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Abstract

This paper develops a multivariate regime switching monetary policy model for
the US economy. To exploit a large dataset we use a factor-augmented VAR with
discrete regime shifts, capturing distinct business cycle phases. The transition
probabilities are modelled as time-varying, depending on a broad set of indicators
that influence business cycle movements. The model is used to investigate the
relationship between business cycle phases and monetary policy. Our results
indicate that the effects of monetary policy are stronger in recessions, whereas
the responses are more muted in expansionary phases. Moreover, lagged prices
serve as good predictors for business cycle transitions.
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1 Introduction

The question on how monetary policy shocks affect economic conditions has received
increasing attention in the recent literature on the analysis of business cycles. Policy
makers at Central Banks strive for a better understanding of the underlying causal
linkages between their policy actions and the business cycle. For instance, several
researchers argue that while monetary policy can foster economic growth in the short-
run, price adjustments render it effectively non-influential in the medium- and long-run,
implying that the effect on business cycles is rather muted. Thus if the central bank
aims to steer the economy towards a sustainable growth path, it is necessary to gain a
better understanding of the underlying business cycle behavior.

In recent years increasing attention has been drawn to using large scale macroecono-
metric models to allow for a broad set of both macroeconomic and to some extent mi-
croeconomic variables to interact with business cycles. Sims (1992), and Leeper, Sims,
and Zha (1996), among others, argued that most small scale models suffer from severe
specification issues, leading to distorted inference. Thus several means of handling large
information sets have emerged in the recent years. Among other alternatives, a combi-
nation of dynamic factor models with vector autoregressive (VAR) models overcomes
problems associated with small information sets. These so-called factor-augmented
VARs (FAVARs) aim to exploit a high dimensional information set while preserving
the theoretical structure of the underlying model. While FAVARs are capable of ex-
ploiting large information sets, they are still linear models, unable to capture salient
features of the time series used.

Several studies emphasized the usefulness of accounting for non-linearities in the
study of business cycles and monetary policy. For instance, in a paper which is close in
spirit to the present contribution, Kim and Nelson (1998) estimate a Markov switching
factor model with time varying transition probabilities to investigate duration char-
acteristics of different stages of the business cycle. Recently, researchers started to
adopt non-linear models to analyze the transmission mechanism of monetary policy
(Cogley and Sargent, 2002; Primiceri, 2005). Most studies find a moderate degree of
time-variation in the autoregressive parameters, indicating only gradual adjustments
of the underlying transmission channels. However, a broad consensus has formed with
respect to the importance of allowing the error variances to vary over time (Sims and
Zha, 2006; Koop, Leon-Gonzalez, and Strachan, 2009).

The majority of these contributions, however, use only small-scale models. This
translates into a battery of so-called ”puzzles”, with the well-known ”price-puzzle” being
the most prominent one (Sims, 1992; Leeper, Sims, and Zha, 1996). To overcome such
issues, researchers increasingly use methods that aim at reducing the dimensionality
of the problem at hand. For instance, Bernanke, Boivin, and Eliasz (2005) investigate
the effects of a US monetary policy shock on a broad set of variables within a FAVAR
framework. Korobilis (2013) extends the work of Bernanke, Boivin, and Eliasz (2005) to
the time-varying parameter framework. This approach combines the virtues of having
a large dimensional model with drifting parameters and stochastic volatility, and in
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agreement with Primiceri (2005) reveals a moderate degree of time-variation in the
parameters and the functions thereof.

The present paper develops a Markov switching factor-augmented vector autore-
gressive (MS-FAVAR) model with endogenous transition probabilities. The transition
probabilities of the Markov chain employed follows a probit specification in the spirit
of Amisano and Fagan (2013). Furthermore, we assume that the underlying hidden
Markov chain that governs the state dynamics is driven by a large set of possible pre-
dictors, including the lagged factors of the FAVAR. Moreover, imposing the stochastic
search variable selection prior put forward by George and McCulloch (1993) on the
latent regression model allows us to unveil the relative importance of different fac-
tors on the behavior of the business cycle. While exploiting the information contained
in a large dataset, the MS-FAVAR is prone to overfitting, leading to the ”curse-of-
dimensionality”. Thus we impose the well-known Minnesota prior (Litterman, 1986;
Sims and Zha, 1998) to shrink the system towards a stylized prior representation of the
data. This model is then used to shed light on the dynamics of the transition probabil-
ities and their dependence on different variables – in the context of US business cycles
– by means of posterior inclusion probabilities. To investigate the complex relationship
between US monetary policy and the economy within different business cycle regimes
we perform a counter-factual analysis. Specifically we simulate a 50 basis points mon-
etary policy shock and its effect on a panel of macroeconomic quantities in expansions
and recessions.

The remainder of the paper is structured as follows. Section 2 presents the econo-
metric framework employed and provides a concise overview on the priors and the
estimation strategy. Section 3 presents the empirical application while the final section
concludes.

2 A formal framework

We begin by laying out a formal framework for factor-augmented vector autoregression
analysis put forward in Bernanke, Boivin, and Eliasz (2005). This framework is then
extended by incorporating Markov switching with endogenous transition probabilities
to allow for discrete regime changes. Finally, a Bayesian approach to estimation and
inference is outlined.

2.1 The factor-augmented vector autoregressive model

The factor-augmented vector autoregressive model of the business cycle consists of two
equations: a transition equation and a measurement equation. The transition equation
describes the dynamics of observable economic variables and unobserved factors, while
the factors and variables are related by an observation or measurement equation.

Let xt be an N×1 vector of economic variables observable at time t = 1, . . . , T that
drive the dynamics of the economy. Following the standard approach in the monetary
VAR literature xt could contain observable measures of real activity and prices as well
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as some policy indicators, measuring the stance of monetary policy. The conventional
approach involves estimating a VAR, a structural VAR or another multivariate time
series model using data for xt alone. But, in many applications, additional economic
information, not fully captured by xt, may be relevant to modeling the evolution of
the business cycles. Let us assume that this additional information can be summarized
by a K × 1 vector of unobserved factors f t where K is small. We might think of
unobserved factors as capturing fluctuations in unobserved potential output or reflecting
theoretically motivated concepts such as price pressures or credit conditions that cannot
easily be represented by one or two series, but are rather reflected in a wide range of
economic variables (Bernanke, Boivin, and Eliasz, 2005).

Assume that the joint dynamics of (f ′t,x
′
t)
′ are given by the following transition

equation (
f t
xt

)
= Φ(L)

(
f t−1

xt−1

)
+ ut for t = 1, . . . , T (2.1)

where Φ(L) is a polynomial in the lag operator L of finite order Q, and ut are error
terms with mean zero and variance-covariance matrix Σu. Note that Eq. (2.1) is a VAR
in (f ′t,x

′
t)
′ that reduces to a standard VAR in xt if the terms of Φ(L) that relate xt to

f t−1 are all zero.
The unobserved factors are extracted by a large panel of M indicators, yt which

contain important information about the fundamentals of the economy. Note that M
may be greater than T , the number of time periods, and much greater than the number
of factors and observed variables in the VAR system (M � K + N). The factors and
the variables in the panel are related by an observation equation of the form

yt = Λff t + Λxxt + et (2.2)

with Λf and Λx representing M ×K and M × N matrices of factor loadings, and et
is an M × 1 vector of normally distributed zero mean disturbances with a diagonal
K ×K variance-covariance matrix Σe. Equation (2.2) captures the idea that both f t
and xt, which in general may be correlated, represent common forces that drive the
dynamics of yt. Hence, conditional on xt, the yt are noisy measures of the underlying
unobserved factors f t. Note that the implication of Eq. (2.2) that yt depends only on
the current and not lagged values of the factors is not restrictive in practice, since f t
can be interpreted as including arbitrary lags of the fundamental factors.

2.2 A factor-augmented vector autoregressive model with Markov switch-
ing

The system given by Eqs. (2.1 )- (2.2) is the FAVAR model proposed in Bernanke,
Boivin, and Eliasz (2005). Our main innovation relative to them is the incorporation of
regime switching with endogenous transition probabilities so that the extended model
encompasses the two key features of the business cycle identified by Burns and Mitchell
(1946), namely co-movement among economic variables through the cycle, and non-
linearity in its evolution.
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Let us assume that the R-dimensional vector zt = (f ′t,x
′
t)
′ with R = K+N follows

a Qth-order Markov switching VAR

zt =

Q∑
q=1

AqStzt−q + εt (2.3)

where the coefficient matrices AqSt (q = 1, . . . , Q) are regime-specific and of dimension
R×R, εt is a normally distributed zero mean error term with regime-specific variance-
covariance matrix ΣεSt . The subscript St in AqSt and ΣεSt indicates that all parameters
are allowed to change across regimes. We assume that St is an unobserved binary
Markov switching variable indicating whether the economy is in a expansionary (St = 0)
or recessionary (St = 1) phase with transition probabilities given by

P t =

(
p11,t p12,t

p21,t p22,t

)
(2.4)

where pij,t = Prob(St = j|St−1 = i) with
∑2

j=1 pij,t = 1 for all i and t. This implies that
the transition probabilities are allowed to vary over time. Note that the higher pjj,t is,
the longer the process is expected to remain in state j.

A convenient parametrization for this mechanism is the probit specification (Amisano
and Fagan, 2013)1

Prob(St = j|St−1 = i,wt−1) = pij,t = φ(γ ′wt−1) (2.5)

with

φ(ω) =

∫ ω

−∞

1√
2π

exp

{
−1

2
ω2

}
dω. (2.6)

Hereby wt−1 is a K-dimensional vector including variables (both endogenous and ex-
ogenous) that may have statistical power to predict business cycle changes.

In this way the parameter γk, i.e. the kth element of γ, measures the sensitivity of
probability pij,t with respect to wkt−1, i.e. the kth element of wt−1. Note that Eq. (2.5)
resembles a standard probit model with an underlying latent variable regression given
by

rt = γ ′wt−1 + εt (2.7)

where rt ∈ R is a continuous latent variable, γ is a K-dimensional parameter vector
and εt denotes the error with variance normalized to unity for identification purposes.

1Another alternative would be to use a logit specification that provides advantages if the number
of regimes is greater than two (see, for example, Kaufmann, 2015).
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2.3 A Bayesian approach to estimation and inference

We pursuit a full Bayesian approach to inference in the model described in the pre-
vious subsection. The reasons for this are at least twofold. First, because the model
in Eq. (2.3) suffers from severe overparametrization issues, we have to impose prior
information to obtain reliable parameter estimates of AqSt(q = 1, . . . , Q). Second, tra-
ditional methods rely on numerical optimization, which is daunting in the presence of
irregular likelihood surfaces often encountered in the estimation of Markov switching
models.

To simplify prior implementation let us rewrite the model as

zt = A′St
dt + εt (2.8)

where ASt = (A1St , . . . ,AQSt)
′ is a RQ × R matrix of stacked coefficients, and dt =

(z′t−1, . . . ,z
′
t−Q)′ denotes a RQ-dimensional data vector. Note that conditional on St

and f t the model can be represented as a standard regression model, which implies
that standard priors can be used (Zellner, 1973). Stacking the rows of zt and dt yields
the corresponding TSt ×R and TSt ×RQ regime-specific full data matrices, denoted by
ZSt and DSt , where TSt is the number of observation related to the regime prevailing
at time t.

Prior distributions for the state equation

We impose a set of conditionally conjugate priors given by

vec(Ast)|Σst ∼ N (vec(A),ΣεSt ⊗ V A) (2.9)

where A denotes the R×RQ prior mean matrix and V A is a RQ×RQ prior variance-
covariance matrix. The prior variance on the coefficients is governed by the Kronecker
product ΣεSt ⊗ V A, which is a matrix of dimension R2Q×R2Q.

The prior on the variance-covariance matrix is of inverted Wishart form given by

Σst ∼ IW(C, v) (2.10)

with C being a R × R prior scale matrix and v are the prior degrees of freedom. We
specify the matrices A and V A such that

A such that E{[AqSt ]ij} =

{
ai for q = 1 and i = j

0 for q > 1 and i 6= j
(2.11)

V A such that var{[AqSt ]ij} =
θ2

q2

σi
σj

(2.12)

for q = 1, . . . , Q; i = 1, . . . , R; j = 1, . . . , RQ. The notation [AqSt ]ij selects the (i, j)th
element of the matrix concerned. The prior mean associated with the first own lag
of variable i is given by ai, whereas for higher lag orders and other lagged variables
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the prior mean is set equal to zero. The hyperparameter θ controls the tightness of
the prior. σi and σj are standard deviations obtained by running a set of univariate
autoregressions on zt

2. They serve to account for the different variability of the data.
This prior is a conjugate variant of the Minnesota prior put forward by Doan, Litterman,
and Sims (1984) and Litterman (1986). The rationale behind the Minnesota prior is
that a priori a random walk proves to be a good representation of the data. Thus it
might be sensible to center the system on a (multivariate) random walk process. That
would imply setting aij = 1 for i = j. Between regimes we assume prior homogeneity,
implying that the same set of priors is used for both regimes. This is not essential and
can be relaxed quite easily. Note that assuming different regime-specific prior models
could be useful in terms of shrinking the parameters towards selecting appropriate
submodel specifications.

A convenient feature of the natural conjugate prior is the fact that it can be in-
terpreted as data arising from a artificial dataset. Bańbura, Giannone, and Reichlin
(2010) show how the moments of the Minnesota prior can be matched through so-called
”dummy”-observations. This is achieved by concatenating the following matrices to Z
and D

Z =


diag(a1σ1, . . . , aRσR)/θ
. . . . . . . . . . . . . . . . . . . . . .

0R(Q−1)×R
. . . . . . . . . . . . . . . . . . . . . .
diag(σ1, . . . , σR)

 (2.13)

D =

JQ ⊗ diag(σ1, . . . , σR)/θ 0RQ×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0R×RQ 0R×1

 (2.14)

with JQ = (1, . . . , Q)′. Loosely speaking, the first two blocks of the matrices in Eqs.
(2.13) and (2.14) implement the prior on the coefficients associated with the lags of zt
and the final block the prior on ΣεSt .

Prior distributions for the probit model

We also have to specify priors on the latent regression model given by Eq. (2.7). Fol-
lowing George and McCulloch (1993) we impose a stochastic search variable selection
(SSVS) prior on the elements of γ. Specifically, the prior on the parameter associated
with the kth factor in Eq. (2.7) is given by

γk|δk ∼ N (0, τ 2
0 )δk +N (0, τ 2

1 )(1− δk) for k = 1, . . . , K (2.15)

where δk is a binary random variable controlling which normal prior to use for coefficient
k. The prior variances τ 2

0 and τ 2
1 are set such that τ 2

0 � τ 2
1 . Thus, if δk equals one,

2We obtain the standard deviations by running the autoregression using the principal components
estimator for the latent factors.
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the prior on the kth coefficient is effectively rendered non-influental. This captures the
notion that no significant prior information for that parameter is available, centering
the corresponding posterior distribution around the maximum likelihood estimate. If
δk equals zero, we impose a dogmatic prior, shrinking γk towards zero. This case would
lead to a posterior which is strongly centered around zero, implying that we can safely
regard that coefficient being equal to zero. Let us introduce a scalar parameter hk set
such that

hk =

{
τ 2

0 if δk = 1

τ 2
1 if δk = 0.

(2.16)

Storing the hks in a K ×K matrix H = diag(h1, . . . , hK) permits to state the prior in
terms of a multivariate normal distribution

γ|H ∼ N (µγ,HH) (2.17)

with µγ denoting the K-dimensional prior mean vector, assumed to equal zero.
We impose a Bernoulli prior on the elements of δ = (δ1, . . . , δK),

δk ∼ Bernoulli (p
k
) (2.18)

where Prob(δk = 1) = p
k

denotes the prior inclusion probability. In this specific
application the SSVS prior allows us to investigate the relative importance of different
factors on the evolution of the business cycle.

Prior distributions for the observation equation

To complete the prior setup we also have to specify a suitable set of prior distributions
on the factor loadings in Eq. (2.2). To simplify prior implementation let us collect Λf

and Λx in a M × (K +N) matrix Λ = (Λf ,Λx). Similar to the prior choice discussed
above we impose a mixture Gaussian prior on the jth element of λ = vec(Λ)

λj|ιj ∼ N (0, %2
0)ιj +N (0, %2

1)(1− ιj) for j = 1, . . . ,M(K +N). (2.19)

Here, ιj is again a binary random variable and %0, %1 are hyperparameters controlling
the tightness of the prior. Conditional on ι = (ι1, . . . , ιM(K+N)) we can again state this
prior as a multivariate Gaussian prior on λ

λ|L ∼ N (µ
Λ
,LL) (2.20)

where L = diag(l1, . . . , lM(K+N)) and lj is defined as

lj =

{
%2

0 if ιj = 1

%2
1 if ιj = 0.

(2.21)

Similar to the prior on δ, we impose a set of Bernoulli priors on the elements of
ι = (ι1, . . . , ιM(K+N))

ιj ∼ Bernoulli(ρ
j
) (2.22)
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with Prob(ιj = 1) = ρ
j

being the prior inclusion probability of a given variable in the

observation equation.
Finally, the last ingredient missing is the prior on the innovation variances of the

state equation, where we use inverted Gamma priors on the M diagonal elements of
Σe, denoted by ςj (j = 1, . . . ,M)

ςj ∼ IG(αj, βj). (2.23)

αj is a prior shape parameter and β
j

denotes a prior scale parameter.

The Markov chain Monte Carlo algorithm

Up to now we have remained silent on how to obtain estimates for f t. The literature
suggests two routes. The first route to obtain consistent estimates of the latent fac-
tors (see, for example, Bernanke, Boivin, and Eliasz, 2005) involves using a two-step
estimation approach in which the factors are estimated by principal components prior
to estimation of the FAVAR. That is, one estimates the space spanned by the first K
principal components of yt. This delivers consistent (in the large T,M case) estimates
of the true space spanned by f t and xt. Conditional on the principal components one
can proceed as in the standard Markov switching VAR case.

This approach has the advantage to be computationally fast and easy to implement.
One disadvantage, however, is that estimation based on principal components treats the
factors f t to be known, thus neglecting the noise surrounding f̂ t, the estimate of f t. The
second route, which we are going to follow, accounts for this fact by using simulation
based methods and simultaneously sampling all parameters of the model described
above (see, for example, Kim and Nelson 1999). This can be implemented by using any
of the well-known state-space algorithms, like the algorithms put forth in Carter and
Kohn (1994), and Frühwirth-Schnatter (1994). However, while still straightforward to
implement, this increases the computational burden considerably.

Conditional on the factors and the latent states in s, the parameters of the transition
equation (2.3) can be simulated using simple Gibbs steps, iteratively sampling from the
(conditional) posterior distributions of the parameters in Eq. (2.3) (see Appendix A for
details). In practice, under the conjugate prior this step is quite fast, implying that even
if we increase the number of factors, computation does not become prohibitively slow.
Sampling the latent states St is simplified by the fact that it is a numerical integration
problem with discrete support. Several options are possible, however we employ the
filter put forward by Kim and Nelson (1999) and Amisano and Fagan (2013). The
implementation of these steps is described in detail in the appendix.

2.4 Identification of the factor-augmented vector autoregressive model

The model described above is econometrically unidentified and cannot be estimated.
There are three different sets of restrictions that need to be imposed on the model.
The first is a minimum set of normalization restrictions on the observation equation
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that are needed to be able to identify the latent factors and the corresponding loadings.
The second is related to the label switching problem associated with the latent states
controlling the prevailing phase of the business cycle. Finally, the identification of the
structural shocks in the transition equation requires further restrictions.

Identification problems associated with the latent factors

Without restrictions the model given by Eqs. (2.2) and (2.3) is not identified. To see
this note that Eq. (2.2) is observationally equivalent to

yt = ΛfMM ′f t + Λxxt + et (2.24)

where M is a K × K orthonormal matrix with MM ′ = IK . This implies that we
have to impose a set of restrictions on Λf to identify the factors and the corresponding
factor loadings.

We thus have to impose a normalization that rules out linear combinations of the
form f ∗t = Af t−Bxt, where A isK×K and non-singular, and B isK×N . Substituting
for f t in (2.24) we obtain yt = ΛfA−1f ∗t +(Λx+ΛfA−1B)xt+et. To induce f ∗t = f t,
that is A = IK and B = 0K×N , it suffices to set the upper K × K block of Λf to
an identity matrix and the upper K × N block of Λx to zero (Bernanke, Boivin, and
Eliasz, 2005).

Label switching

Since the likelihood function of the model is invariant with respect to permutation of the
labels of the states we have an identification problem. This problem, known as the label
switching problem (Amisano and Fagan, 2013), poses no real problem for the estimation
of the model, but for the economic interpretation of the estimation results. In the
present application we analyze two regimes, a recessionary regime and an expansionary
regime. To achieve identification we impose restrictions on the main diagonal elements
of ΣεSt . More specifically we assume that the St = 1 marks a ”recessionary” regime if

[ΣεSt=1]11 > [ΣεSt=0]11. (2.25)

Equation (2.25) implies that the errror variance of the first element of zt is higher in
the recessionary regime.

Structural identification

Finally, Eq. (2.3) presents the reduced form of the model. The (regime specific) struc-
tural form of the model is given by

Ã0Stzt =

Q∑
q=1

ÃqStzt−q + ε̃t. (2.26)
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Ã0St denotes a R × R matrix of impact coefficients, ÃqSt (q = 1, . . . , Q) are R ×
R matrices of lagged structural coefficients and ε̃t are standard normally distributed

structural errors. Multiplying with Ã
−1

0St
from the left yields again the reduced form of

the model in Eq. (2.3). Note that the reduced form errors are given by Ã
−1

0St
ε̃t. This

implies that the reduced form variance-covariance matrix ΣεSt can be decomposed as

Ã
−1

0St
(Ã
−1

0St
)′. Thus obtaining the structural form of the model boils down to finding

Ã0St . We follow Bernanke, Boivin, and Eliasz (2005) and identify the model by imposing
zero impact restrictions. More specifically, we use a Cholesky factorization to obtain

Ã
−1

0St
, which is a lower triangular matrix. Consistent with the literature we assume that

all factors contained in zt tend to react slower to monetary policy shocks.

3 An empirical application: US business cycles and monetary policy

So far we described the Markov switching factor-augmented vector autoregressive model
in fairly general terms. In this section we apply the model to investigate the dynamic
relationship between US monetary policy and the real economy in both stages of the
business cycle. Subsection 3.1 briefly describes the data set and the model specification
used for the specific application that focusses attention on two questions: first, which
variables tend to drive US business cycles (see subsection 3.2), and then how monetary
policy operates within expansionary phases and how these effects when the economy is
in recession (see subsection 3.3).

3.1 Data and model specification

We conduct our analysis on quarterly data starting in 1971Q4 and ending in 2014Q2.
For the present purpose we focus our attention on a broad panel of important indicators
of real activity. These indicators can be divided into four subcategories, measuring
movement in output, housing markets, labor markets and financial markets. Appendix
B provides an overview of the variables included in yt and xt. As observable variable
we set xt equal to the federal funds rate.

Since our final goal is to obtain a model capable of reproducing business cycle be-
havior we mainly include a wide range of real activity indicators in yt. More specifically
we measure output through industrial production and the corresponding subcategories.
In addition, to capture movements on the housing markets we include data on housing
starts and new private housing units authorized. The demand side is represented by
personal consumption expenditures for different categories of goods and services and
personal income. We use information on the labor market by including data on average
weekly hours in production and nonsupervisory employees and the civilian unemploy-
ment rate. Finally, the financial sector is represented by including the federal funds
rate as observed variable in the FAVAR. Following Gilchrist, Yankov, and Zakraǰsek
(2009), who emphasize the usefulness of credit spreads to predict economic activity, we
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also include a measure of the credit spread, approximated through Moody’s seasoned
Baa corporate bond minus fed funds rate spread.

It is worth mentioning that a broader information set might dilute the regime al-
location. For instance, the way how the Fed conducts monetary policy has changed
dramatically in the beginning of the 1980s, indicating a serious regime shift with re-
spect to monetary policy. Introducing more variables from the financial side would
most likely lead to a regime allocation which does not necessarily represent distinct
business cycle phases.

The literature on the determinants of business cycles in addition suggests other co-
variates which are assumed to be exogenous and do not enter Eq. (2.3) directly, but
through the matrix wt in the latent probit regression. These variables are assumed to
be predictors of business cycle changes. In wt we incorporate information from other
variables which are not necessarily included in yt for the specification of the transition
probabilities. More specifically, we include a broad range of additional financial vari-
ables like information on the shape of the US treasury yield curve, commodity prices
and exchange rates in the matrix wt that may act as important predictors of US busi-
ness cycles. Note that the variables contained in wt only influence the regime allocation
indirectly through the transition probabilities. Additional information can be found in
Appendix B.

Before proceeding to the empirical results a brief word on the specification of the
MS-FAVAR is necessary. We set the number of factors equal to four. This is based on
comparing the marginal likelihood for K between one and five, where the marginal likeli-
hood is approximated by the Bayesian information criterion (BIC). With regards to the
prior specification, we set the tightness hyperparameter equal to θ = 0.5. This is based
on varying θ on a discrete grid of different values for θ ∈ {0.001, 0.01, 0.1, 0.5, 2, 102},
where again the BIC approximation is used to discriminate between models. Finally,
we set the lag length equal to two. This choice seems reasonable given the length of our
data and the parameterization of the model. Since we standardize the variables in wt

we set the hyperparameters of the mixture normal priors equal to τ 2
0 = 1 and τ 2

1 = 0.1.
The prior on the free elements of Λ is set equal to %2

0 = 10 and %2
1 = 0.1. Experimenting

with different choices of %0 and %1 led to qualitatively the same results. Finally, we set
αj = β

j
= 0.01 to render this prior effectively non-influential.

3.2 What drives business cycles?

In this subsection we answer the question which variables exhibit significant effects
on the probability of a change of the business cycle. The analysis is based on three
pillars. First, we investigate the relationship between the latent factors contained in
zt and recessionary phases in the US. The second pillar is concerned with the question
how well our model is able to discriminate between expansionary and recessionary
phases. Finally, we look at the posterior inclusion probabilities (PIPs) of the variables
in Eq. (2.7) and the corresponding marginal effects. This provides information on the
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relative importance of various indicators contained in wt and the sensitivity of the
transition probabilities with respect to changes of these indicators.

Figure 1 presents the posterior mean of the latent factors and the NBER reference
recessions. Inspecting the correlation between the factors and the variables in yt allows
us to attach a certain degree of economic interpretation to the factors. More specifically,
the business cycle risk factor in Fig. 1 exhibits a high, negative correlation with the
industrial production components. These correlations are rather high, surpassing -0.95
for most components of industrial production. The second factor measures movements
in labor markets, showing the highest correlation with the unemployment rate (around
0.99) and moderate negative correlation (around -0.65) for average weekly overtime
hours of production. At a first glance, the third factor almost mirrors the first one,
providing a gauge on business cycle conditions. Finally, the fourth factor is strongly
correlated with housing market conditions. The correlations are around 0.8 to 0.95 for
housing starts and new private housing units authorized.

[Fig. 1 about here.]

Inspection of Fig. 1 reveals that most factors tend to peak in the midst of a recession.
However, some notable deviations from this pattern are worth emphasizing. First,
glancing at the labor market factor reveals that labor market conditions tend to be
worst in the end of a recession or shortly after a recession has ended. This holds true
for all downturns encountered in our sample. Second, business cycle risk also shows
a tendency to peak in the end of a recession. However, the twin recessions in the
beginning of the eighties and the recession following the burst of the dot-com bubble
mark important deviations from this pattern. This carries over to the business cycle
conditions index, which exhibits a similar behavior as the business cycle risk factor.
Finally, note that the housing market indicator tends to reach a bottom rather early in
recessions, with the only notable exception being the recent financial crises. However,
note that housing market conditions already started to decline around 2006, providing
some sort of early warning mechanism for recessionary periods.

Figure 2 presents the posterior mean of the smoothed probabilities of being in a
recession. The model manages to capture most recent recessions, beginning with the
recession in 1973-1975. This recession was caused by sharp increases in government
spending and energy prices, most notably the price of oil leading to a stagflationary
period within the US. The recessions in the early 1980s were a consequence of the federal
reserves pronounced regime shift, when chairman Paul Volcker started to fight inflation
by increasing the policy rate dramatically. In 1990 the US experienced a relatively short
period of negative growth caused by high oil prices, high debt levels and a low level
of consumer confidence in the US. The period between the end of the 1990s recession
and the recession following the burst of the dot-com bubble and the September 11th
attacks was the longest period of sustained growth in US history. Note that the early
2000s recession is the only downturn our model was unable to capture. This can be
explained by the fact that this recession was by far the mildest one, only resulting in
an aggregate GDP loss of 0.3% from peak to through. Finally, the last recession in

13



our sample is the recent financial crisis, which led to sustained losses in output. Again,
the model captures this period rather well, allocating high probabilities of being in a
recession for the given quarters.

[Fig. 2 about here.]

To answer the question which variables drive the transition between recessionary and
expansionary regimes we investigate the corresponding posterior inclusion probabilities
and the elasticities of transition probabilities at time t = T computed from the MCMC
output. Table 1 presents the posterior distribution of the elasticities (with the corre-
sponding 16th and 84th percentiles) and the PIPs of the top 20 covariates included in
Eq. (2.7).

[Table 1 about here.]

In what follows we only put our attention on covariates which obtain PIPs higher
than 0.5, i.e. that are included in the majority of models sampled. First, the single
most important determinant for predicting a change in the business cycle at time t is
the number of employees in construction (USCONS) at time t − 1. This variable is
included in 74% of total models sampled. Taking a look at the elasticities reveals that
a one percent increase in the number of employees in construction leads to a 2.5% lower
probability of moving into a recession at time t. This finding suggests that companies
tend to act in a forward looking manner, reducing employment if the economic outlook
deteriorates. The next important predictor is consumer price inflation (CPIAUCSL)
with a PIP of 0.65. The elasticities suggest that if inflation in the last period increases by
one percent, the risk of dipping into a recession in the next period increases by roughly
1.8%. Employment in manufacturing (MANEMP) is the next determinant which is
included in over 60% of the models sampled. Similar to employment in construction a
one percent increase in employment in manufacturing at time t − 1 translates into an
1.7% lower probability of being in a recession at time t. Next we find that the labor
market factor (labor markets) is included in around 54 percent of the models. Note,
however, that the corresponding elasticities are estimated rather imprecisely, rendering
meaningful inference difficult. Finally, the (lagged) unemployment rate (UNRATE)
and the real activity factor receive PIPs higher than 0.5. Our analysis suggests that if
unemployment in t− 1 increases by one percent, the probability of entering a recession
in the following quarter also increases by around 1.2 percent.

To sum up we find that indicators summarizing labor market conditions and the
hiring behaviour of companies may be important to predict changes of the business
cycle. Moreover, we find that lagged prices tend to be of help to explain business cycle
behaviour.

3.3 Monetary policy in different business cycle regimes

In this subsection we investigate how monetary policy operates within different regimes
of the business cycle. For that purpose we simulate a 50 basis points monetary policy
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shock conditional on the regime and trace its effect on a subset of variables included in
yt.

Since our dataset spans over 40 time series we focus only on eight series, repre-
senting different segments of the economy. More precisely, we focus on the responses
of industrial production and consumer price inflation to capture the dynamic effects
of monetary policy on real activity and prices. We investigate the behavior of labor
markets by inspecting the responses of unemployment and the ISM Manufacturing:
Employment index. Finally, housing markets are represented by looking at housing
starts and new private housing units permitted, and financial markets are analyzed by
investigating the response of the federal funds rate and the BAA-FFR spread.

Before proceeding to the results let us discuss the implications of our non-linear
model in the context of the reaction function of the monetary policy authority. Be-
cause the model in Eq. (2.26) includes an equation that may be interpreted as a mon-
etary policy reaction function (Bernanke and Blinder, 1992; Rudebusch, 1998), we can
investigate how the Fed alters its policy behavior between recessions and expansions.

Throughout the rest of the paper we assume that the central bank is setting its
policy instrument (in our case the federal funds rate) as follows

pt = gt(Ωt) + ηt (3.1)

with pt being the policy rate, Ωt denoting the information set available to the central
bank and ηt is a monetary policy shock (in our case normalized to 50 basis points).
Traditionally, gt(Ωt) = g(Ωt) for all t is assumed to be a linear function that relates
pt to Ωt (Christiano, Eichenbaum, and Evans, 1999). This is predicated by the fact
that monetary policy in the US between the midst of the eighties and the beginning
of the 2000s may be well described by a simple Taylor rule. However, Clarida, Gali,
and Gertler (2000) emphasize that the way how the Fed conducts monetary policy
has changed remarkably over time, suggesting a more flexible approach to describe the
reaction function of the central bank.

Hence our model assumes that g(Ωt) is a non-linear function given by

gt(Ωt) =

{
ϑ0(Ωt) if St = 0

ϑ1(Ωt) if St = 1
(3.2)

where ϑj(Ωt) (j = 0, 1) are again linear functions that relate pt to the information set Ωt.
Depending on the prevailing state of the economy the monetary authority thus changes
its policy behaviour. In addition, Eq. (2.26) implies that the remaining variables are
all modeled in a non-linear fashion, capturing the notion that economic agents tend to
behave differently in distinct stages of the business cycle. Different reactions of macro
quantities can thus be explained through a shift in the behavior of the central bank
(i.e. whether their reaction function differs in recessions and expansions) or because of
a change in the way how other sectors of the economy are responding to shocks.

Figures 3 and 4 present the dynamic responses of the macroeconomic aggregates
discussed above in both phases of the business cycle. Figure 3(a) presents the re-
sponses of real activity, measured in terms of industrial production. As a reaction to a
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monetary tightening, output contracts in both business cycle stages. In expansionary
phases, responses are statistically insignificant within the first three quarters, leading to
persistent output contractions afterwards. In contrast, note that restrictive monetary
policy triggers only temporary output contractions in recessions, peaking in the third
quarter and petering out rather fast. The magnitudes of the responses are generally
more pronounced within a recessionary period. This is in line with Feldkircher and
Huber (2015), who find stronger reactions of US GDP to a monetary policy shocks in
crises periods. This is owed to the fact that the volatility of macroeconomic quantities
is higher in crises, leading to stronger reactions. With respect to the persistent nature
of the shock, our findings corroborate findings in Beaudry and Koop (1993), who report
rather persistent effects on output within expansionary phases and rather short-lived
effects in crises periods.

Figure 3(b) depicts the reaction of prices to a monetary policy shock. Prices tend
to decrease after one quarter providing evidence that the large information set used
alleviates the price puzzle, i.e. the common finding that prices increase in response to
a restrictive monetary policy shock. Moreover, we find a rather persistent decline of
inflation in expansionary periods, becoming significant within the first quarter. Similar
to the responses of output, prices react stronger in recessions, albeit in a statistically
insignificant fashion for the first five quarters. Afterwards, prices tend to increase
marginally before turning insignificant after around twelve quarters.

[Fig. 3 about here.]

The responses of the unemployment rate are depicted in Fig. 3(c). Note that the unem-
ployment rate is rising slowly in both business cycle phases, again being more persistent
in the expansionary regime. The magnitudes of the responses are quite similar, pro-
ducing only marginally stronger responses in recessions. The sign of the responses is
consistent with standard New Keynesian dynamic stochastic general equilibrium mod-
els (Christiano, Eichenbaum, and Evans, 1999) which predict falling employment and
rising unemployment as a direct consequence of the contraction of output. To measure
corporate sector expectations with respect to labour markets we also include the re-
sponse of the ISM manufacturing: Employment index (NAPMEI), see Fig. 3(b). Note
that consistent with the rise of the unemployment rate, the employment index also falls
in response to a monetary policy shock. Interestingly, the employment index reacts
faster, significantly falling after around two quarters. The decrease of the employment
index is much more persistent in expansions, whereas it is again only of transitory
nature in recessionary phases.

[Fig. 4 about here.]

Figure 4(a) presents the responses of housing starts in both regimes. We find significant
reactions of housing markets after around one quarter, leading to persistent decreases
in housing starts as a response to a monetary policy shock. In addition, Fig. 4(b)
presents the responses of new private housing units permitted (PERMIT) that exhibits
similar reactions as housing starts. This is caused by rising short-term interest rates
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that serve as a rough gauge of mortgage costs. Note that both, housing starts and
new housing permitted, is reacting stronger in recessions, albeit not in a statistically
significant manner.

Finally, Figs. 4(c) and 4(d) present the responses of the policy rate and the BAA-
FFM spread, which serves as a measure of the risk spread (i.e. the yield difference
between corporate credit and the US federal funds rate). Contrasting the responses
of the Fed funds rate in the expansionary regime with the recessionary regime yields
insights on the way how the Fed is adjusting their policy behavior over time. Note that
similar to most cases outlined above, responses are more persistent in expansions, where
the policy instrument is falling slowly as compared to the recession regime. Here the
Fed funds rate reacts much faster, turning insignificant after around twelve quarters.
The BAA-FFM spread, shown in Fig. 4(d), increases after four to five quarters. This
implies that the yield on corporate credit is reacting stronger as the federal funds rate,
signaling increased costs of corporate credit. While the increases of the risk spread
seems to be rather small and only barely significant in the recessionary regime, they
appear to be persistent within expansions.

4 Closing remarks

In the present paper we developed a dynamic macroeconometric model for the US
economy that is able to discriminate between business cycle phases. We allow for time-
varying transition probabilities of the underlying Markov chain that controls the current
regime. The model was then used to shed further light on the dynamic relationship
between US monetary policy and the transition mechanism between distinct business
cycle regimes. Using a variant of the SSVS prior allows us to unveil the importance
of different variables on the probability of moving into a recession. The results reveal
that, among others, the share of workers in construction and inflation at time t− 1 are
important predictors of business cycle turning points.

To investigate the effects of US monetary policy in expansions and recessions we
simulate how a US monetary policy shock affects the economy in both business cycle
phases. The results clearly suggest strong differences between expansions and reces-
sions, producing more persistent responses in the former, while being only of transitory
nature in the latter. In addition, the model produces responses which are fully consis-
tent with a broad set of recent theoretical macroeconomic models, avoiding prominent
puzzles that commonly surface in the presence of small-scale linear time series models.

Possible avenues for further research include extensions of the model described in
Section 2 to allow for more general patterns of regime-switching behaviour in two direc-
tions. First, introducing additional latent variables that would allow different sectors
of the economy to be in different states, and second, allow for more than two regimes,
could improve the empirical fit of the model and provide a more detailed picture on the
underlying transmission channels.
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Table 1: Posterior distribution of elasticities along with posterior inclusion probabilies

Elasticities Low0.16 Mean High0.84 PIP
USCONS -5.221 -2.552 -0.137 0.740
CPIAUCSL 0.060 1.795 3.780 0.654
MANEMP -3.830 -1.735 0.044 0.604
Labor markets -1.148 0.283 2.197 0.544
UNRATE -0.083 1.255 2.900 0.542
Real activity -1.558 0.039 1.621 0.529
Housing markets -1.308 0.022 1.350 0.499
Business cycle risk -0.709 0.478 2.056 0.486
TB6MS -0.316 0.921 2.633 0.480
FEDFUNDS -0.614 0.297 1.360 0.450
AAAFFM -0.630 0.267 1.195 0.429
GS10 -0.389 0.553 1.621 0.424
INDPRO -1.742 -0.639 0.222 0.415
TB3MS -0.587 0.185 1.066 0.414
T10YFFM -0.439 0.405 1.230 0.400
CE16OV -1.425 -0.556 0.268 0.400
BUSLOANS -0.179 0.623 1.479 0.398
PPICMM -1.334 -0.531 0.152 0.378
W875RX1 -0.637 -0.068 0.405 0.327

Notes: The table presents the posterior mean of the elasticities orig-
inating from the probit model along with the 16th and 84th per-
centiles. In addition, the final column presents the posterior inclusion
probabilities (PIP) for each variable under scrutiny. The first column
provides the mnemonics, where detailed information can be found in
Appendix B. The bold elements refer to the lagged factors.
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Results based on 5,000 posterior draws.

Fig. 1: Posterior mean of latent factors contained in f t
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Fig. 2: Posterior mean of smoothed recession probabilities
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(b) Consumer price inflation (CPIAUCSL)
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(c) Unemployment rate (UNRATE)
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(d) ISM Manufacturing: Employment Index (NAPMEI)
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Notes: Posterior distribution of impulse responses. Median in black. Dashed blue lines correspond
to 16th and 84th percentiles in dark blue. Results based on 5,000 posterior draws.

Fig. 3: Dynamic responses of real activity and labor market indicators to a 50 basis
point (bp) monetary policy shock
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Response in ’expansionary phase’ Response in ’recessionary phase’

(a) Housing starts (HOUST)
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(b) New private housing units permitted (PERMIT)
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(c) Fed funds rate (FEDFUNDS)
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(d) BAA-FFR spread (BAAFFM)
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Notes: Posterior distribution of impulse responses. Median in black. Dashed blue lines correspond
to 16th and 84th percentiles in dark blue. Results based on 5,000 posterior draws.

Fig. 4: Dynamic responses of housing and financial market indicators to a 50 basis
point (bp) monetary policy shock
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Appendix A Posterior distributions

In this section we provide exact details on the corresponding posterior distributions and
how to simulate them. Before proceeding, a brief word on notation. Let

πt = (π′1, . . . ,π
′
t)
′ (A.1)

denote the history of a generic vector π up to time t, and

Πt = (vec(Π1)′, . . . , vec(ΠT )′)′ (A.2)

the history of a generic matrix Π up to time t. In addition, let us use the following
notation to indicate estimates of some random quantity χ based on information available
at time t

χt|t = E(χt|It) (A.3)

with It denoting a generic information set. Accordingly, we denote a forecast of χ by

χt+1|t = E(χt+1|It). (A.4)

Conditional posterior distributions for the state equation

The (conditional) posterior distributions of the parameters in Eq. (2.3) take a parti-
cularly simple form,

vec(ASt)|ΞT ,DT ∼ N (vec(ASt),ΣSt ⊗ V ASt) (A.5)

ΣεSt |ΞT ,DT ∼ IW(CSt , vSt) (A.6)

where ΞT stores the remaining parameters, regime indicators and latent factors and
DT denotes the available data up to time T .

The posterior moments for ASt are given by

ASt = (D
′
St
DSt)

−1D
′
St
ZSt (A.7)

V st = (D
′
St
DSt)

−1 (A.8)

with DSt = (D′St
,D′St

)′ and ZSt = (Z ′St
,Z ′St

)′. The posterior scale matrix of ΣεSt ,

CSt is given by
CSt = (ZSt −D′St

ASt)
′(ZSt −D′St

ASt). (A.9)

Conditional posterior distributions for the probit model

The parameters of the latent regression model obey posterior distributions which are
of a well-known form (George and McCulloch, 1993), namely a normal distribution for
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γ and a Bernoulli distribution for each δk.

γ|ΞT ,DT ∼ N (γ,V γ) (A.10)

where

Vγ = (w′w +H ′H)−1 (A.11)

γ = Vγ(w′r). (A.12)

Consistent with the notation used above w and r are the corresponding full-data coun-
terparts of wt and rt.

The posterior of δk follows a Bernoulli distribution

δk ∼ Bernoulli (pk) (A.13)

with the corresponding posterior probability given by

pk =

1
τ0

exp
(
−1

2
(γk
τ0

)2
)
p
k

1
τ0

exp
(
−1

2
(γk
τ0

)2
)
p
k

+ 1
τ1

exp
(
−1

2
(γk
τ1

)2
)

(1− p
k
)
. (A.14)

The posterior of rt takes a particularly simple distributional form, namely a truncated
standard normal distribution as described in Albert and Chib (1993).

Conditional posterior distributions for the observation equation

Since we assume that the variance-covariance matrix associated with the innovations
in Eq. (2.2) is diagonal and in light of the restrictions described in Section 2.4, the
conditional posterior for Λ is described exclusively in terms of the remaining M − K
rows of Λ,

Λj•|ΞT ,DT ∼ N (Λj•,V Λj•) (A.15)

where Λj• selects the jth row of Λ for K < j ≤ M . The corresponding posterior
moments are given by

V Λj• = (ς−1
j f

′f +L′jLj)
−1 (A.16)

Λj• = V Λj•(ς
−1
j f

′Y •j). (A.17)

Here, f = (f 1, . . . ,fT )′, Lj denotes the block of Lj associated with the coefficients
of the jth row in Eq. (2.2) and Y •j selects the jth column of a T ×M matrix Y t =
(y1, . . . ,yT )′.
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The posterior of ιk is Bernoulli distributed with the corresponding posterior proba-
bility ρk given by

ρk =

1
%0

exp
(
−1

2
( ιk
%0

)2
)
ρk

1
%0

exp
(
−1

2
( ιk
%0

)2
)
ρk + 1

%1
exp

(
−1

2
( ιk
%1

)2
)

(1− ρk)
. (A.18)

For all other quantities like the discrete states s the conditional posteriors require
more complex forward filtering-backward sampling algorithms (FFBS). Fortunately,
several convenient and efficient algorithms are available to obtain posterior estimates.

Sampling the latent factors f t

The latent factors are obtained by using the well-known algorithm put forth in Carter
and Kohn (1994), and Frühwirth-Schnatter (1994). The density of f t can be factored
as

p(fT |ΞT ,DT ) = p(fT |ΞT ,DT )
T−1∏
t=1

p(f t|f t+1,Ξ
T ,DT )

where the moments are given by

f t|f t+1,Ξ
T ,DT ∼ N (f t|t+1,Ωt|t+1)

f t|t+1 = E(f t|f t+1,Ξ
T ,DT )

Ωt|t+1 = var(f t|f t+1,Ξ
T ,DT ).

If f t|t+1 and Ωt|t+1 is available, the full history of the latent factors can be sampled in
a straightforward fashion from N (f t|t+1,Ωt|t+1). f t|t+1 and Ωt|t+1 are obtained using
Kalman filtering and the corresponding backward recursions. More specifically, let us
assume without loss of generality that Q equals one and no observable quantities are
included. Then Eq. (2.3) can be rewritten as

f t = A1Stf t−1 + εt. (A.19)

In addition, the observation Eq. (2.2) can be written more compactly as

yt = Λff t + et. (A.20)
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Conditional on f 0|0 and Ω0|0, the Kalman filter produces

f t|t−1 = A1Stf t−1|t−1

Ωt|t−1 = A1StΩt−1|t−1A
′
1St

+ Σεt

Kt = Ωt|t−1Λ
f ′(ΛfΩt|t−1Λ

f ′ + Σe)
−1

f t|t = f t|t−1 +Kt(yt −Λff t|t−1)

Ωt|t = Ωt|t−1 −KtΛ
fK ′tΩt|t−1.

Note that at time t = T we obtain fT |T and ΩT |T , which permits us to sample fT .
This draw of fT , in conjunction with fT |T and ΩT |T is then used to obtain f t|t+1 and
Ωt|t+1 until time t = 0 is reached. The corresponding recursions are given by

f t|t+1 = f t|t + Ωt|tA
′
1St

Ω−1
t+1|t(f t+1 −A1Stf t|t)

Ωt|t+1 = Ωt|t −Ωt|tA
′
1St

Ω−1
t+1|tA

′
1St

Ω−1
t|t .

Sampling the regime indicators st

Following Kim and Nelson (1999), and Amisano and Fagan (2013) we obtain the fil-
tered and predicted probabilities, p̂jt|t = Prob(St = j|Ξt,Dt) and p̂it+1|t = Prob(St =
i|Ξt,Dt) through a standard filter (Kim and Nelson, 1999). The prediction and updat-
ing probabilities are given by

p̂jt+1|t =
2∑
i=1

pij,t|tp̂jt|t

p̂jt+1|t+1 =
p̂jt+1|tp(zt+1|A1St+1=j,ΣεSt+1=j)∑2
h=1 p̂ht+1|tp(zt+1|A1St+1=h,ΣεSt+1=h)

The filtered probabilities are then used in the next step to sample the full history of
regime indicators sT . Similar to the decomposition of the joint conditional density of
the latent factors, it is possible to use the following factorization

p(sT |ΞT ,DT ) = p(ST |ΞT ,DT )
T−1∏
t=1

p(St|St+1,Ξ
T ,DT )

where p(ST |fT ,ΞT ,DT ) is obtained from the final iteration of the Hamilton (1989) filter.
St conditional on St+1 and the remaining parameters can be obtained in a straightfor-
ward fashion by noting that

p(St|St+1,Ξ
T ,DT ) ∝ p(St+1|St)p(St|ΞT ,DT ).

The first term on the right hand side refers to the transition probability and the second
term is obtained from the Hamilton filter. Thus p(St|St+1,Ξ

T ,DT ) can be obtained by
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iterating backwards until time t = 0 is reached. To be more precise, let

Prob(St = i|St+1 = j,ΞT ,DT ) =
p̂jt|tpij,t+1∑2
h=1 p̂ht|tphj,t+1

.

Finally, the corresponding transition probabilities pij,t are obtained straightforwardly
through Eq. (2.5).
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Appendix B

Table: Data overview

Name Mnemonic yt xt wt

10-Year Treasury Constant Maturity Minus Federal Funds Rate T10YFFM X
10-Year Treasury Constant Maturity Rate GS10 X
3-Month Treasury Bill: Secondary Market Rate TB3MS X
6-Month Treasury Bill: Secondary Market Rate TB6MS X
All Employees: Construction USCONS X
All Employees: Durable goods DMANEMP
All Employees: Manufacturing MANEMP X
Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing AWHMAN X
Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing CES0600000007 X
Average Weekly Overtime Hours of Production and Nonsupervisory AWOTMAN X
Canada / U.S. Foreign Exchange Rate EXCAUS X
Civilian Employment CE16OV X
Civilian Unemployment Rate UNRATE X X
Commercial and Industrial Loans, All Commercial Banks BUSLOANS X X
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL X X
Effective Federal Funds Rate FEDFUNDS X X
Housing Starts in Midwest Census Region HOUSTMW X
Housing Starts in Northeast Census Region HOUSTNE X
Housing Starts in South Census Region HOUSTS X
Housing Starts in West Census Region HOUSTW X
Housing Starts: Total: New Privately Owned Housing Units Started HOUST X X
Industrial Production Index INDPRO X X
Industrial Production: Business Equipment IPBUSEQ X
Industrial Production: Consumer Goods IPCONGD X
Industrial Production: Durable Consumer Goods IPDCONGD X
Industrial Production: Durable Materials IPDMAT X
Industrial Production: Final Products (Market Group) IPFINAL X
Industrial Production: Final Products and Nonindustrial Supplies IPFPNSS X
Industrial Production: Fuels IPFUELS X
Industrial Production: Manufacturing (SIC) IPMANSICS X
Industrial Production: Materials IPMAT X
Industrial Production: Nondurable Consumer Goods IPNCONGD X
Industrial Production: nondurable Materials IPNMAT X
ISM Manufacturing: Employment Index NAPMEI X
ISM Manufacturing: Inventories Index NAPMII X
ISM Manufacturing: New Orders Index NAPMNOI X
ISM Manufacturing: PMI Composite Index NAPM X
ISM Manufacturing: Prices Index NAPMPRI X
ISM Manufacturing: Production Index NAPMPI X
ISM Manufacturing: Supplier Deliveries Index NAPMSDI X
Japan / U.S. Foreign Exchange Rate EXJPUS X
M2 Money Stock M2SL X
Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate AAAFFM X
Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate BAAFFM X
New Private Housing Units Authorized by Building Permits PERMIT X X
New Private Housing Units Authorized by Building Permits in the Mid West PERMITMW X
New Private Housing Units Authorized by Building Permits in the North East PERMITNE X
New Private Housing Units Authorized by Building Permits in the South PERMITS X
New Private Housing Units Authorized by Building Permits in the West PERMITW X
Personal Consumption Expenditures: Chain-type Price Index PCEPI X
Personal consumption expenditures: Durable goods (chain-type price DDURRG3M086SBEA X
Personal consumption expenditures: Nondurable goods (chain-type price DNDGRG3M086SBEA X
Personal consumption expenditures: Services (chain-type price index) DSERRG3M086SBEA X
Personal Income PI X
Producer Price Index: Commodities: Metals and metal products: Primary PPICMM X
Real Estate Loans, All Commercial Banks REALLN X
Real Manufacturing and Trade Industries Sales CMRMTSPL X
Real personal consumption expenditures (chain-type quantity index) DPCERA3M086SBEA X X
Real Personal Income RPI X X
Real personal income excluding current transfer receipts W875RX1 X X
Reserves Of Depository Institutions, Nonborrowed NONBORRES X
Spot Oil Price: West Texas Intermediate OILPRICE X
St. Louis Adjusted Monetary Base AMBSL X
Switzerland / U.S. Foreign Exchange Rate EXSZUS X
Total Reserves of Depository Institutions TOTRESNS X
U.S. / U.K. Foreign Exchange Rate EXUSUK X

Notes: This table presents the dataset used in this study. Mnemonics refer to codes used to obtain the time series from the US FRED
database. The final three columns indicate whether a variable is included in yt,xt, wt or in all of them.
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