another basic control flow pattern [7, 317, 437].
The atomicity condition is violated since these labels include several actions
and business objects. Accordingly, we formalize the set of labels in a process
model P that violate the Parallel Activities pattern as follows:

V P
Parallel ={a ∈ AP

λ : l = λ(a) ∧m(l, *(and|+|&|/)*))

∧ (|αA(l)| 6= 1 ∨ |βA(l)| 6= 1 ∨ |γA(l)| > 1)},
(5.2)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.
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Table 5.3: Overview and Interpretation of Control Flow Patterns

Syntax Structure Example Interpretation

S
eq

u
en

ce
A1 O1 before A2 Prepare full planning

before approval Prepare full 
planning Approval 

A1 O1 after A2 Note requirement to
collect excess after
lodgement

P
a
ra

ll
el

A1 O1 and A2 O2 Start quick scan and
clarify low level require-
ments

View email View error 
file 

View email 

View error 
file 

A1 O1 and O2 View email and error
file

A1 and A2 O1 Create and submit
quote

D
ec

is
io

n

Create 
transfer order 

Create goods 
issue 

Create 
transfer order 

Create goods 
issue 

A1 O1 or A2 O2 Enter pin or choose
random pin option

A1 O1 or O2 Create transfer order
or goods issue

A1 or A2 O1 Cancel or vary fulfill-
ment

S
k
ip

A O as (required|

necessary)

Update claim exposure
estimate as required

Index 
document data 

A O if (required|

necessary)

Index document data if
necessary

It
er

a
ti

o
n

A O until C Repeat medication un-
til symptom intensity
declines

Repeat 
Medication Symptom  

intensity  
declined? 

A O per O Check SLA per client

A O for each O Notify updated invoice
for each order

Legend: A: Action, O: Business Object, C: Condition or Status of a Business Object

Violation Pattern 3. The Decision pattern implies a control flow split and
may lead to several exclusive or inclusive paths in a process model. Similarly
to the previous pattern, this pattern is using multiple actions, business objects,
or combinations of these and thus violates atomicity. Typically, this pattern
occurs when two alternatives are linked by the conjunction or. Alternatively,
the special character / may also point to this pattern. The interpretation of
the decision pattern is also ambiguous. On the one hand, it might refer to a



5.3 Atomicity Violation Patterns 95

regular exclusive decision as presented in [7, 317, 437]. On the other hand,
the interpretation as an inclusive or gateway, which gives the possibility of
choosing among multiple alternatives [7, 76], is also valid. We formalize the
set of labels that violate the Decision pattern as follows:

V P
Decision ={a ∈ AP

λ : l = λ(a) ∧m(l, *(or|/)*)

∧ (|αA(l)| 6= 1 ∨ |βA(l)| 6= 1 ∨ |γA(l)| > 1)},
(5.3)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

Violation Pattern 4. In general, the Skip pattern implies a decision about
executing an optional activity. This activity is only conducted under specific
conditions. If the conditions are not met, the activity is skipped and the
process continues without executing this activity. Typically, this pattern com-
bines prepositions, such as if or as, together with the past participle of the
verb to require or adjectives that express optionality, such as necessary or
applicable. The interpretation of the Skip pattern corresponds to a consistent
solution that is similar to the switch pattern for conditional routing [317] in
which the respective activity is executed or not. In many cases, element labels
of this pattern correctly specify a single action, a single business object, and
an optional addition. Hence, this pattern is regarded as an exception and does
not violate atomicity. However, the optional character of this pattern still has
significant impact on the control flow and encodes relevant information in the
element label. We formalize the set of labels that violate the Skip pattern as
follows:

V P
Skip ={a ∈ AP

λ : l = λ(a)

∧m(l, (*(if|as) (necessary|required))},
(5.4)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

Violation Pattern 5. The Iteration pattern is arranged in such a way that
the natural language fragment asks for an iteration or a loop construct.
In most of the cases, the iteration is expressed by the language pattern
repeat ... until ... or a statement such as per or for each. In these
cases, the label also contains the iteration condition. The interpretation of
the Iteration pattern resembles the arbitrary cycle pattern [7, 437] or, more
specifically, the while and the repeat pattern [317]. Similar to the Skip pattern,
the atomicity condition is not violated in general because most of the element
labels correctly specify action, business object and an addition. Accordingly,
we formalize the set of labels that match the Iteration pattern as follows:

V P
Iteration ={a ∈ AP

λ : l = λ(a)

∧m(l, (repeat * until *|* per *))},
(5.5)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.
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5.3.2 Non-Atomic Resource and Data Patterns

Table 5.4 provides an overview of patterns that hide resource and data informa-
tion in text labels. Furthermore, we provide a core structure and interpretation
of the patterns.

Table 5.4: Overview and Interpretation of Resource and Data Patterns

Core Structure Example Interpretation

E
x
tr

a
In

fo
rm

a
ti

o
n

A O1 (O2)
Clear differences (Inven-
tory Management) Inventory Management 

Clear 
differences 

Clear 
differences 

Inventory 
Management 

Clear 
differences 

Inventory 
Management 

A O1 [O2]
Updating [Investment
Projects]

O2 : A O1 Sales quotes: Budgeting

O2 - A O1
Rental Unit - Assign Ap-
plication

T
im

e
In

fo
rm

a
ti

o
n

A O (CD
(min|h|day|week))

Receive application docu-
ments by post (2 weeks)

Receive application 
documents by post 

Receive application 
documents by post 
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final version of the paper that will be printed in the conference proceedings.
In case the paper is rejected, the join gateway is triggered. To clarify the be-
haviour of the split gateway, the outgoing sequence flows are associated with
the respective annotations.

The participants that cooperate in the context of a business process com-
municate by sending and receiving messages. In business process diagrams,
messages are represented by message flow. Typically a message flow connects
an activity of one participant to an activity or an event of another participant.

Depending on the kind of business process diagram (abstract or global),
message flows can link pairs of flow objects, pools, and events. Detailed rules
on message flow connections are discussed below. “A Message Flow is used to
show the flow of messages between two participants that are prepared to send
and receive them. In BPMN, two separate Pools in the Diagram will represent
the two participants (e.g., business entities or business roles).”

The notational elements of the BPMN regarding transactional behaviour of
business processes (transaction groups, compensation flow, and cancellation)
will not be covered, because their semantics is not laid out in su�cient detail
and precision.

Events

Events play a central role in business process management, since they are the
glue between situations in business organizations and processes that will be en-
acted if these situations occur. Events in a business process can be partitioned
into three types, based on their position in the business process: start events
are used to trigger processes, intermediate events can delay processes, or they
can occur during processes. End events signal the termination of processes.
The notational elements for the event trigger types are shown in Figure 4.80.

Start

Intermediate

End

Termination

Message Timer Rule Error Link Multiple

Fig. 4.80. Event types in the BPMN, Object Management Group (2006)

Start events can have di↵erent triggers.
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2 weeks 

Legend: A: Action, O: Business Object, CD: Cardinal Number

Violation Pattern 6. The Extra Information pattern refers to activities that
ambiguously incorporate additional information fragments into the element
label. The element label violates the atomicity condition because of having
more than one addition. The additional information themselves may include
a specification of business objects, the refinement of entire activities into
subprocesses, or the specification of process resources. The most prominent
examples make use of brackets or dashes to indicate additional specifications.
The interpretation of such labels is unclear and strongly dependent on the
context. On the one hand, it may refer to multiple activities in form of a
subprocess that are specified elsewhere [105]. On the other hand, it may refer
to resources that are used by the activity, such as data inputs or processing
systems [374, 373]. Accordingly, we formalize labels that fall into the Extra
Information pattern as follows:
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V P
Extra ={a ∈ AP

λ : l = λ(a) ∧m(l, (*(*)|*[*]|*:*|*-*))

∧ (|αA(l)| 6= 1 ∨ |βA(l)| 6= 1 ∨ |γA(l)| > 1)},
(5.6)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

Violation Pattern 7. The Time Exception pattern is similar to the latter
one. It, however, incorporates temporal information by including temporal
prepositions that clarify the duration (e.g. in minutes, hours, or days) or
other time-related constraints of an activity. Typically, the time information is
provided in brackets and, in many cases, unclear. The temporal information
may represent waiting time, i.e., time that must pass before the process
continues normally [228], or the temporal information could be interpreted
in the sense of an attached intermediate event. The latter implies that the
execution of the activity is canceled as soon as the time limit is reached
triggering a new stream of actions that is not specified [372]. Altogether, labels
belonging to the Time Exception pattern are described as follows:

V P
Time ={a ∈ AP

λ : l = λ(a) ∧m(l, *((0-9)(min|h|day|week)))

∧ (|αA(l)| 6= 1 ∨ |βA(l)| 6= 1 ∨ |γA(l)| > 1)},
(5.7)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

5.3.3 Implicit Element Patterns

Finally, we discuss patterns that implicitly refer to decisions and actions and
hide these constructs from the process model. Table 5.5 shows the syntactical
pattern structure and the consistent interpretations of these patterns.

Violation Pattern 8. Process model elements suffering from the Implicit
Action pattern erroneously combine labeling style and modeling construct, i.e.
activity, event or gateway. As an example, consider an activity that is described
as an event or vice versa. As shown in the examples of the table, the activity
Purchase order received might refer to the respective event or the activity
Receive purchase order. Moreover, they also violate the atomicity criterion
because they specify a particular state or condition of an object rather than
an action that needs to be applied on the object. As far as the interpretation
is concerned, we assume that the modeling construct takes precedence over the
text label. Following this assumption, the text label would imply an activity
in the process. Hence, we interpret these cases as a regular activity with a
correct style of labeling [283]. Accordingly, we define the set of all Implicit
Action labels as follows:
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Table 5.5: Overview and Interpretation of Implicit Object Patterns

Core Structure Example Interpretation

Im
p
li
ci

t
A

ct
io

n

Provide repairer 
with the job list 

Receive purchase 
order O A Purchase order received

O A ?
Repairer provided with
the job list?

Im
p
li
ci

t
D

ec
is

io
n

… 

... 

Invoice is  
urgent? 

determine if O C
Determine if personal
message is required

check if O C
Check if invoice is
urgent

Legend: A: Action, O: Business Object, C: Condition or Status of a Business Object

V P
IAction ={a ∈ AP

λ : l = λ(a) ∧
((|αE(l)| ≥ 1 ∨ |σE(l)| ≥ 1) ∧ |βE(l)| ≥ 1) ∨
(|αG(l)| ≥ 1 ∨ |σG(l)| ≥ 1) ∧ |βG(l)| ≥ 1))},

(5.8)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.

Violation Pattern 9. The Implicit Decision pattern entails a decision in
the process flow. It includes a specific condition that has to be checked in
order to proceed. Many instances of this pattern contain a verb asking for
the verification or investigation of the conditions and the conditional word if.
Regular language patterns include determine if, validate if, check if,
and confirm if. However, the respective activities only contain an action, but
further need a business object. Therefore, these activities are not atomic. The
interpretation is equal to the basic construct of an exclusive choice [7, 317, 437].
All labels that fall into the Implicit Decision pattern are formalized as follows:

V P
IDecision ={a ∈ AP

λ : l = λ(a)

∧m(l, (check|determine|validate|confirm) if*),
(5.9)

where m(l,regex) denotes a logical predicate that evaluates to true if the label
matches the regular expression regex.
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Complete credit 
application 

Advise customer to 
provide rating 

before interest rate 
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Determine if 
customer is 
creditworthy 
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Fig. 5.2: Overview of Violation Pattern Refactoring

5.4 Refactoring of Atomicity Violation Patterns

For those process models that do not comply with the notion of atomicity,
we introduce a technique to automatically refactor these instances. Figure 5.2
depicts the necessary refactoring steps. The technique takes the deficient process
model as an input. First, the violation pattern detection step investigates the
labels of the process model elements and tries to identify violations of non-
atomicity. For this purpose, it uses the violation pattern structures which
have been introduced in the previous section. The detected violations are then
added to a list which is also input for the next step, the label parsing. This step
also uses the pattern structures and extracts the necessary label components
from the deficient labels. As a result, this step provides all label components
of the deficient labels, such as actions, business objects and specific conditions.
Finally, the label correction step creates a new model fragment according to the
pattern interpretations. Since these fragments are not specified by a label yet,
it also uses the extracted label components and assigns these components to
the respective model fragment and its elements. Finally, the deficient element
is replaced by the newly created fragment. Since some violation patterns allow
several interpretations, the label corrector outputs a list of possible solutions
among which the user may select.

The following sections explain these three steps in more detail. The violation
detection component is introduced in Section 5.4.1. Afterwards, the sections
5.4.2 and 5.4.3 explain the label parsing component as well as the label
correction component.

5.4.1 Detection of Non-Atomicity Patterns

In general, the detection technique finds non-atomic element labels by verifying
the pattern formalizations of Section 5.3. For that purpose, it also makes use of
the extracted components from the model parsing which has been introduced
in Section 4.4.3. The model parser of serves as a preprocessing and retrieves
the actions and business objects of the element labels, which are necessary the
verify Definition 5.1. As a result, the detection technique provides a list that
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Algorithm 1: Pattern Detection from Process Model Element Label

1: detectViolationPatterns(Label l)
2: if l.matches(*(before|after)*) ∧ isNotAtomic(l) then
3: l.violatesSequencePattern(true)
4: if l.matches((and|+|&|/)) ∧ isNotAtomic(l) then
5: l.violatesMultiplePattern(true)
6: if l.matches(*(or|/)*) ∧ isNotAtomic(l) then
7: l.violatesDecisionPattern(true)
8: if l.matches(*(if|as) (necessary|required)) then
9: l.violatesSkipPattern(true)

10: if l.matches((repeat * until *|* per *)) then
11: l.violatesIterationPattern(true)
12: if l.matches((*(*)|*[*]|*:*)) ∧ isNotAtomic(l) then
13: l.violatesExtraInformationPattern(true)
14: if l.matches(*((0-9)(min|h|day|week))) ∧ isNotAtomic(l) then
15: l.violatesTimePattern(true)
16: if isEventLabel(l) ∨ isGatewayLabel(l) then
17: l.violatesImplicitActionPattern(true)
18: if l.matches((check|determine) if*) then
19: l.violatesImplicitDecisionPattern(true)
20: return l

contains all non-atomic labels of the respective process model including the
patterns that are violated by the labels.

From a technical perspective, the pattern detection approach analyzes
whether the input label matches a particular non-atomicity pattern and marks
the detected pattern in case of a positive match. For this purpose, the approach
uses the formalization presented in the previous sections. The detection itself
works in two steps. The first step evaluates if the activity label contains
specific keywords that point towards a certain pattern. In a second step, the
approach checks whether the activity label violates the criterion of atomicity
by extracting actions, business objects as well as additions and counting the
appearances of the respective component. In particular, this step is required
for the Violation Patterns 1, 2, 3, 6 and 7. In case of positive evaluations,
the label is marked with the respective pattern. Algorithm 1 summarizes the
pattern detection for each pattern.

5.4.2 Label Parsing

We first need to parse the deficient element label in order to restructure the
detected violation pattern. The goal of the label parser is the extraction of
relevant information from the deficient model element. Depending on the
respective pattern, we need to remove specific keywords and extract relevant
text fragments, such as conditions and resources. Moreover, we also retrieve
actions and business objects by using the presented model parser from Section
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Algorithm 2: Component Extraction from Process Model Element Label

1: parseNonatomicLabel(Label l)
2: LabelComponents lc = new LabelComponents()
3: List AtomicLabels← ∅
4: List conditions← ∅
5: List extraInfo← ∅
6: if l.matchesSequencePattern() ∨ l.matchesMultiplePattern() ∨
l.matchesDecisionPattern() then

7: AtomicLabels ∪ l.splitByPhrase()
8: if l.matchesSkipPattern() then
9: AtomicLabels ∪ l.removePhrase()

10: if l.matchesIterationPattern() then
11: AtomicLabels ∪ l.splitByPhrase()[1]
12: conditions ∪ l.splitByPhrase()[2]
13: if l.matchesExtraPattern()∨ l.matchesTimePattern() then
14: AtomicLabels ∪ l.removeExtraInfos()
15: extraInfo ∪ l.extractInfoByPhrase()
16: if l.matchesImplicitActionPattern() then
17: l← l.removePhrase()
18: α(l) ← getInfinitiveOfAction(αE(l))
19: if l.matchesImplicitDecisionPattern() then
20: conditions ∪ l.removePhrase()
21: lc← AtomicLabels ∪ condition ∪ extraInfo
22: return lc

4.4.3. Reconsider the activity label Update inventory and archive delivery
documents from Figure 5.1. Based on the detection technique, we recognize the
parallel activities pattern, because the activity label uses the conjunction and

and entails two different actions and business objects indicating two different
streams of action. Accordingly, the label parsing technique removes the and-
conjunction and extracts the actions to update and to archive as well as the
business objects inventory and delivery documents.

This procedure is formalized by Algorithm 2. The algorithm takes a label
l as an input, which was marked with the respective pattern violations. In
the beginning, we initialize a label component data structure lc to store the
extracted components (Step 2) as well as three lists for the atomic activity
labels, the conditions and the extra information that may be specified in a
non-atomic label (Steps 3-5). In the following steps, we extract the relevant
parts depending on the detected pattern. If the sequence pattern, the multiple
activity pattern, or the decision pattern have been detected, we split the
label using the respective keyword and add the parts to the atomic label
list (Steps 6–7). If the label matches the skip pattern, the parsing algorithm
solely removes the text fragment that indicates the optionality of the label
and adds the atomic activity to the list (Steps 8–9). In case of the iteration
pattern, the algorithm splits the label by the keywords which results in two
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parts. According to the pattern, the first part specifies the activity and is
stored in the activity list. The second part, which relates to the iteration
condition, is stored in the condition list (Steps 10–12). Step 13 processes labels
that violate the extra information and the time exception pattern. On the
one hand, the algorithm removes the additional information and stores the
atomic activity in the activity list (Step 14). On the other hand, it also stores
the extra information in a separate list (Step 15). If the label matches the
implicit decision pattern, the algorithm begins with removing specific keywords
(Step 17), before it assigns the missing action the label by transforming the
state or condition of a business object into an action (Step 18). Finally, the
algorithm parses implicit decision labels by removing the keywords and adding
the remaining part to the set of conditions (Steps 19–20). The algorithm
terminates by adding the activity, the condition, and the extra information list
to the set of the label component (Step 21) and returning the label component
(Step 22).

5.4.3 Label Correction

The second step involves the correction of the deficient model elements. In
general, the label corrector has to remove the deficient element, insert a blank
model fragment based on the possible interpretations of the patterns, and
instantiate all fragments with proper element names. The element names have
been extracted in the previous step and also serve as an input to this technique.
Hence, the label correction takes the label component data structure of the
label parsing as an input and uses these components to assign labels to model
fragments. In the following, we describe the necessary transformation steps for
each pattern separately.

In case of the sequence pattern, the deficient activity label needs to be
replaced by two distinct activities. We further need to specify a directed
sequence flow between the two added activities to establish a strong order
relation between these two activities. Finally, the activities are assigned by
the respective label from the atomic activity list of the label component. Each
of these steps is described in the following definition.

Definition 5.2. (Sequence Pattern Correction). Let P be a process model
as defined in Def. 2.3 and a ∈ V P

Sequence be an activity of the sequence non-
atomicity pattern. Further, let x =•a and y = a• denote the predecessor and
successor of a, and ain and aout the incoming and outgoing sequence flows.
Finally, let lc the parsed label component. The activity a is corrected with the
following steps:

− A \ {a} ∪ {a1, a2}
− F \ (ain ∪ aout) ∪ {(x, a1), (a1, a2), (a2, y)}
− λ(a1) = lc.AL[1], λ(a2) = lc.AL[2]

The correction of the multiple activity and the decision pattern are very
similar. In both cases, the correction involves the removal of the deficient
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activity and the insertion of a splitting gateway, a joining gateway and a
number of blank activities depending on the number of atomic labels that are
stored in the atomic activity list. Afterwards, control flow edges are added
to implement a parallel or interleaving order of activities. Finally, each blank
activity is assigned a label from the list of atomic activities. Please note, that
parallel gateways are used in case of the multiple activity pattern and inclusive
or exclusive gateways in case of the decision pattern. These steps are again
described by the following definitions:

Definition 5.3. (Parallel Activities Pattern Correction). Let P be a
process model as defined in Def. 2.3 and a ∈ V P

Parallel be an activity of the
parallel activities pattern. Further, let x =•a and y = a• denote the predecessor
and successor of a, and ain and aout the incoming and outgoing sequence flows.
Finally, let lc the parsed label component. Accordingly, the activity a may be
corrected by the following alternatives:

1. Correction with parallel activities
− A \ {a} ∪ {a1, ..., an}
− G ∪ {gSand, gJand}
− F \ (ain ∪ aout) ∪ {(x, gSand), (gSand, a1), ..., (gSand, an), (a1, g

J
and), ...,

(an, g
J
and), (gJand, y)}

− λ(a1) = lc.AL[1], ..., λ(an) = lc.AL[n]
2. Correction with a sequence of activities
− A \ {a} ∪ {a1, ..., an}
− F \ (ain ∪ aout) ∪ {(x, a1), (a1, a2), ..., (an−1, an), (an, y)}
− λ(a1) = lc.AL[1], ..., λ(an) = lc.AL[n]

Definition 5.4. (Decision Pattern Correction). Let P be a process model
as defined in Def. 2.3 and a ∈ V P

Decision be an activity of the decision non-
atomicity pattern. Further, let x =•a and y = a• denote the predecessor and
successor of a, and ain and aout the incoming and outgoing sequence flows.
Finally, let lc the parsed label component. Depending on the interpretation,
the activity a is corrected by the following alternatives:

1. Refactoring with exclusive decision
− A \ {a} ∪ {a1, ..., an}
− G ∪ {gSxor, gJxor}
− F \ (ain ∪ aout) ∪ {(x, gSxor), (gSxor, a1), ..., (gSxor, an), (a1, g

J
xor), ...,

(an, g
J
xor), (gJxor, y)}

− λ(a1) = lc.AL[1], ..., λ(an) = lc.AL[n]
2. Refactoring with inclusive decision
− A \ {a} ∪ {a1, ..., an}
− G ∪ {gSor, gJor}
− F \ (ain ∪ aout) ∪ {(x, gSor), (gSor, a1), ..., (gSor, an), (a1, g

J
or), ...,

(an, g
J
or), (gJor, y)}

− λ(a1) = lc.AL[1], ..., λ(an) = lc.AL[n]
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The correction of the skip pattern mainly involves the same steps as the
decision pattern. Accordingly, the defective activity is removed from the process
model and a model fragment is added that specifies an exclusive decision. In
contrast to the decision pattern, one path of this decision is empty in order to
skip the activity if necessary. The following definition summarizes the necessary
steps:

Definition 5.5. (Skip Pattern Correction). Let P be a process model as
defined in Def. 2.3 and a ∈ V P

Skip be an activity of the skip non-atomicity
pattern. Further, let x =•a and y = a• denote the predecessor and successor
of a, and ain and aout the incoming and outgoing sequence flows. Finally, let
lc the parsed label component. The activity a is corrected by the following
steps:

− G ∪ {gSxor, gJxor}
− F \ (ain ∪ aout) ∪ {(x, gSxor), (gSxor, a), (a, gJxor), (gSxor, g

J
xor), (gJxor, y)}

− λ(a) = lc.AL[1]

The correction of the iteration patterns needs to replace the deficient
activity with an arbitrary loop construct. Consequently, we insert two gateways
together with a blank activity to the process model. In contrast to the previously
discussed patterns, we need to alter the positions of the exclusive join and the
exclusive split gateway to implement the loop. Afterwards, we can assign the
activity label and the iteration condition to the respective constructs which
concludes all necessary refactoring steps.

Definition 5.6. (Iteration Pattern Correction). Let P be a process model
as defined in Def. 2.3 and a ∈ V P

Iteration be an activity of the iteration non-
atomicity pattern. Further, let x =•a and y = a• denote the predecessor and
successor of a, and ain and aout the incoming and outgoing sequence flows.
Finally, let lc the parsed label component. The activity a is corrected by the
following steps:

− G ∪ {gSxor, gJxor}
− F \ (ain ∪ aout) ∪ {(x, gJxor), (gJxor, a), (a, gSxor), (gSxor, g

J
xor), (gSxor, y)}

− λ(a) = lc.AL[1]
− λ(gSxor) = lc.conditions[1]

The correction of the extra information pattern is not straightforward.
We cannot propose a comprehensive correction of this pattern, because the
additional information may refer to different aspects of a process model, such
as resources, roles or even sub-process activities. In general, we may replace
the original label with an atomic one and set the control flow edges accordingly.
For the extra information fragment, we require the decision of a business
analyst to correctly specify this information with available modeling syntax.
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Definition 5.7. (Extra Information Pattern Correction). Let P be a
process model as defined in Def. 2.3 and a ∈ V P

Extra be an activity of the extra
information non-atomicity pattern. Further, let x =•a and y = a• denote the
predecessor and successor of a, and ain and aout the incoming and outgoing
sequence flows. Finally, let lc the parsed label component. The activity a is
corrected by the following steps:

1. Correction with subprocess activity aS

− A \ {a} ∪ {aS}
− F \ (ain ∪ aout) ∪ {(x, aS), (aS , y)}
− λ(aS) = lc.extraInfo[1]

2. Correction with resources
− R ∪ r
− ρ(a) = r
− λ(a) = lc.AL[1]
− λ(r) = lc.extraInfo[1]

The correction of the time information pattern requires the insertion of
a new activity and a new event. The activity replaces the deficient one and
is labeled as an atomic activity. The new event precedes the activity and is
labeled by the respective time information of the original label. These steps
are formally described by the following definition:

Definition 5.8. (Time Information Pattern Correction). Let P be a
process model as defined in Def. 2.3and a ∈ V P

Time be an activity of the time
information non-atomicity pattern. Further, let x =•a and y = a• denote the
predecessor and successor of a, and ain and aout the incoming and outgoing
sequence flows. Finally, let lc the parsed label component. The activity a is
corrected by the following steps:

− E ∪ {e′}
− F \ (ain ∪ aout) ∪ {(x, e′), (e′, a), (a, y)}
− λ(a) = lc.AL[1]
− λ(e′) = lc.extraInfo[1]

The correction of an implicit action pattern is the most simple one as it only
requires the transformation of the condition or the status into an imperative
action. This means that we only need to reassign the activity with the correctly
parsed label without inserting a new activity.

Definition 5.9. (Implicit Action Pattern Correction). Let P be a process
model as defined in Def. 2.3and a ∈ V P

IAction be an activity of the implicit
action non-atomicity pattern. Further, let lc be the parsed label component.
The activity a is corrected by the following steps:

− λ(a) = lc.AL[1]

The correction of the implicit decision pattern is again similar to the
decision pattern. We also need to remove the deficient activity and replace it
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with an exclusive choice model fragment. However, as the activities falling into
that pattern do not specify the number or the name of subsequent activities,
we cannot fill the blank activities with meaningful labels and may only assign
a gateway label to the split gateway at the beginning of the fragment.

Definition 5.10. (Implicit Decision Pattern Correction). Let P be a
process model as defined in Def. 2.3 and a ∈ V P

IDecision be an activity of the
implicit decision non-atomicity pattern. Further, let x =•a and y = a• denote
the predecessor and successor of a, and ain and aout the incoming and outgoing
sequence flows. Finally, let lc the parsed label component. The activity a is
corrected by the following steps:

− A \ {a} ∪ {a1, ..., an}
− G ∪ {gSxor, gJxor}
− F \ (ain ∪ aout) ∪ {(x, gSxor), (gSxor, a1), ..., (gSxor, an), (a1, g

J
xor), ...,

(an, g
J
xor), (gJxor, y)}

− λ(gSxor) = lc.conditions[1]

5.5 Evaluation

In this section, the detection and correction techniques are evaluated by
industrial process models in order to assess the performance of the presented
techniques. The evaluation is structured as follows. Section 5.5.1 describes
the test data for the evaluation experiments, while Section 5.5.2 discusses the
employed evaluation strategy and setup. Sections 5.5.3 and 5.5.4 present the
experimental results of the detection and the correction techniques.

5.5.1 Test Data

Considering experiments to be an integral part of the evaluation, the choice
of the test data sets may highly influence the outcome of the techniques and
the conclusions drawn from it. In general, the proposed techniques should be
applicable to a large number of real-world process models. Moreover, a broader
scope allows us to draw generalizable conclusions from the results and to give
valid performance guarantees for other sets of process models. We require
process models from different input sources and with different characteristics
because we aim for a high external validity. As shown in Table 5.2, the selected
process model collections are rather heterogeneous with regard to the different
characteristics. The four process model collections show notable differences
with regard to size, standardization, the expected degree of modeling quality,
and the modeling domain. For these reasons, the test collections are well suited
for the evaluation of both techniques.
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5.5.2 Evaluation Goal and Setup

The overall evaluation goal is the performance assessment of the presented
techniques with the help of defined metrics. The presented techniques aim for
the implementation of atomicity in process models from practice and thus for
the detection and refactoring of non-atomic instances in process models. For
that purpose, the underlying strategy is outlined in terms of human benchmark,
performance metrics, latent factors, and implementation.

The human benchmark represents the point of reference by which the
algorithmic results are evaluated and the performance of the techniques is
measured. For that purpose, building this benchmark involved two researchers
inspecting the activities of process models and classifying them according to
the patterns. The researchers identified non-atomic labels and marked any
pattern violation independently from each other. Contradicting or inconsistent
cases have been resolved in a subsequent step. Afterwards, both researchers
resolved the detected instances by using the possible interpretations of the
non-atomic activities.

The human benchmark facilitates the comparison of human and algorithmic
results which can be quantified by suitable performance metrics. In partic-
ular, the comparison of human and algorithmic results classifies each label
as either true-positive, true-negative, false-positive, or false-negative. These
items provide the basis to calculate the metrics precision and recall [21]. In
our context, the precision value is the number of correctly detected pattern
instances divided by the total number of pattern instances retrieved by the
algorithms. The recall is the number of correctly detected pattern instances
divided by the total number of manually retrieved pattern instances. As it is
important that each metric yields sufficiently high values, we also take the
f-measure, i.e. the harmonic mean of precision and recall, into account. The
performance of the refactoring is measured by the metric refactoring precision.
The metric reflects the number of correctly reworked cases divided by the total
number of reworked cases.

We then define acceptable ranges for these metrics in order to compare
the performance with existing approaches. As an acceptable range, we follow
the performance results of available techniques from activity label parsing
and refactoring. In [238], the evaluation of the violation detection technique
revealed an average recall and precision of 95% while the refactoring precision
amounted to approximately 75%. Using these numbers as a lower bound, we
hypothesize that the proposed techniques should perform at least as good as
the related techniques. Accordingly, we formulate the following hypothesis for
the detection algorithm of a pattern i:

• Hi
a: The average precision µ(P i) and the average recall µ(Ri) of detecting

the pattern i amount to at least 0.95.
• Hi

0: The average precision µ(P i) and the average recall µ(Ri) of detecting
the pattern i does not amount to at least 0.95.
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In case of the refactoring algorithm, we formulate the following hypothesis:

• Hi
a: The average refactoring precision µ(RP i) amounts to at least 0.75.

• Hi
0: The average refactoring precision µ(RP i) does not amount to at least

0.75.

The performance metrics are also influenced by latent factors that are inher-
ent to the data set. In particular, pattern variations and pattern combinations
influence these metrics. Pattern variations refer to the linguistic variety to name
activities and activity patterns. For example, the label Determine if customer
is creditworthy may also be formulated as Check if or Validate if which would
equally resemble an implicit decision. However, specific pattern variations may
not be detected by the techniques because the formalization relies on general
pattern characteristics. Accordingly, these variations influence the numbers
of precision and recall. Pattern combinations refer to the incorporation of
more than one non-atomicity pattern. As an example, consider the activity
Investigate risk and credit history if necessary. Obviously, this activity violates
the decision and the skip non-atomicity pattern. While this does not impose a
problem for the detection of patterns, the refactoring might be affected since
the order of refactoring steps may propose different refactoring solutions which
is also reflected by the performance metrics.

With regard to the implementation, the detection and refactoring tech-
niques have been implemented in a research prototype using Java 1.7 and
existing language and model parsers, such as the Stanford Parser and the
model annotation techniques of Leopold et al. [249] as well as the Stanford
Tagger and Parser (see http://nlp.stanford.edu/software/) to detect and re-
work the deficient activities. For running the evaluation, each technique has
been deployed on a MacBook Pro with a 2.4 GHz Intel Core Duo processor
and 4 GB RAM, running on Mac OS X 10.7.5 and Java Virtual Machine 1.7.

5.5.3 Evaluation of Detection

The numbers of precision, recall, and f-measure are shown in Table 5.6. In
general, these numbers show that the pattern detection technique works
satisfactory. In most of the patterns, the f-measure amounts to more than
85% which ensures a reliable detection of relevant deficient model elements.
However, we can also observe notable deviations among the process model
collections of our test set and within the patterns.

Regarding the deviations among the process model collections, we observe
that modeling experience and standardization is also reflected by the results.
In SRM, the algorithm did not find any instances of particular patterns, such
as the sequence pattern (P1), the skip pattern (P4), or the implicit decision
pattern (P9). This observation confirms our initial assumption of SRM as
being a reference model collection for several industries and thus requiring a
consistent and correct modeling style. Opposite to that, a considerable number
of pattern instances has been detected for the TC and the AIC collection. While
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Table 5.6: Results of Violation Pattern Detection

P1 P2 P3 P4 P5 P6 P7 P8 P9

SRM
Precision - 0.94 0.98 - - 1 - 0.2 -
Recall - 0.97 0.94 - - 0.99 - 1 -
F-measure - 0.95 0.96 - - 0.99 - 0.33 -

IMC
Precision 1 0.99 0.96 1 - 0.94 - 0.65 0.98
Recall 1 1 1 1 - 0.89 - 0.75 0.98
F-measure 1 0.99 0.98 1 - 0.91 - 0.70 0.98

AIC
Precision 1 0.96 0.93 1 1 0.99 1 0.92 0.98
Recall 0.80 1 1 1 0.71 0.98 0.42 0.72 0.86
F-measure 0.89 0.98 0.96 1 0.83 0.98 0.59 0.81 0.92

TC
Precision 1 0.98 0.99 1 1 0.97 - 0.74 1
Recall 1 0.95 1 0.89 0.95 0.56 - 0.73 0.98
F-measure 1 0.96 0.99 0.94 0.97 0.71 - 0.73 0.99

Avg.
Precision 1 0.97 0.97 1 1 0.98 1 0.63 0.99
Recall 0.79 0.98 0.99 0.89 0.83 0.86 0.42 0.80 0.95
F-measure 0.87 0.97 0.97 0.98 0.90 0.90 0.59 0.64 0.97

Legend: SRM: SAP Reference Model Collection, IMC: Insurance Model Col-
lection, AIC: Academic Initiative Collection, TC: Telecommunication Model
Collection

we expected a notable number of pattern occurrences of the AIC collection, i.e.
a collection of process models from academic training, we have been surprised
that most of the patterns are also present in the TC collection. Moreover, the
result further confirms the validity and generalizability of the patterns to other
process model collections.

Within the patterns, the performance of the technique is stable and does
not deviate from the average score of the respective metric. Most notably, we
observe a significant deviation of performance for the implicit action pattern
(P8) in the SRM collection and the extra information pattern (P6) in TC. In the
former case, the precision only amounts to 0.2 which results in a large number
of false positives. A deeper investigation revealed that these labels incorporate
complex business objects combined with status information. For instance,
consider the labels Parked Document Posting or Earned value calculation. The
detection algorithm suffers from an interpretation ambiguity of the first word.
Despite of recognizing it as being part of the real business object (parked
document), the algorithm interprets the word as a status of another business
object (document posting) which does not resemble the original intention (post
a parked document). In the latter case, the technique suffers from a low recall
of 0.56 only. Again, we further investigated the reasons and found that many
of the model elements in the TC collection miss a signal phrase to indicate
this pattern. For example, the label PLC 231 Create detailed configuration
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system incorporates the resource statement PLC 231. However, this statement
is not separated by a dash or a colon which does not result in a violation of the
respective pattern. Despite these deviations, we still consider the algorithm to
be suitable to detect the patterns in process models.

5.5.4 Evaluation of Refactoring

In order to evaluate the pattern refactoring technique, we consider only the
result of the parsing technique, i.e. the extracted components from the target
label. This is sufficient, because the refactoring technique uses a generic
structure depending on the extracted label components and violation patterns
and instantiates it with the extracted label components. Hence, we determine
whether or not the defective label has been parsed properly and whether it
would label the respective modeling fragment correctly. As a baseline, we
consider all elements that violate a particular pattern as the set of all labels
that should be refactored. Within this set, a label is either appropriately or
erroneously corrected. Therefore, we define the metric refactoring precision as
the share of appropriately corrected elements compared to all elements. Let
Lc be the set of all labels that have been parsed correctly and Le the set of
labels that have been parsed with errors. Then, the refactoring precision (RP)
is given as follows:

RP =
|Lc|

|Lc|+ |Le|

Table 5.7 summarizes the result of appropriately and erroneously refactored
labels as well as the corresponding refactoring precision. The results show that
the refactoring technique is working satisfactory (RP score of 0.8 on average)
and it is fairly stable among the different patterns. However, we also observe
notable differences depending on the pattern type. If we consider the parallel
activity (P2) and the decision pattern (P3), the RP score is stable around 0.7 to
0.75, yet rather small in comparison to other patterns. An analysis of erroneous
refactorings revealed the referential ambiguity as the main reason. For instance,
consider the element label Create and submit quote and photos using fax or
Email. In this case, the relation between actions and business objects is more
complicated because the two actions (create and submit) might either refer to
one or two business objects (quote and photos). Ultimately, this might result in
three or four distinct activities. Another example involves the refactoring of the
implicit action pattern (P8) with an RP score of only around 0.50. A deeper
investigation revealed that a corrected label has not been created because
the business object was not detected (e.g. see the label rcs software update
embedded) or the state could not be detected and reworked into an appropriate
action (e.g. see the label created detailed implementation plan). Additionally,
these effects are worsened if a label violates several patterns at the same time,
as for instance in the label implemented offer change or removal, which makes
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Table 5.7: Pattern Refactoring Results

P1 P2 P3 P4 P5 P6 P7 P8 P9

SRM
Lc - 102 47 - - 168 - 2 -
Le - 30 19 - - 22 - 3 -
RP - 0.77 0.71 - - 0.88 - 0.40 -

IMC
Lc 5 297 101 44 - 60 - 17 156
Le 0 94 52 4 - 5 - 14 3
RP 1 0.76 0.66 0.92 - 0.92 - 0.55 0.98

AIC
Lc 7 327 58 1 23 119 31 215 42
Le 3 110 30 0 9 13 0 107 3
RP 0.7 0.75 0.66 1 0.72 0.90 1 0.67 0.93

TC
Lc 5 1002 283 2 15 60 - 120 64
Le 0 293 117 2 2 31 - 95 1
RP 1 0.77 0.71 0.5 0.88 0.66 - 0.56 0.98

Avg
Lc 5.33 306.25 15.50 9.00 16.50 81.25 15.50 77.75 85.67
Le 1.00 76.25 5.75 0.00 4.00 14.00 0.00 46.50 2.33
RP 0.89 0.81 0.81 1.00 0.82 0.85 1.00 0.57 0.97

Legend: SRM: SAP Reference Model Collection, IMC: Insur-
ance Model Collection, AIC: Academic Initiative Collection, TC:
Telecommunication Model Collection

the refactoring of these patterns quite challenging. Despite these deviations,
we regard the performance of the refactoring technique as satisfactory given
the various possibilities of natural language to combine several patterns in one
element label.

5.6 Discussion

This section discusses results and implications of the techniques and their
evaluation. Section 5.6.1 summarizes the results of the evaluation with regard
to the given hypotheses. Section 5.6.2 reflects upon threats to validity and
further limitations of the conceptual approach. Sections 5.6.3 and 5.6.4 identify
implications of the proposed approach for research and for practice.

5.6.1 Summary of Results

The experimental evaluation of the presented algorithms provides support
for a number of hypothesized performance expectations. Table 5.8 shows an
overview of the hypotheses results with regard to the detection and refactoring
algorithm. Turning to the detection hypothesis, the evaluation with the metrics
precision and recall reveal support and partial support for four patterns in each
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Table 5.8: Summary of Evaluation Results for Pattern Detection and Refactor-
ing

Detection
Hypothesis

Result
Refactoring
Hypothesis

Result

µ(P 1) = 1 µ(R1) = 0.79 partly supported µ(RP 1) = 0.89 supported
µ(P 2) = 0.97 µ(R2) = 0.98 supported µ(RP 2) = 0.81 supported
µ(P 3) = 0.97 µ(R3) = 0.99 supported µ(RP 3) = 0.81 supported
µ(P 4) = 1 µ(R4) = 0.96 supported µ(RP 4) = 1 supported
µ(P 5) = 1 µ(R5) = 0.83 partly supported µ(RP 5) = 0.82 supported
µ(P 6) = 0.98 µ(R6) = 0.86 partly supported µ(RP 6) = 0.85 supported
µ(P 7) = 1 µ(R7) = 0.42 partly supported µ(RP 7) = 1 supported
µ(P 8) = 0.63 µ(R8) = 0.80 not supported µ(RP 8) = 0.57 not supported
µ(P 9) = 0.99 µ(R9) = 0.95 supported µ(RP 9) = 0.97 supported

case. In particular, the experimental results suggest that the implementation
achieves its goal of finding a relevant share of activities suffering from the
parallel activities pattern (P2), the decision pattern (P3), the skip pattern
(P4), and the implicit decision pattern (P9). In case of the sequence pattern
(P1), the iteration pattern (P5), the extra information pattern (P6), and
time exception pattern (P7), the implementation performs excellent in finding
relevant pattern occurrences. However, we also learn that a large share of
these occurrences is not retrieved due to the linguistic variations across the
text collections. Therefore, the experiments provide only partial support for
the detection hypothesis due to the smaller recall numbers. Finally, we need
to reject the hypothesis in case of the implicit action pattern (P8) as both
precision and recall do not overcome the critical value of 95%. The results
of the refactoring technique suggest that eight out of nine hypotheses should
be confirmed. These findings emphasize the capabilities of the refactoring
technique to replace the deficient label with an atomic alternative requiring
hardly any manual rework. However, due to the low performance in case of the
implicit activity pattern (P8), we need to reject the corresponding hypothesis.

5.6.2 Limitations

The results of the evaluation also have to be discussed with regard to different
threats to validity and other limitations. In particular, we discuss those threats
that impact the generalizability of the techniques (external validity), the
completeness of the non-atomicity patterns (internal validity), and the validity
of the techniques themselves (construct validity).
External Validity. Threats to external validity are conditions that limit the
generalization of the techniques to other cases [441, p. 110]. In our setting,
external validity is mostly affected by the selection of test data, the selection
of the target language, and the modeling purpose. In terms of selecting the test
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data, the four process model collections can hardly be seen as representative
in a statistical sense. Therefore, we cannot completely rule out the fact that
other model collections would yield different results or falsify the evaluation
hypotheses. For the evaluation, we tried to mitigate this risk by selecting
process model collections that vary along different dimensions such as degree
of standardization, domain, and size and that thus reflect the complexity of
process model collections from industry. Hence, it is valid to claim that the
successful application of the proposed techniques is not limited to a particular
set of models and that it will detect and refactor a large share of non-atomic
process model elements. Moreover, this argument shares some perspectives
with considerations of theoretical sampling and saturation as it is discussed
for qualitative inductive studies [73]. This research methodology emphasizes
the collection of deviant cases with different sizes and characteristics such that
a broad spectrum of phenomena may be revealed.

Moreover, the presented techniques have been applied to process models
with English labels only. The selection of English as a target language raises the
question of adapting the techniques to different target languages. In general,
the detection technique may be easily adapted to different target languages by
adjusting key phrases of the respective pattern. Moreover, we may use localized
parsers for process models [238] or natural language text [199, 200, 409]. For
the refactoring technique, we require further adaptions with regard to label
parsing and the restructuring of text labels. The parsing of model elements
is facilitated by using insights on labeling styles of the target language [237].
In contrast to that, the refactoring step does not require further adaptions
since it builds only the model fragment and uses the labels from the parsing
component. Hence, we do not consider the adaption to different languages as
a threat to external validity because the adaptions do not require much effort.

The external validity might also be affected by the purpose of the respective
process model. As discussed before, one main characteristic of models is
pragmatism which demands that the model is as a substitution of the original
for a certain time and for a certain purpose. As a consequence, it might not
be desirable to resolve the non-atomic instances and to introduce additional
complexity because the purpose of the model is to provide a higher level of
abstraction [363] or to give a quick overview of the most important steps [402].
Admittedly, enforcing the notion of atomicity is bound to the purpose of the
process model and not suitable for applications that require a general overview
of the process. Nevertheless, there are other purposes for which process models
are employed, such as compliance to regulation rules, process model analysis, as
well as system design and analysis. In these settings, the purpose of the process
model is different and shifted from a general to a fine-grained perspective.
For this perspective, it is, however, desirable that the process model correctly
reflects the underlying business process and does not hide relevant resource
or control flow information in element labels. In such a setting, the notion of
atomicity comes into play and ensures that all relevant information is detected,
explicated and available for further analyses based on the process model.
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Internal Validity. In terms of internal validity, the completeness of non-
atomicity patterns might also be affected because only three process model
collections have been employed to derive the respective violation patterns [330].
However, the inclusion of several other process model collections might expand
the set of the non-atomicity patterns. We tried to mitigate this risk by conduct-
ing a theoretical sampling methodology and selecting process model collections
that vary along different characteristics. Furthermore, we also investigated
an independent repository, i.e. the TC collection, and checked if it reveals
further violation patterns. However, no new non-atomicity pattern emerged
during the investigation, which indicates a point of saturation with regard
to the completeness of the patterns [73]. Moreover, the human benchmark
against which the techniques have been compared might also be affected by
selection of raters [441, p. 107]. Depending on the motivation of the raters, the
human benchmark might contain cases which have been erroneously marked
to be non-atomic or which have been overlooked. In consequence, the metrics
precision and recall might not reflect the true performance of the technique.
We tried to mitigate this threat by involving several raters in the creation
of the human benchmark and by integrating the results of both. Moreover,
contentious cases have been discussed and resolved in an interactive way.
Construct Validity. Construct validity is affected when the construct of the
study is not correctly reflected or implemented [441, p. 108]. In this case, the
construct validity needs to be questioned if the formalization of the violation
patterns does not cover their occurrence in the process models and thus
impede their detection and resolution. Indeed, this is the case if activities
linguistically vary the way the pattern is expressed or if they combine several of
the aforementioned patterns. Consequently, deficient activities are not detected
correctly and cannot be refactored by our techniques. The formalization also
covers several specific cases to capture linguistic variance in the patterns in
order to minimize this threat. This is also emphasized by the evaluation metrics
precision and recall which have been used to distinguish between instances
that are relevant and retrieved by the techniques and those that are either not
relevant or not retrieved. Consequently, the greater the value of these metrics,
the more accurate the respective techniques work. Since the experiments in
the evaluation showed considerably big numbers for precision and recall, we
conclude that the techniques do what they are supposed to and refactor the
problematic instances in process models.

5.6.3 Implications for Research

As a major implication for research, the notion of label atomicity has been
introduced for process model elements. Atomicity enables a unique specification
of model elements such that each model element refers to only one individual
aspect. This concept has notable impacts on process and workflow model
analysis techniques since it unfolds hidden aspects of process models and
thus addresses one challenge of semantic process modeling [278]. For example,
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atomicity explicates hidden control flow or data objects within process models
which are then analyzable with existing approaches focusing on particular
building blocks of process models (see e.g. [26, 6, 413]). Moreover, it contributes
to the reliable applicability of process models in different scenarios, such as the
design of workflow systems requiring a flawless specification of the underlying
process [27] or the quantitative analysis of processes [108].

In addition, the notion of atomicity and its implementation also stimulate
an extension of existing process modeling and naming guidelines, as presented
by Mendling et al. [283], Sharp and McDermott [395], or Malone et al. [261].
In their current state, the naming guidelines demand elements to specify
particular components thereof, such as an object and a verb in case of an
activity. However, the number of objects and verbs is not restricted and hence
allows the description of non-atomic elements. The results of this work suggest
to incorporate the notion of atomicity in existing guidelines. In particular,
the operationalization of atomicity is highly beneficial for several process
model analysis techniques and for applications that rely on syntactically
and semantically sound process models, such as the generation of process
descriptions [242], automatic execution [121], or process model merging [245].
The notion of atomicity can assure that each activity contains one piece of
information which is not subject to additional conditions and that the analysis
of process models is efficient and accurate.

Finally, the notion of atomicity unfolds the semantics of the text label
to structural elements of the process models. Thereby, it leverages a realistic
understanding of the underlying process and leverages the application of process
models in several application scenarios, such as process model compliance,
process analysis and monitoring, and system design and analysis. With regard
to compliance, the refactoring of non-atomic elements enables the precise
annotation with specific compliance conditions, which can be assessed by
available compliance checking techniques [376, 86]. A similar argument applies
to the analysis and monitoring of process models. Due to the unfolding of labels
to the underlying structure, it is possible to precisely annotate each activity
with additional information, such as operational costs or execution time. In
consequence, the analysis has a better chance to resemble the business activities
and to take the right measures. Also various approaches to system design and
analysis benefit from the notion of atomicity. In this case, process models
are used to generate executable BPEL processes [315, 317]. The refactoring
technique ensures that all relevant model activities are correctly represented
by modeling constructs such that the translation approaches can correctly
map into BPEL syntax.

5.6.4 Implications for Practice

The notion of atomicity also has important implications for practice. First, the
explication of the non-atomicity patterns can be used to extend the capabilities
of process modeling tools. In such a context, tools can be used to look for
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patterns during the modeling process and notify the modelers that they are
probably specifying a decision or an arbitrary cycle. At the same time, the
modeling tool suggests a resolved fragment containing all the information that
have been specified so far. Hence, modeling errors could be prevented right
from the beginning, which would save cost and time-intensive rework in later
stages [46, 9, 17].

Second, the patterns can also be used with regard to organization-specific
modeling conventions and quality controls. In general, modeling conventions
aim to maintain a consistent modeling practice within an organization in terms
of used modeling elements and naming of these elements [390, 35, 283, 31].
In this setting, the patterns may extend existing conventions with frequently
used model fragments to facilitate the description of complex process behavior.
Additionally, the violation patterns provide counterexamples, which can be
avoided by using the respective model fragment.

5.7 Summary

This chapter has addressed the problem of detecting and refactoring syntactical
issues in process models. These issues typically arise when natural language
is used to describe information that relates to other aspects of the process
model, such as the control flow or resources. In consequence, this information
is not available for further analysis leading to unreliable results. To this end,
the notion of atomicity has been introduced, which demands that each model
element clearly refers to one single stream of action. Recognizing the number of
affected process models from industry, we have identified reoccurring patterns
that violate the notion of atomicity. Afterwards, we have developed techniques
for the automatic detection and refactoring of process models that contain
non-atomic elements. The experimental evaluation has confirmed that the
proposed techniques are capable of detecting and refactoring the discussed
patterns within industrial process model collections. Therefore, both techniques
have provided a reliable baseline for further analysis of process models by
clearly separating modeling language and natural language from each other.



6

Refactoring of Semantic Ambiguity

This chapter discusses the problem of managing semantic ambiguity in process
models. Semantic ambiguity refers to the meaning of text labels and can be
caused by several words that point to one particular meaning or that are
overloaded with different meanings. Prior research in requirements engineering
has brought forth several approaches to manage such issues. Despite the efforts,
there is currently no approach available that addresses this problem of semantic
ambiguity in process models. In Section 6.1, we give an overview of related
approaches from ry equirements engineering and emphasize the necessity
to address semantic ambiguity in process models. Section 6.2 explains how
the linguistic concept of word senses is operationalized and used to describe
characteristics of ambiguous words. The Sections 6.3 and 6.4 then present the
techniques to detect and resolve ambiguous words. Section 6.5 continues with
a discussion of the user evaluation where these techniques have been applied
to process model collections from industry. Afterwards, Section 6.6 gives a
summary of the results and gives important implications of the evaluation.
Finally, Section 6.7 gives an overview of the main points to conclude the chapter.
The main results of the presented techniques have lead to two publications
[329, 331].

6.1 Lexical Ambiguity in Process Models

Process models are often used to support the specification of requirements of
information systems [188] or to analyze and redesign the business processes
of an organization [109]. It is essential that these models use a consistent
terminology to describe the underlying business process, because these models
are used by people from different organizational units with different knowledge
and background. Still, several authors emphasize that this is a major concern in
real-world settings [186, 40]. Bolloju and Leung [47] find ambiguous descriptions
and inconsistent element names in 64% of the UML models they evaluated.
In the field of automatic assessment of UML activity diagrams, Jayal and
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Sheppard [177] also face the challenge of ambiguous label names when matching
them to semantically similar ones. The most tangible manifestation of lexical
ambiguity is the usage of homonyms and synonyms. Homonyms are words that
have more than a single meaning, e.g. application. Synonyms are different words
which refer to the same meaning, e.g. bill and invoice. Although the problem
of synonyms and homonyms is well understood in various areas of system
analysis and design tasks, such as requirements engineering [40, 186], use case
descriptions [85, 417], model transformations [439], code and design smells
[294], matching code and documentation [264], or system components reuse
[290, 234], there has been only limited research on addressing such problems
in process models. Section 6.1.1 discusses approaches and techniques that are
used to manage ambiguity in models and natural language text in order to
address the problem of ambiguous terminology. Then, Section 6.1.2 discusses
notable challenges of ambiguity detection and resolution thereof.

6.1.1 Managing Ambiguity in Process Models

Despite the fact that semi-formal languages (e.g. BPMN or UML activity
diagrams) are meant to restrict ambiguity [188], the elements of process
models still entail small fragments of natural language text to specify the
semantics of the business process. These language fragments are a reason of
ambiguity which is similar to natural language text (see e.g. [119, 71, 142]).
Moreover, the ambiguity problem is even more serious in process models since
the process model gives an abstract view of the business process and provides
only limited context to detect and resolve ambiguities [285, 249]. Finally,
models often focus on isolated aspects of the system. Once a system integrates
several parts of the organization, a number of models has to be considered
before inconsistencies can be detected [343].

In order to improve process models and to ensure the quality of process-
aware information systems, several authors propose an integration of process
modeling with requirements engineering [19, 24]. This is particularly promising
since approaches to ambiguity management have been discussed in the latter
discipline. In requirements engineering, two classes of approaches can be
distinguished. The first class includes techniques that detect ambiguities in
requirements documents and explain them to the user. The second class
encompasses techniques that attempt to resolve ambiguities. Each class can be
subdivided into approaches focusing on detecting ambiguity in requirements
documents and in models (see Table 6.1).

Ambiguity detection approaches aim at the reduction of ambiguity by
identifying terms that can be interpreted in multiple ways. For that purpose,
various techniques have been proposed to assess requirements documents of
different input types. For requirements in text, i.e. requirements specifications
written in natural language, different reading techniques may be employed.
Inspection-based reading [188, 187] uses a detailed checklist of ambiguous
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Table 6.1: Approaches for Ambiguity Management in Natural Language Text
and Models

Technique Author

Ambiguity Detection in Textual Requirements

Reading Techniques Kamsties et al. [188, 187, 186]
Shull et al. [396]

Natural Language Patterns Denger et al. [97],
Gleich et al. [142]
Rolland and Ben Achour [368]

Ambiguity Metrics Fantechi et al. [125],
Ceccato et al. [67],
Fabbrini et al. [119],
Wang et al. [429]

Ambiguity Heuristics Chantree et al. [71]
Classifier Construction Yang et al. [447, 446]

Ambiguity Resolution in Textual Requirements

Notification Chantree et al. [71]
Gleich et al. [142]

Pattern-based rephrasing Rolland and Ben Achour [368]

Ambiguity Detection in Models

Reading Techniques Anda and Sjøberg [18]
Rule-based Detection Mens et al. [287]
Ambiguity Measurement Metrics Friedrich [135]
Verifying Concept Relations with a Lexicon Van der Vos [425]

Ambiguity Resolution in Models

Rule-based Resolution Mens et al. [287, 288]
Preventing Ambiguity with a Domain Thesaurus Becker et al. [31, 32]

Delfmann et al. [96]
Havel et al. [157]

words in requirements engineering such that the document is carefully in-
spected for potential ambiguities. Scenario-based reading [186] provides an
inspector with an operational scenario, which requires the inspector to first
create an abstraction of the requirements document and then answer questions
based on the document. If the questions cannot be answered consistently, the
inspector has found an inconsistency. Object-oriented inspections [396] are
a specific reading technique to align textual requirement descriptions with
models of object-oriented components. This technique proposes to find associ-
ations of the textual description with regard to the model and to check the
description for completeness of attributes, methods, or conditions. Besides the
reading techniques, there are also technical approaches to detect ambiguities
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in requirements documents. Denger et al. [97] as well as Gleich et al. [142] use
natural language patterns to manage ambiguity in requirements documents.
While Denger et al. [97] proposes generic sentence patterns to describe events
or reactions of a software, Gleich et al. [142] use regular expressions and
keywords to detect ambiguities. For example, the expressions many or few
might point to vaguely formulated requirements. Moreover, several authors
develop metrics that indicate ambiguities in requirements documents. Among
them, Fantechi et al. [125] and Ceccato et al. [67] define metrics for the de-
gree of readability and understandability (average number per sentence) as
well as the ambiguity of natural language text (average number of sentences
containing vague expressions). Fabbrini et al. [119] also provide measures for
underspecification (number of sentences containing words without modifier)
and implicit sentence structures (number of sentences containing expressions
such as they or above). Wang et al. [429] use metrics to create a ranking of
ambiguities according to ordering criteria, such as concept frequency (occur-
rence of a word in all requirements documents) or context diversity (average
cosine similarity of target word and co-occurring words). Chantree et al. [71]
propose heuristics to automatically replicate human judgments of ambiguous
requirements documents and their interpretation. For example, the authors
introduce the distributional-similarity heuristic which measures how frequent
two words occur in the same context. If the measure reveals a weak distribu-
tional similarity, an ambiguity is more likely. The previous approach has been
extended by Yang et al. [447, 446]. The authors employ a machine learning
approach and build an ambiguity classifier based on the human judgments.

For requirements in models, Anda and Sjøberg [18] adapt the idea of reading
techniques to use case models and propose a checklist-based approach to detect
inconsistencies and ambiguities. Mens et al. [287] propose a detection approach
by using graph transformation rules to support the ambiguity detection task
in UML class models and state machine diagrams. For example, the authors
identify methods in a class diagram that have undefined types and resolve this
inconsistency by either removing the respective parameters or assigning an
existing type to the undefined one. Friedrich [135] proposes semantic metrics
that reflect the degree of ambiguity of a particular word and that provide a
baseline to automatically detect text fragments with a high chance of ambiguity.
The metric considers the number of occurrences of a word divided by a user
defined minimum frequency. Van der Vos [425] uses a semantic lexicon to check
the quality of model elements. It ensures that words and phrases of model
element labels are used in a linguistically meaningful and sense-making way.
For that purpose, the technique checks if the label correctly refers to a specific
concept or object of the real world and if the combination between several
objects makes sense in the context of a model.

Once ambiguities have been detected, approaches for the systematic resolu-
tion are employed to restore the consistency of concepts and terminology. The
resolution of ambiguous concepts needs to identify the correct interpretation of
the respective item and to rewrite it according to the modeler’s intention. For
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textual requirements, several authors, such as Chantree et al. [71], acknowledge
mental capabilities of humans to resolve these ambiguities. Similarly, Gleich et
al. [142] propose a notification approach that highlights an ambiguous concepts
and explains why the concept is ambiguous. Afterwards, it is up to the users to
handle the detected ambiguity by themselves. Going one step further, Rolland
and Ben Achour [368] propose a rephrasing technique that makes use of precise
natural language patterns to replace the ambiguous statement. For instance,
the authors propose a clarification rule that changes the wording of anaphoric
references, such as he, she, it, his or him.

In order to resolve such ambiguity in models, Mens et al. [287, 288] enrich
the previously mentioned detection technique with transformation rules that
automatically rework the defects in class and state machine diagrams. The
approaches of Becker et al. [31, 32], Delfmann et al. [96] as well as Havel et al.
[157] enforce specific naming conventions in process models. These tools also
implement a user-created domain thesaurus, which replaces synonyms with a
previously defined dominant alternative. For example, the user may specify
that the words invoice and bill are synonyms and that invoice is the dominant
synonym. Then, the tool automatically replaces all occurrences of bill with
invoice.

Despite their merits, the presented techniques for the detection and reso-
lution of lexical ambiguity suffer from three main shortcomings that impede
their application to process model repositories: the required manual effort,
the missing focus on process model text fragments, and their focus on single
documents.

The first shortcoming, the required manual effort, refers to the extensive
amount of manual work that is required to detect and resolve ambiguities in
process models. Since companies tend to maintain several hundreds or even
thousands of process models [369], the human effort can be tremendous. In
particular, the previously discussed reading techniques can hardly be applied
to such a number of models. Similarly, this also applies for the resolution of the
detected ambiguities, where the requirements engineers need to understand the
context of the detected ambiguity and come up with a more precise alternative.
The large manual effort also impedes the application of heuristic-based or
machine learning approaches because each of these approaches requires a
manually created data set from which heuristics can be derived or from which
machine-learning approaches can be trained.

The second shortcoming, the missing focus on process model text fragments,
refers to the fact that many approaches are tailored to deal with sentences
and phrases taken from a grammatically and syntactically correct natural
language text. However, the elements of process models contain only short
textual fragments that do not exhibit a complete or a correct sentence structure
[249, 285]. As a result, the discussed approaches, as the ones from Denger et
al. [97], Gleich et al. [142], or Rolland and Achour [368], are hardly applicable
to process models. The few approaches that look deeper into the semantics
of the textual fragments in models are however limited and do not provide
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means for ambiguity detection or resolution. While van der Vos [425] focuses on
meaningful combinations of terms, the semantic metrics of Friedrich’s ambiguity
metrics [135] only point to possible ambiguous terms without considering the
context of the process model.

The third shortcoming, i.e. the focus on single documents, relates to the
observation that most of the proposed techniques are applicable only to single
documents, single models, or smaller units thereof. Hence, these techniques
only address ambiguities within a single document or process model. However,
since we assume a repository of several process models, the correction of
ambiguities on document level might introduce an inconsistency in another
document or model. In this context, the approaches of Becker et al. [31, 32],
Delfmann et al. [96] as well as Havel et al. [157] are beneficial as it enforces
specific naming conventions based on a domain thesaurus, which prevents the
introduction of conflicting terms during model creation. Unfortunately, their
approach assumes the existence of such a domain thesaurus and the creation
of a process model from scratch which impedes the application to already
existing repositories.

Despite the findings and the diversity of approaches, there is no technique
available that can address the detection and resolution of lexical ambiguity
in process models on the level of a model collection. The following section
addresses this gap by emphasizing particular challenges to meet this objective.

6.1.2 Challenges for Ambiguity Detection and Resolution

There are several challenges associated with the automatic detection and
resolution of lexical ambiguity in process model repositories. We use BPMN
process models as depicted in Figure 6.1 in order to illustrate these challenges.
Scenario A describes a job application process. The process starts with the
receipt of an application followed by a check for completeness. In case the
documents are not complete, the missing documents are requested and checked
again. Otherwise, the documents are evaluated and it is decided whether the
application is rejected or the applicant is invited to an interview. Scenario
B depicts the general procedure to update software programs. The process
starts with necessary preparations of the software program the upcoming
maintenance. Then, all necessary update files are received from the software
vendor. If the update files are incomplete, the responsible person calls for the
missing files and receives the missing files from the vendor. If everything is
complete, the application is updated and restarted afterwards.

These models are subject to lexical ambiguity. First, each process model
uses the word application. Scenario A utilizes it in the sense of a job application
as well as in the sense of a software program. We can infer the meaning of
the first instance from the context in which documents are checked and an
interview takes place. The second instance refers more likely to a software
program since it is involved in the evaluation of the candidate. In scenario B, the
word application is also used as a software application. Apparently, this small
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Fig. 6.1: Example for Lexical Ambiguities in Process Models

sample of two models uses the word application with two different meanings,
which let us conclude that application is a homonym. Moreover, we observe
another inconsistency in scenarios A and B. The word to request expresses a
need for a particular object. The same semantics can be assigned to the word
to call for. Thus, the two words are used to express the same concept and are
hence considered to be synonyms. Apparently, these semantic inconsistencies
are not restricted on a single process model, but also affect several models
at the same time pointing to specific challenges to detect homonyms and
synonyms. In general, we face three challenges for the detection and resolution
of lexical ambiguities: sense disambiguation, sense operationalization, and
ambiguity resolution. Table 6.2 provides an overview of techniques addressing
these challenges.

The challenge of ambiguity operationalization is concerned with representing
semantic meaning of a word in such a way that ambiguities can be detected.
Such a representation would need to capture various aspects of a particular
word. One prominent example of such a representation is the vector space
model, which was introduced by Salton et al. [379] to describe documents
in an information retrieval system. The model expresses indexing terms of a
document as dimensions of the vector space. The degree to which a document
is associated with a specific index term is expressed by numerical values. A
similar approach, the word space model by Schütze [391], applies this concept
to the linguistic field. The word space model interprets the vector dimensions
as words. Following Schütze, a word in a corpus is represented as a vector
whose components count the number of occurrences within a fixed context
(for example a sentence or a larger context). As a result, the distributional
profile of words implicitly expresses the meaning of the word in a given
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Table 6.2: Challenges for Ambiguity Detection and Resolution

Challenge Applicable Concepts

Ambiguity Operationalization

Vector Space Model Salton et al. [379]
Word Space Dimensions Schütze [391]
Ambiguity Definitions Deissenboeck and Pizka [95]

Sense Detection

Supervised Methods Cai et al. [65]
Agirre and Lopez de Lacalle [12]
Niu et al. [308]

Unsupervised Methods Pederson [320]
Kern et al. [192]
Koeling and McCarthy [206]

Knowledge-based Methods Navigli and Ponzetto [303, 304]
Chan et al. [69]
Novischi [310]

Word and Context Clustering Schütze [392]
Lin [252]
Pantel and Lin [319]

Ambiguity Resolution

Additional Information Frakes and Pole [132]
Lin and Chan [254]

Guided Interaction Bouzeghoub et al. [50]
Alternative Selection Hayne and Ram [158]
Automatic Rephrasing Ben-Ari et al. [36]

context. Deissenboeck and Pizka [95] introduce a formalization of ambiguities
to deal with synonyms and homonyms in identifier naming. Although their
formalization captures essential characteristics of ambiguity, it is not sufficiently
precise to automatically detect synonyms and homonyms. The mere existence
of a word with multiple senses does not necessarily imply that it also represents
an ambiguous case. To this end, we need to redefine the vector space model,
to transfer it to word senses, and to refine the conditions that allow to confirm
or reject the hypothesis of ambiguity.

The challenge of sense detection refers to the field of word sense dis-
ambiguation (WSD) and relates to determining the sense of a word in a
given context [300]. In general, we distinguish between WSD techniques that
employ supervised machine-learning techniques (e.g. [65, 12, 308]), unsuper-
vised techniques (see. e.g. [320, 192, 206]), and knowledge-based methods (e.g.
[303, 304, 69, 310]). Moreover, several clustering approaches have been used
to identify context similar words (e.g. [392, 252, 319]). However, each existing
approach requires an extensive amount of natural language text as input. As
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the textual information of process model elements is typically very short, it
provides limited context to identify the correct sense of a word. This insight
is also confirmed by Zong and Ng [451] who report worse WSD results for
short queries in information retrieval. Referring to the example, available WSD
algorithms may only employ the activity and gateway labels, such as Receive
application or Documents complete? in order to find the correct meaning of
the word application. An initial try with the technique of Navigli and Ponzetto
[303] identified the software application as the most suitable meaning (score:
11), followed by job application (score: 8). It is not recommended to rule out
the other possible meaning, because these scores are relatively close to each
other and the process model does not provide much textual information as
context. Therefore, the idea of sense determination needs to be extended and
to consider the imprecision given by the short textual information of process
models.

After the detection, the challenge of resolution needs to be addressed.
Ideally, the detected ambiguities can be removed in order to achieve consistency
and correctness among a set of process models. Reconsidering the example
from Figure 6.1, it is desirable to replace the homonym application with job
application in scenario A and with software program in scenario B.

In the literature, there are four different strategies to resolve ambiguities.
Frakes and Pole [132] as well as Lin and Chan [254] propose to append addi-
tional information to the ambiguous word which explains the context, such as
application (job, employment). Bouzeghoub et al. [50] suggest the incorporation
of user-interaction in order to manually resolve ambiguity. A third strategy was
developed by Hayne and Ram [158]. Their approach provides the user with the
possibility to choose from automatically created recommendations. The last
strategy suggests the automatic rephrasing or replacement of ambiguous words
with more precise alternatives. An exemplary approach has been developed by
Ben-Ari et al. [36] who propose an interactive approach to rephrase ambiguities.
However, these strategies either require manual efforts ([132, 254]), have been
applied in specific scenarios ([50, 158, 254]), or have been developed for correct
natural language sentences ([36]). Hence, we require strategies that can deal
with short text fragments that are common in process models.

Building on these challenges, this thesis proposes techniques to automati-
cally detect and resolve lexical ambiguities in process models in the following
sections.

6.2 Operationalizing Word Senses and Lexical Ambiguity

In the subsequent sections, we focus on the operatinalization of semantic
concepts and explain how they are used to detect lexical ambiguity. Therefore,
Section 6.2.1 introduces semantic vectors as a central concept to represent all
word senses of a potentially ambiguous word. Based on this concept, Section
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6.2.2 elaborates ambiguity conditions which leverage the automatic detection
of homonyms and synonyms.

6.2.1 The Notion of Semantic Vectors

It is necessary to operationalize lexical ambiguity in order to address the first
challenge. The operationalization mainly involves a formal description of the
basic characteristics of lexical ambiguity, namely homonyms and synonyms.
As already mentioned, a homonym is a word with multiple overlapping word
senses. We regard the word application as a homonym as it may refer to
multiple senses such as a job application, a software program, an application in
the medical sense, or diligence and effort. Synonyms are words that have one
word sense in a common. The words bill, invoice, and account are synonyms
since they share a common meaning, i.e. the itemized statement of owed money.
It is necessary to investigate all word senses of a given word in order to take a
decision on homonymy and synonymy.

A suitable representation of all word senses is achieved by using a vector-
based representation of its senses. This representation is inline with the concepts
of the vector space model by Salton et al. [379] and the word space model
by Schütze [391]. The vector space model describes a document with the
help of indexing terms and treats them as vector dimensions. The degree to
which a document is associated with a specific index term is expressed by
numerical values in the vector. The word space model interprets the vector
dimensions as words and counts the occurrences of a word within a fixed
context. Transferring these concepts to word senses, we introduce the notion
of a semantic vector SV w

D of a word w. A semantic vector represents word
senses as vector dimensions which correspond to distinct word senses of a
given dictionary D. If the word is used with a specific meaning, its value in
the semantic vector is non-zero. The higher the value, the more prevailing the
respective meaning in a given context. Accordingly, the concept of semantic
vectors is defined as follows:

Definition 6.1. (Semantic Vector). Let w be a word, p ∈ POS its part of
speech, and SensesD(w, p) = {s1, · · · , si, · · · , sn} its word senses denoted in
a dictionary D. The semantic vector SV w

D is given by

SV w
D =

( s1 · · · si · · · sn

sv1 · · · svi · · · svn
)
, such that

− The ith dimension of SV w
D corresponds to the ith sense si ∈ SensesD(w, p).

− The value svi indicates to which degree the word is used with the ith sense
in a given context.1

To illustrate these concepts, we refer to the word application from Scenario
A of Figure 6.1 and use the BabelNet word senses as shown in Table 4.7.

1 In this thesis, the supporting scores are calculated by using the Multilingual WSD
algorithm as presented in Section 4.4.3.
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Accordingly, the word application has ten distinct word senses, such as the
sense of a job application (s2) or a software program (s4). Taking the process
model of Scenario A as context and using the WSD approach of Navigli and
Ponzetto [303], the following semantic vector reflects the meaning of the word
application in scenario A:

SV application
BabelNet =

( s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

3 8 6 11 3 2 1 3 0 0
)

Apparently, the context of Scenario A provides sufficient support that
the word application may refer to a software program (s4-value: 11), a job
application (s2-value: 8) or the work of covering something (s3-value: 6).
Although it might be obvious for humans that the job application is the most
appropriate word sense in the process model, we cannot completely rule out
the fact that other interpretations are meaningful, even if only to a small
extent. In some cases, it might happen that several word senses are more likely
resulting in bigger si-values. In this case, we might face an ambiguity or a
homonym to be precise. We can however use these regularities to describe
conditions to detect ambiguous usage of words, as shown in the next section.

6.2.2 Ambiguity Detection Conditions

The specification of ambiguity detection conditions aims at operationalizing
the basic characteristics of lexical ambiguity. These conditions rest upon the
concept of a semantic vector and the formalization of homonyms and synonyms
by Deissenboeck and Pizka [95]. The following conditions adapt their ideas
to semantic vectors and describe necessary conditions for the homonyms and
synonyms:

Definition 6.2. (Homonyms). Given a word w ∈ W denoted in a lexicon
D, its part of speech p ∈ POS, and its semantic vector SV w

D . Then, the word
w is a homonym if:

∃si, sj ∈ SensesD(w, p) : si 6= sj ∧ svi > 0 ∧ svj > 0

As an example consider the semantic vector SV application
BabelNet from the previous

section. Since the semantic vector entails several values with a score bigger than
0, Definition 6.2 identifies the word application to be a homonym. Opposite to
that, a synonym is defined as follows:

Definition 6.3. (Synonyms). Given two words w1, w2 ∈ W denoted in a
lexicon D, their parts of speech p1, p2 ∈ POS, and their semantic vectors
SV w1

D and SV w2

D . Then, the words w1 and w2 are synonyms if:

∃si ∈ SensesD(w1, p1),∃sj ∈ Senses(w2, p2) : si = sj ∧ svi > 0 ∧ svj > 0

To illustrate Definition 6.3, consider the words sales and revenue in Scenario
B from Figure 6.1. Moreover, consider Table 6.3 which depicts all elements of
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Table 6.3: Example for Synonym Semantic Vectors

Word Sense si Description Value svi

sales
s1 Income received for goods and services 35
s2 Value of sales generated by a company 7

Word Sense sj Description Value svj

revenue

s1 Income available to the government 4
s2 Income returned by an investment 5
s3 Income received for goods and services 35
s4 Government income due to taxation 18

the semantic vector for these two words, i.e. their word senses, a description
of the meaning, and their value in the semantic vector:

The table shows that both words may refer to Income received for goods and
services, i.e. s1 ∈ SensesD(sales, n) = s3 ∈ SensesD(revenue, n). Moreover,
each of these word senses have a value bigger than 0. According to Definition
6.3, the words sales and revenue are synonyms.

One weakness of homonyms and synonyms is that their definitions only
capture the basic characteristics of lexical ambiguity. In particular, they do
not sufficiently consider the context of a given word. The implications of the
missing context are explained best by reconsidering the previously discussed
word application. According to BabelNet, this word has ten different senses
among which eight achieve a si-value bigger than 0. Hence, Definition 6.2
identifies the word application to be a homonym. However, only because a
word may refer to multiple senses, this does not necessarily mean that it is
actually harmful. A word is ambiguous only, if the context of the word is not
sufficient to infer the correct sense. This is the case when the vector contains
si-values that are close to each other. Therefore, the definitions 6.2 and 6.3
constitute necessary conditions only.

We then refine the notion of ambiguity with two consecutive steps in order
to finally decide about the homonymous or synonymous character of a word.
The first step involves the determination of the dominant word sense which
is inline with standard WSD approaches, that typically assign a supporting
score to an input target word given a set of words as a context [271, 270]. The
word sense with the highest supporting score is typically assumed to be the
most appropriate one and thus dominating all other word senses. Therefore,
we formally state this condition as follows.

Definition 6.4. (Dominant Word Sense). Given a word w ∈W , its part
of speech p ∈ POS, and its semantic vector SV w

D , a sense si ∈ SenseD(w, p)
is dominant if there is no other sense sj ∈ SenseD(w, n) with a higher value in
the semantic vector: ∀si, sj ∈ SenseD(w, p), si 6= sj : svi > svj . We denote
the dominant sense with smax.
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Let us again consider the word application in Fig. 6.1 and its semantic
vector with regard to scenario A, i.e.

SV application
BabelNet =

( s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

3 8 6 11 3 2 1 3 0 0
)

According to the definition of the dominant word sense, the 4th sense is
considered to be dominant since its value sv4 = 11 is the highest among all
supporting scores.

In the second step, we need to consider those cases where a clearly domi-
nating word sense is not present. Although the 4th sense is dominating due to
the biggest vector value, the 2nd sense is very close. Hence, the conclusion is
valid that this particular sense is also appropriate for the given context and
that it cannot be excluded from further consideration. In order to also capture
such senses, we introduce a user defined confidence score ε ∈ [0..1] that defines
a spectrum of appropriate word senses around the dominating one. Therefore,
we introduce the notion of quasi-dominant word senses as follows.

Definition 6.5. (Quasi-Dominant Word Senses). Given a word w ∈W ,
its part of speech p ∈ POS, its semantic vector SV w

D , and its dominating sense
smax. Then, a sense si ∈ SensesD(w, p) is quasi-dominant if: svi ≥ ε · svmax.

Definition 6.6. (Subsets for Dominant Word Senses). Given a word
w ∈W , its part of speech p ∈ POS, its semantic vector SV w

D . We define the
following subsets for its dominating sense smax and its quasi-dominant word
senses given by the Definition 6.5:

− senseswQD = {si ∈ SensesD(w, p)| svi ≥ ε · svmax}, as being the set of
all quasi-dominant word senses.

− domSensew = {smax}∪senseswQD, as being the set containing all dominant
and quasi dominant word senses.

Reconsidering the example of the word application, we already identified
the 4th sense to be dominant. If we set the confidence score ε to 0.7 and apply
the Definition 6.5 to the remaining values of the semantic vector SV application

BabelNet ,
we also find the 2nd sense as quasi-dominant with regard to the other vector
values. Obviously, since more word senses appear to be appropriate, the word
application actually represents a homonym. We thus extend the necessary
conditions of homonyms and synonyms with these concepts. The extended
definitions formulate an extended condition for synonyms and homonyms
that build upon the necessary conditions in the definitions 6.2 and 6.3. They
consider the dominant senses of the word in the respective context and thus
indicate if the respective synonym or homonym candidate should be confirmed
or rejected.
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Fig. 6.2: Overview of Detection Approach

Definition 6.7. (Extended Homonym Condition). Given a word w ∈W ,
its part of speech p ∈ POS, its semantic vector SV w

D , and its set of dominant
and quasi-dominant word senses domSensew. Then, the word w is a confirmed
homonym if Definition 6.2 holds and |domSensew| > 1. Otherwise, it is a
rejected homonym.

Definition 6.8. (Extended Synonym Condition). Let w1, w2 ∈ W be
two words, p1, p2 ∈ POS their parts of speech, SV w1

D and SV w2

D their semantic
vectors. Further, let domSensew1 ⊆ SensesD(w1, p1) and domSensew2 ⊆
SensesD(w2, p2) their sets of dominant and quasi-dominant word senses. Then,
the words w1 and w2 are confirmed synonyms if Definition 6.3 holds and if
domSensew1 ∩ domSensew2 6= ∅. Otherwise, the words are rejected synonyms.

This section provided the formal concepts and extended conditions for
homonym and synonym ambiguity. Building on these definitions, we introduce
a technique that identifies and resolves lexical ambiguities in process model
repositories in the following section.

6.3 Detection of Ambiguity

This section discusses the general steps to detect homonym and synonym
ambiguities. Figure 6.2 shows the general architecture of the detection approach.
The input of the approach is a set of process models. The approach begins
with an extraction of the label components. Then, the ambiguity detection
component analyzes the process models with the help of the discussed ambiguity
conditions and a computational lexicon, such as BabelNet. As a result, the
component produces a list of detected ambiguities and affected models.

In the following sections, we will specify the ambiguity detection approach
that detects lexical ambiguities in process models repositories. Section 6.3.1
focuses on homonym detection, while Section 6.3.2 explains the necessary steps
for synonym detection.
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6.3.1 Homonym Detection

Building on the arguments from the previous sections, we further require the
detection technique to preserve the quality and consistency of the considered
model collection, i.e., process models with a similar contexts need to be treated
equally. In particular, we need to consider the fact that a word occurs in several
process models and that the word can have a different sense in another model.
This means that we need to find those models in which the target word is
used with similar senses. In this cases, the semantic vectors are close to each
other. In a subsequent step, we decide for a group of several process models
if a target term is used ambiguously or not. his procedure ensures that the
ambiguity is resolved consistently through all process models within a group.
For this purpose, we employ the XMeans clustering approach by Pelleg and
Moore [323] since it efficiently estimates the number of clusters automatically
and is capable of finding smaller groups of vectors with similar characteristics.
We then check the necessary and the extended condition for each cluster center
in order to confirm or reject the homonym condition.

These steps are formalized in Algorithm 3, which requires the process model
collection P and a target word w as input and starts with basic initializations
(Steps 2-4). The set SemanticV ectors stores the semantic vectors that are
created from disambiguating the word w with respect to the process model
P which serves as the context. The set homonymCandidates stores the final
results of the algorithm and contains the detected homonyms. After the
initializations, the necessary condition for homonyms is checked. For this
purpose, we employ the BabelNet database and retrieve the synsets of the
word w (Step 5). If this check does not evaluate to false, the semantic vectors
for each process model P and word w are calculated using the graph-based
WSD approach with BabelNet. We denote this with the function babel(w,P )
that takes the word w and a process model P as input and returns the semantic
vector according to definition 6.1. Each semantic vector is then added to the
set SemanticV ectors (Steps 5-7). In Step 9, the semantic vectors are clustered
to identify groups of context similar vectors. We denote this with the function
xmeans(semanticV ectors) that takes the set of all semantic vectors of word
w as input and returns a set of identified clusters. Afterwards, the extended
homonym condition is checked according to Definition 6.7 for each cluster
(Steps 10-11). The extended homonym evaluation makes use of the function
DominantSense(sc) that returns all dominant and quasi-dominant senses. If
it evaluates to true, the word and the respective cluster are confirmed to be a
homonym candidate and added to the result set (Step 12). At the end, the
algorithm returns the final result set and terminates (Step 16).

6.3.2 Synonym Detection

Regarding the detection of synonyms, the technique has to consider pairs
of words that have at least one meaning in common. Analogously to the
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Algorithm 3: Detection of Homonyms for a Set of Process Models

1: detectHomonyms(Word w, ProcessModels P)
2: semanticV ectors← ∅
3: semanticClusters← ∅
4: homonymCandidates← ∅
5: if BabelNet.RetrieveSynsets(w) ≥ 2 then
6: for all P ∈ P do
7: semanticV ectors← semanticV ectors ∪ babel(w,P)
8: semanticClusters← xmeans(semanticV ectors)
9: for all sc ∈ semanticClusters do

10: if |DominantSenses(sc)| ≥ 2 then
11: homonymCandidates← homonymCandidates ∪ (w, sc)
12: return homonymCandidates

homonym problem, these two words can only be synonyms if their context
is approximately identical. For this purpose, we again need to learn about
the word senses of two words and have to decide if they fulfill definition 6.3.
If so, we use a WSD approach and create the semantic vectors. Afterwards,
we employ the XMeans clustering approach for each semantic word space
and identify the dominant and quasi-dominant word senses. In contrast to
the homonym approach, we have to compare the resulting clusters of each
candidate word with each other to check the extended synonym condition. If
two clusters share at least one meaning, i.e., the intersection of dominant and
quasi dominant sense is not empty, we confirm the two words in the respective
clusters as synonym candidates.

The synonym detection approach is formalized in Algorithm 4. It takes two
words w1 and w2 as well as the set of process models P as input. Afterwards,
it starts with the basic initializations, i.e., the initialization of the semantic
vector and cluster set for w1 and w2 and the result set (Steps 2-5). In Step
6, the necessary synonym condition is checked according to definition 6.8. If
true, the semantic vectors of each word are calculated using the BabelNet
WSD approach which we denote again with the function babel(w,P ) (Steps
8-11). The algorithm continues with clustering the vectors of each semantic
vector space denoted by the function xmeans(semanticV ectors) (Steps 12-
13). Finally, the algorithm checks the extended synonym condition for each
cluster (Step 15). If the dominant and quasi-dominant senses of one cluster
of word w1 intersect with the dominant senses of one cluster of word w2,
the extended condition evaluates to true and the two words as well as the
respective clusters are stored in the result map (Steps 15-16). The algorithm
terminates by returning the result set synonymClusters (Step 20).
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Algorithm 4: Detection of Synonyms in a Set of Process Models

1: detectSynonyms(Word w1, w2, ProcessModels P)
2: semanticV ectors1 ← ∅
3: semanticV ectors2 ← ∅
4: semanticClusters1 ← ∅
5: semanticClusters2 ← ∅
6: synonymCandidates← ∅
7: if (SensesD(w1, ∗) ∩ SensesD(w2, ∗)) 6= ∅ then
8: for all P1,P2 ∈ P do
9: semanticV ectors1 ← semanticV ectors1∪ babel(w1,P1)

10: semanticV ectors2 ← semanticV ectors2∪ babel(w2,P2)
11: semanticClusters1 ← xmeans(semanticV ectors1)
12: semanticClusters2 ← xmeans(semanticV ectors2)
13: for all sc1 ∈ semanticClusters1,

sc2 ∈ semanticClusters2 do
14: if (DominantSenses(sc1)

∩ DominantSenses(sc2)) 6= ∅ then
15: synonymCandidates← synonymCandidates∪ (w1, sc1, w2, sc2)
16: return synonymCandidates

6.4 Resolution of Ambiguity

A fully automatic resolution of lexical ambiguity is associated with consid-
erable challenges and thus far away from trivial. Therefore, it is often more
appropriate to rely on human resolution instead and to notify them about
detected ambiguity cases [159, 71]. In this line, this thesis proposes a resolution
technique that aims at providing context-sensitive refactoring suggestions
for the detected synonyms and homonyms. In Section 6.4.1, we first discuss
strategies to generate resolution suggestions for homonyms. Then, Section
6.4.2 presents a strategy to resolve synonyms.

6.4.1 Homonym Resolution

The resolution of homonyms is addressed using different perspectives. We
propose three resolution strategies. The first strategy exploits the semantic
relationship of hyponomy. The hyponymy relation describes a transitive relation
between word senses that organizes them into a sub-word hierarchy. It starts
with a general word and becomes more and more specific. In order to resolve
the homonym conflict, one can choose a suitable hyponym offered by the
dictionary. As an example, consider the fragment of BabelNet’s hyponymy tree
for the word application in Figure 6.3. It illustrates that BabelNet provides
four different hyponyms that can be used to resolve the ambiguity conflict of
the word application. Accordingly, this resolution strategy would suggest the
depicted hyponyms, i.e., job application, credit application, loan application,
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Fig. 6.3: Example Fragment of the Hyponymy Tree

and patent application. Building on this concepts, the hyponym resolution
strategy is formalized as follows:

SuggestionHypo = hypoBabelNet(s
′),

where hypoD(w, s′) denotes a function that returns the set of all hyponyms
of the word sense s′ ∈ SensesD(w, p) in the BabelNet dictionary as given by
Definition 4.7.

The second homonym resolution strategy employs the hyponym relation
as well. However, instead of replacing the ambiguous term with a hyponym (a
more specific word), a hypernym, i.e. a more general word from the hyponym
tree, is chosen as a qualifier [254]. A qualifier appends additional information
to the ambiguous word pointing to the specific context. Reconsidering the
hyponym tree in Figure 6.3, we pick the hypernym request and create the
suggestion application (request) as a suggestion. Formally, the hypernym
strategy is described as follows:

SuggestionHyper = hyperBabelNet(s
′),

where hyperBabelNet(s
′) denotes a function that returns the set of all hypernyms

of the word sense s′ ∈ SensesD(w, p) in the BabelNet dictionary as given by
Definition 4.7.

The third strategy also implements the qualifier concept. In particular, it
aims at identifying qualifiers in dictionaries and glosses of the respective word.
The approach picks the word that is most similar to the original word in order
to automatically select an appropriate candidate. To measure the closeness
between the words, we employ the Lin metric [253] as is it has been shown to
best correlate with the human judgments. For the word application, we can
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retrieve words such as employment, patent, job, or admission. According to
the Lin measure, the word patent has the highest similarity score which subse-
quently leads to the suggestion application (patent). Formally, this strategy
can be described as follows:

SuggestionLin = {w| argmax
w∈glossD(w′,s′)

{simLin(w′, w)}},

where glossD(w′, s′) denotes a function that retrieves all gloss words of the orig-
inal word w′ and the word sense s′ in a dictionary D as well as simLin(w1, w2)
denoting a function that calculates the similarity score of two words arbitrary
words w1, w2 ∈W .

6.4.2 Synonym Resolution

The synonym resolution strategy is motivated by the research of Plachouras et
al. [335] and Rijsbergen [364], who measured the generality of a search query
in an information retrieval system. The authors argue that the generality of
a search query is determined by the number of documents that are retrieved
by this query. We adapt this concept in the following way. The search query
is interpreted as a word that is looked up in the BabelNet database, while
the query results represent the word senses. Accordingly, the more synsets the
query word retrieves, the more general it is. The rationale is that a general
word can be used in several contexts with a broader set of meanings. The
approach determines the word with the minimal number of word senses in
order to finally suggest an alternative word for replacement. For example,
consider the synonyms sales and revenue from Fig. 6.1. The approach retrieves
four senses for sales and six senses for revenue. Accordingly, the word sales
is chosen as a suggestion to resolve the synonym conflict. This strategy is
formalized as follows:

SuggestionS = {w | min
w∈syn(w′)

|SenseD(w, p)| },

where syn(w′) denotes the set of all words that have the same meaning as the
original word w′.

After having defined the techniques to automatically detect and refactor
homonym and synonym ambiguities, we now evaluate them with regard to
real process models, which is the main concern of the next section.

6.5 Evaluation

The evaluation challenges the presented techniques against real-world process
models in order to demonstrate their capabilities. More specifically, three
process model collections from different industries and a varying degree of
standardization have been used. The overall goal of the evaluation is to learn
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Table 6.4: Potential Ambiguity Conflicts within the Test Collections

Characteristic SRM TC AIC

No. of Models 604 803 1,091
No. of Activity Labels 2,432 12,088 8,339
No. of Unique Actions 321 728 1,567
No. of Unique Business Objects 891 3,955 3,268
No. of Potential Homonym Conflicts 748 3000 2441
No. of Potential Synonym Conflicts 174 648 812

whether the techniques can effectively detect homonyms and synonyms and
successfully resolve them by suggesting more specific words. To this end, the
evaluation investigates different evaluation scenarios. Section 6.5.1 introduces
the employed process model collections of the evaluation. Section 6.5.2 discusses
the evaluation of the detection algorithms. Finally, Section 6.5.3 elaborates on
the evaluation of the resolution algorithms.

6.5.1 Model Repository Demographics

In order to achieve a high external validity, the techniques have been applied
to different model collections from industry that vary with regard to specific
criteria, such as collection size, modeling notation, degree of standardization,
and domain. For the evaluation of the ambiguity detection and resolution
techniques, we decided to focus on the activity labels since they a) represent
a central construct for many process modeling languages and b) are particu-
larly prone to ambiguity conflicts [285, 238]. Table 6.4 summarizes the main
characteristics of these repositories. For further information of these reposi-
tories, please refer to Table 5.2. The selected process model collections show
notable differences between the number of models and the total number of
unique actions and business objects to specify the business process. Apparently,
the SRM collection is the smallest collection and employs a controlled set of
vocabulary words to define process models. This fact indicates an advanced
standardization effort which might be reflected by the number of detected
ambiguity conflicts. Opposite to that, the AIC collection is the largest col-
lection using a wide set of words raising the expectation that the number of
conflicts will be highest. The TC collection represents an average between
these two extremes. Therefore, we consider these collections to be appropriate
and representative to evaluate the proposed approaches.

6.5.2 Evaluation of Ambiguity Detection

In this section, we discuss the evaluation of the proposed detection techniques.
First, Section 6.5.2.1 explains our evaluation strategy of the presented tech-
niques. Then, Sections 6.5.2.2 and 6.5.2.3 discuss the results of the homonym
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detection and synonym detection techniques. Furthermore, they provide exam-
ples of frequently detected homonyms and synonyms in the model repositories.

6.5.3.1 Evaluation Setup

We asses the performance of the detection algorithms by comparing the
performance of a basic approach and an advanced approach. The basic approach
uses the computational lexicon WordNet to learn whether or not the respective
word is ambiguous. The advanced approach has already been described in the
previous sections. In order to quantify the performance of these approaches,
we use precision, recall and the f-measure as metrics [21]. Here, the precision
value describes the number of correctly detected ambiguity cases divided by
the total number of ambiguity cases retrieved by the techniques. The recall
reflects the number of correctly detected ambiguity cases divided by the total
number of ambiguity cases in the repositories. The f-measure is the harmonic
mean between precision and recall.

In order to be able to compute precision and recall for the collections intro-
duced in Section 6.5.1, we require a benchmark with the human interpretations
of the comprised terms. However, due to the high number of terms and process
models in the test collections, a complete benchmark would require the manual
judgment and annotation of 29,438 potential homonym term-model pairs and
80,609,259 potential synonym term-model pairs. It would be extremely difficult
and time consuming to annotate all the homonyms and synonyms in the test
collection.

To solve this problem, we draw a random sample from the test collections
and apply statistical methods in order to make valid propositions for precision
and recall. In particular, we apply the following procedure. We notice that
each combination of a term and a process model is either ambiguous or not.
Hence, repeatedly drawing instances from our test collections and assessing the
ambiguity represents a binomial experiment X ∼ B(n, p) with a population
size of n and the probability of finding an ambiguity p. Assuming a homonym
probability of 0.01 and a synonym probability of 0.0001 for our overall test
sample, we follow the recommendations by Berger [38] and Brown et al. [58] and
apply the Jeffrey interval, which is most suitable for binomial references from
large populations with a small probability p. Aiming for a significance level
α = 0.05 and a margin of error ε ≤ 0.02, we draw a random sample of 120 term-
model pairs for homonyms and 125 term-model pairs for synonyms based on
the sample size calculation formula provided by Piegorsch [325]. Additionally,
we created two types of samples. The first sample includes term-model pairs
from the algorithmic results, while the second one includes term-model pairs
from the overall test set. With this strategy, we assess the performance of the
algorithmic output and the overall test set for the synonym as well as the
homonym detection technique.

Taking into account the literature of WSD evaluation (see for example
[194, 362]), we asked six native English speakers to provide us with their
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Table 6.5: Detection Results for Homonyms

Basic Approach Advanced Approach

Algorithmic
Sample

No. True Positives 57 57
No. False Positives 58 47
No. False Negatives 1 1

Precision 0.5 0.55
Recall 0.98 0.98
F-Measure 0.66 0.7

Complete
Sample

No. True Positives 21 9
No. False Positives 83 8
No. False Negatives 5 17

Precision 0.2 0.53
Recall 0.84 0.35
F-Measure 0.32 0.42

interpretation of the term-model pairs. We randomly assigned them to the test
samples in such a way that each native speaker had to assess one homonym
and one synonym sample. Overall, we got three judgments for each sample
of term-model pairs. Each participant was provided with a target word and
a process models in which this word was highlighted. For homonyms, we
randomly selected four word senses and asked participants whether the target
word could be used with the respective sense a) in general and b) in the
context of the particular process model. For synonyms, we analogously selected
alternative terms and asked users whether a replacement of the target term
by an alternative term is meaningful a) in general and b) in the context of the
particular process model. The participants were asked to provide feedback for
each question on a 4-point-Likert-scale from Strongly agree to Strongly disagree.
By using a 4-point-scale, we intentionally forced participants to make a final
decision, which is necessary for the calculation of precision and recall. For the
evaluation, we considered only the answers that relate to the particular process
model and calculated the average of these which marked the term as ambiguous
or not. Appendix B.1 and B.2 provide examples on these term-model pairs
and the judgments required from the native speakers.

6.5.3.2 Homonym Detection Results

The results of the homonym detection approach are summarized in Table 6.5.
The results show that the advanced approach works satisfactory in comparison
to the basic approach. The advanced approach achieves a precision of 53%
to 55%, while the basic approach is much more unstable and retrieves a
considerable high number of false positives (precision between 20% and 50%).
In contrast however, the recall scores of the basic approach ranges between
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Table 6.6: Top 5 of Homonym Actions and Business Objects Ordered by
Frequency

Word F Word Sense

Actions

1 process 191
Perform operations to obtain required information
Officially deliver

2 create 175
Manufacturing a man-made product
Causing something (create a furor)

3 check 171
Be careful or certain to do something
Hand over something to somebody

4 review 111
Hold a review
Appraise critically

5 receive 65
To come into possession of
To convert into sounds or pictures

Business
Objects

1 incident 39
A single distinct event
A disturbance

2 request 38
The verbal act of requesting or asking
A formal message postulating something

3 case 27
Someone who is an object of investigation
A portable container for carrying several objects

4 notification 26
A request for payment
Informing by words

5 application 22
A computer program
A verbal or written request for employment

84% and 98% in the samples. This observation relates directly to the low
number of false negatives detected by the basic approach (1 in the precision
sample and 5 in the recall sample) which implies that most of the ambiguous
words have been detected and presented to the user. If we take the f-measure
into account, we observe again a higher performance of the advanced approach.
The f-measure amounts to 42% in the recall sample and 70% in the precision
sample in contrast to 32% and 66%.

We further reflect upon the results by including the nature of the term-
model samples into our consideration. In the algorithmic sample, we have
chosen from those term-model pairs that have been retrieved by the algorithm.
In this way, this sample included pairs with a fairly good chance of being
ambiguous. In such a setting, each approach is equally capable of detecting a
considerable number of ambiguities that are also relevant for the user. When
looking at the details, we observe that the advanced approach is capable
of reducing the number of false positives and keeping the relevant terms at
the same time. In the complete sample, we randomly selected term-model
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Table 6.7: Detection Results for Synonyms

Basic Approach Advanced Approach

Algorithmic
Sample

No. True Positives 37 57
No. False Positives 63 47
No. False Negatives 5 1

Precision 0.29 0.56
Recall 0.88 0.58
F-Measure 0.44 0.57

Complete
Sample

No. True Positives 0 0
No. False Positives 0 0
No. False Negatives 2 2

Precision N/A N/A
Recall 0 0
F-Measure N/A N/A

pairs from all three process model collections and also included terms that
may remain undetected by the algorithm. In this sample, we observed a low
precision and a high recall for the basic approach. In contrast, the results of
the advanced approach are more balanced with a moderate precision. However,
we observe a surprisingly low recall at the same time. The details revealed
that our participants spotted specific word senses to be similar to each other
and thus detected an ambiguous term. For example, the participants agreed
that the term link in the activity link pairs order to case complies to the word
senses to be or to become joined or united as well as to make a logical or causal
connection, while the algorithm agrees only on the first word sense. Despite
this, we still consider the algorithm to be superior to the basic approach and
to retrieve more meaningful candidates to the users.

In addition to the quantitative analysis, we discuss qualitative results of
the detection approach. Table 6.6 presents the top five homonym actions and
business objects among all test collections. The most frequent homonym action
is given by the verb to process. Our approach found out that this word is
used with two particular word senses. First, the word is used as a general
expression to perform a set of operations in order to create a required output
or information. Second, it also identifies the activity of officially delivering
a legal notice or summons. For the business objects, the technique detected
the noun incident as the most frequent homonym. In this case, it is unclear
if the incident refers to a single event or a disturbance, for example in IT
applications. These words are good examples of homonyms that are frequently
used and should rather be avoided.
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6.5.3.3 Synonym Detection Results

The results of the synonym detection technique are summarized in Table
6.7. Similarly to the homonym detection approach, the results show that the
advanced approach of this paper exceeds the capabilities of the basic approach.
In terms of precision, the basic approach achieves 29% while the advanced
approach reaches at least 56%. In terms of recall, the basic approach appears
to outperform the advanced approach (88% compared to 58%). As discussed
earlier, the high recall value is the result of the extensive number of retrieved
instances that are produced by the basic approach. Taking the f-measure into
account, we observe that the advanced approach is more balanced (57% in
contrast to 44%).

We also discuss the results with regard to the samples of the user evaluation.
In the algorithmic sample, the advanced approach dominates the capabilities
of the basic approach. It does not only reduce the number of false positives
by a significant amount, but it also keeps a large share of those synonym
pairs that are relevant for the user. In the complete sample, the participants
have detected two synonyms which have not been found by the basic or the
advanced approach. Accordingly, it is not possible to calculate any values for
precision or the f-measure. Interestingly, the users found the term pairs (fill
out, complete and submit) as well (document, register and communicate). In
these cases, the participants interpreted the combination of two distinct verbs
as being part of one single verb (troponymy), which was then considered to be
a synonym. Since neither of these two approaches can detect the combination
of verbs correctly, they do not detect a synonym in these cases. Overall, we
consider the advanced approach to be superior to the basic one to retrieve the
relevant cases for the user.

In addition to the quantitative perspective, it is again interesting to in-
vestigate qualitative examples. Table 6.8 gives an overview of the top five
synonymous actions and business objects. It is interesting to note that the
approach detected a group of three pairwise synonym words. The words make,
create, and produce all refer to the activity of manufacturing products. For
the business objects, the technique detects customer, market and client as
synonyms for persons that pay for goods and services. Another example are
the synonyms purchase order and order which refer to a commercial delivery
document. Overall, these examples also illustrate the capability of our approach
to detect synonyms that should be avoided.

6.5.3 Evaluation of Resolution

In this section, we discuss the evaluation of the resolution strategies. First, Sec-
tion 6.5.3.1 elaborates on our evaluation setup. Then, Section 6.5.3.2 presents
the results for the homonym resolution. Finally, Section 6.5.3.3 discusses the
results of the synonym resolution.
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Table 6.8: Top 5 of Synonym Actions and Business Objects Ordered by
Frequency

Word F Word Sense

Actions

1 check, control 173 Be careful or certain to do something
2 create, produce 157 Manufacturing a man-made product

3 post, send 142
Cause to be directed or transmitted to
another place

4 make, create 135 Manufacturing a man-made product
5 survey, review 115 Hold a review

Business
Object

1 customer, market 119 Someone who pays for goods or services

2
customer, cus-
tomer account

118 Someone who pays for goods or services

3
purchase order, or-
der

92
A document to request someone to supply
something

4 account, invoice 72
A statement of money owed for goods or
services

5 customer, client 36 Someone who pays for goods or services

6.5.4.1 Evaluation Setup

We assess the performance of the resolution strategies by comparing the degree
of ambiguity before and after applying it to the test collections. Therefore,
we define metrics that measure the basic characteristics of homonyms or
synonyms respectively in order to operationalize the effects of ambiguity. Since
a homonym represents a word referring to multiple senses, we measure the
degree of homonymy by using the number of senses per word. Considering a
set of process models P and differentiating between action and business object,
the number of senses per word for actions (SpWA) and for business objects
(SpWBO) is calculated as follows:

SpWA =
∑
P∈P

|
⋃

a∈AP
λ

{si | si ∈ SensesD(αA(λ(a)), v)}|

|{α(λ(a)) | a ∈ AP
λ
}|

SpWBO =
∑
P∈P

|
⋃

a∈AP
λ

{si | si ∈ SensesD(βA(λ(a)), v)}|

|{β(λ(a)) | a ∈ AP
λ
}|

For the whole repository the senses per word metric is calculated as follows:

SpW = SpWA + SpWBO
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Table 6.9: Results of Homonym Resolution

SRM TC AIC

SpWP
Before Resolution 8.35 10.58 8.98
After Resolution 1.71 1.73 2.94
Reduction Effect 387.11% 512.48% 205.69%

SpWP
A

Before Resolution 6.02 6.95 6.66
After Resolution 1.83 1.47 1.54
Reduction Effect 228.92% 371.92% 332.45%

SpWP
BO

Before Resolution 8.14 11.06 9.46
After Resolution 1.66 1.76 3.23
Reduction Effect 389.11% 528.11% 193.22%

For the degree of synonymy, we calculate the number of words for each
word sense. Given a process model repository P and the distinction between
actions and business objects, the degree of synonymy is defined as follows:

WpSA =
∑
P∈P

|{αA(a) | a ∈ AP
λ
}|

|
⋃

a∈AP
λ

{si | si ∈ SensesD(αA(λ(a)), v)}|

WpSBO =
∑
P∈P

|{βA(a) | a ∈ AP
λ
}|

|
⋃

a∈AP
λ

{si | si ∈ SensesD(βA(λ(a)), v)}|

The number of words per sense for the whole process model repository is then
calculated as follows:

WpSP = WpSA +WpSBO

6.5.4.2 Homonym Resolution Results

Table 6.9 summarizes the results for the introduced metrics. For the calculation,
only those words have been considered that have at least two word senses. The
table illustrates the significant effect of the homonym resolution technique
for both, actions and business objects. We observe the biggest effect for the
TC collection, in particular for the business objects. In the TC collection, the
number of senses per action is reduced from 6.95 to 1.47 (Ambiguity Reduction
Effect: 371.92%) and the number of senses per business object is reduced
from 11.58 to 1.76 (Ambiguity Reduction Effect: 528.11%). Similar results
can be observed for the SRM collection. The results also show that the AIC
collection has the most problems with ambiguous terminology because after
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Fig. 6.4: Senses per Word Distribution before and after Homonym Resolution

the application of the resolution the average degree of homonymy still amounts
to 2.94. This is due to the extensive ambiguity caused by the business objects.
According to the results, each business object may refer to three different word
senses on average which confirms the initial assumption of the AIC collection
to have the most issues with ambiguity.

Complementary, Figure 6.4 illustrates the homonym reduction effect by
showing the senses per word distribution for all collections. The distribution
figures demonstrate that the technique reduces the number of words with
multiple senses to a notable extent. As a result of its application, almost all
words with more than five senses are replaced. Consequently, the technique
also significantly increases the number of words with a single sense. Hence,
the degree of homonymy is considerably reduced in the collections. As an
exception, we already mentioned the AIC collection. Although the number of
words with one single sense has been increased, there is still a big number of
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Table 6.11: Results of Synonym Resolution

SRM TC AI

WpSP
Before Resolution 2.13 3.50 2.23
After Resolution 1.98 3.24 2.06
Reduction Effect 7.35% 7.61% 8.29%

WpSP
A

Before Resolution 2.16 2.24 2.25
After Resolution 1.82 2.03 2.01
Reduction Effect 18.27% 10.54% 11.65%

WpSP
BO

Before Resolution 2.12 2.19 2.22
After Resolution 2.05 2.07 2.09
Reduction Effect 3.54% 5.93% 6.36%

words having more than one senses. Note that not every word having multiple
senses is necessarily ambiguous. Many words are associated with senses that are
a closely related. Hence, the technique will never result in a sense distribution
in which every word points to one single word sense.

In addition to the quantitative results, we provide resolution examples for
each of the Top 5 homonyms (see Table 6.10). For the sake of readability,
we only list the first hyponym that is suggested. In general, the resolution
strategies are capable of creating a decent number of suggestions to resolve
the ambiguous words. However, we also note differences in the performance of
these strategies. For the hyponym strategy, we note that it fails to retrieve
hyponyms in eight cases due to the fact that there are simply no hyponyms
existing. Moreover, we observe that the suggestions are quite specific for most
of the cases and might miss the originally intended word senses. The hypernym
strategy fails in only two cases. Moreover, if we compare the word sense and the
suggestion, we more likely tend to accept the suggestion as it best describes the
intended word sense. The Lin strategy is always capable to create a suggestion.
However, we also notice that it is not capable of finding a suitable solution in
nine cases since it proposes the same word as the original one. This typically
occurs when each gloss word has a similarity score of 0. Nevertheless, we can
consider the remaining Lin suggestions as a good complement when combining
it with the other strategies.

6.5.4.3 Synonym Resolution Results

Table 6.11 summarizes the results for the synonym resolution metrics. Again,
the calculation excluded those word senses that only have one corresponding
word. From the data, we learn that the synonym resolution technique decreases
the degree of synonymy for all three collections. The biggest effect can be
observed for the AIC collection. In this collection, the WpSP

A is reduced from
2.25 to 2.01 (Reduction Effect: 11.65%) and the WpSP

BO is reduced from 2.22
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Fig. 6.5: Word per Sense Distribution before and after Synonym Resolution

to 2.08 (Reduction Effect: 6.36%). While we yield comparable results for the
TC collection, the effect for the SRM collection is significantly smaller in
absolute numbers. In the SRM collection, the WpSP

A metric deceases from 2.16
to 1.82 and the WpSP

BO decreases from 2.12 to 2.05. These differences are the
result of the lower ex-ante degree of synonymy within the SRM collection. The,
in general, small absolute differences can be explained by the fact that many
words do not have synonyms, i.e., their words per sense value is already one.
Those words having synonyms typically have one or two. Hence, the effect of
resolving a synonym results in a rather small difference of the metric. However,
the numbers still show the positive effect of the synonymy resolution technique.

Figure 6.5 visualizes the results by showing the words per sense distribution.
It confirms the explanation for the small absolute values. Only a few senses are
represented by more than one word. Moreover, the figures also show a constant
reduction of words referring to several word senses across all test collections.
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Table 6.12: Top 5 of Synonymous Actions and Business Objects

Word Word Sense SuggestionS

A
c
ti

o
n
s

1 check, control Being certain to do sth insure
2 create, produce Manufacturing create
3 post, send Transmitting to another place send
4 make, create Manufacturing create
5 survey, review Hold a review go over

B
u
si

n
e
ss

O
b

je
c
ts

1 customer, market Someone who pays for goods customer

2
customer, customer
account

Someone who pays for goods customer

3 purchase order, order A supply request document purchase order
4 account, invoice A statement of owed money invoice
5 customer, client Someone who pays for goods customer

Consequently, the synonym resolution technique increases the number of those
senses to which only one word refers. As a result, it reduces the degree of
synonymy in the collections. Again note that not every instance of synonymy
is replaced since the respective words are not necessarily ambiguous.

We also discuss the qualitative results of the synonym resolution strategy.
Similar to the homonym case, we create the resolution suggestions for the Top
5 synonymous actions and business objects as depicted in Table 6.12. The
table shows on the one hand that the strategy is always capable of creating
a suggestion based on the specificity of a word. On the other hand, we can
distinguish two cases. First, the strategy can suggest a new alternative that
comprises two words, such as the verb go over for the synonym actions to survey
and to review. Second, it can select the most unambiguous alternative among
two words, as for example for the business objects invoice and account. In
general, we could not find counter-intuitive suggestions which lets us conclude
that the specificity strategy fulfills its purpose.

6.6 Discussion

This section discusses results, limitations, and implications of the techniques
and their evaluation. Section 6.6.1 summarizes the results of the evaluation.
Section 6.6.2 reflects upon limitations of the ambiguity detection and resolution
approach. Finally, Section 6.6.3 and 6.6.4 identify implications of the proposed
approach for research and for practice.

6.6.1 Summary of Results

The evaluation of the presented algorithms reveals satisfactory results with
regard to their efficacy. Table 6.13 provides a short summary of the main
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Table 6.13: Summary of Results for Ambiguity Detection and Resolution

Detection Resolution

Homonyms
Min P:0.53 R:0.35 F: 0.42 RE: 205.69%
Avg. P:0.54 R:0.67 F: 0.56 RE: 368.43%
Max P:0.55 R:0.98 F: 0.7 RE: 512.48%

Synonyms
Min P:0 R:0 F: N/A RE: 7.35%
Avg. P:0.28 R:0.29 F: N/A RE: 7.75%
Max P:0.56 R:0.58 F: 0.57 RE: 8.29%

P:Precision, R: Recall, F: F-measure, RE: Resolution Effect

indicators for each technique. In case of homonyms, the detection approach
achieves a stable f-measure of around 0.56 proving its goal of finding relevant
homonyms. Regarding the resolution, the evaluation shows that the overall
degree of homonymy could be reduced by the factor 3.5 on average, which
resembles a significant reduction of homonym ambiguity in the test collections.

The results for the synonym detection are also stable in the sample taken
from the algorithmic results (f-measure: 0.57). However, the approach was
not capable to detect the synonyms in the sample from the complete test
set. In this sample, the users spotted two synonyms, i.e. (fill out, complete
and submit) as well as (document, register and communicate). A possible
explanation for this synonymy might be that the verbs to complete and to
submit build a troponym of the verb to fill out such that the troponym shares
a similar meaning with the combination of the two verbs. These instances are
not detected by the approach since it does not consider troponym relations
to form synonyms. Turning to the resolution results, the average resolution
effect amounts to 7.75%. Since the synonym relation between two words is
considerably rare, the effect of the resolution approach does not achieve large
numbers. Nevertheless, the approach was capable to unify the terminology in
the test collections and to reduce overlapping terminology to some extent.

6.6.2 Limitations

The findings from the evaluation are subject to some limitations. In particular,
we discuss the internal validity, the conclusion validity, and the technology
dependency.

Internal validity reflects the extent to which a causal conclusion based on
a study is warranted. In case of the evaluation, the conclusion is based on the
interpretations of the native speakers who perceive a label to be ambiguous or
not. Their perception, however, might be influenced by instrumentation and
maturation bias [441, p. 106-107]. Instrumentation bias may cause negative
effects if the evaluation instrument is designed badly. In this particular case,
the participants might put less effort in the evaluation task, which might
negatively affect the outcome. We tried to mitigate this threat by carefully
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setting up the evaluation design and conducting several feedback loops with
regard to the visual design and representation of the evaluation. Maturation
bias may influence the perception and judgment of participants when time
passes. For example, the participants might get tired or bored leading to less
efforts for the evaluation. Due to the large number of scenarios which were
presented to the participants, we implemented the evaluation in such a way
that the participants had the possibility to save and quit at any time and
resume later. In this way, we tried to minimize the maturation bias as far as
possible.

Conclusion validity is concerned with issues that affect the ability to
draw the correct conclusions from the outcome of the evaluation [441, p. 104-
105]. The conclusion validity might be affected due to the a) limited number
of collections, b) the focus on activity labels, and c) the sampling process.
Regarding the limited number of collections, the three process model collections
can hardly be seen as representative in a statistical sense. Therefore, we cannot
completely guarantee that other model collections would yield different results.
This risk has been mitigated by selecting process model collections that vary
along different dimensions such as degree of standardization, domain, and
size. The results of the evaluation suggest that the successful application of
our techniques is not limited to a particular set or to a particular quality of
process models. Regarding the focus on activity labels, the evaluation has been
restricted to activity labels only, which raises the question if the inclusion of
other labels, such as events or gateways, would also yield different results. The
choice of restricting the evaluation to activity labels was motivated by the fact
that the concept of an activity is central to any process modeling language [297]
and that activity labels are particularly prone to ambiguity [285, 238]. Finally,
the sampling process involves a statistical sampling of process models of the test
collections for the purpose of evaluation. As a consequence, one might argue
that the evaluation results are not reliable and that the true performance of the
approach might be smaller than reported in the evaluation. In fact, the high
number of potential ambiguity conflicts and the necessity of human annotators
to evaluate the detected ambiguities (see Table 6.4) required a smaller test
sample to calculate meaningful results for both techniques. The sheer number of
potential ambiguity conflicts could not be handled comprehensively by humans
and would have resulted in an extensively time-consuming task. We decided for
a statistical sampling and selected suitable parameters for the determination of
our sample size in order to overcome this restriction. Moreover, we created two
different types of evaluation samples for each technique which assess different
aspects of the techniques. Considering the restrictions on the evaluation, the
evaluation strategy is appropriate for such a setting and reveals meaningful
insights on the performance of the presented techniques.

The technology dependency refers to the fact that the presented techniques
rely on the availability on language processing technologies of the respective
language. On the one hand, the techniques require a computational lexicon
enriched with the word senses as well as a suitable WSD algorithm. If these
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technologies are missing, there is hardly any chance to apply these techniques
on process models. On the other hand, the field of natural language processing
has brought forth a plethora of techniques that are also capable to deal with
different languages. With regard to these techniques, it is to mention that the
recent version of the BabelNet repository covers knowledge from more than
270 languages. Moreover, the integrated WSD algorithm, which makes use of
the BabelNet lexicon, can perform sense disambiguation in different languages
[304]. Therefore, we do not consider the technology as a limiting factor.

6.6.3 Implications for Research

One of the contributions of the presented ambiguity detection approach is a
new direction to manage lexical ambiguity. This approach employs available
technology from the field of natural language processing to formalize phenom-
ena of lexical ambiguity, namely homonyms and synonyms. The combination
of WSD technology with existing concepts of ambiguity formalization enables
the adequate integration of contextual information and the meaningful dis-
tinction between truly and potentially ambiguous words. The usefulness of
this integration has been proven in the evaluation leading to a high precision
value. Although prior approaches also formalize such characteristics, e.g. by
using linguistic patterns [97, 142] or metrics [125, 71, 429], they retrieve an
extensive number of potential ambiguities that, however, might not be per-
ceived as ambiguity by humans and thus evaluate to a small precision value.
The presented approach balances both metrics as it is capable of finding those
ambiguities that are truly harmful and show these to the users.

Regarding the resolution of ambiguous terminology, we argue that this
task is best done by humans since there is currently no technique available
that is capable to cope with the natural language understanding of humans
and resolve ambiguities automatically [300]. As a consequence, it is often
more beneficial to support humans with this task. Inline with this, another
contribution of this technique are several strategies that use the available
information from the process model and create a set of suggestions based on
linguistic knowledge sources. Thus, the approach extents the capabilities of
prior research which point to and explain specific ambiguities [71, 142] to the
level of interactively selecting among several alternatives [158].

Finally, the presented techniques are not restricted to process models. For
example, conceptual models are frequently used in requirements engineering
to specify desired behavior and capabilities of the later system [66]. Similarly,
these models have to be consistent and correct with regard to the textual
fragments in order to avoid risks for the software development project [9].
Indeed, goal models [367, 333], feature diagrams [233], or use case diagrams
[81] also use natural language fragments in the same fashion as process models.
The proposed techniques thus provide means to support the software and
requirements engineering process by automatically detecting ambiguous termi-
nology in formal requirements documents and by automatically proposing more
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accurate terms. As a result, misconceptions of requirements are avoided and
the likelihood of a successful completion of the software engineering initiative
is increased.

6.6.4 Implications for Practice

The results of this paper have considerable implications for practice. Most
importantly, the proposed techniques can be integrated into commercial mod-
eling tools. In such a context, it can point modelers to ambiguous words and
automatically generate more accurate alternatives among which the modeler
may choose. In contrast to prior approaches, the approach provides advanced
capabilities to distinguish between confirmed and rejected ambiguities and
only notifies the user in case of a serious conflict with existing terminology.
Overall, linguistic quality issues can be avoided right from the start.

For already existing model repositories, the presented techniques can help
users in cleaning up terminology and develop a consistent domain vocabulary
or glossary for a particular company. Given the size of model repositories in
practice with thousands of models [369], the presented approach makes an
important contribution to the effective and efficient management of terminology
and its use in several process models. This is particularly useful when multiple
modelers create models concurrently.

6.7 Summary

In this chapter, we have addressed the problem of automatically detecting and
refactoring lexical ambiguity in process models. Based on the review of prior
research, we have concluded that current techniques cannot be easily transferred
to process models as they cannot deal with their specific characteristics. In
particular, the shortness of the natural language text labels has imposed a
major challenge. In order to adequately address this challenge, this chapter
has introduced an approach to formalize lexical ambiguity with the help of
semantic vectors initialized by performing WSD on the element labels of process
models. Moreover, we have proposed necessary and extended conditions that
allow us to automatically detect truly ambiguous homonyms and synonyms.
Using the computational lexicon BabelNet, we have further implemented
different resolution strategies, which automatically suggest alternative terms
for replacement. The performance of the approach has been assessed with
native English speakers. The results have shown that the technique detects
a significant number of homonyms and synonyms within the test collections.
Moreover, the introduced metrics Sense per Word and Word per Sense have
further highlighted the positive effect of the ambiguity resolution technique. As
a result, the overall ambiguity has been significantly reduced, which contributes
to the consistency and quality of the process models and the process model
repository.
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Refactoring of Pragmatic Ambiguity

This chapter discusses the problem of pragmatic ambiguity that hinder the
comprehension and sense-making of process models. So far, there are only
limited research contributions that support users in managing this type of
ambiguity. Therefore, this chapter proposes an approach to address pragmatic
ambiguities in terms of detection and refactoring. Section 7.1 introduces
to the problem of pragmatic ambiguities and gives an overview of related
approaches. Section 7.2 explains and formalizes the main characteristics of
pragmatic ambiguities. Then, Sections 7.3 and 7.4 present the techniques to
refactoring pragmatic ambiguities. Sections 7.5 introduces the strategy of the
user evaluations and discusses the usefulness of the recommendation-based
approach by applying it to process model repositories from industry. Finally,
Section 7.6 discusses the results and implications of the evaluation, before
Section 7.7 summarizes the main points. The main results of this chapter have
been published in [334].

7.1 Pragmatic Ambiguities in Process Models

The increasing adoption of BPM has stimulated the use of process models in
different scenarios, such as providing knowledge for action [220] or analyzing
and redesigning real-world processes [88]. For that purpose, process models
are used by people from different organizational units with different knowledge
and background. It is essential that they are comprehended and understood
by these people in a consistent way, such that the interpretation leads to an
equal implementation of the business process. However, if the process model
does not provide sufficient information, the consistent comprehension and
interpretation among several actors might be affected by pragmatic ambiguity.
There is hardly any research available that addresses the issue of pragmatic
ambiguity from a technical perspective. Section 7.1.1 introduces to the notion
of pragmatic ambiguity and its consequences in order to understand this issue.
Then, Section 7.1.2 discusses related approaches and their shortcomings.
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Fig. 7.1: Pragmatic Ambiguities in the Group Retirement Process; Adapted
from [190]

7.1.1 The Issue of Pragmatic Ambiguities in Process Models

The studies of pragmatics is concerned with how people understand and
communicate more than the literal meaning of words or sentences in a given
situation or context. The sentence needs to have a deixis in order to correctly
understand the meaning of a sentence within a context. As previously discussed,
the deixis refers to a specific point to which the sentence has been issued. This
point can describe a place, an object, or an action [43, p. 152]. If the deictic
center cannot be determined clearly, it is hard to correctly understand the
sentence and make sense out of it. This phenomenon is known as pragmatic
ambiguity.

We face pragmatic ambiguity when a sentences misses the deictic center
and when it allows for several meanings in the context in which the sentence
is uttered. Similar to semantics, the context is given by the natural language
text surrounding the sentence as well as the context beyond language, such
as the situation or the background knowledge [40, 39, 198]. Depending on
the flaws of sentence and context, we distinguish between deictic ambiguities
and referential ambiguities. Deictic ambiguity emerges when the context is
associated with several reference points of interpretation. Referential ambiguity
occurs when an anaphor, e.g. it or they, refers to more than one element. In
the following, we pay specific attention to deictic ambiguities.

These deictic ambiguities can nicely be illustrated by the example process
model. Figure 7.1 depicts the Group Retirement process of the SAP reference
model repository [190]. The process begins with the creation of a master record
for the respective asset. Depending on the result, the process continues with
either processing the related asset acquisition, the transfer to the client, or
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the retirement. If one of these activities has been conducted, we assume the
process to finish.

Figure 7.1 also highlights the label components and two bold-edged activ-
ities that suffer from pragmatic ambiguity. These activities do not provide
sufficient information to point to a clear deictic center, since specific label
components are missing. The activity Transfer to a client informs the reader
about a transfer that needs to be conducted to complete the process. However,
it is unclear if a particular object, e.g. an asset or a group of several assets,
needs to be transferred to the client or if a transfer itself needs to be planned,
executed or put into action. Depending on the situation, it would be more
consistent to either name the task Transfer of Asset to a Client or Transfer
Processing to a Client, since the activities then specify a deictic center and re-
solve the pragmatic ambiguity. Similarly, the task Retirement does not specify
which object needs to be retired. Based on the context, this might either be a
single asset or a group. Hence, the process model refers to several reference
points regarding its pragmatic interpretation.

The presence of pragmatic ambiguities does not only impact the model
reader’s ability to make sense of the model, but also has implications for the
usage of process models for other scenarios, such as system design and analysis,
process model compliance, or for process analysis and simulation. In the context
of system design and analysis process models are helpful to document relevant
parts of the organization and its systems [88] and to implement them in a
process-oriented way [109]. However, if a process model and elements thereof
are insufficiently specified with regard to the components, system developers
have only limited information about the object and its properties and methods.
For example, the task Transfer to a client from Figure 7.1 might either point
to a technical transaction of digital object information or a physical transport
of goods to a client. Depending on the situation, the technical implementation
may involve completely different approaches and technologies and may not
meet all requirements or cost expectations at the end of the project [46, 422].
In order to avoid this situation, additional feedback loops between analysts
and developers are necessary, which will finally delay implementation and
deployment [144, 24].

In the context of process model compliance, process models are used to
prove that business processes and operations are in accordance with a given
legislature [376, 140]. In such a setting, process models need to specify all
necessary information such that the compliance may be confirmed in internal
audits. However, if the process model has insufficiently specified model elements,
the interpretation of auditors may deviate from the one of the company and
raise additional questions about the processes of the company. For example, it
might not be obvious to the auditor that the task Transfer to a client refers
to a transfer of assets to a client. As a result, he might conclude that specific
compliance requirements may not be fulfilled in the underlying business process.
Ultimately, the process model might not be used to prove the implementation
of compliance requirements and lead to a negative outcome of the audit process.
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In a process analysis and simulation scenario, process model elements need
to be enriched by additional information, such as activity costs, resources,
roles, or time constraints. Similar to the aforementioned case, incomplete
model elements may hinder the application of process analysis and simulation
techniques as the additional information does not fit to the real operations.
For example, considering the task Transfer to a client from Figure 7.1, there
will be a notable difference between the execution times of retiring a single
asset or an entire group of assets. If this inconsistency is not corrected, the
results of analysis or simulation approaches do not reflect the current situation
and may lead to wrong business decisions [24].

Against this background, it is necessary to appropriately manage pragmatic
issues in process models. The next section will discuss prior research approaches
to address these issues.

7.1.2 Managing Pragmatic Ambiguities in Process Models

We already discussed that pragmatic ambiguities arise if the process model can
be interpreted from different angles and if these angles are valid. The different
interpretations are the result of imprecise information pointing to several
deictic centers. Relating to the cooperative principle [147, p. 45], there are two
symptoms causing pragmatic ambiguity, i.e. process model elements that do
not describe specific information at all (incompleteness) or that describe this
information rather general (underspecificity). In order to manage the two cases,
prior research has proposed several approaches which are summarized in Table
7.1. In general, we distinguish between approaches that focus on detection of
underspecificity as well as on detection and refactoring of incompleteness.

Concerning the detection of underspecificity, Friedrich [135] quantifies the
specificity of a text label in terms of depth within the WordNet hyponym tree.
The deeper the word is located in the hyponym tree, the higher its specificity.
The metric thus serves as an indicator to maintain a consistent level of detail
in process models. Similarly, Leopold et al. [246] propose and evaluate a set of
syntactic and semantic metrics that measure the granularity of single process
models. The results suggest that these metrics are suitable to quantify the
granularity of a process model within a process hierarchy or process architecture.
Koschmider and Blanchard [208] develop a semi-automatic approach to detect
non-uniformly specified process elements. The approach analyzes process
element names with regard to the overall level of detail within the process
model and highlights deviating elements. Finally, it is the user’s responsibility
to align these deficient elements. Gleich et al. [142] identify a set of lexical
and syntactic language patterns that also point to pragmatic ambiguities. The
authors operationalize these patterns by using regular expressions and POS
tagging. For example, expressions, such as many or few, point to requirements
that need further specification. Fabbrini et al. [119] define specific metrics
that quantify characteristics of pragmatic ambiguity. Among others, they
provide measures for underspecification and vagueness, which is reflected by
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Table 7.1: Approaches for Managing Pragmatic Ambiguity

Author Approach

Detection of Underspecificity
Friedrich [135] Metrics for the Specificity of Labels
Leopold et al. [246] Label Granularity Measurement with Language

Analysis
Koschmider and Blan-
chard [208]

Identification of Non-Uniformly Specified Elements

Gleich et al. [142] Natural Language Patterns of Underspecification
Fabbrini et al. [119] Measurement for Underspecification and Vague-

ness
Ferrari et al. [126] Graph-based Similarity Calculation between Re-

lated Documents and Target Document
Ferrari et al. [127] Graph-based Comparison between Interpretations

of the Reader and the Document
Detection of Incompleteness
Denger et al. [97] Natural Language Templates for Describing Re-

quirements
Kaiya and Saeki [185] Linking Requirements Documents with Ontologies

from the Application Domain
Siegmund et al. [398] Verifying Requirements with Ontology Reasoning
Kösters et al. [214] Two level verification approach for incompleteness

in Use Case Models
Refactoring of Incompleteness
Betz et al. [42] Recommending Process Model Fragments with

Similarity Metrics
Bobek et al. [45] Recommending Model Fragments with Bayesian

Inferences
Koschmider et al. [209,
210]

Recommending Model Fragments based on Fre-
quency, Quality and Cost Criteria

Leopold et al. [243, 244] Generating Abstract Model Element Names

the number of sentences containing words without modifier or the number
of sentences containing vague expressions like good or efficient. Ferrari and
Gnesi [126] as well as Ferrari et al. [127] employ a graph-based approach to
detect pragmatic ambiguities in written documents. In a prior approach, the
authors use related documents to detect pragmatic ambiguities in a target
requirements document. To this end, the authors propose an algorithm that
takes the concepts expressed in sentences, transforms them into a graph, and
searches for corresponding concepts in the related documents. The paths
resulting from the traversal of each graph are compared and, if their overall
similarity score is lower than a given threshold, the requirements specification
sentence is considered ambiguous. In a subsequent approach, the authors apply
this strategy with the background knowledge of different readers [127].
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With regard to the detection of incompleteness, Kösters et al. [214] introduce
a two-level verification approach for UML use case models. The approach
transforms these models into activity graphs, i.e. simplified process models,
which are further enriched by attributes from class models. Based on that, the
verification approach first investigates the formal parts of the use case model
(e.g. pre- and post-conditions), before it checks for incomplete, inconsistent, or
ambiguous specifications. Denger et al. [97] propose natural language templates
in order to specify requirements. For example, if a requirement involves the
reaction of the system to an event, the template demands the specification of
a conjunction (If), an actor (the system), an action (receive), and an object
(the signal). Kaiya and Saeki [185] use an ontology-based approach for the
detection of incompleteness. The authors develop an ontology system that
combines a domain thesaurus and inference rules. Hence, it is possible to analyze
requirements specifications with respect to the semantics of the application
domain and to identify incomplete statements in the requirements. Similarly,
Siegmund et al. [398] also use ontology and reasoning technology to capture
and validate requirements. They combine ontology consistency checking and
rule-driven completeness tests. For example, one completeness rule demands
that each functional requirement must specify at least one property, otherwise
it is incomplete.

Concerning the refactoring of incompleteness, several researchers have
proposed recommendation-based approaches to support modelers in closing
gaps during process modeling. Betz et al. [42] use a combination of several
similarity measures to find a suitable process model for recommendation. In
particular, they utilize the string-edit distance metric by Levenshtein [250], a
semantic similarity measure based on WordNet, and a similarity measure of the
structural aspect of process models. Bobek et al. [45] train a Bayesian net based
on existing configurable process models in order to recommend several alterna-
tives on how to proceed. By conducting inferences on the Bayesian net with
the process model, which has been created so far, the approach recommends
the most probable elements or model fragments. Moreover, prior research
also proposed modeling editors with recommendation features. Koschmider
et al. [209, 210] developed a modeling editor with a recommender component
for process model parts stored in a repository. Based on a user profile, the
recommendation component looks for related process models and ranks them
according to mandatory and optional criteria. The mandatory criteria include
a modified version of the term and document frequency measure, the number
of actual reuse cases for the respective model, and the number of change
operations. Optional criteria include structural correctness, as well as the cost
and quality of the process design. Leopold et al. [243, 244] propose a technique
to suggest general names for process models. The technique implements several
naming strategies for individual model fragments or process models which are
build on linguistic features, such as dominating objects or conjunctions.

The overview of prior research revealed that the detection of underspecificity
and incompleteness issues is sufficiently covered. Although incompleteness is
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a special case that is subsumed by underspecificity, available approaches
help to detect such instances in both, text documents and process models.
Afterwards, it is up to the users to resolve these inconsistencies to the best of
their knowledge. Still, the resolution may turn out to be difficult because the
process model itself only gives a limited amount of context information [249].
In this situation, the discussed recommendation approaches are of limited use.
For example, the recommendation approaches of Betz et al. [42], Bobek et al.
[45], and Koschmider et al. [209, 210] suggest suitable model fragments based
on the process models stored in a repository. The recommended fragments
may still contain incomplete elements, such that the problem is multiplied, if
a suggested but incomplete fragment is reused by the modeler. The naming
suggestion approach of Leopold et al. [243, 244] is tailored to create a general
name for a process model or a sub process activity. It may not be suitable to
create names for specific activities in a process model that already contain
incomplete model elements.

Against this background, the aim of this chapter is to address incomplete
process model elements and to fill these gaps with meaningful information
that best matches the respective process model’s area of concern.

7.2 Operationalization of Incomplete Model Elements

As already mentioned, the approach addresses those elements that have in-
complete text labels. More specifically, we are interested in labels that do
not comply with the minimal syntactical structure of naming conventions
[395, 283, 261]. Typically, these rules are violated by not naming the essential
components of the model element. In case of activities for example, we would
be interested in those activities that do not contain at least one action and
one business object. For that purpose, this phase employs the model parser
introduced in Section 4.4.3 that annotates element labels with their compo-
nents. Using the definitions 4.3, 4.4, and 4.5, the set of incomplete elements is
defined as follows:

Definition 7.1. (Incomplete Elements of a Process Model). Let P =
(A, E, G, F , R, P , L, ρ, π, λ, γ, τ) be a process model as well as AP

λ
the set of

labeled activities, EP
λ

the set of labeled events, GP
λ

the set of labeled gateways
of P. The incomplete elements of P are given by the following subsets:

− IA = {a ∈ AP
λ
| αA(a) = ∅ ∨ βA(a) = ∅}, as being the set of incomplete

activities.
− IE = {e ∈ EP

λ
| αE(e) ∪ σE(e) = ∅ ∨ βE(e) = ∅}, as being the set of

incomplete events.
− IG = {g ∈ GP

λ
| αG(g) ∪ σG(g) = ∅ ∨ βG(g) = ∅}, as being the set of

incomplete gateways.

As an example, we consider the activity a′ with the label λ(a′) =
Retirement from Figure 7.1. This activity a′ describes the action to retire
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Fig. 7.2: Overview of the Recommendation Approach

(αA(a′) = to retire) but no business object (βA(a′) = ∅). Given the previous
definition, this activity is an element of the set of incomplete activities, i.e.
a′ ∈ IA, because it names a valid action but an empty business object.

For the conceptual approach, we consider the incompleteness of model
elements as a recommender problem involving the tasks of creating and ranking
recommendations [161]. Figure 7.2 gives a general overview of the approach.
The input of the approach is a set of process models that contain incomplete
elements as defined previously. Depending on the components that are missing
in the respective label, the approach creates a list of recommendations that
are built upon four different context layers. Afterwards, the recommendation
list is ranked according to the fitness of the recommendation with regard to
the process model and given as output to the user. In the end, the user will
receive an ordered list of recommendations among which he may choose a
suitable alternative for the incomplete element labels.

The following sections will explain the different phases of the approach in
more detail. Section 7.3 provides more details how recommendations may be
created using different sources of knowledge, while Section 7.4 introduces a
context-sensitive ranking algorithm to show only the relevant recommendations
to the user.

7.3 Creation of Recommendations

This phase of the approach is concerned with the creation of recommendations
for the incomplete model elements. The task of creating recommendations may
be performed in a collaborative or a content-based way or in a combination
thereof [161]. The collaborative creation of recommendations is based on direct
user feedback and provides guidance on when and how a recommendation is
given to the user. Content-based recommendation creation typically involves a
filtering subsystem that is in charge of choosing the most useful items from a set.
In the context of this thesis, we assume the situation in which an organization
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has already created a repository with several hundreds or thousands of process
models [369]. Accordingly, we can assume that the modeler will review an
already existing process model with incomplete activities for which he requires
a filtered list of best fitting recommendations. Based on this consideration, we
develop a content-based recommendation creation with different context layers
(see Figure 7.3).

The key feature of the recommendation creation strategy is the incorpora-
tion of several context layers. Specifically, we distinguish four layers of context:
local, process model name, process model repository, and external. The list of
potential recommendations is iteratively incremented by broadening the scope
step-wise, from the most local to the most external (I to IV, in Figure 7.3). In
the following, we discuss each recommendation creation strategy separately
and explain how potential recommendations are created.

7.3.1 Local Context Strategy

The local context strategy considers all label components of each model element
in a single process model to be a potential recommendation. The rationale
is that the process model itself provides sufficient information to infer the
component for the incomplete model element. Depending on the type of the
incomplete element, this strategy aims to retrieve either a list of actions,
business objects, or stati that are ’around’ the respective model element.
Considering the activity Retirement in the example of Figure 7.1, the local
context strategy identifies Asset Acquisition and Master Record as potential
business object recommendations. Formally, we describe the local context
strategy SL as follows:
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Definition 7.2. (Local Context Strategy). Let P = (A, E, G, F , R, P ,
L, ρ, π, λ, γ τ) be a process model as well as AP

λ
the set of labeled activities,

EP
λ

the set of labeled events, GP
λ

the set of labeled gateways of P. Further let
a′ ∈ IA be an incomplete activity, e′ ∈ IE be an incomplete event, and g′ ∈ IG
be an incomplete gateway. The set of recommendations created from the local
context are described as follows:

RLocal(a
′) =

{
{αA(a)| a ∈ AP

λ
} , if αA(a′) = ∅

{βA(a)| a ∈ AP
λ
} , if βA(a′) = ∅

RLocal(e
′) =

{αE(e)| e ∈ EP
λ
} , if αE(e′) ∪ σ(e′) = ∅

{βE(e)| e ∈ EP
λ
} , if βE(e′) = ∅

{σE(e)| e ∈ EP
λ
} , if αE(e′) ∪ σ(e′) = ∅

RL(g′) =

{αG(g)| g ∈ GP
λ
} , if αG(g′) ∪ σG(g′) = ∅

{βG(g)| g ∈ GP
λ
} , if βG(g′) = ∅

{σG(g)| g ∈ GP
λ
} , if αG(g′) ∪ σG(g′) = ∅

7.3.2 Process Model Name Strategy

As stated in [244], most naming concepts directly refer to the textual in-
formation captured in the process model name. The process model name
context strategy considers the information contained in the model name to
infer the missing object or action. However, since the process model itself
may be regarded as a subprocess activity, this strategy is more suitable for
incomplete actions. In this case, this strategy proposes to treat the model
name as an activity label, extract its action and business object, and use
this information to create a potential recommendation. However, this strategy
relies on the assumption that the process model must specify a name. Taking
the process model in Figure 7.1 as an example, this strategy takes the busi-
ness object group as a potential recommendation for the incomplete activity
Retirement. Interpreting the process model as being a subprocess activity aP
to which the functions αA(aP ) and βA(aP ) extract an action or a business
object respectively, we define the process model name strategy as follows:

Definition 7.3. (Process Model Name Strategy). Let P = (A, E, G, F ,
R, P , L, ρ, π, λ, γ τ) be a process model as well as AP

λ
the set of labeled activities.

Further let a′ ∈ IA be an incomplete activity. The set of recommendations
created from the local context are described as follows:

RName(a
′) =

{
{αA(aP )| αA(aP ) 6= ∅} , if α(a′) = ∅
{βA(aP )| βA(aP ) 6= ∅} , if β(a′) = ∅

7.3.3 Process Model Repository Strategy

The model repository strategy considers all process models of a repository to
infer the missing component of an incomplete model element. The strategy
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also requires that the incomplete element and the complete element share a
common component in order to avoid an extensive list of recommendations
for incomplete activities. For example, in case an activity misses an action,
we consider a complete activity to be a potential recommendation if both
activities have the same business object. Otherwise, in case that the activity
misses a business object, we consider a complete activity to be a potential
recommendation if both activities have the same action. As an example, this
strategy identifies the business object leased asset since this strategy identified
the activity Retirement of leased asset to be complete and to share the action
to retire with the incomplete label. The recommendations created from the
process model collection are described as follows:

Definition 7.4. (Process Model Repository Strategy). Let P = (A, E,
G, F , R, P , L, ρ, π, λ, γ τ) be a process model as well as AP

λ
the set of labeled

activities, EP
λ

the set of labeled events, GP
λ

the set of labeled gateways of P.
Further let a′ ∈ IA be an incomplete activity, e′ ∈ IE be an incomplete event,
and g′ ∈ IG be an incomplete gateway. The recommendations created from
the process model repository are described as follows:

RRepository(a′) =

{αA(a)| βA(a) = βA(a′) ∧ a ∈ AP
λ
}, if αA(a′) = ∅

{βA(a)| αA(a) = αA(a′) ∧ a ∈ AP
λ
}, if βA(a′) = ∅

RRepository(e′) =



{αE(e)| βE(e) = βE(e′) ∧ e ∈ EP
λ
}, if αE(e′) ∪ σE(e′) = ∅

{βE(e)| (αE(e) = αE(e′) ∨ σE(e) = σE(e′))
∧ e ∈ EP

λ
}, if βE(e′) = ∅

{σE(e)| βE(e) = βE(e′) ∧ e ∈ EP
λ
}, if αE(e′) ∪ σE(e′) = ∅

RRepository(g′) =



{αG(g)| βG(g) = βG(g′) ∧ g ∈ GP
λ
}, if αG(g′) ∪ σG(g′) = ∅

{βG(g)| (αG(g) = αG(g′) ∨ σG(g) = σG(g′))
∧ g ∈ GP

λ
}, if β(g′) = ∅

{σG(g)| βG(g) = βG(g′) ∧ g ∈ GP
λ
}, if αG(g′) ∪ σG(g′) = ∅

7.3.4 External Corpus Strategy

If there are no meaningful recommendations retrieved by the three previous
strategies, an alternative is to look for recommendations in an external source.
Hence, this strategy considers the use of a general text corpus to search for
terms which frequently co-occur with the missing element. For this purpose,
one can employ sentence dependencies [68] (e.g. typed dependencies) to identify
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words that are frequently used with the target word. For this strategy, any
available text corpus, such as the American National Corpus (ANC) or the
British National Corpus (BNC) may be employed. In case of domain-specific
process models, this strategy can also be adapted to use domain specific corpora
or documents. As an example, we consider again the activity Retirement in
Figure 7.1. According to the external corpora strategy, the objects number
and debt are retrieved as potential recommendations for the missing business
object. Considering DepC to be the set of all dependencies between an action
and a business object that is retrieved from a corpus C, we formalize the
external corpora strategy as follows:

Definition 7.5. (External Corpus Strategy). Let P = (A, E, G, F , R, P ,
L, ρ, π, λ, γ τ) be a process model as well as AP

λ
the set of labeled activities,

EP
λ

the set of labeled events, GP
λ

the set of labeled gateways of P. Further let
a′ ∈ IA be an incomplete activity, e′ ∈ IE be an incomplete event, and g′ ∈ IG
be an incomplete gateway. Based on the typed dependencies DepC retrieved
from a corpus (see Definition 4.2), the recommendations created from the
external corpus strategy are given as follows:

RExternal(a
′) =

{
{w| (dobj, w, βA(a′)) ∈ DepC} , if α(a′) = ∅
{w| (dobj,αA(a′), w) ∈ DepC} , if β(a′) = ∅

RExternal(e
′) =

{
{w| (nsubj, w, βE(e)) ∈ DC} , if αE(e′) ∨ σE(e′) = ∅
{w| (nsubj,αE(e), w) ∈ DC} , if βE(a′) = ∅

RExternal(g
′) =

{
{w| (nsubj, w, βG(g)) ∈ DC} , if α(g′) ∨ σG(g′) = ∅
{w| (nsubj,αG(g), w) ∈ DC} , if β(g′) = ∅

7.4 Context-Sensitive Ranking of Recommendations

As discussed before, the presentation of a large list of potential recommenda-
tions is not very helpful for users. Inline with content-based recommendation
approaches, the goal is to present a list of most useful recommendations among
which the user may choose according to their personal judgment. Therefore, we
propose a ranking technique to sort the list of recommendations in a descending
order. Inspired by the work of Bracewell et al. [51] who deals with ambiguous
acronyms in biomedical texts, we use a semantic similarity calculation of a
recommended item to a process model. The original method disambiguates
acronyms by comparing the semantic similarity of an acronym expansion with
a set of sense clusters, where each cluster describes a set of similar senses from
the most frequent words extracted from a limited number of medical texts.
The senses and the semantic similarity are computed using the lexical database
WordNet [292].
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As a single activity provides only limited context information, we create
clusters with all activity labels from a process model. In order to measure the
similarity of a recommendation for a missing component of an element label
to its process model, the proposed method executes the following two tasks:
the operationalization of the process model context and the cluster similarity
calculation.

In order to operationalize the context of a process model, we make use
of sense clusters that have been introduced in [363]. This strategy builds
upon undirected weighted graphs where each word is a vertex and the weight
of the edges represents the semantic similarity value between two vertexes.
Afterwards, all maximal cliques are retrieved by using the Bron-Kerbosch
algorithm [57]. The clique with the highest edge sum is stored as a cluster
and all elements from the cluster are removed from the graph. This process is
repeated until there are no more edges on the graph. Vertexes that are not
assigned to any cluster remain unchanged in the graph. Also, a threshold limit
can be used to prune low-score similarity values from the initial graph. As a
result, we receive a set of sense clusters built upon semantically similar words
from a process model.

The cluster similarity calculation involves the calculation of semantic
similarity between a recommended item and the sense clusters and thus
decides how good a recommendation fits to the process model. In this way,
we retrieve all senses of a recommendation r and of a single sense cluster
c and calculate the maximum pairwise-similarity score between them. The
similarity measure for a recommended item r ∈ R to a sense cluster c ∈ C is
the sum of similarity scores for a recommendation to each cluster sense. The
following formula summarizes the calculation of semantic similarity between
recommendation and clusters:

sim(r, C) =
∑
r∈R

arg max
c∈C

(sim(r, c))

Finally, the similarity between a recommendation r and a process model P
is the sum of the similarity scores for a recommendation to each sense cluster
of a process model CP :

simP (r, P ) =
∑

C∈CP

sim(r, C)

Algorithm 5 illustrates the steps to rank a list of recommendations R for
a given process model P. The algorithm starts with the initialization of the
result set that will contain the recommended items sorted by their relevance
(Step 2). After all text labels of a process model have been extracted (Step
3), the algorithm determines the set of all sense clusters to operationalize
the context of the process model (Step 4). Afterwards, the algorithm needs
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Algorithm 5: Ranking Created Recommendations for a Process Model

1: rankRecommendations(RecommendationList R, ProcessModel P)
2: rankedRecommendations← ∅
3: elementLabels←extractTextLabels(P)
4: senseClusters←retrieveSenseClusters(elementLabels)
5: for all r ∈ R do
6: for all C ∈ senseClusters do
7: simP += sim(r, C)
8: rankedRecommendations← (r, simP ) ∪ rankedRecommendations
9: sortDescendingBySimV alue(rankedRecommendations)

10: return rankedRecommendations

to decide how good the recommendation fits to the process model which is
handled in a loop (Steps 5–8). For each combination of recommendation sense
and sense cluster, the algorithm determines the similarity according to the
given formula. Moreover, it accumulates these similarity scores to an overall
similarity score simP that resembles the appropriateness of a recommendation
to the process model (Step 7). Finally, the overall similarity score and the
respective recommendation are added to the result set (Step 8). When each
recommendation has been processed, the result set is sorted in descending
order (Step 9). The algorithm terminates by returning a sorted result set that
may drive the user decision by presenting the best ranked recommendations
on the top positions.

7.5 Evaluation

The overall goal of the evaluation is to learn whether our techniques retrieve
recommendations that are useful to the modeler in completing missing infor-
mation in process models. First, we describe the test data (Section 7.6.1) and
the setup of the evaluation (Section 7.6.3). Second, we present the results of
our evaluation with regard to the creation of recommendations (Section 7.6.4)
and their ranking (Section 7.6.2).

7.5.1 Model Repository Demographics

The recommendation-based approach has been applied to different model
collections from industry that vary with regard to specific criteria, such as
collection size, modeling notation, degree of standardization, and domain. For
the evaluation of the created and ranked recommendations, we decided to
restrict the evaluation on the activity labels since they a) represent a central
construct for many process modeling languages and b) are particularly prone
to ambiguity [285, 238]. Table 7.2 summarizes the main characteristics of
the employed repositories. For a more detailed overview of these collections,
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Table 7.2: Demographics of the Test Collections

Characteristic SRM TC AIC

No. of Models 604 803 1,091
No. of Activities 2,432 12,088 8,339
No. of Incomplete Activities 311 500 741
No. of Affected Models 184 (30%) 290 (36%) 381 (34%)
Avg. No. Incomplete Activities per model 1.69 1.69 1.96

please refer to Table 7.2. The selected process model collections show a notable
number of process models that are affected by incomplete activities and process
models. Surprisingly, the SRM collection is the smallest and presumably most
standardized collection and contains a notable number of process models with
incomplete activities. In this data set, 184 models (30% of the models) are
affected and contain on average 1.69 incomplete activities. Similar to that, the
TC collection also has around 1.69 incomplete activities in its process models.
However, the share of affected process models is slightly bigger than in the SRM
collection. The AIC collection is the largest collection and assumed to have
small degree of standardization. This collection shows a similar share of process
models (34% of the models) that contain incomplete activities. However, the
average number of affected activities is unlike higher amounting to almost
2 per model. Therefore, we consider these collections to be appropriate and
representative to evaluate the proposed approaches. Nevertheless, it is to
mention that the TC collection needed to be excluded from the evaluation due
to non-disclosure reasons.

7.5.2 Evaluation Setup

To demonstrate the capabilities of our approach, we conduct an extensive user
evaluation, which aims at assessing the usefulness of the recommendations.
For this purpose, we outline our evaluation setup in terms of prototypical
implementation, evaluation design, and evaluation metrics.

With regard to the prototypical implementation, we used Java 1.7 to imple-
ment our strategies and algorithms to create and rank the recommendations.
Based on the list of incomplete model elements from our test collections, we
created a set of potential recommendations by using the previously discussed
strategies. As far as the external corpora strategy is concerned, we used the
publicly open accessible version of the ANC corpus (OANC), which contains 15
million words of contemporary American English. Moreover, we also used the
Stanford Tagger and Parser1 to retrieve the typed dependencies, i.e. verb-direct
object (dobj) and passive-sentence constructs (nsubj) to identify frequent co-
occurrences of words. For the ranking algorithm and the employed similarity

1 Please refer to http://nlp.stanford.edu/software/
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metrics, we selected the Lin semantic similarity measure as it correlates best
with human judgment [253].

Concerning the evaluation design, we require the decision of humans whether
or not a recommendation is useful in the context of a given process model.
However, since we face a considerably large number of incomplete labels
combined with an enormous list of recommendations (1052 incomplete labels
with approx. 28600 recommendations), we cannot let the user evaluate all
recommendations and need to pursue another, more realizable evaluation
strategy. In particular, we applied the statistical sampling strategy which has
been explained in detail in Section 6.5.2. Accordingly, we utilize a statistical
sampling among the recommendations and let the user evaluate a representative
subset of recommendations. We notice that each recommendation is either
useful or not. Hence, repeatedly drawing instances from our test data and
assessing the usefulness represents a binomial experiment X ∼ B(n, p) with a
population size of n and the probability of having a useful recommendation
p. In order to determine this probability, we assessed the usefulness of ten
recommendations, which then amounted to 75% in our overall test sample.
Afterwards, we follow the recommendations by Piegorsch [325] and apply the
Jeffrey interval, which suits for binomial references from large populations.
Aiming for a significance level α = 0.05 and a margin of error ε = 0.05, we
need to draw a random sample of 289 recommendations based on Piegorsch’s
sample size calculation formula. Taking the literature on recommender system
evaluation into account [361, 161], it does not make sense to assess a single
recommendation since the context of the recommendation is missing. Therefore,
we randomly pick an incomplete activity and up to the ten highest ranked
recommendations and repeat this procedure until we reached the necessary
sample size. In the final evaluation design, we asked 5 users (2 modeling
novices and 3 modeling experts) to provide us with their decision for the
whole sample. Each participant was provided with an incomplete activity and
the corresponding process model in which this activity was highlighted. The
participants were then asked to provide feedback for each recommendation
on a 4-point-Likert-scale from very useless (-2) to very useful (+2). By using
a 4-point-scale, we intentionally forced participants to make a final decision,
which is necessary for our evaluation metrics. In Appendix C, the interested
reader will find examples of the survey design.

As far as the evaluation metrics are concerned, we use acknowledged
metrics from the recommender systems literature [161]. In particular, we
employ the metrics precision and recall for our evaluation. In the context
of recommendations, the precision value describes the number of relevant
recommendations divided by the total number of relevant and non-relevant
recommendations that have been created by the system. Recall is the number
of relevant recommendations divided by the total number of retrieved and
not retrieved relevant recommendations. As it is fairly easy to achieve a recall
of 1 (by presenting all recommendations to the user), we further distinguish
between three situations: i) the most highly ranked, ii) the five most highly
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Table 7.3: Performance of Recommendation Creation

S1 S2 S3 S4

Top 1
Useful Recommendations 15 0 3 5
Useless Recommendations 6 0 1 1

Top 5
Useful Recommendations 15 0 23 20
Useless Recommendations 16 3 24 13

Top 10
Useful Recommendations 58 0 58 33
Useless Recommendations 46 4 51 36

S1: Local Context Strategy, S2: Model Name Strategy,
S3: Model Collection Strategy, S4: External Context Strategy

ranked (Top 5), and iii) all recommendations are shown to the user (Top 10).
The assessment with different scenarios has several advantages. The Top 1
scenario provides insights from a full automation perspective. If the quality
of the highest ranked recommendation was sufficiently good, there would be
hardly any need to further involve the users in selecting a suitable alternative.
The Top 5 scenario directly assesses the performance of the ranking algorithm.
If the five highest recommendations achieve a high precision and recall, we have
a good indicator that the approach only presents the relevant recommendations
among which the user can choose. The Top 10 reports on the usefulness of
the created recommendations in general. The higher the value of precision is,
the better our recommendation creation strategies perform. Apparently, recall
plays a minor role in this scenario since all recommendations (10 out of 10)
are shown to the user leading always to a recall of 1.

7.5.3 Evaluation of Recommendation Creation

The performance results of the recommendation creation strategies are summa-
rized in Table 7.3. The numbers show that the strategies are capable to create
meaningful recommendations. However, we also observe notable differences
between the strategies. In general, the local context and the model repository
strategy perform best in producing useful recommendations. Also, the external
context strategy provides a considerable amount of useful recommendations,
although we observe a slightly larger number of useless ones. A possible ex-
planation is that the external context strategy is not as closely related to the
process models and thus is only capable to create general recommendations
that cannot reflect model-specific terminology. To our surprise, the model
name strategy did not create any useful recommendations. We assume that
the model name resembles an abstract summary of the process which is not
suitable to complement activities on a detailed level.

Moreover, we also take a closer look at the performance of the recommen-
dation creation strategies with regard to the different scenarios. Beginning
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with the Top 1 scenario, we see that the local context strategy proposes a big
number of useful recommendations and clearly outperforms the other strate-
gies. We conclude that the local context strategy might be a good method
to automatically fill the missing gaps in the label components. In the Top 5
and the Top 10 scenario, the picture is shifted in favor of the model repository
and the external corpora strategy. Both strategies perform well in creating
useful recommendations and also outperform the local context strategy in the
Top 5 scenario. Then, in the Top 10 scenario, the recommendation from the
local context and the model repository strategy are dominating again. On
average, they produce more useful recommendations than the external context
strategy. These results emphasize the advantage of using different context
layers to infer the missing label component and to propose several alternatives
among which the user may select. Finally, we may conclude that the local
context and the model repository strategy are the favorite sources from which
recommendations should be created.

7.5.4 Evaluation of Recommendation Ranking

The results of the ranking technique are shown in Table 7.4. In particular, we
report on the numbers of precision and recall if the most highly ranked, the
five and ten most highly ranked recommendations are considered by the users.
In general, the numbers show that the performance of the recommendation
creation and context-based ranking approach is promising in the Top 1 and
Top 5 scenario and excellent for the Top 10.

The Top 1 scenario evaluates the approach from the perspective of auto-
matically refactoring the incomplete activity. In this case, the approach would
choose the highest ranked recommendation and replace the deficient activity
label with the recommended one. In such a setting, the evaluation revealed a
precision of 0.74 which implies that the first recommendation is considered to
be useful in almost three out of four cases. With regard to automation, this
may be regarded as a satisfactory result. However, the recall value of 0.18 also
indicates that other recommendations might also be a suitable alternative for
the deficient activity emphasizing that a semi-automated approach is more
suitable to address incomplete activities.

In the Top 5 scenario, the precision reflects the capabilities of our techniques
to present only the useful items to the user, while minimizing the number of
useless recommendations at the same time. In this case, the number of 0.55
indicates that at least two out of five recommendations fit to the model context
and are also regarded to be a suitable alternative to the incomplete activity.
The recall emphasizes the coverage of useful items which our techniques
can obtain by considering the entire pool of recommendations. It amounts
to 0.58 in the Top 5 setting which shows that even if our techniques did
not create any meaningful recommendations within the five highest ranked
recommendations, more useful ones may be retrieved when looking at the
following 5 recommendations.
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Table 7.4: Recommendation Performance Results

Top 1 Top 5 Top 10

No. Relevant & Retrieved 23 86 149
No. Non-relevant & Retrieved 8 69 137
No. Relevant & Not retrieved 126 63 0

Precision 0.74 0.55 0.52
Recall 0.18 0.58 1

0% 

25% 

50% 

75% 

100% 

Top 1 Top 5 Top 10 

Precision Recall 

Fig. 7.4: Precision/Recall Curve for the Evaluation Scenarios

The results of the Top 10 scenario may also be interpreted from the
perspective of usefulness in general. Since this scenario presents all the rec-
ommendations to the user at once, the precision value directly relates to
the usefulness of the recommendations. The value of 0.52 indicates that the
recommendation approach is capable of creating context-sensitive and useful
recommendations. In particular, the users agreed that at least half of the
recommendations are useful and appropriate for the given process models in
our user experiment. In this scenario, the recall value is always 1, since the
entire pool of recommendation is presented at the same time.

The ranking results also point to a trade-off conflict between the different
scenarios. Figure 7.4 maps the scores of precision and recall to the different sce-
narios in order to illustrate this conflict. In general, this conflict is characterized
by a strong increase in the recall scores and a constant slightly decrease of pre-
cision. If the users consider to automatically refactor the incomplete activities
(Top 1), they take the risk of missing a more suitable recommendation, which is
reflected by a high precision and a low recall value at the same time. Opposite
to that, if they want to see the entire list of recommendations (Top 10), they
can be sure that they will find a suitable recommendation, which is reflected
by the recall of 1. The scores of the Top 5 scenario balance these extreme
points. Here, the users are only presented a subset of all recommendations
among which we can assume a suitable one for the incomplete activity.
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Table 7.5: Top 5 Recommendations for the Group Retirement Process

Activity Top 5 Recommendations Ranking

Transfer to a
Client

Transfer Time Specifications to a Client 25.76
Transfer Balance Sheet Items to a Client 19.51
Transfer Planned Sales Quantities to a Client 18.87
Transfer Group to a Client 18.26
Transfer Personnel Costs to a Client 16.24

Retirement

Retirement of Master Record 18.02
Retirement of Leased Asset 16.42
Retirement of Asset Acquisition 15.53
Retirement of Group 14.81
Retirement of Number 13.77

In addition to the quantitative results, we also discuss qualitative results
of our recommendation techniques. Table 7.5 shows the five highest ranked
recommendations for the two incomplete activities of Figure 7.1. In general,
we can infer from the context of the process model that the two activities
Transfer to a Client and Retirement are most likely applied to the business
objects Group or Asset. Looking at the results of our techniques, we spot
two recommendations that propose these two business objects. Moreover, the
techniques also provide additional recommendations that make sense in the
process model. In case of the first activity, we might also consider the objects
Balance Sheet Items or Planned Sales Quantities to be valid for the missing
business object. For the second activity, our approach further recommends the
business objects master record and asset acquisition. Considering the context,
we might still include the object asset acquisition as a potential candidate
for the this activity. Overall, these recommendations are good examples to
illustrate the capability of the approach to successfully provide context-sensitive
recommendations to the user.

7.6 Discussion

This section discusses the results and implications of the recommendation
approach based on the evaluation. To this end, Section 7.6.1 summarizes
the main results of the evaluation with regard to the creation and ranking
technique. Afterwards, Section 7.6.2 reflects upon limitations that need to
be considered regarding the results. Finally, Sections 7.6.3 and 7.6.4 discuss
implications of the proposed approach for research and for practice.

7.6.1 Summary of Results

The evaluation of the recommendation-based approach shows satisfactory
results with regard to the usefulness of the suggestions and the quality of the
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Table 7.6: Summary of Results for Pragmatic Ambiguity Refactoring

Creation Ranking

Top 1
Total No. Useful Recommendations 23 Precision: 0.74
Total No. Useless Recommendations 8 Recall: 0.18

Top 5
Total No. Useful Recommendations 86 Precision: 0.55
Total No. Useless Recommendations 69 Recall: 0.58

Top 10
Total No. Useful Recommendations 149 Precision: 0.52
Total No. Useless Recommendations 137 Recall: 1

ranking. Table 7.6 summarizes the main results of the evaluation for each
scenario. In the Top 1 scenario, 23 out of 31 recommendations are considered
to be useful by the users. We also see that most of these recommendations are
created from the local context strategy. The Top 5 scenario reveals that 86 of
155 recommendations are meaningful to the users. Regarding the number of
recommendations, the repository strategy and the external context strategy
provide more meaningful recommendations to the user. Finally, the number of
meaningful and useless recommendations are rather balanced in the Top 10
scenario. In general, the approach creates an equal number of good and bad
recommendations. We observe that the local context and the model repository
strategy perform equally well in creating good recommendations. We conclude
that the local context and the model repository strategy are well suited to
look for fitting recommendations. Moreover, it is not recommended to use the
model name as a source of recommendations since the name appears to be too
abstract in many cases.

The ranking of the recommendations is rather promising. The precision of
the Top 1 scenario amounts to almost 75% strongly indicating the capabilities
for automatic refactoring. In the Top 5 scenario, the evaluation shows that
precision and recall are well balanced and confirm a satisfactory performance
of the recommendation ranking approach since every second recommendation
of the five highest ranked is helpful to the user. The ranking approach performs
similar if we consider the Top 10 scenario.

7.6.2 Limitations

The findings of the evaluation and the approach are also subject to limitations,
in particular regarding the validity of conclusion and the technology. Conclusion
validity is concerned with issues that affect the ability to draw the correct
conclusions from the outcome of the evaluation [441, p. 104-105]. The conclusion
validity might mostly be affected due to the limited number of collections. For
the evaluation, the two employed process model collections can hardly be seen
as representative. Therefore, it cannot be excluded that the consideration of
other process model repositories would lead to different results. In particular,
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the employed repositories, i.e. the SRM and the AIC repository, are quite
opposite to each other with regard to their general characteristics. Hence, it
appears beneficial to include a repository in the evaluation that mediates the
characteristics of the SRM and AIC repository. Moreover, the results of the
recommendation creation and ranking might also be threatened by the focus
on activity labels and the statistical sampling process as well as by maturity
and instrumentation, which has already been discussed in Section 6.6.2.

From the perspective of technology, there are performance issues that
need to be considered before creating a new software system or embedding
the techniques in an existing tool. The extensive use of semantic similarity
calculations at word-level impedes the algorithm’s performance due to the
necessity of traversing a computational lexicon multiple times. However, since
the approach does not yet focus on immediate recommendations but on already
existing model repositories, where quality checks are typically conducted in
terms of an initiative, we do not consider the performance as a major limitation
yet. We also observe that the presented techniques heavily rely on the quality
of the text labels present in the process model collection and the external
corpora. The quality of recommendations might be affected if model elements
contain grammatical errors. Moreover, the use of general corpora may cover
the domain-specific language only poorly and might not be able to recommend
domain-specific terms. In such cases, the use of a domain specific text corpus
will yield better results. Finally, the proposed approach only uses basic natural
language processing technology to create a list of recommendations. The
performance of the approach may be enhanced by machine learning approaches
improving the overall recommendation results. Nevertheless, the user evaluation
shows that our techniques are already capable of creating a large share of
useful recommendations despite the usage of imperfect input sources or basic
techniques.

7.6.3 Implications for Research

The recommendation-based approach of this thesis provides a solution for
a hardly addressed quality dimension of conceptual models. According to
model quality frameworks (see e.g. [255, 219, 218]), the pragmatic quality of
conceptual models involves the correspondence between the model and its
interpretation in order to be comprehensible. However, the comprehensibility
of models might be affected negatively if the complexity is increasing [284], the
textual labels are ambiguous [285], or a consistent interpretation is not possible
[126, 127]. The approach supports the maintenance of pragmatic quality as
it ensures that the model is complemented by missing information from the
modeling domain increasing the completeness of the model and ensuring
its comprehensibility for several actors. Overall, the approach represents an
important step towards automated quality assurance of conceptual models.

Furthermore, this thesis proposes a recommendation-based approach that
uses several layers of context to solve the problem of incomplete element labels.
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This aims for an improvement of the textual dimension of process models.
Related recommendation approaches for process models put a strong emphasis
on the generation of structural recommendations [204]. Among others, prior
research has proposed recommendation techniques that employ similarity
metrics [42, 168], a combination of business rules and structural constraints
[167], the reuse of existing fragments with the help of the π-calculus and
ontologies [266], a tagging-based approach [166], or Bayesian networks [45].
Moreover, prior research also proposed modeling editors that support the
user and provide recommendations based on the existing process model that
was modeled so far [209, 80, 210]. Although these approaches provide model
fragments including a naming of model elements, they need to rely on existing
knowledge bases such as the model repository. As a consequence, naming errors
in the knowledge base also appear in the recommendations and are multiplied
when users follow these recommendations. In contrast to that, the proposed
approach addresses the naming problem at its root and contributes to the
overall quality of the repository from which also other approaches benefit.

Finally, the recommendation approach also improves the understanding
of the process model, which turns out to be beneficial in the aforementioned
application scenarios, namely process model compliance, system design and
analysis, and process analysis and monitoring. In the compliance scenario, the
recommendation approach supports users to refactor audit-relevant process
models that contain incomplete elements. Closing the gaps in such models
facilitates the understanding of the auditors and helps the company to prove
that their activities are in accordance to the given compliance rules. Also
system design and analysis approaches benefit from the recommendations.
In this case, the gaps in the process model are closed, such that the model
itself may be used to correctly depict requirements of the later system. This
decreases the necessity for additional feedback loops and supports the correct
specification and implementation of the system. Revisiting the process model
analysis scenarios, the recommendations further specify the incomplete activity
and support analysts in retrieving the appropriate information for the analysis.
In consequence, the analysis has a better chance to resemble the real business
activities and to take the right measures depending on the results.

7.6.4 Implications for Practice

The proposed approach also has considerable implications for practice. Most
importantly, the approach can be integrated into commercial modeling tools.
Such modeling tools can support users and modelers by pointing to incomplete
labels. The respective labels can be easily refactored after notifying the user
about the respective issue. As a result, the approach may prevent element
incompleteness during the process of modeling and avoid costly maintenance
as early as possible.

The presented approach may also be used in scenarios with existing model
repositories. It supports users in performing maintenance-related tasks that
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involve the inspection of process models with regard to specific errors and
inconsistencies. In particular, the presented approach provides means to detect
and refactor incomplete model elements. Following recommendation-based
concepts, the approach supports users by creating a list of suitable alternatives
to fill the gaps in process models. Since the detection and refactoring tasks
are typically time-consuming and perceived as ineffective and boring [227, 17],
the approach can help to reduce the required time significantly and increase
the effectiveness of resolving incomplete instances.

7.7 Summary

This chapter has introduced a novel approach to refactor the problem of
pragmatic ambiguities in process model elements, which occurs in every third
process model of a model repository. Relying on existing linguistic concepts,
the incompleteness of model elements has been identified to be a symptom of
pragmatic ambiguity and to hinder the correct comprehension of the process
model. In order to address the problem, a recommendation-based approach
has been proposed that creates a list of recommendations and ranks this list
according to their fitness to the process model. In particular, four different
strategies have been presented that exploit the local process model, its name,
the collection, and other external sources to come up with a set of initial
recommendations. This chapter has also introduced a context-sensitive ranking
to distinguish between useful and useless recommendations and to reduce the
initial list. Both concepts have been implemented in a research prototype and
evaluated in an extensive user experiment by sampling process models from
real world repositories. The quantitative and qualitative evaluation results
have demonstrated the capabilities of creating meaningful recommendations
and stimulated further endeavors for practice and research. For instance, the
proposed techniques complement existing techniques to ensure the quality
assurance of process models with regard to the domain and enrich the set of
model recommendation approaches.
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Conclusion

The final chapter summarizes the thesis and its results. Section 8.1 gives a short
summary of the main results, which are then discussed in a broader context
in Section 8.2. In the end, Section 8.3 gives an outlook of future research
endeavors.

8.1 Summary of Results

This thesis has proposed novel, linguistic-based approaches for the refactoring
of process models. It has investigated existing concepts and technology from
the linguistic branches of syntax, semantics, and pragmatics and transfers
them to the context of process models. Due to the high degree of automation,
the approach supports companies to maintain large process model repositories
and to ensure the quality of its process models. In particular, the results of
this thesis can be summarized as follows.

• Framework of Process Model Analysis: Prior research on process
model analysis and refactoring put a strong focus on the correctness of the
formal part of process models. As shown by current research, the textual
part of process models equally contribute to their overall correctness and
quality [236]. This thesis has elaborated a classification framework that
brings together several different categories of refactoring in order to struc-
ture prior research on process model refactoring. The respective categories
are the formal and textual content, the coverage of the refactoring, and
the degree of automation. Besides its usefulness to organize prior research,
the classification has also revealed a notable gap for the textual refactoring
techniques and further motivated this thesis.

• Conceptualization of Atomicity for Process Models: Process mod-
eling in practice typically involves causal modelers that are not sufficiently
trained in process modeling [369, 419] and thus use a casual style of creating
and naming model elements [285]. While specific naming styles are already
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automatically checked and corrected [238], the techniques only provide
part of the solution when modelers use complex natural language phrases
to express logic that relates to the control flow or implicit elements. The
imbrication of modeling language and natural language makes it impossi-
ble to draw reliable conclusions from formal analysis results. Therefore,
we have motivated the conceptualization of the atomicity notion, which
demands that process model elements shall not incorporate several actions
or business objects in one element. Furthermore, we have assessed several
process model repositories with regard to this property and identified nine
patterns that violate the notion of atomicity.

• Detection and Refactoring of Syntactic Ambiguity: The assessment
of the atomicity notion revealed that many process models already suffer
from atomicity violation issues. Depending on the quality of the process
models and the expertise of the model creators, 26% to 67% of process
models contain elements that are not specified on an atomic level. In order
to leverage the automatic refactoring of these models, we have formalized
the notion of atomicity and the violation patterns with linguistic concepts
and technology. The experimental evaluation of this approach has revealed
that the techniques show good results for precision and recall, which
indicates their capability to refactor a notable number of non-atomic
process models from industry.

• Detection and Refactoring of Semantic Ambiguity: A fixed vocab-
ulary represents an important asset in an organization to avoid misunder-
standings and to ensure a precise communication of business goals and
requirements. However, research also points out that the management of
such a vocabulary is a challenging task [212]. We have proposed a technique
for the automatic detection and refactoring of lexically ambiguous terms
in process models in order to support modelers in maintaining a consistent
and unambiguous terminology. In particular, we have operationalized syn-
onym and homonym detection conditions and proposed a set of strategies
to resolve these ambiguities. Both techniques have been evaluated by the
help of real-world process models and native speakers and have shown
promising results for the refactoring of semantic ambiguities.

• Detection and Refactoring of Pragmatic Ambiguity: A process
model is used by modelers as a substitution of the business process to
leverage its analysis and improvement. For this purpose, a model needs to
reduce the complexity and only focus on the relevant parts. In many cases
however, the process model does not provide sufficient details anymore to
specify the relevant parts of the underlying business process. The process
model has gaps which hinder the comprehension and its use as a knowledge
resource. These gaps might point to several alternatives and confuse
the reader actually applying the specified actions of the process model.
For these reasons, we have proposed a recommendation-based approach
that explicitly considers the context of the incomplete process model
element. To this end, we have implemented several strategies to create
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recommendations for incomplete elements. Moreover, we have developed
a ranking approach that formalizes the context of the process model and
orders the recommendation according to their context fitness. The approach
has been evaluated by users who indicated that almost three out of five
recommendations were useful to close the gaps in the process models.

8.2 Discussion

The results of this thesis also have implications for business process modeling
in a broader context. With this regard, we discuss their importance of language
consistency in conceptual models, as well as their implications for the quality
of process models, business process modeling tools, and process modeling
guidelines.

• Importance of Language Consistency in Conceptual Models: The number
of various linguistic inconsistencies in the different model repositories from
industry underline the importance of language consistency. We face around
one third of process models from industry to be affected by language
inconsistencies, such as semantic or pragmatic ambiguities. Such process
models do not only hamper the understanding and sense making of model
users, but also their reuse for various purposes [212]. Moreover, we also find
other conceptual models that are affected by these inconsistencies, such
as goal models [367, 333], use case models [81], or feature models [233].
The results of this thesis do not only support the revision of inconsistent
models and model repositories, but also sustain the consistency of language
and terminology over a longer period of time.

• Quality of Process Models: The quality of conceptual models has been
extensively discussed by several authors (see e.g. Lindland et al. [255]
and Krogstie et al. [218, 219]) who identified several dimensions equally
contributing to the overall quality of process models. Building on the
requirements of such quality frameworks, many techniques have been intro-
duced that check and correct affected models in an automatic fashion. The
research of this thesis makes an important contribution to existing tech-
niques of model quality assurance by addressing inconsistencies of natural
language from a syntactical, semantic, and pragmatic angle. Therefore,
the research reported in this thesis represents an important step towards
the automated quality assurance of process models.

• Business Process Modeling Tools: Today, many modeling tools, modeling
environments, or model repositories provide comprehensive support to
create business process models and checking various aspects of them. As a
result, modeling errors can already be avoided during the modeling process.
This interactive style of modeling gives modelers valuable feedback of their
modeling skills and fosters reflection and improvement of the personal
modeling style. The techniques of this thesis may also provide feedback
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to the modelers by indicating a potentially ambiguous usage of a word or
by notifying modelers about incompletely specified model elements. All
in all, these techniques support modelers in their task and safe time and
cost-intensive rework afterwards.

• Teaching Process Model Labeling : The number of linguistic inconsistencies
also points to a weakness of how labeling of process model elements is
taught by universities or companies. Despite the recommendations of
various modeling guidelines [283, 395, 261, 34], the issue of bad labeling
style is still not fully recognized by these organizations. Modeling trainers
and teachers are not aware of the consequences of bad labeling and fail
to communicate the importance of labeling for the overall model quality.
Besides teaching the consequences of formal errors like deadlocks, modeling
trainers should also pay attention to linguistic issues that are caused by
ambiguous or vague labeling. With this regard, this thesis has shown
various examples of bad labeling styles which can be communicated as
bad modeling practice. This particularly holds for the atomicity violation
patterns which nicely illustrate how specific natural language statements
are translated into a correct model fragment that resembles the original
intention of the statement.

8.3 Future Research and Concluding Remarks

There are several open questions that have not been addressed in this thesis.
The main focus of this thesis was to develop novel techniques that employ
linguistic concepts for the analysis and refactoring of process models. However,
the application of such techniques comes along with several limitations that
have already been discussed in the respective chapters and that point to future
research directions.

First, it has to be mentioned that most of the presented techniques analyze
process model activity labels and aim for a consistent labeling of these elements.
The choice is motivated by the fact that activities represent a central construct
for many process modeling languages and are particularly prone to ambiguity
conflicts [285, 238]. Nevertheless, we are aware that process models also specify
more elements that are worth analyzing, such as events, gateways, pools, and
resources. Hence, one direction of future research will include the extension
of the proposed techniques to completely cover all relevant elements of the
process model.

Second, the proposed techniques have been developed for English process
models so far and are not capable to analyze process model labels of a different
language. The localization of the proposed techniques is, however, possible
because non-English process models also follow regular structures [238] and
because natural language processing techniques are also available for other
languages (see e.g. [302, 155]). Therefore, the second direction of future research
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aims for an adaption and evaluation of the presented techniques to other
languages.

Third, the proposed techniques have only been implemented in a prototyp-
ical environment in order to evaluate them with process models from industry.
A professional implementation and deployment into an advanced modeling
tool is still open. This direction of future research will involve the integration
of existing model analysis techniques into a modeling environment such that
users can check their process models from different perspectives. Moreover,
such a tool would also point to the detected errors and explain how these
errors could be corrected or resolved afterwards. The implementation of such
a tool would also involve a close cooperation and evaluation with end-users in
order to demonstrate the capabilities of the tool and to create a modeling tool
that meets the user requirements.

Altogether, the techniques of this thesis complement existing model analysis
techniques with regard to the natural language content of process models and
stimulate further ideas to use available natural language processing techniques
for process model analysis or other activities that are related to business
process management.
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for business process model similarity search. In: Business Process Management,
7th International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009.
Proceedings. pp. 48–63 (2009)
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113. Eid-Sabbagh, R., Ahrend, N.: Eine prozessplattform für die deutsche verwaltung.
In: Informatik 2013, 43. Jahrestagung der Gesellschaft für Informatik e.V. (GI),
Informatik angepasst an Mensch, Organisation und Umwelt, 16.-20. September
2013, Koblenz. pp. 648–662 (2013)

114. Eid-Sabbagh, R., Kunze, M., Weske, M.: An open process model library. In:
Business Process Management Workshops - BPM 2011 International Workshops,
Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part II.
pp. 26–38 (2011)

115. Elhadad, M., Balaban, M., Sturm, A.: Effective business process outsourcing:
The prosero approach. IBIS 6, 8–31 (2007)

116. Ellis, C.A., Nutt, G.J.: Office information systems and computer science. ACM
Comput. Surv. 12(1), 27–60 (1980)

117. Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, R.: The hearsay-ii speech-
understanding system: Integrating knowledge to resolve uncertainty. ACM
Comput. Surv. 12(2), 213–253 (1980)

118. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland,
S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web:
An experimental study. Artificial intelligence 165(1), 91–134 (2005)

119. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: Quality evaluation of software
requirement specifications. In: Proceedings of the Software and Internet Quality
Week 2000. pp. 1–18 (2000)

120. Faber, P.B., Usón, R.M.: Constructing a lexicon of English verbs, vol. 23. Walter
de Gruyter (1999)
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172. Ide, N., Véronis, J.: Introduction to the special issue on word sense disambigua-
tion: The state of the art. Computational Linguistics 24(1), 1–40 (1998)
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189. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: E-Commerce and Web
Technologies, Third International Conference, EC-Web 2002, Aix-en-Provence,
France, September 2-6, 2002, Proceedings. p. 182 (2002)

190. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley (1998)

191. Kemper, P., Bause, F.: An efficient polynomial-time algorithm to decide liveness
and boundedness of free-choice nets. In: Application and Theory of Petri
Nets 1992, 13th International Conference, Sheffield, UK, June 22-26, 1992,
Proceedings. pp. 263–278 (1992)

192. Kern, R., Muhr, M., Granitzer, M.: KCDC: Word sense induction by using
grammatical dependencies and sentence phrase structure. In: Proceedings of the
5th international workshop on semantic evaluation. pp. 351–354. Association
for Computational Linguistics (2010)

193. Khan, R.N.: Business Process Management: a practical guide. Meghan-Kiffer
Press (2004)

194. Kilgarriff, A.: Gold standard datasets for evaluating word sense disambiguation
programs. Computer Speech & Language 12(4), 453–472 (1998)

195. Kilgarriff, A., Yallop, C.: What’s in a thesaurus? In: Proceedings of the Second
International Conference on Language Resources and Evaluation, LREC 2000,
31 May - June 2, 2000, Athens, Greece (2000)

196. Kim, S., Alani, H., Hall, W., Lewis, P., Millard, D., Shadbolt, N., Weal, M.: Arte-
quakt: Generating tailored biographies with automatically annotated fragments
from the web, semantic authoring. In: Annotation and Knowledge Markup
Workshop in the 15th European Conference on Artificial Intelligence (2002)

197. Kingsbury, P., Palmer, M., Marcus, M.: Adding semantic annotation to the
penn treebank. In: Proceedings of the Human Language Technology Conference.
pp. 252–256. Citeseer (2002)

198. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for
ambiguity identification and measurement in natural language requirements
specifications. Requir. Eng. 13(3), 207–239 (2008)

199. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: Advances in Neural Information Processing Systems 15
[Neural Information Processing Systems, NIPS 2002, December 9-14, 2002,
Vancouver, British Columbia, Canada]. pp. 3–10 (2002)

200. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics, 7-12
July 2003, Sapporo Convention Center, Sapporo, Japan. pp. 423–430 (2003)



References 195

201. Klein, S., Simmons, R.F.: A computational approach to grammatical coding of
english words. J. ACM 10(3), 334–347 (1963)

202. Klinkmüller, C., Leopold, H., Weber, I., Mendling, J., Ludwig, A.: Listen to
me: Improving process model matching through user feedback. In: Business
Process Management - 12th International Conference, BPM 2014, Haifa, Israel,
September 7-11, 2014. Proceedings. pp. 84–100 (2014)

203. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing
recall of process model matching by improved activity label matching. In:
Business Process Management - 11th International Conference, BPM 2013,
Beijing, China, August 26-30, 2013. Proceedings. pp. 211–218 (2013)

204. Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation
techniques in business process modeling. In: Proceedings of 9th Workshop on
Knowledge Engineering and Software Engineering (KESE9) co-located with the
36th German Conference on Artificial Intelligence (KI2013), Koblenz, Germany,
September 17, 2013. (2013)

205. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: Open source toolkit
for statistical machine translation. In: Proceedings of the 45th annual meeting
of the ACL on interactive poster and demonstration sessions. pp. 177–180.
Association for Computational Linguistics (2007)

206. Koeling, R., McCarthy, D.: Sussx: Wsd using automatically acquired predomi-
nant senses. In: Proceedings of the 4th International Workshop on Semantic
Evaluations. pp. 314–317. Association for Computational Linguistics (2007)

207. Kofax: Market analysis of multichannel capture, business process management,
and smart process applications, 2013 through 2016 (2013)

208. Koschmider, A., Blanchard, E.: User assistance for business process model
decomposition. In: Proceedings of the 1st IEEE International Conference on
Research Challenges in Information Science. pp. 445–454 (2007)

209. Koschmider, A., Oberweis, A.: Designing business processes with a
recommendation-based editor. In: Handbook on Business Process Management
1, pp. 299–312. Springer (2010)

210. Koschmider, A., Oberweis, A.: Recommendation-based business processes design.
In: Handbook on Business Process Management 1, Introduction, Methods, and
Information Systems, 2nd Ed., pp. 323–336. Springer (2015)

211. Koschmider, A., Reijers, H., Dijkman, R.: Empirical support for the usefulness
of personalized process model views. In: Multikonferenz Wirtschaftsinformatik
(2012)

212. Koschmider, A., Ullrich, M., Heine, A., Oberweis, A.: Revising the vocabulary of
business process element labels. In: Advanced Information Systems Engineering
- 27th International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12,
2015, Proceedings. pp. 69–83 (2015)

213. Kosiol, E.: Organisation der Unternehmung. Gabler Verlag, Wiesbaden (1962)
214. Kösters, G., Six, H., Winter, M.: Coupling use cases and class models as a

means for validation and verification of requirements specifications. Requir.
Eng. 6(1), 3–17 (2001)

215. Krallmann, H., Bobrik, A., Levina, O.: Systemanalyse im Unternehmen: Prozes-
sorientierte Methoden der Wirtschaftsinformatik. Oldenbourg Verlag (2013)

216. Krallmann, H., Frank, H., Gronau, N.: Systemanalyse im Unternehmen. Olden-
bourg (1994)



196 References

217. Kroeger, P.R.: Analyzing grammar: An introduction. Cambridge University
Press (2005)

218. Krogstie, J., Sindre, G., Jørgensen, H.: Process Models Representing Knowledge
for Action: a Revised Quality Framework. European Journal of Information
Systems 15(1), 91–102 (2006)

219. Krogstie, J., Lindland, O.I., Sindre, G.: Defining quality aspects for conceptual
models. In: Information System Concepts: Towards a consolidation of views,
Proceedings of the IFIP international working conference on information system
concepts, Marburg, Germany, 28-30 March 1995. pp. 216–231 (1995)

220. Krogstie, J., Sindre, G., Jorgensen, H.: Process models representing knowledge
for action: a revised quality framework. European Journal of Information
Systems 15(1), 91–102 (2006)

221. Kumar, E.: Natural Language Processing. I.K. International Publishing House
(2011)

222. Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process
model repositories. In: Business Process Management Workshops - BPM 2010
International Workshops and Education Track, Hoboken, NJ, USA, September
13-15, 2010, Revised Selected Papers. pp. 535–546 (2010)

223. La Rosa, M., ter Hofstede, A.H.M., Wohed, P., Reijers, H.A., Mendling, J.,
van der Aalst, W.M.P.: Managing process model complexity via concrete syntax
modifications. IEEE Trans. Industrial Informatics 7(2), 255–265 (2011)

224. La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-
driven configuration of reference process models. In: Advanced Information
Systems Engineering, 19th International Conference, CAiSE 2007, Trondheim,
Norway, June 11-15, 2007, Proceedings. pp. 424–438 (2007)

225. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling,
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Hanser, München, Wien, 5th edn. (2006)
387. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Pro-

ceedings of the international conference on new methods in language processing.
vol. 12, pp. 44–49. Citeseer (1994)

388. Schmitt, N.: An Introduction to Applied Linguistics. Routledge (2010)
389. Schuler, K.K.: Verbnet: a broad-coverage, comprehensive verb lexicon. Ph.D.

thesis, University of Pennsylvania, Philadelphia, PA, USA (2005)
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A

Penn Treebank Tagset

Table A.1: Penn Treebank Part-of-Speech Tags, adapted from [184, p. 295]

Tag Description Example Tag Description Example

CC Coordin. Conjunction and, but, or RBS Adverb, superlative fastest
CD Cardinal number one, two RP Particle up, off
DT Determiner a, the SYM Symbol +,%, &
EX Existential there there TO to to
FW Foreign word mea culpa UH Interjection ah, oops
IN Preposition/sub-conj of, in, by VB Verb, base form eat
JJ Adjective big VBD Verb, past tense ate
JJR Adj., comparative bigger VBG Verb, gerund eating
JJS Adj., superlative biggest VBN Verb, past participle eaten
LS List item marker 1, 2, One VBP Verb, non-3sg pres eat
MD Modal can, should VBZ Verb, 3sg pres eats
NN Noun, sing. or mass dog WDT Wh-determiner which, that
NNS Noun, plural dogs WP Wh-pronoun what, who
NNP Proper noun, singular IBM WP$ Possessive wh- whose
NNPS Proper noun, plural Carolinas WRB Wh-adverb how, where
PDT Predeterminer all, both ( Left parenthesis (, [, {
POS Possessive ending s ) Right parenthesis ), ], }
PP Personal pronoun I, you, he , Comma ,
PP$ Possessive pronoun your, ones . Sentence-final punc (. ! ?)
RB Adverb quickly : Mid-sentence punc (: ; ... -)
RBR Adverb, comparative faster





B

Example Scenarios from Ambiguity Detection
Evaluation

B.1 Evaluation of Homonym Detection

Scenario 1
Consider the process model as depicted:

Send relevant 
form Receive form Check 

completeness 

Ask customer 
to complete 

form 

Check for valid 
insurance 

policy 

Notify 
Rejection 

Consider specifically the activity ask customer to complete form and the
general meaning that the word ask can refer to.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

Specifically in the context of this
model, the word ask refers to
make a request or demand
for something to somebody.

In general, ask can refer to
make a request or demand
for something to somebody.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

Specifically in the context of this
model, the word ask refers to
require as useful, just, or
proper.

In general, ask can refer to
require as useful, just, or
proper.

(to be continued)
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Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

Specifically in the context of this
model, the word ask refers to
inquire about.

In general, ask can refer to in-
quire about.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

Specifically in the context of this
model, the word ask refers to
consider obligatory.

In general, ask can refer to con-
sider obligatory.

B.2 Evaluation of Synonym Detection

Scenario 1
Consider the process model as depicted:

Order 
Creation/ 

Processing 

Order 
Execution 

Order 
Release Order Permit 

Work 
Clearance 

Management 

Material 
Planning Order Printing 

Consider that the label Work Clearance Management was replaced by a
computer program, changing it to the following new label.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

The new label Assign Clear-
ance Management conveys
the same meaning as the origi-
nal label.

The new label Assign Clear-
ance Management is gram-
matically correct.

(to be continued)
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Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

The new label Aggregate
Clearance Management con-
veys the same meaning as the
original label.

The new label Aggregate
Clearance Management is
grammatically correct.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

The new label Ship Clear-
ance Management conveys
the same meaning as the origi-
nal label.

The new label Ship Clear-
ance Management is gram-
matically correct.

Strongly
disagree

Rather
disagree

Rather
agree

Strongly
agree

The new label Master Clear-
ance Management conveys
the same meaning as the origi-
nal label.

The new label Master Clear-
ance Management is gram-
matically correct.





C

Example Scenario from Recommendation
Evaluation

Scenario 6
Consider the process model as depicted:

Confirmation from 
PDC and External 

Systems 

Activity 
Allocation 

Activity 
Confirmation 

Transfer to 
PS of Time 
Recorded 

Time Sheet 
Creation 

Time Sheet 
Approval 

Report Time 
Sheet 

Also consider the activity Confirmation from PDC and External
Systems and think of possibilities to enrich this activity with an action or a

business object.

Very use-
less (-2)

Useless
(-1)

Useful
(+1)

Very use-
ful (+2)

I regard the suggestion Con-
firm Record from PDC and
External Systems as ...

I regard the suggestion Con-
firm Production Order
from PDC and External
Systems as ...

I regard the suggestion Con-
firm Stock Placement from
PDC and External Systems
as ...

(to be continued)
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Very use-
less (-2)

Useless
(-1)

Useful
(+1)

Very use-
ful (+2)

I regard the suggestion Con-
firm Time Sheet from PDC
and External Systems as ...

I regard the suggestion Con-
firm Application Retrac-
tion from PDC and Exter-
nal Systems as ...

I regard the suggestion Con-
firm Removal f. Storage
from PDC and External
Systems as ...

I regard the suggestion Con-
firm Expression from PDC
and External Systems as ...

I regard the suggestion Con-
firm Activity from PDC
and External Systems as ...

I regard the suggestion Con-
firm Picking from PDC and
External Systems as ...

I regard the suggestion Con-
firm Result from PDC and
External Systems as ...


