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School of Economics, Renmin University of China

January 18, 2014

Abstract

In this paper we propose a class of nonparametric tests for anomaly effects in empirical asset

pricing models in the framework of nonparametric panel data models with interactive fixed effects.

Our approach has two prominent features: one is the adoption of nonparametric component to

capture the anomaly effects of some asset-specific characteristics, and the other is the flexible treat-

ment of both observed/constructed and unobserved common factors. By estimating the unknown

factors, betas, and nonparametric function simultaneously, our setup is robust to misspecification

of functional form and common factors and avoids the well-known “error-in-variable” (EIV) prob-

lem associated with the commonly used two-pass (TP) procedure. We apply our method to a

publicly available data set and divide the full sample into three subsamples. Our empirical results

show that size and book-to-market ratio affect the excess returns of portfolios significantly for the

full sample and two of the three subsamples in all five factor pricing models under investigation.

In particular, the nonparametric component is significantly different from zero, meaning that the

constructed common factors (e.g., small minus big (SMB) and high minus low (HML)) cannot

capture all the size and book-to-market ratio effects. We also find strong evidence of nonlinearity

of the anomaly effects in the Fama-French 3-factor model and the augmented 4-factor and 5-factor

models in the full sample and two of the three subsamples.

Key Words: Anomaly effects; Asset pricing; CAPM; Common factors; EIV; Fama-French

three-factor; Interactive fixed effects; Nonparametric panel data model; Sieve method; Specification

test

∗We sincerely thank Subal Kumbhakar and two anonymous referees for their many insightful comments and sugges-

tions that lead to a substantial improvement of the presentation. The first and second authors gratefully acknowledge

the Singapore Ministry of Education for Academic Research Fund under grant number MOE2012-T2-2-021. Address

Correspondence to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford Road, Singapore

178903; E-mail: ljsu@smu.edu.sg, Phone: +65 6828 0386.

1
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1 Introduction

One of the central questions in finance is why different assets have different rates of return. The classical

asset pricing theory states that the cross-section of equity returns can be explained by systematic risks

(betas) or factor loadings on a set of common factors. Based on Markowitz’s (1952) mean-variance

analysis, Sharpe (1964) and Lintner (1965) propose the capital asset pricing model (CAPM). They

suggest the systematic (market) risk as the only factor that affects the expected returns.

However, many empirical works indicate that the CAPM beta can not completely explain the

cross-section of expected asset returns; see, e.g., Friend and Blume (1970) and Stambaugh (1982).

These empirically documented cross-sectional patterns in average returns, which cannot be explained

by theories, are called anomaly effects. In empirical finance, there has been a large amount of literature

on how firm- or asset-specific characteristics such as leverage, past returns, dividend-yield, earnings-to-

price ratio and book-to-market ratio as well as size help explain the cross-section returns; see Jegadeesh

and Titman (1993) for price momentum, Chordia and Shivakumar (2002) for earning momentum, Ang,

Hodrick, Xing, and Zhang (2006) for idiosyncratic volatility, and Fama and French (1992, 1996), Berk

(1995), and Grauer (1999) for size and book-to-market ratio effects. To explain these anomaly effects,

one natural way is to include more factors to capture the behavior of expected returns and this leads to

the multifactor pricing models. One key issue for multifactor pricing models is how to select the factors.

Two approaches are popular in the literature. The first approach is statistical and is motivated by

the arbitrage pricing theory (APT) of Ross (1976) and Huberman (1982). For example, Lehmann and

Modest (1988) use factor analysis and Connor and Korajczyk (1986, 1993) use principal component

analysis (PCA) to select the factors to explain the cross-section returns. The second approach is to

create factors based on asset/firm characteristics or some macroeconomic variables. For example, Fama

and French (1993) use size and book-to-market ratio to form factor portfolios and Chen, Roll, and Ross

(1986) specify macroeconomic variables as factors. For more discussions on factor selection, see the

recent surveys on empirical asset pricing by Goyal (2012), Subrahmanyam (2010), and Jagannathan,

Skoulakis, and Wang (2010).

Two common beliefs are underlying the above two approaches: one is that the beta does not change

over time for each asset, and the other is that the factor structure is able to capture all the cross-section

returns. However, the beta may vary over time or be determined by some asset-specific characteristics.

For some recent advancement on relaxing the assumption of constant beta, see Li and Yang (2011),

Ang and Kristensen (2012) and Li, Su, and Xu (2013) for time-varying beta, Connor and Linton (2007)

and Connor, Hagmann, and Linton (2012) for the characteristic-based factor model. In addition, there

may be some anomaly effects introduced by asset-specific characteristics that cannot be captured or
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completely captured by a factor structure. In some cases, the asset-specific characteristics may also

affect the asset returns in a direct way and should be included in the factor pricing models explicitly.

For some related empirical works, see Banz (1981) for size, Rosenberg, Reid, and Lanstein (1985) for

book-to-market ratio, Basu (1977) for earnings-price ratio, Brennan, Chordia, and Subrahmanyam

(1998) and Zhang (2009) for size and book-to-market ratio, Chordia, Goyal, and Shanken (2012) for

size, book-to-market ratio and lagged returns. For some theoretical studies, see Jagannathan and Wang

(1998) for a rigorous econometric analysis of the cross-sectional regression method when time-invariant

firm characteristics are employed in the factor models and Jagannathan, Skoulakis, and Wang (2003)

for discussions on time-varying firm-specific characteristics.

In this paper, we are interested in testing for anomaly effects of asset-specific characteristics in factor

pricing models. The commonly used method in empirical studies is the two-pass (TP) cross-sectional

regression method, first proposed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973).

The idea underlying the TP method is quite simple: sort the portfolios based on the means of individual

characteristics which may be associated with average returns, estimate the betas for the portfolios,

and check whether the average returns can be explained by the difference in betas. This idea gives

rise to a two-stage procedure in applications. In the first stage, the asset betas are estimated by time

series linear regressions of the asset returns on a set of common factors. In the second stage, run the

cross sectional regression of mean returns on the betas and individual asset characteristics and test for

the significance of asset-specific regressors. If the average returns cannot be accounted for only by the

betas, the asset-specific characteristics should be significant and included in the factor pricing model.

The primary appeal of the TP method is its simplicity. However, there are four problems associated

with the TP method. The usage of estimated betas in the second stage gives rise to the well-known

error-in-variable (EIV) problem. Although the TP estimators are still consistent, the variance es-

timator used by Fama and MacBeth (1973) is asymptotically invalid. Many works have been done

to correct this problem; see Shanken (1992), Jagannathan and Wang (1998), Cochrane (2005), and

Ahn, Gadarowski, and Perez (2012), among others. The second problem arises from the adoption of

constructed factors such as Fama and French’s three factors and some macroeconomic factors. The

omission of some important factors or inclusion of some irrelevant factors may lead to the misspec-

ification of factor pricing models and consequently inconsistent estimation and misleading inference.

The third problem is the efficiency loss in the TP method. In the second stage, only average returns

are used to estimate the factor risk premium. Two possible reasons for running this regression in the

second stage are convenience and lack of panel data on individual characteristics. The last problem

is about the underlying assumption that the firm-specific characteristics affect the returns in a linear

way. Since there is no theory on how the anomaly effects can be generated, imposing such a strong

functional form assumption may lead to model misspecification.

In this paper, we propose a general framework to test for anomaly effects in asset pricing models.
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Our setup is more general than the traditional linear factor pricing models in the sense that it includes

both observed and unobserved common factors, and incorporates a nonparametric function of individ-

ual asset-specific characteristics. We test for the anomaly effects by checking whether the estimated

nonparametric function is close to zero or not based on the recent work by Su and Zhang (2013). In

the case where anomaly effects are detected, it is also worthwhile to test whether the functional form is

linear or not. The tools developed in these papers can also be used to test the linearity of a functional

form and they complement the test developed by Su and Lu (2013) for nonparametric panel data

models with additive fixed effects. We apply our method to a publicly available data set and divide

the full sample into three subsamples. Our empirical results show that size and book-to-market ratio

affect the excess returns of portfolios significantly for the full sample and two of the three subsamples

in all five factor pricing models under investigation. We also find strong evidence of nonlinearity of the

anomaly effects in the Fama-French 3-factor model and the augmented 4-factor and 5-factor models

in the full sample and two of the three subsamples.

The rest of the paper is organized as follows. In Section 2, we introduce the asset pricing models

and formalize the hypotheses for testing the absence of anomaly effects. In Section 3, we give the

estimation method for nonparametric panel data models with interactive fixed effects or with both

observed and unobserved factors. Section 4 states the test statistics and their asymptotic properties

under the null. In Section 5, we apply our tests to a portfolio data set. Section 6 concludes.

2 A general empirical asset pricing model

In this paper, we assume that the excess returns are generated as follows

 −  = () + Γ
00
  + 00 

0
 +   = 1    = 1   (2.1)

where  is the rate of return of asset  at time ,  is the risk-free return rate at time ,  − 

is the excess rate of return,  (·) is an unknown smooth function,  is a  × 1 vector of observed
characteristics of asset  at time   is a vector of observed or constructed common factors such as

the market risk in CAPM and the constructed three factors in Fama-French three-factor model, Γ0

is the unobserved vector of betas of  
0
 is a vector of unobserved common factors, and 0 is the

vector of betas of 0 . Here  (·) is used to capture the anomaly effects that cannot be explained by a
factor structure. We do not specify the functional form of  (·) to avoid functional form misspecification.
Apparently, the model includes both observed/constructed and unobserved common factors and unifies

the statistical and theoretical factor selection approaches. The setup offers a great flexibility to model

financial returns. When we know in advance that some constructed factors such as the market risk

in the CAPM explain the cross-section returns, these factors will be included in the modes to gain

efficiency.
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There are three main differences between our setup and the existing literature on testing for anom-

aly effects of characteristics in factor pricing models. First, unlike most factor pricing models that

employ either constructed factors or extracted factors based on some statistical techniques, our model

incorporates both types of factors simultaneously. It is well known that despite the existence of

substantial empirical evidence that some constructed factors such as Fama-French three factors have

certain power to explain the cross-sectional returns, there are still some unexplained factors that play a

significant role in explaining asset returns; see Kleibergen and Zhan (2013) and Levwellen, Nagel, and

Shanken (2010) for the account of effects of unexplained factors. Second, unlike most existing litera-

ture that imposes a linear function form, our model allows the anomalies to be caused by time-varying

asset-specific characteristics through an unknown smooth function. The inference based on the linear

model can be efficient if the linear functional form is correctly specified but is generally invalid and

misleading otherwise. In sharp contrast, the use of nonparametric model rules out functional form

misspecification and tends to yield robust inference. Third, like Serlenga, Shin, and Snell (2004) we

use a panel approach instead of the widely applied TP method. Unlike the TP method that employs

the data inefficiently, the panel approach is a much more efficient method in the use of information

than either time-series regressions or cross-section regressions.

The setup in (2.1) is very general and include various empirical asset pricing models as special

cases; see, e.g., the following widely-used asset pricing models in the panel framework.

Example 1. (One factor model: CAPM) When the model only includes the market risk

premium, (2.1) reduces to the classical CAPM

 −  = 0 + 0 ( − ) + ,  ∼ i.i.d.(0 2) (2.2)

where  −  is the market risk premium at time , 0 is the systematic risk of asset  which is

time-invariant, and  is the pricing error. In this model,  () = 0 and the set of unobserved

common factors is empty.

Example 2. (Fama-French three-factor model) Noticing that both the size and book-to-

market ratio have strong explanatory power on stock or portfolio returns, Fama and French (1992)

include two additional factors in the CAPM model. One is SMB, which stands for “small (market

capitalization) minus big”, and the other is HML, which stands for “high (book-to-market ratio)

minus low”. They measure the historical excess returns of small capitals over big capitals and of value

stocks over growth stocks. These factors are calculated with combinations of portfolios composed by

ranked stocks (book-to-market ratio ranking, capital ranking) and available historical market data.

Then model (2.1) becomes

 −  = 0 + 0 ( − ) + 0 + 0 + ,  ∼ i.i.d.(0 2) (2.3)
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Here  () = 0 and the set of unobserved common factors is empty. In addition to Fama-French

three factors, we can include the momentum factor to capture the tendency for the stock price to form

Carhart’s (1997) four-factor model. Of course we can also include the liquidity factor to capture the

effect of market-wide liquidity on return to form another four-factor model considered by Pástor and

Stambaugh (2003).

Example 3. (Pure unobserved factor model) In empirical applications, there is always some

risk of model misspecification such as omitting some important factors. A robust factor pricing model

is to allow the data to be generated from a latent factor model, i.e.,

 −  = 0 + 00 
0
 +  (2.4)

This model is motivated from the original APT model of Ross (1976) and Huberman (1982), both of

whom assume a strict factor structure for the return-generating process. Chamberlain and Rothschild

(1983) study the APT implication under an approximate factor model for return-generating process.

Connor and Korajczyk (1986, 1988) design a scheme of extracting factors from individual stock re-

turns. In the model (2.4) one does not use any constructed or observed risk factors but simply lets

the data determine the latent factors. The number of unobserved common factors can be chosen ac-

cording to some well known information criteria; see, e.g., Bai and Ng (2002). In this sense, the model

is robust to factor misspecification. Here  () = 0 and the set of observed common factors is empty.

Example 4. (Linear panel data model with observed factors) Serlenga, Shin, and Snell

(2004) propose the following panel data model with observed factors

 −  = 00 + Γ
00
  +  (2.5)

where  is a  × 1 vector of regressors,  = 0 +  and 0 and  represent the individual

effects and idiosyncratic error terms, respectively. If 0 6= 0 anomaly effects are then detected. In our
framework,  () = 00 and 0 can be viewed as unknown factor loading with constant factor 1.

Serlenga, Shin, and Snell (2004) consider a Wald statistic for testing the null hypothesis that 0 = 0

Zhang (2009) adopts a similar model to check the explanatory power of firm- or asset-specific variables

in cross-sections of expected returns when  is a vector of factors extracted from individual stock

returns by PCA or from size- and book-to-market-ratio-sorted portfolio returns.

To capture the anomaly effects, we replace the constant 0 in the traditional asset pricing models

with a nonparametric function  (). Then given (2.1), we can test for anomaly effects through the

following hypotheses:

H(0)0 : Pr{() = 0} = 1 (2.6)
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versus

H(0)1 : Pr{() = 0}  1 (2.7)

That is, the absence of anomaly effects requires that  () should be zero almost surely under the

null hypothesis H(0)0 , and when  () is not equal zero almost surely, we have evidence of anomaly

effects under the alternative hypothesis H(0)1 

The major difference between our test and the traditional test is that, in our test, the alternative

hypothesis is tied to the given firm- or asset-specific characteristics, while in the traditional one, the

alternative hypothesis is general and unspecified. Our test is more powerful than the traditional one if

the mispricing, 0, is indeed related to the given firm- or asset-specific variables, but is less powerful

if the mispricing is unrelated to the given firm- or asset-specific variables. If we reject H(0)0 , it means

that the additional firm- or asset-specific characteristics  can help explain the cross-section returns

and the inclusion of these additional variables in the return regression is necessary. Otherwise, there is

no anomaly effect caused by . This idea is similar to Lin and Hong (2006) who apply a generalized

spectral derivative test to evaluate both one factor model and Fama-French three-factor model for the

Chinese capital market.

In the case of rejection, how to model the unknown function  () is also an important issue.

Linearity is commonly imposed in the literature due to its simplicity and easy interpretation but may

lead to misleading results when the true function  is not linear or cannot be well approximated by a

linear function. So we are also interested in testing

H()0 : Pr{() =  0


0} = 1 for some 0 ∈ Θ ⊂ R (2.8)

versus

H()1 : Pr{() 6=  0
}  1 for all  ∈ Θ ⊂ R (2.9)

If H()0 is rejected, a nonlinear functional form for  (·) would be preferred. This test can give more
information about the shape of the unknown function .

3 Estimation

In this section, we first introduce nonparametric panel data models with interactive fixed effects and

the estimation method. For the purpose of illustration, we first assume that only unobserved factors

are present in the model and then discuss briefly how to extend the estimation to the models with

both observed and unobserved factors.
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3.1 Models with unobserved factors

We first consider the following nonparametric panel data model with interactive fixed effects

 = () + 00 
0
 +   = 1    = 1   (3.1)

where  is a scalar dependent variable,  is an unknown smooth function,  is a -dimensional

vector, 0 and 0 are both -dimensional vectors and represent the unobserved common factors and

factor loadings, respectively. Since  (·) is an unknown function, we propose to estimate  (·) by
the method of sieves. For some excellent reviews on sieve methods, see Chen (2007, 2013). To

proceed, let () ≡ (1 ()  · · ·   ())0 denote a sequence of basis functions that can approximate
any square-integrable function of  very well. Then we can approximate  () by 0 () for some

 × 1 vector  under fairly weak conditions. Let  ≡  be some integer such that  → ∞ as

( )→∞ where ( )→∞ denotes that  and  pass to infinity simultaneously. We introduce

the following notation:  ≡  (),  ≡ (),  ≡ (1 · · ·   )0, · ≡ (1 · · ·  )0 
and P ≡ (1· · · ·  ·)0 We use 0 = (01  0)0 to denote the true value of  = (1  )0 in
the sieve approximation of  () based on a linear combination of elements in  (). Here we suppress

the dependence of  
0 and  on  for notational simplicity.

To estimate , we consider the following approximating linear panel data models with interactive

fixed effects:

 = 0
0 + 00 

0
 +  (3.2)

where  ≡ +[ ()−00] is the new error term, and  ()−00 represents the sieve approx-
imation error. Let  ≡ (1 · · ·   )0, u ≡ (1 · · ·   )0,  ≡ (1 · · ·   )0  Y ≡ (1 · · ·   )0 
 ≡ (1 · · ·   )0 and  ≡ (1 · · ·   )0  Similarly, denote the true values of  and  as 0 and 0 In

matrix notation, (3.2) can be rewritten as

Y =
X
=1

0P + 000 + u (3.3)

Following Bai (2009), Moon and Weidner (2013a, 2013b), and Su and Zhang (2013), we estimate the

model in (3.3) by the Gaussian QMLE method. That is, we obtain the estimator (̂ ̂ ̂) of
¡
0 0 0

¢
as follows

(̂ ̂ ̂) = argmin
()

1


tr

⎡⎣ÃY − X
=1

P −  0
!0Ã

Y −
X
=1

P −  0
!⎤⎦  (3.4)

where tr(·) is the trace operator. In particular, based on the concentrated quasi-log-likelihood and the
idea of principal component analysis, we can obtain ̂ ̂ and ̂ as follows:

̂ = argmin
∈R

 () ≡ argmin
∈R

1



X
=+1



⎡⎣ÃY − X
=1

P

!0Ã
Y −

X
=1

P

!⎤⎦  (3.5)
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⎡⎣ 1



Ã
Y −

X
=1

̂P

!0Ã
Y −

X
=1

̂P

!⎤⎦ ̂ = ̂  (3.6)

and

̂ ≡
³
̂1 · · ·  ̂

´0
= −1

h
̂ 0
³
1 − 1̂

´
 · · ·  ̂ 0

³
 −  ̂

´i0
 (3.7)

where () denotes the -th largest eigenvalues of a symmetric matrix  where eigenvalues of mul-

tiplicity are counted multiple times,  is a diagonal matrix consisting of  largest eigenvalues of

the matrix in the square bracket in (3.5) in decreasing order, and the estimate ̂ of  is obtained as

the corresponding first  eigenvectors. Here we use the same identification restrictions as Bai (2009):

 0 =  and 0 =diagonal matrix. Multiple starting values for numerical optimization are rec-

ommended since the objective function  () is neither convex nor differentiable with respect to .

Nevertheless, we find that that it is satisfactory to apply Bai’s (2009) iterative estimate of  as the

starting value in the optimization in (3.5).

After obtaining ̂, the sieve estimator for  () is given by ̂ () =  ()0 ̂ The asymptotic analysis

in Su and Zhang (2013) shows that under some regularity conditions,

 () [̂ ()−  ()]− ()
→  (0 1)

as ( ) → ∞ Here  () and  () denote the asymptotic variance and bias of ̂ ()  respec-

tively. Their formulae are quite complicated and omitted here, but we will present their consistent

estimates below.

The asymptotic bias term  () can be decomposed into two parts, corresponding to two sources

of bias, denoted as 1 () and 2 () respectively. 1 () is caused by cross-sectional heteroskedasticity

of errors conditional on D — the -field generated by factors and factor loadings; while 2 () is caused
by serial correlation and heteroskedasticity of errors conditional on D. In the special case where ’
are i.i.d. conditional on D across both  and , the two bias terms disappear. To obtain consistent

estimators of  () and remove these bias terms, we first obtain the residuals by

̂ ≡  − ̂ ()− ̂
0
̂ (3.8)

Let ̂ ≡ ̂
0
(̂

0
̂)−1̂  ̂ ≡ ̂ 0(̂

0̂ )−1̂, and ̂ ≡  − 1


P
=1 ̂ − 1



P
=1 ̂+

1


P
=1

P
=1 ̂ ̂ Define

̂ ≡ 1



X
=1

X
=1

̂̂
0
 Ω̂ ≡ 1



X
=1

X
=1

̂̂
0
̂

2
 (3.9)

̂ () ≡  ()
0
̂−1 Ω̂ ̂

−1
 

 ()  and ̂ () ≡
q
̂ () (3.10)

Let ̂ = (̂1  ̂ )
0
, ê = (̂1  ̂ )

0
 Φ̂ = ̂(̂

0
̂)−1(̂ 0̂)−1̂ , D = diag(11  ) for any ×

matrix  with ( )th element  , and  = − (0)−10 for any × matrix  where  is
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an × identify matrix. Define  × 1 vectors ̂1 and ̂2 whose th elements are respectively given by

̂1 ≡ 1


tr
h¡
êê0
¢D


̂
PΦ̂

i
and ̂2 ≡ 1


tr
h
(ê0ê)D 

̂
P0Φ̂

0
i
 (3.11)

Then ̂ () = −̂
 ()0 ̂−1 ̂ estimates for the bias  () for  = 1 2 The bias-corrected

estimator of  is given by

̂ ≡ ̂ + ̂−1 (
−1̂1 + −1̂2) (3.12)

Let ̂ () = −̂ 
 ()

0
̂−1 (

−1̂1 + −1̂2) = ̂1 () + ̂2 ()  The bias-corrected estimator

of  () is given by

̂ () ≡  ()0 ̂ = ̂ ()− ̂−1 ̂ ()  (3.13)

Under some regularity conditions, Su and Zhang (2013) show that ̂ () [̂ ()−  ()]
→  (0 1)

as ( )→∞

To construct our test statistic for testing the null hypothesis in (2.8), we also need to estimate the

model under H()0 . In this case,  () = 00. By replacing {} with {} in the sieve estimation,
we can obtain the linear estimators (̂ ̂ ̂) of

¡
0 0 0

¢
. Similarly, we can define a bias-corrected

estimate for 0 : ̂ ≡ ̂ + ̂−1 (
−1̂1+ −1̂2), where ̂  ̂1 and ̂2 are defined similarly

to ̂  ̂1 and ̂2 respectively, but with {} being replaced by {}. Su, Jin, and Zhang (2013)
show that

√
 (̂−0) → 

¡
0−10 Ω

−1
0

¢
under some conditions, where 0 ≡plim( )→∞ 

 ≡ 1


P
=1

P
=1 ̃̃

0
 Ω ≡plim( )→∞ 1



P
=1

P
=1 ̃̃

0


2
, ̃ is the th row of ̃ ≡

0 − 1


P
=1 0  and  ≡ 00 (

000)−10 

3.2 Models with both observed and unobserved factors

We now consider nonparametric panel data models with both observed and unobserved factors:

 =  () + Γ
00
  + 00 

0
 +  (3.14)

where the notation on the right hand side follows from that in equation (2.1). To estimate , we

consider the following approximating linear panel data models with interactive fixed effects:

 = 0
0 + Γ00  + 00 

0
 +  (3.15)

where  =  +
£
 ()− 0

0
¤
 In vector notation, (3.15) can be rewritten as

 = 
0 +Γ0 + 00 +  (3.16)

where  = (1   )
0
and  = (1   )

0
. Denote ̃ =  for  = ,  

0 or  where

 =  − (0)−10. Multiplying  on both sides of (3.16) yields

̃ = ̃
0 + ̃00 + ̃ (3.17)
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Now we obtain a panel data model only with unobserved factors ̃0. We can follow the method

introduced before to estimate 0, ̃0 and 0. For the purpose of identification, it is reasonable to

impose an additional restriction that the observed factors are orthogonal to the unobserved factors.

That is, we assume that the space spanned by the columns of  is orthogonal to the space spanned by

the columns of 0, i.e., 00 = 0 With this identification restriction, we have: ̃0 = 
0 = [ −

 (0)−10]0 = 0 Consequently, we can estimate the model in (3.17) via the Gaussian QMLE

method with ̃0 being replaced by 0. Specifically, we obtain the estimator (̂ ̂ ̂) of (0 0 0) as

follows

(̂ ̂ ̂) = argmin
()

1



X
=1

³
̃ − ̃ − 

´0 ³
̃ − ̃ − 

´
 (3.18)

Once we get ̂ ̂ and ̂  the factor loadings Γ0 ’s can be estimated by

Γ̂ = (
0)−10

³
 − ̂ − ̂ ̂

´


We can estimate  by ̂ =  − 0̂ − Γ̂0 − ̂ 0̂ Let ̃ =  − 1


P
=1 

0
 (

0 )
−1

 and

̃ ≡ ̃ − 1


P
=1 ̂ ̃ − 1



P
=1 ̂̃ +

1


P
=1

P
=1 ̂ ̂̃, where ̂ and ̂ are defined

as before. Define ̃ , Ω̃ , ̃ () and ̃ () analogously to ̂ , Ω̂ , ̂ () and ̂ () 

respectively, but with {̂} being replaced by {̃}. Construct ̃1 and ̃2 as the estimates of 1 and 2
by using ̂ , ̂ and {̂} and replacing {} with {̃} in (3.11) and (3.12). Then we can define a bias-
corrected estimate of  () by ̂ () =  ()

0
̂, where ̂ = ̂+ ̃−1 (

−1̃1+−1̃2). Following

Su and Zhang (2013), one can readily establish the claim that ̃ () [̂ ()−  ()]
→  (0 1)

under some regular conditions.

4 Testing for the anomaly effects and functional forms

In this section, we consider specification tests for the commonly used functional forms in panel data

models with interactive fixed effects. For the model in (3.1) or (3.14), we are interested in testing the

null hypothesis

H()0 : Pr
£
 () =  0


0
¤
= 1 for some 0 ∈ Θ (4.1)

where Θ is a compact subset of R. The alternative hypothesis is H()1 : Pr[ () =  0
]  1 for

all  ∈ Θ The test statistic is based on the comparison between the linear estimator under the null
hypothesis and the sieve estimator under the alternative; see Su and Zhang (2013) for details.

In empirical applications in economics and finance, people are also interested in testing the following

null hypothesis

H(0)0 : Pr [ () = 0] = 1 (4.2)
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The alternative is H(0)1 : Pr[ () = 0]  1. Obviously, the null hypothesis in (4.2) can be regarded

as a special case of that in (4.1) by taking 0 = 0 As mentioned above, H(0)0 indicates the absence of

anomaly effects.

4.1 The test statistic

We first introduce Su and Zhang’s (2013) test statistic that is based on the weighted 2-distance

between two estimators of  (·), i.e., the linear and sieve estimators. Intuitively, both estimators are
consistent under the null hypothesis of linearity whereas only the sieve estimator is consistent under

the alternative hypothesis. So if there is any deviation from the null, the 2-distance between the two

estimators will signal it out asymptotically. This motivates the following test statistic

Γ ≡ 1



X
=1

X
=1

£
̂ ()− ̂() ()

¤2
 () 

where ̂() () = 0̂, ̂ is Moon and Weidner’s (2013a, 2013b) linear estimator of the coefficient 0

under H()0 (bias correction is preferred and used below but not required in theory), and  () is a

user-specified nonnegative weighting function. Similar test statistics have been proposed in various

other contexts in the literature; see, e.g., Härdle and Mammen (1993), Hong and White (1995), and

Su and Lu (2013). After being appropriately centered and scaled, Γ is asymptotically normally

distributed under the null hypothesis of linearity.

Define

B̂ ≡ tr
³
̂−1 ̂

−1
 Ω̂

´
and V̂ ≡ 2tr

³
̂−1 ̂

−1
 Ω̂ ̂

−1
 ̂

−1
 Ω̂

´


Here the definitions of   ̂  and Ω̂ depend on whether the observed factor  is present

or not (see model (3.1) or (3.14)). Let  ≡  ()  When  is absent as in model (3.1),  =

1


P
=1

P
=1 

0
, and ̂ and Ω̂ are defined as in Section 3.1. When  is present in model

(3.14),  =
1


P
=1

P
=1 ̃̃

0
, ̂ ≡ 1



P
=1

P
=1 ̃̃

0
 and Ω̂ ≡ 1



P
=1

P
=1 ̃̃

0
̂

2
,

where ̃ and ̃ are as defined in Section 3.2. Then we define a feasible test statistic:

̂ ≡
³
 Γ − B̂

´


q
V̂  (4.3)

Su and Zhang (2013) show that ̂
−→  (0 1) under H()0 .

We can also modify our test statistic to test for the null hypothesis H(0)0 of no anomaly effects.

Define

Γ0 ≡ 1



X
=1

X
=1

[̂ ()− 0]2 ()

which compares the distance between the sieve estimate of  (·) and 0. It is easy to show that under
H(0)0 ,

̂0 ≡
³
 Γ0 − B̂

´


q
V̂

−→  (0 1) 
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4.2 A bootstrap version of the test

Despite the fact that ̂ and ̂0 are asymptotically (0 1) under the null, it is not recommended

to rely on the asymptotic normal critical values to make statistical inference in finite samples because

of the nonparametric nature of the tests. In addition, even though the slow convergence rates of the

factors and factor loadings estimates do not affect the asymptotic normal distributions of the test

statistics, they tend to have adverse effects in finite samples (see, Su and Chen, 2013). As a result,

tests based on standard normal critical values tend to suffer severe size distortions in finite samples.

For this reason, Su and Zhang (2013) propose a fixed-regressor wild bootstrap method for the test of

H()0 and demonstrate their superb finite sample performance. The bootstrap procedure goes as follows:

1. Under H()0  obtain the linear estimators ̂, ̂
()
 , ̂

()

 , and ̂
()
 , where the superscript () denotes

estimates under the null hypothesis of linearity; under H()1  obtain the bias-corrected sieve esti-

mators: ̂, ̂, ̂, and ̂. Calculate the test statistic ̂ based on ̂ () = ̂
0


(),

̂
0
 ̂, ̂ and ̂

2. For  = 1  obtain the wild bootstrap errors {∗}=1 as follows: ∗ = ̂
()
 where  are

i.i.d.  (0 1). Then generate the bootstrap analogue  ∗ of  by holding ( ̂
()
  ̂

()

 ) as

fixed:  ∗ =  0
̂ + ̂

()0
 ̂

()
 + ∗ for  = 1   and  = 1   .

3. Given the bootstrap resample { ∗ }, obtain the sieve QMLEs ̂∗ (), ̂
∗
 , ̂

∗
 and ̂∗ and

the linear estimators ̂
∗
, ̂

()∗
 , ̂

()∗
 and ̂

()∗
 . Calculate the bootstrap test statistic ̂∗ based

on ̂∗ (), 
0
̂
∗
, ̂∗ , ̂

∗
  and ̂∗

4. Repeat Steps 2-3 for  times and index the bootstrap statistics as {̂∗}=1. Calculate the
bootstrap -value: ∗ = −1

P
=1 1{̂∗ ≥ ̂} where 1{·} is the usual indicator function.

It is straightforward to implement the above bootstrap procedure. Note that we impose the null

hypothesis of linearity in Step 2. Since the regressors are treated as fixed, there is no dynamic structure

in the bootstrap world. With a minor modification, the above bootstrap procedure can be applied

to the test of H(0)0 versus H(0)1 . The difference is that here we need to estimate a pure panel factor

model instead of a linear panel data model with a factor structure in Steps 1 and 3, and generate the

bootstrap resamples using the residuals from the pure panel factor model.

5 Empirical application

In this section we apply the specification tests to test for anomaly effects in empirical asset pricing

models. We first discuss the data and implementation, and then report the test and estimation results.
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5.1 Data

We collect monthly data on the average value weighted excess returns and size (SZ), and annual

data on book-to-market ratio (BM) for 100 constructed portfolios for the period from June 1973 to

December 2009 from Kenneth French’s website.1 A total of  =96 portfolios are available for the

selected sample period. We collect the monthly Fama/French’s three factors, i.e., SMB, HML, and

market excess return (MKT), and monthly Momentum factor (Mom) from Kenneth French’s data

library. In addition to the above four factors, we also download monthly data on the market-wide

liquidity factor (Liq, the level of aggregate liquidity) from Pástor’s website.2 To remove the outliers of

the return data, we truncate the data using 97.5% percentile of the original data as upper bound and

2.5% quantile as a lower bound. In addition to the full sample 1973/07-2009/12 ( = 438), we also

consider three subsamples: 1973/07—1983/12 ( = 126), 1984/01—1996/12 ( = 156), and 1997/01—

2009/12 ( = 156). The first subsample is the period between the end of oil shock in 1972 and the

starting of “Great Moderation” in 1984. The last subsample corresponds to the post Asian financial

crisis period. The descriptive statistics about our data set are presented in Table 1. From Table 1 we

can observe a large variation in some of the financial variables, e.g., Mom and Liq, across the three

subsample periods. For the Mom, the standard deviations vary from 3.1698 in the second subsample

to 6.2755 in the third subsample, and for the Liq, the standard deviations vary from 3.6576 in the

second subsample to 8.3147 in the third subsample. The two characteristic variables, SZ and BM, are

quite stable, with standard deviations around 1.5127 to 1.8846 for SZ and 0.5792 to 0.8792 for BM.

5.2 Implementation

5.2.1 Models

We consider different tests for five models: (1) one-factor model (CAPM), (2) Fama-French three-

factor models (FF), (3) 4-factor models (4F, Fama-French three factors plus momentum factor), (4)

5-factor models (5F, Fama-French three factors plus momentum factor and liquidity factor), and (5)

pure unobserved factor models (PUF).

5.2.2 Tests

To test the anomaly effects in the portfolios returns, we consider three different tests. The first one

is the sieve-based test with different numbers of knots used in the construction of the cubic B-spline

sieve bases (see Section 5.2.5 below), the second one is the parametric Wald test based on the linear

estimator ̂ introduced above where we let the data determine the number of unobserved factors, and

the third one is the parametric Wald test based on a linear specification of  (·) without including any
1Website: mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_sz.html.
2Website: http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2012.txt.
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Table 1: Descriptive statistics for variables (96 portfolios) and factors

Variable or factor Period Mean Median Std deviation Max Min

Excess return (×100) 1973/07-2009/12 0.6882 0.8300 6.1345 94.9400 -42.6100

1973/07-1983/12 0.7679 0.3000 6.7217 37.0200 -31.8900

1984/01-1996/12 0.8945 1.0700 4.9472 26.3200 -26.3100

1997/01-2009/12 0.5903 0.8950 6.8470 94.9400 -42.6100

SZ 1973/07-2009/12 6.1639 6.1742 1.8846 11.7025 1.3481

1973/07-1983/12 4.8327 4.7612 1.5127 8.8091 1.3481

1984/01-1996/12 5.9529 5.9712 1.6889 10.4153 1.9544

1997/01-2009/12 7.1509 7.1231 1.7166 11.7025 3.0516

BM 1973/07-2009/12 0.8995 0.7200 0.7007 6.5800 0.0800

1973/07-1983/12 1.176 0.9550 0.8792 6.5800 0.1300

1984/01-1996/12 0.9030 0.7800 0.5792 4.6400 0.1100

1997/01-2009/12 0.6877 0.5400 0.5834 5.2300 0.0800

MKT (×100) 1973/07-2009/12 0.4228 0.7750 4.5288 16.1000 -17.2300

1973/07-1983/12 0.3454 0.0350 4.7622 16.1000 -12.7500

1984/01-1996/12 0.8004 1.0500 3.8719 11.3000 -12.9000

1997/01-2009/12 0.2444 1.1350 4.9207 10.1900 -17.2300

SMB (×100) 1973/07-2009/12 0.2258 0.0700 3.2334 22.0000 -16.3900

1973/07-1983/12 0.4418 0.2800 3.3846 11.0100 -9.9000

1984/01-1996/12 0.0639 0.0000 2.3337 8.4700 -6.6400

1997/01-2009/12 0.3144 0.0100 3.9248 22.0000 -16.3900

HML (×100) 1973/07-2009/12 0.4549 0.4700 3.1251 13.8400 -12.6000

1973/07-1983/12 0.5204 0.7300 2.7101 8.6000 -9.7600

1984/01-1996/12 0.3437 0.3500 2.6262 7.6100 -8.4400

1997/01-2009/12 0.3598 0.4050 3.7557 13.8400 -12.6000

Mom (×100) 1973/07-2009/12 0.7884 0.9350 4.6853 18.3900 -34.7200

1973/07-1983/12 0.8496 0.8400 3.8199 10.2600 -13.8000

1984/01-1996/12 1.0104 1.2850 3.1698 15.2400 -9.5800

1997/01-2009/12 0.4325 0.8500 6.2755 18.3900 -34.7200

Liq (×100) 1973/07-2009/12 -3.2304 -2.3204 6.3761 20.1015 -33.3629

1973/07-1983/12 -5.1489 -4.4602 5.5665 9.6240 -30.0164

1984/01-1996/12 -1.5002 -1.3889 3.6576 8.0346 -15.7862

1997/01-2009/12 -3.7786 -3.4126 8.3147 20.1015 -33.3629
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unobserved factors. The last one is similar to the test in Zhang (2009) who studies anomaly effects by

using linear regression models with constructed factors. For the latter two tests, the Wald statistics

are used to test where 0 = 0 when  (·) is linearly specified:  () = 00

For the specification test of linear functional forms which is especially useful when anomaly effects

are detected, we only consider the sieve-based test.

5.2.3 Determination of the number of sieve terms

In sieve estimation, we have to choose the number of sieve terms. There are three common methods

to select the number of approximating terms given sieve bases. The first one is a data-driven method

which selects the “optimal” number of sieve terms based on least squares cross-validation (CV), gener-

alized CV (GCV), or some information criteria (e.g., AIC, BIC). This is motivated from the apparent

connection of the method of sieves with the parametric method. For example, Andrews (1991) estab-

lishes the asymptotic optimality of CV as a method to select series terms for nonparametric least square

regression with heteroskedastic errors. The second method is to apply lasso (least absolute shrink-

age and selection operator) to select the significant terms and estimate the model simultaneously in

nonparametric least square regression; see Belloni and Chernozhukov (2013). The third method is to

consider a candidate set of numbers of sieve terms to evaluate the sensitivity of the estimation and

testing to different choices of numbers of sieve terms.

To the best of our knowledge, there is no theoretical work on the asymptotic properties of CV,

GCV, AIC, BIC, or lasso for the nonparametric panel data models with factor structural errors. For

this reason, we adopt the third approach in our application.

5.2.4 Choice of the number of factors

In practice, we also need to choose the number of factors. Bai and Ng (2002) consider determining the

number of factors in pure unobserved factor models without any regressors. As Su, Jin, and Zhang

(2013) remark, it is easy to extend their theory to linear panel data models with interactive fixed

effects.3 Under either the null of linearity (H()0 ) or the null of no anomaly effect (H
(0)
0 ), we have a

linear panel data model with interactive fixed effects. Following Bai and Ng (2002), we can adopt the

3See Lu and Su (2014) for the performance of Bai and Ng’s (2002) information criteria in linear panel data models

with interactive fixed effects.
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following recommended information criteria to choose the number of factors:
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 ̂ is the residual and ̂ is estimate

of the factor matrix  when  factors are used and the model is estimated under the null of linearity

(H()0 ), and ̂2 is a consistent estimate of 1
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¡
2
¢
under the null and can be replaced

by  (max ̂max ) in applications. Following Bai and Ng (2002) we consider max = 8, 10 and 15

It is clear that 1 () and 2 () depend on the choice of max through ̂2 and that different

criteria may yield different choices of optimal numbers of factors. Therefore, we choose the number of

factors that have the majority recommendation from these four criteria and three choices of max in

the estimation under the null. Where there is a tie, we use the larger number of factors. Su, Jin, and

Zhang (2013) use a similar method to choose the number of factors in their panel study of economic

growth with interactive fixed effects.

5.2.5 Other details

Throughout the estimation and testing, we impose additivity assumption on the nonparametric func-

tion such that ( ) = 1 ()+2 () for simplicity. Note that almost all the empirical

works in the literature impose additivity on testing or modeling anomaly effects. The results without

imposing the additivity assumption are similar and available upon request.

In the sieve-based test, we use the cubic B-spline as the sieve basis. To construct the cubic B-spline

bases for either 1 (·) or 2 (·)  we need to determine the number of knots and use the same number
() of knots in the construction for each additive component. As mentioned in Section 5.2.3, we will

choose  = 3 4  8 and investigate the sensitivity of our estimation and testing to the choice of 

Details on the construction of cubic B-spline can be found in Su and Zhang (2013). In addition, we

need to choose a weight function  (·). We set  () = Π
2
=11 {0025 ≤  ≤ 0975} where 

denotes the th element in  = ( )
0 and  denotes the empirical th quantile of 

4

We use 1000 bootstrap resamples to obtain the bootstrap -values for the sieve-based tests for

either the anomaly effects or linear functional forms, and the corresponding Wald test for the anomaly

effects based on linear regression models.

4This weight function can be replaced by the constant 1 since we truncate the 2.5% tail observations before imple-

menting the sieve-based and kernel-based tests.
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Table 2: Bootstrap p-values for different tests of anomaly effects in various asset pricing models

H(0)0 : Pr [ () = 0] = 1
 0  3 4 5 6 7 8

1973/07-2009/12 (full sample)
PUF 5 — 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CAPM 4 0.001 0.0138 0.001 0.001 0.001 0.001 0.001 0.001
FF 3 0.199 0.001 0.001 0.001 0.001 0.001 0.001 0.001
4F 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
5F 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1973/07-1983/12
PUF 4 — 0.552 0.272 0.215 0.207 0.209 0.186 0.163
CAPM 4 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001
FF 2 0.041 0.123 0.187 0.180 0.200 0.191 0.151 0.143
4F 2 0.294 0.430 0.674 0.712 0.656 0.602 0.469 0.437
5F 2 0.047 0.556 0.441 0.484 0.474 0.442 0.354 0.352

1984/01-1996/12
PUF 4 — 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CAPM 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
FF 1 0.715 0.1197 0.001 0.001 0.001 0.001 0.001 0.001
4F 1 0.240 0.001 0.001 0.001 0.001 0.001 0.001 0.001
5F 1 0.130 0.0196 0.001 0.001 0.001 0.001 0.001 0.001

1997/01-2009/12
PUF 7 — 0.001 0.001 0.015 0.006 0.004 0.002 0.007
CAPM 7 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
FF 4 0.0893 0.001 0.001 0.001 0.001 0.001 0.001 0.001
4F 4 0.001 0.0496 0.001 0.001 0.001 0.001 0.001 0.001
5F 4 0.001 0.0901 0.001 0.001 0.001 0.001 0.001 0.001

Note: 0  and  (q=3, 4,...,8) denote the Wald test based on the linear model without unobserved factors,
the Wald test based on the linear model with unobserved factors, and the sieve test with  knots, respectively.
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5.3 Test results

5.3.1 Test for anomaly effects

Table 2 reports the -values for various tests of anomaly effects in different factor pricing models. We

consider the tests for both the full sample and the three subsamples. For the full sample, we can see

that different numbers of unobserved factors are chosen for different factor pricing models based on

the procedure discussed above. We choose 5 4 3 3 and 3 unobserved factors in PUF, CAPM, FF,

4-factor, and 5-factor models, respectively. The inclusion of MKT in CAPM excludes one unobserved

factor, which implies that MKT is useful to explain the returns. However, the inclusion of SMB, HML,

and MKT in FF only excludes two unobserved factors. One possible explanation is that there may

exist some competition between SZ and SMB, or between BM and HML. For example, if SZ has played

the role of SMB in explaining the returns, then the inclusion of SMB may not result in the exclusion

of any latent factors. Further, the inclusion of one or two additional factors in the 4-factor or 5-factor

models does not exclude any additional unobserved factor either, which means that the unexplained

factors in FF cannot be explained by Mom or Mom and Liq together. In other words, the unexplained

factors are uncorrelated with Mom and Liq. Note that  is the Wald test for testing 
0 = 0 based on

the linear estimate ̂ when one assumes that  () = 00 in the panel model with unobserved factors.

We can see that the -values for the linear-regression-based Wald tests are all smaller than 0.05 for all

five factor pricing models. Similarly, the -values for the sieve-based tests of anomaly effects are all

smaller than 0.01 for all choices of numbers of sieve terms across all five factor pricing models under

investigation. So we can readily reject the null of no anomaly effects in both the linear models and

nonparametric models at the 5% significance level and the two types of tests yield the same conclusion.

Table 2 suggests that the results for the three subsamples are mixed. For the first subsample, both

the linear-regression-based Wald test and the sieve-based test can only reject the null of no anomaly

effects at the 1% significance level in CAPM, which seems to be hard to explain. For the second

subsample, except  in FF, all the tests can reject the null of no anomaly effects at the 5% significance

level. For the third subsample, we can reject the null of no anomaly effects at the 5% significance

level for almost all tests in all factor pricing models: an exception occurs for the  test in the 5-

factor model, where we can reject the null only at the 10% significance level. Note that in this last

subsample, we tend to choose a larger number of unobserved factors than in the other two subsamples.

One possible explanation is that a structural change may occur across the three subsamples or within

this last subsample (say, it may be caused by the shock of 9/11, or aggressively low federal funds rate

or steadily increasing oil prices in this period). To the best of our knowledge, there is no test that can

be used to test for the structural change in our model formally. The theoretical investigation of such

an issue is certainly important and we leave it for future research.

In sum, when the linear-regression-based Wald test () reveals the presence of anomaly effects,
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our nonparametric sieve test also does so. But there are cases where the  test fails to detect the

anomaly effects but our nonparametric sieve test detects. This implies that our nonparametric test is

more powerful than the Wald test in detecting anomaly effects. On the other hand, our nonparametric

test rejects the null of no anomalies in the full sample and the last two subsamples for all factor

pricing models. This implies that the asset-specific characteristics can affect the returns even if their

corresponding factors are included in the regression. In other words, our findings suggest that SMB

and HML only explain a proportion of the effects of SZ and BM on returns but not all, and we do

observe the evidence of anomaly effects caused by SZ and BM.

Note that Table 2 also reports the 0 test results based on the linear regression model without

unobserved factors, which was frequently done in the financial literature before the wide use of latent

factor models. From Table 2, we can see that the -values for the 0 test in the full sample are smaller

than 1% in all factor pricing models except for FF, which is largely consistent with the results based

on either the  test or the sieve test. But the 0 test results for the three subsamples can be quite

different from those based on the  test or the sieve test. It is worth mentioning that in the presence of

unobserved factors that are correlated with the regressors, the 0 test is asymptotically invalid so that

its test results are not trustworthy. Table 2 suggests the importance of inclusion of some unobserved

factors in the factor pricing model when conducting a test for the presence of anomaly effects.

Comparison with existing results Our test for the null of no anomaly effects are closely related

to Brennan, Chordia, and Subrahmanyam (1998), Zhang (2009), and Chordia, Goyal, Shanken (2012).

Generally speaking, our results are largely consistent with the findings in the first and third papers;

both of which detect significant anomaly effects even if both groups of authors only consider linear

models. Using a variant of the two-pass test, Brennan, Chordia, and Subrahmanyam (1998) study the

relationship between the firm-specific variables and two sets of factors, one as the first five principal

component factors extracted from individual stock returns and the other as the Fama-French three

factors. They find that both the size and book-to-market effects are very strong in the model with

principal component factors but become much attenuated in the model with Fama-French three factors.

Their main conclusion is that there are many other firm-specific variables, such as trading volume,

dividend yield, stock price level, and past returns, not considered by Fama and French (1992) that can

explain returns and the Fama-French three factors cannot not explain these additional firm-specific

variables very well. Zhang (2009) also considers two sets of factors: the first set is extracted from

individual stock returns and the second set is from size- and book-to-market sorted 100 portfolio

returns. He arrives at a similar conclusion as Brennan, Chordia, and Subrahmanyam (1998) for the

first set of factors but finds that the firm-specific variables are insignificantly different from zero when

they use more than 3 principal components for the second set of factors. The size and book-to-market

effects can be explained by the betas of the three principal component factors extracted from the
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one-hundred size- and book-to-market-sorted portfolios, indicating somewhat inconsistency between

his result and ours. Such inconsistency may arise for two reasons: one is that Zhang (2009) does not

allow unobserved factors in his model and only considers the use of various constructed factors, and

the other is that Zhang’s (2009) sampling period is different from ours. With time-varying betas for

factors and firm-specific variables, Chordia, Goyal, Shanken (2012) find that firm characteristics such

as size, book-to-market ratio, and the lagged 6-month returns are significant for both the CAPM and

Fama-French three-factor models. Our results are consistent with their conclusion even though we use

a different framework.

5.3.2 Test for the linearity of  (·)

Table 3 reports the bootstrap -values for the tests of linearity of  (·) in various factor pricing models.
For the full sample, all the -values for all the tests are smaller than 10% for all factor pricing models

except for the pure unobserved factor model (PUF) where the information criteria tend to choose

a larger number of unobserved factors than in other models. We can reject the null of linearity for

the models that include either one observed factor (CAPM) or more than one observed factors (FF,

4-factor and 5-factor models).

For the first subsample, when the test for anomaly effects fails to detect anomalies in FF, 4-factor,

and 5-factor models, our test of linearity also does so even at the 10% significance level as expected.

However, for the pure unobserved factor model and CAPM, there are no uniform results: our test

rejects the null of linearity for some choices of numbers of knots ( = 3 4 5 in PUF, and  = 5 6 8 in

CAPM) at the 10% significance level and fails to do so for other choices of number of knots. For the

second and third subsamples, the test displays a similar pattern as the full sample case. The -values

for all the tests are larger than 10% in PUF and are all smaller than 5% in FF, 4-factor, and 5-factor

models. We cannot reject the null of linearity in PUF at the 10% significance level and can readily

reject the null of linear at the 5% significance level for in FF, 4-factor, and 5-factor models. Again,

the linearity test does not deliver uniform results in CAPM since it rejects the null of linearity at the

10% significance level only when  = 3 4 5

In short, when the test for anomaly effects does not provide evidence of anomaly effects, our test of

linearity also provides support on the linear null hypothesis; when the test for anomaly effects reveals

the presence of anomaly effects, our test of linearity indicates that in most cases the linearity of  (·)
can also be rejected at least for some choices of  in CAPM and for all choices of  in FF, 4-factor, and

5-factor models at the 5% level. This implies that the linear functional form tends to be incorrectly

specified when anomaly effects are present in these commonly used factor pricing models.
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Table 3: Bootstrap p-values for the test of linearity of g(.) in various asset pricing models


()
0 : Pr

£
 () =  0


0
¤
= 1 for some 0 ∈ Θ

 3 4 5 6 7 8
1973/07-2009/12 (full sample)
PUF 5 0.785 0.780 0.968 0.963 0.993 0.999
CAPM 4 0.001 0.001 0.001 0.001 0.001 0.001
FF 3 0.002 0.001 0.001 0.001 0.001 0.001
4F 3 0.005 0.002 0.001 0.001 0.002 0.002
5F 3 0.055 0.018 0.043 0.049 0.059 0.037

1973/07-1983/12
PUF 4 0.073 0.081 0.069 0.193 0.241 0.256
CAPM 4 0.113 0.106 0.075 0.079 0.110 0.063
FF 2 0.243 0.253 0.244 0.246 0.209 0.248
4F 2 0.654 0.701 0.616 0.543 0.387 0.425
5F 2 0.446 0.532 0.460 0.438 0.319 0.317

1984/01-1996/12
PUF 4 0.250 0.309 0.766 0.813 0.871 0.537
CAPM 3 0.060 0.073 0.096 0.128 0.160 0.173
FF 1 0.001 0.001 0.001 0.001 0.001 0.001
4F 1 0.001 0.001 0.001 0.001 0.001 0.001
5F 1 0.001 0.001 0.001 0.001 0.001 0.001

1997/01-2009/12
PUF 7 0.952 0.421 0.614 0.739 0.799 0.653
CAPM 7 0.014 0.007 0.088 0.120 0.201 0.245
FF 4 0.001 0.001 0.003 0.003 0.002 0.002
4F 4 0.004 0.001 0.007 0.010 0.004 0.005
5F 4 0.004 0.002 0.008 0.010 0.002 0.005

Note:  (q=3, 4,...,8) denote the linearity test based on the L2-distance between the sieve and
linear estimates.
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Figure 1: Relationship between excess returns and size (SZ) and book-to-market ratio (BM) in the full sample

(1973/07-2009/12). First row: Pure unobserved factor model (PUF), second row: CAPM, third row: Fama-

French three-factor model (FF), fourth row: FF+Mom model (4-Factor), and fifth row: FF+Mom+Liq model

(5-Factor). Y-axis: excess returns, solid lines: estimated function g(·), dash lines: bootstrap 90% confidence

bands.
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5.4 Estimation results

To illustrate our estimation results, for the full sample, we plot the estimate ̂ (· ·) against each of its
two arguments when the other is fixed at its sample mean for the full sample in Figure 1. Denote

 and  as sample means for the size and book-to-market ratio, respectively. The first and

second columns respectively report the estimates of 
¡


¢
and () using 3 knots in the

sieve approximation, the third and fourth columns report the above estimates of using 5 knots in

the sieve approximation, and the last two columns report the above estimates using 7 knots in sieve

approximation. The five rows correspond to the estimates of 
¡


¢
and () based on the

five factor pricing models discussed above. For example, the first row plots the estimated functions in

PUF, and the second row plots the estimated functions in CAPM, where the 90% pointwise bootstrap

confidence bands are also provided.

We summarize some important findings from Figure 1. First, we can see that all the estimated

functions are significantly different from zero at the 10% level, which confirms the test results in Table

2. Second, we can see a significant nonlinear pattern in CAPM, FF, 4-factor and 5-factor models and

a rough linear pattern in PUF, which confirms the test results in Table 3. For the first, third and fifth

columns, the estimated functions appear to decrease linearly in PUF and alter nonlinearly in CAPM,

FF, 4-factor and 5-factor models as the size increases. From the second, fourth, and sixth columns,

the estimated functions appear to increase roughly in PUF and CAPM but with a decreasing rate

as the book-to-market ratio increases; however, as the book-to-market ratio increases, the estimated

functions tend to increase first then start to decrease at around 0.47 and finally increase at a decreasing

rate. Third, the estimation results are kind of robust to different choices of numbers of sieve terms.

As more terms are used in the sieve approximation, the estimated functions become more zigzag as

expected but they still have similar shapes.

Table 4 reports the sample mean and standard deviation of the estimated factor loadings. The table

gives results on linear estimation and sieve estimation with 3, 5, and 7 knots used in the construction

of sieve bases. In PUF, we only report the results for the five unobserved factor loadings; in CAPM,

we report the results for MKT and the four unobserved factor loadings; in FF, 4-factor and 5-factor

models, the results are available for the factor loadings of both the observed/constructed 3, 4 or 5

factors and the three unobserved factors. It is worth mentioning that the reported values indicate the

sample mean and standard deviation of the estimated factor loadings. As  → ∞ elements of the

estimated factor loadings converge to their true values at the usual
√
 -rate and follow the asymptotic

normal distribution so that we can rely on the sample mean and standard deviations to test whether

the population mean is zero or not. A value of the sample mean over the standard deviation that is

larger than 1.96 (2.576) indicates the population mean is significantly different from zero at the 5%

(1%) level. Interestingly, only the population mean of the factor loadings of Factor 1 in PUF and that
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Table 4: Estimation results for factor loadings in the full sample 1973/07-2009/12: the sample average
and standard deviation

 MKT SMB HML Mom Liq Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

PUF

linear 5 - - - - - 5.163
(0.981)

0.243
(1.589)

0.035
(1.144)

0.015
(0.709)

0.026
(0.601)

q=3 5 - - - - - 5.191
(0.972)

0.235
(1.596)

0.045
(1.134)

0.014
(0.708)

0.027
(0.601)

q=5 5 - - - - - 5.191
(0.972)

0.237
(1.596)

0.041
(1.121)

0.014
(0.708)

0.027
(0.601)

q=7 5 - - - - - 5.178
(0.977)

0.240
(1.593)

0.038
(1.116)

0.014
(0.709)

0.026
(0.603)

CAPM

linear 4 1.064
(0.161)

- - - - 1.855
(1.315)

0.471
(1.488)

0.190
(0.741)

0.075
(0.679)

-

q=3 4 1.057
(0.164)

- - - - 1.838
(1.339)

0.491
(1.462)

0.203
(0.777)

0.070
(0.676)

-

q=5 4 1.058
(0.164)

- - - - 1.837
(1.338)

0.491
(1.462)

0.202
(0.774)

0.070
(0.676)

-

q=7 4 1.058
(0.163)

- - - - 1.838
(1.339)

0.492
(1.462)

0.202
(0.774)

0.070
(0.676)

-

FF

linear 3 1.022
(0.095)

0.550
(0.461)

0.300
(0.417)

- - 0.513
(0.758)

0.235
(0.663)

0.304
(0.558)

- -

q=3 3 1.021
(0.096)

0.550
(0.460)

0.297
(0.418)

- - 0.518
(0.755)

0.254
(0.659)

0.292
(0.569)

- -

q=5 3 1.022
(0.095)

0.550
(0.461)

0.300
(0.417)

- - 0.518
(0.754)

0.262
(0.657)

0.288
(0.573)

- -

q=7 3 1.021
(0.096)

0.550
(0.460)

0.297
(0.418)

- - 0.517
(0.755)

0.267
(0.655)

0.286
(0.575)

- -

4-Factor

linear 3 1.014
(0.087)

0.551
(0.461)

0.290
(0.415)

-0.036
(0.061)

- 0.336
(0.535)

0.185
(0.651)

0.481
(0.771)

- -

q=3 3 1.013
(0.089)

0.550
(0.460)

0.288
(0.416)

-0.037
(0.061)

- 0.332
(0.542)

0.200
(0.647)

0.482
(0.770)

- -

q=5 3 1.013
(0.089)

0.551
(0.461)

0.289
(0.417)

-0.037
(0.061)

- 0.330
(0.556)

0.208
(0.646)

0.482
(0.770)

- -

q=7 3 1.013
(0.089)

0.551
(0.461)

0.289
(0.417)

-0.038
(0.061)

- 0.330
(0.547)

0.212
(0.645)

0.481
(0.771)

- -

5-Factor

linear 3 1.013
(0.088)

0.552
(0.461)

0.292
(0.416)

-0.035
(0.061)

0.005
(0.158)

0.334
(0.534)

0.189
(0.649)

0.480
(0.771)

- -

q=3 3 1.011
(0.090)

0.550
(0.460)

0.290
(0.417)

-0.035
(0.061)

0.007
(0.193)

0.323
(0.549)

0.203
(0.646)

0.479
(0.772)

- -

q=5 3 1.011
(0.090)

0.552
(0.461)

0.290
(0.417)

-0.036
(0.061)

0.007
(0.193)

0.328
(0.541)

0.209
(0.645)

0.478
(0.771)

- -

q=7 3 1.011
(0.090)

0.552
(0.460)

0.290
(0.417)

-0.037
(0.061)

0.007
(0.193)

0.328
(0.543)

0.212
(0.644)

0.478
(0.772)

- -

Note: (i) Factors 1-5 represent the estimated unobserved factors; (ii) The values in the parentheses are the sample

standard deviation of estimated factor loadings; (iii) q denotes the number of knots in the sieve estimation.
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Table 5: Estimation results for factor risk premium in the full sample 1973/07-2009/12

 MKT SMB HML Mom Liq
CAPM
linear 4 0.3396 (0.2209) — — — —
 = 3 4 0.0478 (0.2226) — — — —
 = 5 4 0.0559 (0.2224) — — — —
 = 7 4 0.0543 (0.2224) — — — —

FF
linear 3 0.3916 (0.2205) 0.2009 (0.1579) 0.5111 (0.1559) — —
 = 3 3 0.3592 (0.2205) 0.1985 (0.1579) 0.5099 (0.1559) — —
 = 5 3 0.3570 (0.2205) 0.1982 (0.1579) 0.5099 (0.1559) — —
 = 7 3 0.3555 (0.2205) 0.1979 (0.1579) 0.5099 (0.1558) — —

4-Factor
linear 3 0.4119 (0.2205) 0.2079 (0.1579) 0.5174 (0.1558) 1.1565 (0.4024) —
 = 3 3 0.3837 (0.2205) 0.2056 (0.1579) 0.5160 (0.1558) 1.1427 (0.4026) —
 = 5 3 0.3792 (0.2205) 0.2059 (0.1579) 0.5159 (0.1558) 1.1407 (0.4026) —
 = 7 3 0.3791 (0.2205) 0.2056 (0.1579) 0.5159 (0.1558) 1.1435 (0.4025) —

5-Factor
linear 3 0.4244 (0.2205) 0.2119 (0.1579) 0.5110 (0.1558) 1.1623 (0.4024) 1.4769 (0.7584)
 = 3 3 0.3892 (0.2205) 0.2103 (0.1579) 0.5097 (0.1558) 1.1439 (0.4026) 1.4432 (0.7578)
 = 5 3 0.3856 (0.2205) 0.2108 (0.1579) 0.5097 (0.1558) 1.1421 (0.4026) 1.4406 (0.7563)
 = 7 3 0.3841 (0.2205) 0.2111 (0.1579) 0.5095 (0.1558) 1.1437 (0.4024) 1.4488 (0.7560)
Note: The values in the parentheses are the estimated standard deviations of the estimated risk premia.

of MKT in all factor pricing models with observed factors are significantly different from 0 at the 1%

level. In addition, we notice that the sample means and standard deviations remain quite stable for

the sieve estimates with different choices of numbers of knots () and there are only slightly differences

between the linear and sieve estimation.

Once we obtain the estimates ̂ () (where  = ( )
0  = 1    = 1   ), we

can follow Zhang (2009) and estimate the monthly risk premium. The procedure goes as follows.

First we define new excess returns after removing the effects of individual asset-specific characteristics:

 ∗ =  − ̂ ()  Given the set of factors { ∗ } that include both the observed/constructed factors
and the estimated unobserved factors, we can apply the two-pass method to { ∗} and { ∗ } to estimate
the risk premiums. Table 5 reports the results for the estimated factor risk premium for the observed

factors in different factor pricing models. Note that the sieve estimates based on different numbers

of knots are quite close to each other, and they are also quite close to the linear estimates for all

factors other than MKT in FF, 4-factor, and 5-factor models. In addition, the linear estimates tend to

over-estimate the risk premium for all observed common factors and the difference between the linear

and sieve estimates of MKT risk premium is huge in CAPM.
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6 Conclusion

In this paper we propose a new framework to test for anomaly effects in different asset pricing models.

The new setup is quite flexible: it allows for the presence of both observed and unobserved factors and

uses a nonparametric function to capture anomaly effects for some asset-specific characteristics. We

find strong evidence of the presence of anomaly effects for the size and book-to-market ratio in factor

pricing models and when anomaly effects are present, they tend to enter the model nonlinearly.
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