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Abstract

We consider the class of two-player symmetric n × n games with the total

bandwagon property (TBP) introduced by Kandori and Rob (1998). We show

that a game has TBP if and only if the game has 2n−1 symmetric Nash equilibria.

We extend this result to bimatrix games by introducing the generalized TBP.

This sheds light on the (wrong) conjecture of Quint and Shubik (1997) that any

n × n bimatrix game has at most 2n − 1 Nash equilibria. As for an equilibrium

selection criterion, I show the existence of a 1/2–dominant equilibrium for two

subclasses of games with TBP: (i) supermodular games; (ii) potential games.

As an application, we consider the minimum-effort game, which does not satisfy

TBP, but is a limit case of TBP.
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1 Introduction

Bandwagon effect is a form of groupthinking in social psychology which says that as

more people adopt a belief or an action, others are more likely to do the same thing. We

can observe it in markets through fads or trends, such as consumer product choices and

customs.1 This concept is explicitly introduced by Leibenstein (1950) into economics

for consumer demand theory, and has been further investigated theoretically and empir-

ically.2 Here we consider a related but stronger concept, the total bandwagon property

(TBP), which is introduced by Kandori and Rob (1998) where TBP is used as a band-

wagon effect regarding consumer technology adoptions in an evolutionary context as

follows. There is a society consisting of a single population, and each consumer in the

society observes a product choice profile taken by all other consumers in the last period

and chooses one of products used by some other people as a best response. Formally,

TBP is the property imposed on the class of symmetric two-player games under which

all best responses against any mixed strategy are in the support of this mixed strategy.

Our main purpose is to unveil hidden sides of the above mentioned bandwagon effect

on games.

We first show a characterization of games with TBP via the number of Nash equi-

libria: A symmetric n× n game has TBP if and only if the game has 2n− 1 symmetric

Nash equilibria. Furthermore, by considering the generalized TBP to allow for asym-

metric games, we extend the characterization to bimatrix games. This characterization

result suggests that a game with the bandwagon property may have so many Nash

equilibria that it is hard to select a single equilibrium. Given no observed history of

actions taken in society, when choosing an action, agents cannot have clear selection

criteria on which equilibrium is chosen.3 With this in mind, the second objective of our

1The bandwagon effect can be interpreted as a network externality and is related to conformity,
herd behavior, information cascade, and so on. Note that we can also see the opposite effect known
as snob effect that when many people adopt something, a person avoids to have or be associated with
the same thing. Exclusive products, such as designer clothing and rare artworks, are typical examples.

2For instance, see Granovetter and Soong (1986), Becker (1991), Bikhchandani et al. (1992), Karni
and Levin (1994), and Pesendorfer (1995) as related theoretical research; Biddle (1991) and McAllister
and Studlar (1991) as empirical research; Plott and Smith (1999) as experimental research on markets.
See Rohlfs (2001) for a comprehensive analysis on bandwagon effect in high-tech industries.

3In the late 1970s and the 1980s, consumers struggled to choose between videotape formats of
VHS by Matsushita as JVC and Betamax sold by Sony, but VHS prevailed in the end. The striking
force behind this market outcome is that consumers tend to adopt the more popular technology.
Similar examples are observed for the high definition optical disc formats between Blu-ray Disc by
Sony and HD-DVD by Toshiba (Fackler, 2008) and browsers between Internet Explorer by Microsoft
and Netscape by Navigator in the late 1990s and between Google Chrome, Mozilla Firefox, Internet
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paper is to provide a simple equilibrium selection criterion. Such a simple but strong

equilibrium selection criterion is the solution concept of 1/2–dominant equilibrium pro-

posed by Morris, Rob and Shin (1995), which is a generalization of risk dominant

equilibrium (Harsanyi and Selten, 1988). It is chosen by various equilibrium selection

methods including the “evolutionary learning method” based on the best response dy-

namics with mutation (Kandori et al., 1993; Young, 1993); the “global game method”

(Carlsson and van Damme, 1993); the “incomplete information game method” (Kajii

and Morris, 1997); the “perfect foresight dynamics method” (Matsui and Matsuyama,

1995; Hofbauer and Sorger, 1999); the “spatial dominance method” (Hofbauer, 1999).

A 1/2–dominant equilibrium needs not to exist in games with TBP. I show the existence

of a 1/2–dominant equilibrium for two subclasses of games with TBP.

One of them is the class of supermodular games. Supermodularity (strategic comple-

mentarity) has been considered to be important in economics (Milgrom and Roberts,

1990; Milgrom and Shannon, 1994; Topkis, 1998; Vives, 1990, 2001). We show that

a (generic) symmtric two-player supermodular game with TBP has a unique 1/2–

dominant equilibrium, and the equilibrium is either the lowest or the highest strategy

profile. This implies that the various equilibrium selection methods consistently predict

either the lowest or the highest strategy profile to be chosen in this subclass of games

with TBP.

The other is the class of potential games (Hofbauer and Sigmund, 1988; Monderer

and Shapley, 1996). We show that if a game with TBP has a potential function with

a unique potential maximizer, the potential maximizer is a 1/2–dominant equilibrium.

More generally, when considering a local potential maximizer (Morris, 1999), which is a

generalization of potential maximizer and chosen by the evolutionary learning method

based on the log-linear dynamics (Blume, 1993; Okada and Tercieux, 2012),4 we can

show that if a local potential maximizer (with constant weights) exists in a game, it is

a 1/2–dominant equilibrium.

Lastly, we apply our results to a classical experimental game—the minimum-effort

game—introduced by Van Huyck, Battalio and Beil (1990) where subjects choose their

individual effort levels with incurring constant per-unit effort cost while their benefits

are commonly determined by the minimum level of efforts chosen by all subjects, and

therefore every subject has no incentive to choose a higher effort level than the other(s).

This game is a (symmetric) supermodular coordination game with multiple Pareto-

Explorer, Safari by Apple, and Opera in recent years (The Economist, Aug 10, 2013).
4See also Alós-Ferrer and Netzer (2010, 2015).
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ranked Nash equilibria. We show that the two-player minimum-effort game does not

satisfy TBP but is a limit case of TBP.5 Then we examine the result of their experiment

in the two-player case by the selection criterion of the 1/2–dominant equilibrium.

This article contributes to two strands of the literature. First of all, this article is

related to the literature on the number of Nash equilibria in games. To the best of

my knowledge, this is the first paper to provide a characterization of a class of games

via the number of Nash equilibria. Interestingly, this characterization sheds light on

the (wrong) conjecture of Quint and Shubik (1997) that any (nondegenerate) n × n

bimatrix game has at most 2n−1 Nash equilibria.6 Our result implies that the number

of Nash equilibria given by our class of games with the bandwagon property is exactly

the same as the maximum number given by the Quint-Shubik conjecture. Secondly, we

provide new insights on equilibrium selection methods.

The rest of the paper is organized as follows. The next section presents the under-

lying game considered in this paper. Section 3 first gives the characterization result

of symmetric games with TBP via the number of Nash equilibria and then extend the

charaterization to bimatrix games. Section 4 focuses on the equilibrium selection prob-

lem for the class of games with TBP, thereby providing the simple selection criterion

consistently chosen by various methods. Section 5 applies the above obtained results

to the experimental game. Section 6 concludes.

2 The Underlying Game

We consider a symmetric two-player game g = (A, g) where A = {1, 2, . . . , n} with

|A| = n ≥ 2 is the finite set of pure strategies and g : A2 → R is the symmetric payoff

function. We write the set of mixed strategies by the (n− 1)–dimensional simplex ∆ =

{x ∈ Rn | ∀i ∈ A, xi ≥ 0,
∑

i∈A xi = 1}. For any x ∈ ∆, let supp(x) = {i ∈ A | xi > 0}
be the support of x and br(x) = argmaxi∈A

∑
j∈A gijxj be the set of pure strategy best

5The two-player minimum-effort game used in their experiment of Van Huyck et al. (1990) is also
the knife-edge case for a potential maximizer (Monderer and Shapley, 1996) and a logit equilibrium
(Anderson et al., 2001).

6Keiding (1997) and McLennan and Park (1999) prove the conjecture in the case of n ≤ 4 and
Quint and Shubik (2002) for games where payoff matrices are identical between two players, while von
Stengel (1999) shows that it does not hold in general. In fact, von Stengel (1999) constructs a general
lower bound on the maximal number of Nash equilibria based on a technique of polytope theory, and
then as its application, he provides a counterexample of an asymmetric 6 × 6 game with 75 Nash
equilibria, which is larger than 26− 1 = 63. Nonetheless, the case of n = 5 is still unknown to the best
of our knowledge.
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responses against x. When supp(x) = S ⊆ A, we write x ∈ ∆̊(S) instead of x ∈ ∆. A

game is nondegenerate if |br(x)| ≤ |supp(x)| for any x ∈ ∆, it is a coordination game

if any symmetric pure strategy profile is a strict Nash equilibrium, and it is a pure

coordination game if for any i, j ∈ A, gij > 0 if i = j, otherwise gij = 0.

Kandori and Rob (1998) introduce the following concept capturing a bandwagon

effect regarding consumer technology adoptions in an evolutionary context.

Definition 1. A game g = (A, g) has the total bandwagon property (TBP) if br(x) ⊆
supp(x) for any x ∈ ∆.

TBP is a strong condition when just considering the symmetric game itself, but it

is meaningful when considering the following evolutionary model usually adopted in

the literature. There is a society made of a single population. Each period each agent

of the population is randomly matched with one other agent in the society to play a

game g. We assume that each agent is a myopic decision maker and observes an action

distribution x ∈ ∆ taken in the last period, and then believes that the opponent with

whom he is randomly matched chooses the same mixed strategy as the observed action

distribution x, thereby choosing a best response against the belief x. In this situation,

TBP requires that it is the best for the agent to take one of the actions taken in the

society instead of taking an action not taken in the society. Note that any game with

TBP is a nondegenerate coordination game and in addition that any pure coordination

game and slightly perturbed ones satisfy TBP.

TBP is related to the set-valued solution concept, curb set, introduced by Basu

and Weibull (1991) and further investigated by Ritzberger and Weibull (1995) in an

evolutionary context. Since we here focus on symmetric (coordination) games, we

simply introduce the definition of curb sets by using subset of strategies instead of

subset of strategy profiles in the following way.

Definition 2. A subset of strategies S ⊆ A is a curb set if for any x ∈ ∆̊(S),

br(x) ⊆ S
(

=
⋃

x∈∆(S)

supp(x)
)

From this definition, it is easy to see that TBP is equivalent to the condition that

any S ⊆ A is a curb set.7

7The curb set is not a condition for a class of games but is used for a solution concept, while TBP is
a condition for games. Formally, a curb set is defined in an N -person normal-form game and a product
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3 Characterization

We provide the characterization of games with TBP via the number of NE as follows.

Theorem 1. Let g = (A, g) be a symmetric n× n game. The game g has TBP if and

only if g has 2n − 1 symmetric Nash equilibria.

The proof of Theorem 1 is given in the Appendix. Theorem 1 gives us the following

interesting points. First of all, the class of games with the bandwagon property is

characterized by the number of NE. To the best of our knowledge, this is the first paper

to provide a characterization of games via the number of Nash equilibria. Secondly,

Theorem 1 is related to the conjecture of Quint and Shubik (1997) for the number of

NE that any nondegenerate n × n bimatrix game has at most 2n − 1 NE including

asymmetric ones. In general however, von Stengel (1999) shows that the Quint-Shubik

conjecture does not hold. But we can say that the conjecture holds for any symmetric

n×n game with TBP.8 More precisely, the class of symmetric games with TBP obtains

the maximum number of NE given by the Quint-Shubik conjecture, and conversely,

the game with the maximum number of NE must have TBP as long as the game is

symmetric.

3.1 Extension to Bimatrix Games

It is natural to extend the notion of TBP to allow for asymmetric games as follows.

We write a bimatrix game as g = ({1, 2}, (Ai)i=1,2, (g
i)i=1,2) where A1 = A2 =

{1, 2, . . . , n} is the linearly ordered set of strategies, and gi : A2 → R the payoff

function of player i = 1, 2.9 Since we consider the common set of strategies A1 =

A2 = {1, 2, . . . , n}, we simply denote by g = ({1, 2}, A, (gi)i=1,2) a bimatrix game and

use notations in almost the same way as in symmetric games. For clarity, we write by

xi ∈ ∆ a mixed strategy of player i. We denote by bri(x
j) = argmaxk∈A

∑
h∈A gi(k, h)xj

h

set of pure strategies. There are two related set-valued concepts. One of them is retract defined by
Kalai and Samet (1984), which is a product set of mixed strategies. This concept is used to generalize
the concept of NE and give a refinement of NE as in trembling hand perfect equilibrium (Selten, 1975)
and proper equilibrium (Myerson, 1978). The other is pre set defined by Voorneveld (2004), which is a
product set of pure strateiges as in curb set. For a relation among the three concepts, see van Damme
(2002) and Voorneveld (2005).

8We can show that the game has no asymmetric NE in addition to Theorem 1. For proof showing
that any symmetric game with TBP has no asymmetric equilibrium, see Remark 2 in the Appendix.

9We consider the linearly ordered set of strategies for simple notations. We assume that the size of
set of strategies is common for both players by |A1| = |A2| = n in order to extend TBP to asymmetric
games (see the Appendix for an example to explain why we need the same size of set of strategies).
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the set of pure strategy best responses of player i against the opponent j’s mixed

strategy xj ∈ ∆ as j 6= i. A game g is nondegenerate if for any i, j = 1, 2 and any

xj ∈ ∆ as i 6= j, |bri(x
j)| ≤ |supp(xj)|, and a (pure) coordination game is defined in

the same way as in symmetric games.

We define the naturally extended TBP to bimatrix games as follows.

Definition 3. The game g = ({1, 2}, A, (gi)i=1,2) has the generalized TBP (GTBP) if

for i, j = 1, 2 with i 6= j and any xj ∈ ∆, bri(x
j) ⊆ supp(xj).

Note that a game with GTBP is a coordination game and nondegenerate, and in

addition that by allowing for permutations or reordering of strategies, we can consider a

slightly larger class of games than those with GTBP, such as a class of anti-coordination

games including Hawk-Dove games.

We extend the characterization of Theorem 1 to bimatrix games by incorporating

restrictions on support of NE as follows.

Theorem 2. Let g = ({1, 2}, A, (gi)i=1,2) be an n× n bimatrix game. The game g has

GTBP if and only if g has 2n− 1 Nash equilibria, each of which gives the same support

for both players that is distinct from those of other Nash equilibria.

See the Appendix for the proof of Theorem 2. It turns out that g has GTBP if and

only if both g1 and g2 (viewed as symmetric n×n games) have TBP. This tells us that

the conjecture of Quint and Shubik (1997) still holds for the class of bimatrix games

with the bandwagon property. The reason why we restrict support of NE is given in the

Appendix where we show that the game without the restriction may not have GTBP.

4 The Equilibrium Selection Problem

So far we have shown that any two-player game with the bandwagon property has

many NE, so that it seems hard to select a single equilibrium. With this in mind, the

objective of this section is to provide a simple equilibrium selection criterion. Such a

simple but strong equilibrium selection criterion is the solution concept of 1/2–dominant

equilibrium proposed by Morris, Rob and Shin (1995), which is a generalization of risk

dominant equilibrium (Harsanyi and Selten, 1988). It is chosen by various equilibrium

selection methods mentioned below. A 1/2–dominant equilibrium needs not to exist in

games with TBP. We will show the existence of a 1/2–dominant equilibrium for two

subclasses of games with TBP: (i) supermodular games; (ii) potential games.

7



4.1 Half–Dominant Equilibrium

There are various equilibrium selection methods: (1) the evolutionary learning method

of best-response dynamics with mutations (Kandori et al., 1993; Young, 1993); (2) the

global game method (Carlsson and van Damme, 1993); (3) the incomplete information

method (Kajii and Morris, 1997); (4) the perfect foresight dynamics method (Matsui

and Matsuyama, 1995; Hofbauer and Sorger, 1999); (5) the spatial dominance method

(Hofbauer, 1999), among others. One common property among those methods is that

if a two-player game has a 1/2–dominant equilibrium, then it is uniquely selected by

all above methods. The 1/2–dominant equilibrium (Morris et al., 1995) is defined as

follows.10

Definition 4. A strategy profile (i∗, i∗) ∈ A2 is a 1/2–dominant equilibrium if for any

x ∈ ∆ with xi∗ ≥ 1/2,

br(x) = {i∗}.

Note that if a strategy profile is a 1/2–dominant equilibrium, then it is a strict NE.

To make the above condition more clear, we can rewrite it by the following equivalent

condition: for strategy profile (i∗, i∗) and any strategy profile (i, j) ∈ A2 with (i, j) 6=
(i∗, i∗),

1

2
gi∗i∗ +

1

2
gi∗j >

1

2
gii∗ +

1

2
gij. (1)

Also, note that a game can have at most one 1/2–dominant equilibrium. A game with

TBP may have no 1/2–dominant equilibrium.

As another generalization of risk-dominant equilibrium, Kandori and Rob (1998)

consider a risk–dominant concept for strategies based on pairwise comparison. Consider

a coordination game and two distinct pure strategy NE (i, i) and (j, j). Then, strategy

i pairwise risk dominates j (i PRD j) if

gii − gji > gjj − gij.

If i PRD j for any strategy j 6= i, then i is globally pairwise risk dominant (GPRD). We

call a symmetric pure strategy NE in which the strategy is GPRD a GPRD-equilibrium.

10Note that the following definition is for symmetric (two-player) coordination games but the formal
definition is for all games.
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Note that if a game has a GPRD-equilibrium, by definition, the GPRD-equilibrium is

unique and also that since a GPRD-equilibrium is a natural extension of risk-dominant

equilibrium and a weaker concept than a 1/2–dominant equilibrium, a game may have

a GPRD-equilibrium but not a 1/2–dominant equilibrium. But it is easily shown:

Lemma 1. If a GPRD-equilibrium exists in a game with TBP, it is a 1/2–dominant

equilibrium.

See the Appendix for the proof of Lemma 1.

4.2 Supermodularity

In economics, strategic complementality (supermodularity) has been considered to be

important (Milgrom and Roberts, 1990), and is defined as follows.

Definition 5. A game g = (A, g) with A = {1, 2, . . . , n} is supermodular if for any

i, i′, j, j′ ∈ A with i > i′ and j ≥ j′,

gij − gi′j ≥ gij′ − gi′j′ . (2)

By definition, if a game g = (A, g) is supermodular, each person’s best response is

non-decreasing in his opponent’s strategies.

Adding supermodularity to games with TBP, we can provide a simple equilibrium

selection criterion based on the 1/2–dominance as follows.

Proposition 1. We consider a symmetric n×n game g = (A, g) where A = {1, . . . , n}
and g11 − gn1 6= gnn − g1n. If g has TBP and is supermodular, the game always has

a 1/2–dominant equilibrium. The 1/2–dominant equilibrium is either the lowest or the

highest strategy profile, (1, 1) or (n, n), and given by(1, 1), if g11 − g1n > gnn − gn1,

(n, n), if g11 − g1n < gnn − gn1.

The proof of Proposition 1 is given in the Appendix. It turns out that a GPRD–

equilibrium in a supermodular game with TBP is a 1/2–dominant equilibrium. Propo-

sition 1 basically tells us that we can guarantee the existence of a 1/2–dominant equi-

librium in a subclass of games with TBP and then provide a simple prediction to select

a single equilibrium. Note that the condition g11 − gn1 6= gnn − g1n is very mild and

holds in all generic games.
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4.3 Potential Games

We consider a potential game (Monderer and Shapley, 1996) or partnership game (Hof-

bauer and Sigmund, 1988) in order to show a connection of equilibrium selection meth-

ods between the potential game method and the other methods introduced in Section

4.1, given that the game has TBP. In the literature, it has been shown that the poten-

tial game method is consistent with other equilibrium selection methods including the

incomplete information method (Ui, 2001; Morris and Ui, 2005; Oyama and Tercieux,

2009), the global game method (Frankel, Morris and Pauzner, 2003), and the perfect

foresight dynamics method (Hofbauer and Sorger, 1999, 2002; Oyama, Takahashi and

Hofbauer, 2008).11

We introduce a potential game (Monderer and Shapley, 1996) for a symmetric two-

player game as follows. Given a symmetric game g = (A, g), a symmetric function

v : A2 → R with vij = vji for any i, j ∈ A is a potential function of g if for any

i, i′, j ∈ A,12

gi′j − gij = vi′j − vij.

Definition 6. A pure strategy profile (i∗, j∗) ∈ A2 is a potential maximizer if there

exists a potential function v : A2 → R such that (i∗, j∗) ∈ arg max(i,j)∈A2 vij. We call g

a potential game if there exists a potential function v : A2 → R.

Any potential maximizer is a NE. If a game has TBP, since we know by Theorem

1 that every symmetric pure strategy profile is a NE while there is no asymmetric NE,

only a symmetric pure strategy profile can be a potential maximizer. It is shown by

Monderer and Shapley (1996, Lemma 2.7) that if a game g = (A, g) has a potential

function v, it is unique up to constant, meaning that when taking v and v′ as potential

functions of g, there exists a constant c such that for any (i, j) ∈ A2, vij − v′ij = c.

This implies that it is enough to focus on a potential function when considering the

equilibrium selection criterion of potential games.

11For the relation between the potential game method, the incomplete information method, and
the global game method, see Basteck and Daniëls (2011), Honda (2011), and Oyama and Takahashi
(2011).

12In fact, Monderer and Shapley (1996) define a potential function in an (possibly asymmetric)
N -person game where the symmetry of potential functions does not necessarily hold. For instance,
a two-player bimatrix game g = (A, (gi)i=1,2) as defined in previous section has a potential function
v : A2 → R of g if for any h = 1, 2 and any i, i′, j ∈ A, ghij − ghi′j = vij − vi′j If a game is symmetric,
by definition, we obtain the symmetry of vij = vji. Hofbauer and Sigmund (1988) call such a game a
(rescaled) partnership game.
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We show the existence of a 1/2–dominant equilibrium in a subclass of games with

TBP as follows.

Proposition 2. We consider a two-player symmetric game g = (A, g) with TBP.

Suppose that g has a potential function with a unique potential maximizer. Then, the

potential maximizer is a 1/2–dominant equilibrium.

The proof of Proposition 2 is given in the Appendix where we show that the potential

maximizer is a GPRD–equilibrium, and then use Lemma 1 to show that the potential

maximizer is 1/2–dominant equilibrium. Actually we can extend Proposition 2 to a

generalized potential maximizer introduced below.

4.3.1 Generalized Potential Games and Log-Linear Dynamics

As an equilibrium selection method, we consider the log-linear dynamics introduced by

Blume (1993).13 We briefly explain what is the log-linear dynamics. Let us consider

a single population consisting of N players who interact in a normal-form game. The

log-linear dynamic is a stochastic process in discrete time and its state space is the

set of all pure strategy profiles. An initial strategy profile is chosen according to a

distribution. At each subsequent period, only one of players is randomly selected and

gets an opportunity to revise his or her strategy. The strategy revisions follow the log-

linear stochastic choice rule under which the log likelihood ratio between two strategies

is proportional to the difference between payoffs of those actions. The (common) factor

of proportionality in the choice rule is exogenously given and is interpreted as noise of

payoff information. The log-linear choice rule generates a time-homogeneous Markov

chain on the set of pure strategy profiles, which is irreducible and aperiodic. As the

long-run outcome in this dynamic, we consider a unique invariant distribution of the

Markov chain when the noise level goes to zero. It is known that if an exact potential

function exists in a game, the unique invariant distribution in the log-linear dynamic is

explicitly given by a simple closed form.14 This gives us a powerful tool when using an

explicit stationary distribution in an application.15

13See also Blume (1997) and Young (1998). Note that this paper takes into account a discrete time
version of log-linear dynamics (Blume, 1997) instead of its continuous time version (Blume, 1993).

14This is because the Markov chain satisfies reversibility, the detailed balance conditions hold for an
invariant distribution, and the Gibbs representation of an invariant distribution is applied.

15As a suitable application, Young and Burke (2001) consider agricultural contracts of crops in
Illinois as a case study to investigate an evolutionary process for the contracts and then provide an
explanation why currently adopted contracts according to regions are established and stable.
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In the following, we introduce a solution concept used in the study of the log-

linear dynamics, local potential maximizer (Morris, 1999), which is a generalization

of potential maximizer (Monderer and Shapley, 1996). Consider a symmetric game

g = (A, g) with A = {1, , . . . , n}. Then, we define a simplified local potential maximizer

(with constant weights) as in Okada and Tercieux (2012, Definition 1).16

Definition 7. A pure strategy profile s∗ = (i∗, j∗) ∈ A2 is a local potential maximizer

(LP-maximizer) of g if there exists a local potential function v : A2 → R with vs∗ > vs

for all s ∈ A2\{s∗} such that any i, j ∈ A,

vi+1j − vij ≤ gi+1j − gij, if i < i∗,

vi−1j − vij ≤ gi−1j − gij, if i > i∗,

and similarly

vj+1i − vji ≤ gj+1i − gji, if j < j∗,

vj−1i − vji ≤ gj−1i − gji, if j > j∗.

The notion of LP-maximizer relaxes the equality condition of potential-maximizer

by an inequality under a certain requirement on the local relation in terms of order of

strategies between v and g. Note that since LP-maximizer is a generalization of the

potential maximizer, there is a class of games where an LP-maximizer exists but no po-

tential maximizer does, and also note that a game may have multiple LP-maximizers.17

A 1/2–dominant equilibrium is in general irrelevant for the selection criterion under

the log-linear dynamics. It is known that if a local potential maximizer exists in a

supermodular game, it is selected in the log-linear dynamics (Okada and Tercieux,

2012).

We provide a relation between LP-maximizer and 1/2–dominant equilibrium as

follows.

16See Morris (1999) for the detail and Okada and Tercieux (2012, Definition 3) for the simplified
version with non-constant weights.

17Although Frankel et al. (2003) claim that an LP-maximizer of a supermodular game that satisfies
own-action quasi-concavity is unique in terms of noise-independent selection in global games, Oyama
and Takahashi (2009, Example 1) provide a counterexample that this claim does not hold. In fact,
Oyama et al. (2008) show that an LP-maximizer of a supermodular game that satisfies diminishing
marginal return (or own-action concavity) is at most one, and so if an LP-maximizer exists in such a
game, it is unique and no multiplicity happens.
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Proposition 3. Let us consider a supermodular game g = (A, g) with TBP. Suppose

that there exists an LP-maximizer (i, i) for i ∈ A. Then, (i, i) is a 1/2–dominant

equilibrium.

For the proof of Proposition 3, see the Appendix. Together with Proposition 1, the

above considered LP-maximizer must be either the lowest strategy profile or the highest

strategy profile. In a subclass of games with the bandwagon property, the log-linear

dynamic selects the 1/2–dominant equilibrium chosen out of many equilibria as well

as the best response dynamics with mutation (Kandori et al., 1993; Young, 1993) and

others.

5 Application to the Minimum-Effort Game

We introduce the minimum-effort (or the weak-link) game defined by Van Huyck, Bat-

talio and Beil (1990) and then examine one of their experimental results showing that

no stable outcome obtains in their experiment if subjects repeatedly play the two-player

minimum-effort game with the random matching. To this aim, we first show that the

two-player minimum-effort game does not satisfy TBP but is a limit case of TBP. Then

we examine the result of their experiment by the selection criterion of the 1/2–dominant

equilibrium.

The Minimum-Effort Game

The two-player minimum-effort game is a symmetric n×n coordination game g = (A, g)

such that each strategy i ∈ A = {1, 2, . . . , n} represents an effort level and the payoff

of player who takes i given the opponent’s effort level j is determined by

gij = amin{i, j} − bi + c (3)

where a, b, and c are positive constants such that a > b > 0 and c > 0 guarantees positive

payoffs for all subjects in the experiment for any given effort profile. This payoff function

entails an interesting feature in capturing coordination problems that the effort cost of

each subject depends only on the individual effort choice while the benefit depends upon

the minimum of effort levels chosen by both subjects, and therefore each subject has no

incentive to choose a higher effort level than that of the other subject. The minimum-

effort game is a symmetric n×n supermodular coordination game. The lowest strategy

13



1

2

3

1 2 3
0.70

0.60

0.50

0.80

0.70 0.90

0.70 0.70

0.80

Table 1: The 3× 3 minimum-effort game where (a, b, c) = (0.20, 0.10, 0.60).

1 2

3

{1}
{2}

{3}

Figure 1: The best response regions of the 3× 3 minimum-effort game.

profile (1, 1) and the highest strategy profile (n, n) are the most inefficient and the most

efficient equilibria in the game, respectively.

Property of the Minimum-Effort Game

We first illustrate that the minimum-effort game does not satisfy TBP but is a limit

case of TBP. Consider a symmetric 3× 3 minimum-effort game given by Table 1. The

best response regions of the game are given by Figure 1 where we can see that the 3×3

minimum-effort game “almost” satisfies TBP in the sense that br(x) ⊆ supp(x) holds

for ”almost” all x ∈ ∆ except for one specific point x13 ∈ ∆̊({1, 3}) violating TBP where

supp(x13) ( br(x13) holds. Actually we can show that the two-player minimum-effort

game does not satisfies TBP but is a limit case of TBP in the following sense.

Lemma 2. For any l,m, h ∈ A with l < m < h, there exists a unique point x∗ ∈
∆̊({l, h}) such that x∗l = (a− b)/a, x∗h = 1− x∗l , and

supp(x∗) ( br(x∗), (4)

∀x ∈ ∆({l, h})\{x∗}, br(x) ⊆ supp(x). (5)

The proof of Lemma 2 is given in the Appendix.

From above, the minimum-effort game contains the knife-edge case for the 1/2–

dominant equilibrium in the minimum effort game g = (A, g) with |A| = n because the

14



1

2

3

4

5

6

7

1 2 3 4 5 6 7
0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.80

0.70

0.60

0.50

0.40

0.30

0.90

0.80

070

0.60

0.50

1.00

0.90

0.80

0.70

1.10

1.00

0.90

1.20

1.10 1.30

0.70 0.70 0.70 0.70 0.70 0.70

0.80 0.80 0.80 0.80 0.80

0.90 0.90 0.90 0.90

1.00 1.00 1.00

1.10 1.10

1.20

Table 2: The minimum-effort game used in the experiment.

1/2–dominant equilibrium is given by{(1, 1)}, if a < 2b,

{(n, n)}, if a > 2b.
(6)

Similarly, it is easily shown (Monderer and Shapley, 1996) that the minimum-effort

game is a potential game where a potential function v : A2 → R is given by vij =

amin{i, j} − b(i + j) for any (i, j) ∈ A2 and the potential maximizer by (6) as well as

the 1/2–dominant equilibrium except for the knife-edge case where all symmetric pure

strategy profiles are potential maximizers.

Examination of Experimental Result

Van Huyck et al. (1990) run the experiments for the two-subject case together with the

many-subject case by specifying the payoff matrix of the minimum-effort game in such a

way that A = {1, 2, . . . , 7} and (a, b, c) = (0.20, 0.10, 0.60), which is described by Table

2. At each session in each case, one group of subjects repeatedly play the game under the

fix-pair while the other under the random-pair. Their experimental result in the two-

subject case shows that the most efficient equilibrium is selected under the fix-pair, while

no stable outcome obtains under the random-pair.18 For the equilibrium selection result

in case of the fixed-pair, Van Huyck et al. (1990) apply the repeated game argument to

18In the many-subject case, the clear convergence to the most inefficient outcome obtains in their
experiment, which is one of well known coordination failure problems. This can be simply explained
in a way that, when choosing a higher effort level than the minimum level, a player thinks that all
subjects are less likely to coordinate to choose high effort levels as there are more subjects. For details,
see Van Huyck et al. (1990).
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justify the result, which makes sense. For the result in case of the random-pair, however,

they do not give a justification. When a = 2b used in the experiment, by (6), this is the

knife-edge case where there is no 1/2–dominant equilibrium,19 and therefore we cannot

apply the theoretical prediction obtained in the previous sections to the experimental

game. The equilibrium selection methods considered in this paper are based on random

matching where no convergence is obtained in their experiment.

6 Conclusion

This paper considered two-player games with the bandwagon property and then pinned

down the underlying characteristic of those games. In doing so, we provided two main

results. One of them is a characterization of a class of games via the number of Nash

equilibria. To the best of our knowledge, this is the first paper to characterize a class

of games by the number of Nash equilibria. It is of interest that the class of games

with the maximum number of Nash equilibria given by the Quint-Shubik conjecture is

equivalent to that of games with the bandwagon property. Secondly, taking into account

that the games with the bandwagon property has too many equilibria to select a single

equilibrium, we gave it a simple equilibrium selection criterion that is commonly chosen

by various methods. Applying our results to the minimum-effort game, we clarified the

property of the game.

Appendix: Proofs

Proof of Theorem 1

We provide proofs for the if part and the only if part of separately.

Remark 1. Any game with TBP is nondegenerate, and so the game has the oddness

property regarding the number of NE. For this fact, see Shapley (1974, Theorem 2)

and Quint and Shubik (1997, Lemma 2.2), among others. Note that any nondegenerate

game g has at most symmetric 2n − 1 NE.

19Similarly, Goeree and Holt (2005) point out that this is the knife-edge case for a logit-equilibrium
(Anderson et al., 2001).
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a

a

a

a

c

c

b c

c b c

c
bc

b c1

2

3
4

1 2 3 4

Table 3: A symmetric 4× 4 coordination game where a > b, a > c, and a + b > 2c.

Proof of the if part

Proof. Consider a symmetric game g = (A, g) with 2n − 1 symmetric NE. Assume to

the contrary that TBP does not hold. Taking into account that TBP is equivalent to

the condition that br(x)\supp(x) = ∅ for any x ∈ ∆, if TBP does not hold, there must

exist some x̃ ∈ ∆ such that

br(x̃)\supp(x̃) 6= ∅. (A.1)

If x̃ is in the standard basis denoted by ∪i∈Aei, br(x̃) = supp(x̃) = j holds for some

j ∈ A because all symmetric pure strategy profile are NE, a contradiction to (A.1). Also,

if x̃ ∈ ∆̊(A), br(x̃) ⊆ A = supp(x̃) holds, a contradiction to (A.1). Next, we consider

the remaining case of x̃ ∈ ∆\((∪i∈Aei)∪ ∆̊(A)) and let S = supp(x̃) ( A. Assume that

j ∈ br(x̃)\supp(x̃) 6= ∅. Given that the game has all symmetric NE, it has a unique

symmetric NE (x∗, x∗) such that x∗ ∈ ∆̊({j} ∪ S). But, since j ∈ br(x̃)\supp(x̃) 6= ∅
is assumed to hold, together with the fact that all pure strategy best response sets are

convex, the best response region of pure strategy j goes across the entire interior of the

face spanned by all pure strategies in {j}∪ supp(x̃) and prevents the NE (x∗, x∗) where

the best responses of all strategies in {j} ∪ supp(x̃) meet to exist, a contradiction.

We will illustrate via an example how the above shown proof works.

Example 1. Let us consider a symmetric 4 × 4 coordination game given by Table 3

where there are three parameters a, b, and c such that a > b, a > c, and a + b > 2c.

We can show that the game has 24 − 1 = 15 symmetric NE. For example, as

(a, b, c) = (10, 5, 7), all (symmetric) NE of this game are given by 4 pure strategy

NE, 6 completely mixed strategy NE over S with |S| = 2 such that xi = xj = 1/2

for any two distinct i, j ∈ A, 4 completely mixed strategy NE over S with |S| = 3

such that (3/7, 1/7, 3/7, 0), (0, 3/7, 1/7, 3/7), (3/7, 0, 3/7, 1/7), (1/7, 3/7, 0, 3/7), and a

unique interior NE, (1/4, 1/4, 1/4, 1/4).

Assume to the contrary that TBP does not hold, so that there exists some x̃ ∈
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1

2

3

4

1

2

3

4

4 ∈ br(x̃)\ supp(x̃)

x̃

{x ∈ ∆ | 4 ∈ br(x̃)}

Figure 2: The best response regions of the game (Left) and an illustration that the
condition 4 ∈ br(x̃)\supp(x̃) 6= ∅ breaks down the best response regions (Right).

∆̊({1, 2, 3}) such that (A.1) holds. This corresponds to the case of x̃ ∈ ∆\((∪i∈Aei) ∪
∆̊(A)) as A = {1, 2, 3, 4} where S = supp(x̃) = {1, 2, 3} ( A, and there exists the

strategy j = 4 ∈ br(x̃)\supp(x̃) 6= ∅, which breaks down the best response regions of

the game, which is described by Figure 2.

Alternative proof of the if part

Let us consider any symmetric two-player game g = (A, g) with TBP and |A| ≥ 2.

For any nonempty subset S ⊆ A, we define g|S by the restricted game of g where the

players choose actions only from S.

Proof. We show the if part as follows. If the number of symmetric NE in symmetric

game g = (A, g) with |A| = n is 2n − 1, from Remark 1, then the game must have

all possible 2n − 1 symmetric NE. Let X1 = {x ∈ ∆ | |supp(x)| = 1}. Then, all

symmetric pure strategy profiles are NE, and so br(x) ⊆ supp(x) holds for all x ∈ X1.

Also, for all x ∈ ∆̊(A), br(x) ⊆ supp(x) holds. To show that g has TBP, letting X2 =

∆\(X1 ∪ ∆̊(A)), we still have to show that br(x) ⊆ supp(x) also holds for all x ∈ X2.

Take any given x ∈ X2. Then, we construct x via a sequence of strategies of symmetric

NE in restricted games denoted by (x∗|S)S⊆supp(x), showing that br(x) ⊆ supp(x) in the

following.

Let us consider a sequence of pairs of subset of strategies and some positive con-

stants, {(Sm, cm)}m with Sm ⊆ A and cm > 0 for m = 0, 1, . . . ,M such that the

18



following condition (∗) holds:

S0 = supp(x), c0 = min
i∈S0

xi

x∗i |S0

=
xi0

x∗i0 |S0

(i0 = arg min
i∈S0

xi

x∗i |S0

),

S1 = S0\ arg min
i∈S0

xi

x∗i |S0

= S0\{i0},

c1 = min
i∈S1

xi − c0x∗i |S0

x∗i |S1

=
xi1 − c0x∗i1|S0

x∗i1 |S1

(i1 = arg min
i∈S1

xi − c0x∗i |S0

x∗i |S1

),

(1 ≤ m ≤M − 1) Sm+1 = Sm\ arg min
i∈Sm

xi −
∑m−1

j=0 cjx∗i |Sj

x∗i |Sm

= Sm\{im} = S0\{i0, i1, . . . , im},

cm+1 = min
i∈Sm+1

xi −
∑m

j=0 c
jx∗i |Sj

x∗i |Sm+1

,

∅ ( SM ( · · · ( S1 ( S0.

For the above defined sequence {(Sm, cm)}m, we can write x by

x =
M∑

m=0

cmx∗|Sm .

One can show that

br(x) =
M⋂

m=0

br(x∗|Sm). (A.2)

Since br(x∗|Sm) = supp(x∗|Sm) = Sm and Sm+1 ( Sm for m = 0, 1 . . . ,M − 1, together

with (A.2), we have

br(x) =
M⋂

m=0

br(x∗|Sm) =
M⋂

m=0

Sm = SM ( S0 = supp(x).

Note that if M = 0, br(x) = supp(x) holds. This implies that br(x) ⊆ supp(x) holds

for all x ∈ X2.

Thus, since we have shown that br(x) ⊆ supp(x) holds for all x ∈ ∆, the symmetric

game g with 2n − 1 symmetric NE has TBP.

We will illustrate via an example how the above used iterative construction process

works to show (A.2).

Example 2 (Symmetric 4×4 pure coordination game). Let us consider the symmetric
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1

2

3

1 2 3

1,1 0,0

3,3

2,2

0,0

0,0

0,0

0,0

0,0

4

4
0,0

0,0

0,0

0,00,00,0 4,4

Table 4: A 4× 4 pure coordination game.

4 × 4 pure coordination game of Table 4 where there are 24 − 1 = 15 symmetric NE.

All symmetric NE strategies of the game except for pure strategies are given as follows.

(
2

3
,
1

3
, 0, 0), (

3

4
, 0,

1

4
, 0), (0,

3

5
,
2

5
, 0), (0, 0,

4

7
,
3

7
), (

4

5
, 0, 0,

1

5
), (0,

2

3
, 0,

1

3
),

(
6

11
,

3

11
,

2

11
, 0), (0,

6

13
,

4

13
,

3

13
), (

4

7
,
2

7
, 0,

1

7
), (

12

19
, 0,

4

19
,

3

19
),

(
12

25
,

6

25
,

4

25
,

3

25
)

For all x ∈ ∆̊(A), it is obvious that br(x) ⊆ supp(x) holds because br(x) ⊆ A =

{1, 2, 3, 4} = supp(x).

For instance, take two specific points, x = ( 3
11
, 6

11
, 2

11
, 0) and x′ = (1

3
, 2

5
, 4

15
, 0). Then,

we demonstrate that both br(x) ⊆ supp(x) and br(x′) ⊆ supp(x′) hold by constructing

sequences of strategies through Condition (∗) used in the proof. Consider a sequence

of {(Sm, cm)}m with Sm ⊆ A and cm > 0 for each m = 0, 1, . . . ,M such that Condition

(∗) holds. For x = ( 3
11
, 6

11
, 2

11
, 0), we have

S0 = {1, 2, 3}, c0 = min

{
x1

x∗1|S0

,
x2

x∗2|S0

,
x3

x∗3|S0

}
= min

{
3/11

6/11
,
6/11

3/11
,
2/11

2/11

}
=

1

2
(i0 = 1),

S1 = S0\{i0} = {1, 2, 3}\{1} = {2, 3},

c1 = min

{
x2 − c0x∗2|S0

x∗2|S1

,
x3 − c0x∗3|S0

x∗3|S1

}
= min

{
6
11
− 1

2
× 3

11

3/5
,

2
11
− 1

2
× 2

11

2/5

}

= 5 min

{
3

22
,

1

22

}
=

5

22
(i1 = 3),

S2 = {2},

c2 = min

{
x2 − c0x∗2|S0 − c1x∗2|S1

x∗2|S2

}
=

{
6
11
− 1

2
× 3

11
− 5

22
× 3

5

1

}
=

12− 3− 3

22
=

6

22
=

3

11
(i2 = 2),
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and as M = 2, we can write x by

x =
2∑

m=0

cmx∗|Sm = c0x∗|S0 + c1x∗|S1 + c2x∗|S2

=
1

2
(

6

11
,

3

11
,

2

11
, 0) +

5

22
(0,

3

5
,
2

5
, 0) +

3

11
(0, 1, 0, 0) = (

3

11
,

6

11
,

2

11
, 0).

For x′ = (1
3
, 2

5
, 4

15
, 0), similarly we have

S̃0 = {1, 2, 3}, c̃0 = min

{
1/3

6/11
,

2/5

3/11
,
4/15

2/11

}
=

11

18
(i0 = 1),

S̃1 = {2, 3},

c̃1 = min

{
x′2 − c̃0x∗2|S̃0

x∗2|S̃1

,
x′3 − c̃0x∗3|S̃0

x∗3|S̃1

}
= min

{
2
5
− 11

18
× 3

11

3/5
,

4
15
− 11

18
× 2

11

2/5

}

= 5 min

{
7

90
,

7

90

}
=

7

18
(i1 = 2, 3),

and as M = 1, we can write x′ by

x′ =
1∑

m=0

c̃mx∗|S̃m = c̃0x∗|S̃0 + c̃1x∗|S̃1

=
11

18
(

6

11
,

3

11
,

2

11
, 0) +

7

18
(0,

3

5
,
2

5
, 0) = (

1

3
,
2

5
,

4

15
, 0).

From above, since

br(x) = ∩2
m=0br(x∗|Sm) = br(x∗|S2) = {2},

br(x′) = ∩2
m=0br(x∗|S̃m) = br(x∗|S̃2) = {2, 3},

and

supp(x) = supp(x′) = {1, 2, 3},

it follows that both br(x) ⊆ supp(x) and br(x′) ⊆ supp(x′) hold.

Proof of the only if part

We show the only if part of Theorem 1 by using an induction argument together with

the oddness property of NE.

21



First, we show:

Lemma 3. Let g = (A, g) be any symmetric n×n game with TBP for any n = 2, 3, . . . .

Then any restricted game g|S with |S| ≤ k(= 2, 3, . . . , n) has a unique symmetric

interior Nash equilibrium.

Any restricted game g|S has TBP if g has TBP.

Proof. We show Lemma 3 by induction as follows.

(I) It is obvious for k = 2.

(II) Suppose that any restricted game g|S with |S| ≤ k(= 2, 3, . . . , n−1) has a unique

symmetric NE, (x∗|S, x∗|S), such that x∗|S ∈ ∆̊(S). This implies that the restricted

game g|S with |S| = k′ = 1, . . . , k has 2k′ − 1 symmetric NE. Take any (restricted)

game g|S′ with |S ′| = k + 1. Then we consider all combinations of restricted games

of g|S′ with at least one strategy and at most k + 1 strategies that are subsets of S ′.

The number of all combinations of restricted games g|S except for g|S′ is 2k+1− 2 and,

by the assumption, each restricted game g|S has a unique symmetric NE, (x∗|S, x∗|S),

such that x∗|S ∈ ∆̊(S). Taking into account that any restricted game g|S has TBP if

g has TBP, it follows that g|S′ has at least 2k+1 − 2 symmetric NE. Since g|S′ has at

most symmetric 2k+1 − 1 NE due to Remark 1, if g|S′ has more symmetric NE than

2k+1− 2, the only possibility is to have a unique symmetric NE, (x∗|S′ , x∗|S′), such that

x∗|S′ ∈ ∆̊(S ′). Since the number of NE, 2k+1 − 2, is even, by the oddness property of

NE, g|S′ must have (x∗|S′ , x∗|S′).

The only if part of Theorem 1 straightforwardly follows from Lemma 3 as follows.

Proof. Any restricted game g|S with |S| ≤ n−1 has a unique symmetric NE, (x∗|S, x∗|S),

such that x∗|S ∈ ∆̊(S) due to Lemma 3, and the number of all restricted games g|S
with |S| ≤ n − 1 is 2n − 2. This implies that the game g = (A, g) has at least 2n − 2

symmetric NE, which do not include an interior NE in ∆, and, again by Lemma 3,

the game must have a unique interior NE. Thus, g = (A, g) has (2n − 2) + 1 = 2n − 1

symmetric NE.

Remark 2. We can show that any symmetric game with TBP has no asymmetric NE

as follows. Assume to the contrary that there is an asymmetric NE, (x1, x2) ∈ ∆2 with

x1 6= x2. For (x1, x2), there are two cases to consider: (i) supp(x1) = supp(x2) and

(ii) supp(x1) 6= supp(x2). In Case (i), from the proof of the only if part of Theorem

1, we know that for any S ⊆ A, there is a unique symmetric NE, x∗|S, which is
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1

2

1 2 3
4,4 0,1

4,11/6

2,2

0,3/20,0

4
0,3

2,1
Player 1

Player 2

Table 5: A 2× 4 coordination game.

completely mixed over S. Together with this and TBP, x1 6= x2 implies that there

exists some j = 1, 2 such that br(xj) ( supp(xj). Although (x1, x2) is an equilibrium,

br(xj) ( supp(xj) implies that some action in xj of player j should not be chosen, a

contradiction. In Case (ii), without loss of generality, there is some j ∈ supp(x1) such

that j /∈ supp(x2). By TBP, for player 1, strategy j is not a best response to player 2’s

mixed strategy x2, a contradiction because x1 must be a best response to x2.

Why do we need the same size of set of strategies to extend the

characterization?

Suppose that a game has |A1| 6= |A2|. Then we show that |A1| 6= |A2| can violate GTBP

by a counterexample, and therefore we assume that |A1| = |A2| when considering games

with GTBP. The counterexample given here is a slightly modified version of the game

given by Quint and Shubik (2002, Remark 1) where the order of strategies for player 2

is changed.

Example 3 (Asymmetric coordination game). Let us consider the 2× 4 coordination

game given by Table 5 where |A1| = 2 < 4 = |A2|. We can find 5 NE: two symmetric

pure strategy profiles and three asymmetric strategy profiles,

((1/3, 2/3), (0, 0, 1/2, 1/2)), ((1/2, 1/2), (1/3, 0, 0, 2/3)),

((1/4, 3/4), (0, 1/3, 2/3, 0)).

One can easily observe that GTBP does not hold. For some player 2’s mixed strategy

x2 ∈ ∆(A2), the player 1’s pure strategy best responses, br1(x2) 6⊂ supp(x2). For

example, for the equilibrium ((1/3, 2/3), (0, 0, 1/2, 1/2)), br1(x2) ∩ supp(x2) = ∅.
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Proof of Theorem 2

Proof of the if part

Proof. Given that an n×n bimatrix game g = ({1, 2}, A, (gi)i=1,2) has 2n− 1 NE, each

of which has the same support for both players that is distinct from those of other

NE, we can straightforwardly extend the argument used in the proof of the if part of

Theorem 1 to the bimatrix game.

Proof of the only if part

The main point of the proof is to use each player’s payoff function for finding out a

symmetric NE in a “fictitious” symmetric game and combine two strategies of two

(possibly different) symmetric NE with the same support to construct a NE in the

original game.

Proof. Fix any game g = ({1, 2}, A, (gi)i=1,2) where A = {1, 2, . . . , n} and GTBP holds.

For any player i = 1, 2, we construct the symmetric two-player game by using the

player i’s set of strategies A and payoff function gi. We denote it by gi = (A, gi). Since

the game gi has the same set of strategies A for two players and the common payoff

function gi, by GTBP for player i, gi satisfies TBP. From Theorem 1, if gi has TBP, it

has 2n − 1 symmetric NE, those of which are different in terms of supports. Consider

the symmetric NE (xi|S, xi|S) ∈ ∆ with supp(xi|S) = S ⊆ A in gi. The strategy

profiles (x2|S, x1|S) is a NE of the game g such that supp(x1|S) = supp(x2|S) = S.

Since gi has 2n− 1 symmetric NE for any i = 1, 2, this implies that the bimatrix game

g = ({1, 2}, A, (gi)i=1,2) has 2n − 1 NE, each of which gives the same support for two

players that is distinct from those of other NE.

In the following, we give three examples regarding Theorem 2.

Example 4 (Asymmetric pure-coordination game). Let us consider the 3 × 3 pure-

coordination game given by Table 6 where ai and bi for i = 1, 2, 3 are positive constants.

One can easily observe that the game satisfies GTBP and find 23 − 1(= 7) NE includ-

ing asymmetric ones: three symmetric pure strategy profiles and four mixed strategy
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1

2

3

1 2 3
a1, b1 0,0

a3, b3

a2, b2

0,0

0,0

0,0

0,0

0,0

Player 1

Player 2

Table 6: A 3× 3 pure-coordination game.

profiles,

(1/(b1 + b2)(b2, b1, 0), 1/(a1 + a2)(a2, a1, 0)), (1/(b1 + b3)(b3, 0, b1), 1/(a1 + a3)(a3, 0, a1))

(1/(b2 + b3)(0, b3, b2), 1/(a2 + a3)(0, a3, a2)),

(1/(b1b2 + b1b3 + b2b3)(b2b3, b1b3, b1b2), 1/(a1a2 + a1a3 + a2a3)(a2a3, a1a3, a1a2)).

Thus, it is consistent with Theorem 2.

Remark 3. Theorem 2 holds for all n × n pure coordination games and slightly per-

turbed ones with respect to payoffs as in Example 4.

Example 5 (Bertrand duopoly market). We consider a Bertrand competition with

convex costs, which has been theoretically investigated by Dastidar (1995) and ex-

perimentally by Abbink and Brandts (2008) and Argenton and Müller (2012) among

others.20 There are two firms in a market where each firm faces a linear demand under

a quadratic per-unit cost function, and then competes in prices, which are assumed

to be discrete.21 We denote by Di : A2 → R and Ci : A2 → R a linear demand

function and quadratic cost function of firm i. Then, this Bertrand duopoly market is

described by an n × n bimatrix game g = ({1, 2}, A, (g1, g2)) where A = {p1, . . . , pn}
for 0 ≤ p1 < p2 < · · · < pn and gi : A2 → R is the firm i’s payoff function such that for

any price profile p = (p1, p2) ∈ A2,

gi(p) = piDi(p)− Ci(p)

20For instance, price competitions with convex costs are relevant due to adjustment costs of pro-
ductions in utilities and telecommunications industries (see, for instance, Green and Newbery, 1992;
Green, 1996; Wolfram, 1998; Armstrong and Porter, 2007; Hortaçsu and Puller, 2008; Janssen and
Karamychev, 2010).

21This framework is used by Argenton and Müller (2012) in their experiment.
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where for some a > pn, ci > 0, and j 6= i,22

Di(p) =


a− pi if pi < pj,

1
2
(a− pi) if pi = pj,

0 if pi > pj,

Ci(p) = ci(Di(p))2.

Let us consider the special case of A = {1, 2, 3} and then find an equivalent param-

eter condition to GTBP in the game. To show that bri(x
j) ⊆ supp(xj) holds for any

i, j = 1, 2 with i 6= j and any xj ∈ ∆, we first consider the condition under which the

game is a coordination game, that is, bri(x
j) ⊆ supp(xj) holds for any standard basis

vector xj ∈ ∪k∈Aek. This is equivalent to the conditions of gi11 > max{gi21, g
i
31} = 0,

gi22 > max{gi12, g
i
32}, and gi33 > max{gi13, g

i
23}. Given a > p3 = 3, these are reduced to

2(a + 1)

3a2 − 10a + 7
< ci <

2

a− 1
. (A.3)

In fact, one can easily show that the above derived condition (A.3) also guarantees the

condition under which bri(x
j) ⊆ supp(xj) holds for any xj ∈ ∪k∈Aek due to the specific

payoff structure of this game. Furthermore this implies that the game has a unique

interior NE as well. Thus, the Bertrand duopoly game g = ({1, 2}, A, (g1, g2)) with

A = {1, 2, 3} has GTBP if and only if the condition (A.3) holds for each i = 1, 2 given

a > 3.

For instance, as a = 5, since (A.3) is reduced to 3/8 < ci < 1/2, take (c1, c2) =

(3/7, 4/9). Then, the game satisfies GTBP, and in addition, one can see that there are

23 − 1 = 7 NE in the game. This is consistent with Theorem 2.

Games with 2n−1 NE without the restriction on support of NE

Let us consider an asymmetric game g with 2n − 1 NE and then will see that g does

not satisfy GTBP in general. In fact, to guarantee GTBP, g must be nondegenerate

even in the case of n = 3 and also must satisfy an additional condition in the case of

n ≥ 4. To show this, we give several counterexamples below.

22We assume that a > pn holds because each firm’s demand under any price profile is non-negative,
otherwise a price with a ≤ pn cannot give a positive payoff and so it is never chosen.
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1

2

3

1 2 3
2,1 2,0 2,0

1,0 3,2 3,0

4,32,00,2

Player 1

Player 2

Table 7: An asymmetric 3× 3 coordination game.

1 2

3

1

3

2

1 2

3

1

3

2

Player 1 Player 2

Figure 3: The best response regions of the game.

Case of n = 3

First of all we consider the case of three strategies to show that a game must be

nondegenerate.

Example 6 (Degenerate 3× 3 coordination game). We consider the asymmetric 3× 3

coordination game given by Table 7. From Table 7, one can easily see that the game

has 3 symmetric pure strategy NE. The best response regions of the game are given by

Figure 3. By the computation, we can find 4 mixed strategy NE:

((2/3, 1/3, 0), (1/2, 1/2, 0)), ((1/2, 0, 1/2), (1/2, 0, 1/2)), ((0, 3/5, 2/5), (0, 1/2, 1/2)),

((2/7, 3/7, 2/7), (1/2, 0, 1/2)).

So, the game has 7(= 23 − 1) NE. But the NE (x1, x2) = ((2/7, 3/7, 2/7), (1/2, 0, 1/2))

satisfies

3 = |supp(x1)| 6= |supp(x2)| = 2.

Since br1(x2) = {1, 2, 3} and supp(x2) = {1, 3}, this implies that supp(x2) ( br1(x2),

violating GTBP. This is also easily seen by Figure 3. Here, since |br1(x2)| > |supp(x2)|
holds for x2 = (1/2, 0, 1/2), the game is degenerate.

From this example, if a game with 23 − 1 NE is degenerate, it does not necessarily

satisfy GTBP. But we can show that if a game with 23− 1 NE is nondegenerate, it has
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1

2

3

4

21 3 4
-81,72

-180,-180

20,297

-30,-333

36,36 -126,17 126,-3

297,20

-33,-33

42,42-33,-33

42,42

-333,-3072,-81

-3,126

17,-126

Table 8: An asymmetric 4× 4 game.

GTBP.23

Case of n ≥ 4

Next we consider a nondegenerate asymmetric 4× 4 game below and then show by an

example that the game has 24 − 1 NE but does not satisfy GTBP.

Example 7 (Nondegenerate asymmetric 4×4 game). We consider the asymmetric 4×4

game (Table 8), which is constructed by using a restricted game of the 6× 6 bimatrix

game given by Savani and Stengel (2006) where there are 75(> 26 − 1 = 63) NE. We

can find the following 15 NE:24

|{(x1, x2) ∈ NE | i = 1, 2, |supp(xi)| = 1}| = 2 :

((0, 1, 0, 0), (0, 0, 0, 1)), ((0, 0, 1, 0), (1, 0, 0, 0)).

|{(x1, x2) ∈ NE | i = 1, 2, |supp(xi)| = 2}| = 10 :

((11/15, 4/15, 0, 0), (4/15, 11/15, 0, 0), (A.4)

((0, 0, 1/2, 1/2), (0, 0, 1/2, 1/2)), (A.5)

((51/70, 19/70, 0, 0), (0, 23/27, 4/27, 0), ((23/27, 0, 0, 4/27), (19/70, 51/70, 0, 0)),

((2/7, 5/7, 0, 0), (0, 0, 19/42, 23/42)), ((93/112, 0, 0, 19/112), (0, 93/112, 19/112, 0)),

((0, 0, 23/42, 19/42), (2/7, 5/7, 0, 0)), ((0, 0, 31/59, 28/59), (0, 15/19, 4/19, 0)),

((15/19, 0, 0, 4/19), (0, 0, 28/59, 31/59)), ((0, 33/53, 20/53, 0), (33/53, 0, 0, 20/53)).

23The proof is available from the author upon request.
24Keiding (1997) and McLennan and Park (1999) show that 24 − 1 = 15 is the maximal number of

NE for all 4× 4 games.
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|{(x1, x2) ∈ NE | i = 1, 2, |supp(xi)| = 3}| = 2 :

((60/109, 39/109, 10/109, 0), (31/74, 0, 17/111, 95/222)),

((0, 31/74, 95/222, 17/111), (39/109, 60/109, 0, 10/109)).

|{(x1, x2) ∈ NE | i = 1, 2, |supp(xi)| = 4}| = 1 :

((5/11, 4/11, 5/33, 1/33), (4/11, 5/11, 1/33, 5/33)). (A.6)

One can show that the game is nondegenerate, and the game has 15(= 24− 1) NE. But

the game does not satisfy GTBP because the game is not a coordination game (even if

it is allowed to permute strategies). Note that supp(x1) = supp(x2) does not hold for

all NE (x1, x2) except for (A.4)–(A.6).

Example 7 implies that a nondegenerate n× n game with 2n − 1 NE may not be a

coordination game. So, in order to show that a nongedenerate n× n game with 2n − 1

NE has GTBP, the game must be at least a coordination game. But even under the

assumption that a game with 2n−1 NE is a nondegenerate coordination game, the game

may not satisfy GTBP. In general, when considering many actions, we must impose the

restriction on support of NE as in Theorem 2.

Proof of Lemma 1

Proof. Consider a game with TBP. Suppose that there is a GPRD–equilibrium (i, i) ∈
A2 in the game. Together with TBP, this implies that br(x) = {i} holds for x ∈
∆̊({i, j}) with xi = xj = 1/2 given any j ∈ A\{i}. Since any pure strategy best

response set is convex in ∆, this implies that br(x) = {i} holds for all x ∈ ∆ with

xi ≥ 1/2, meaning that (i, i) is a 1/2–dominant equilibrium.

Proof of Proposition 1

To show Proposition 1, we introduce two notations for convenience as follows. For

x, x′ ∈ ∆, we write x � x′ if x stochastically dominates x′, that is, for any i ∈ A,∑
i≤j≤n xj ≥

∑
i≤j≤n x

′
j with strict inequality for at least some i. When considering

opponent’s mixed strategies x ∈ ∆̊({i, j}) for any i, j ∈ A with i 6= j, we write xij

instead of x for clarity. Given these notations, we show Proposition 1 by using the
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property on supermodular games g = (A, g) that each player’s best response corre-

spondence is non-decreasing in opponent’s strategies: for any x, x′ ∈ ∆ with x � x′,

min br(x) ≥ min br(x′) and max br(x) ≥ max br(x′) where min br(x) is the lowest pure

strategy best response against opponent’s mixed strategy x and maxbr(x) the highest

one.25

Proof. By TBP, it follows that for x1n ∈ ∆̊({1, n}) with x1n
1 = x1n

n = 1/2,

br(x1n) ⊆ {1, n}.

By the assumption of g11 − gn1 6= gnn − g1n, br(x1n) = {1} or {n}. Suppose that

br(x1n) = {1}. For any i ∈ A\{1}, take x1i ∈ ∆̊({1, i}) with x1i
1 = x1i

i = 1/2. Since

x1n � x1i for any i ∈ A\{n}, by supermodularity, it follows that

{1} = max br(x1n) ≥ max br(x1i), (A.7)

which implies that for any i ∈ A and any belief x1i ∈ ∆̊({1, i}) with x1i
1 = x1i

i = 1/2,

br(x1i) = {1}. (A.8)

The condition (A.8) implies that the strategy profile (1,1) is a GPRD-equilibrium. By

Lemma 1, (1, 1) is a 1/2–dominant equilibrium.

To show the uniqueness, suppose that there are two 1/2–dominant equilibria, (i, i)

and (j, j). This gives the following two inequalities,

1

2
gii +

1

2
gij >

1

2
gjj +

1

2
gji,

1

2
gjj +

1

2
gji >

1

2
gii +

1

2
gij,

a contradiction.

Similarly, if br(x1n) = {n} holds for x1n ∈ ∆̊({1, n}) with x1n
1 = x1n

n = 1/2, we can

show that (n, n) is the unique 1/2–dominant equilibrium.

25For the detail, see, for instance, Milgrom and Roberts (1990); Milgrom and Shannon (1994); Topkis
(1998); Vives (1990, 2001).
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Proof of Proposition 2

Proof. Suppose that there is a potential function v such that (i, i) is a unique potential

maximizer. For any given j 6= i, we have vii > vjj by definition of potential maximizer

and vij = vji due to symmetry of potential function, thereby leading to

vii − vjj > 0 = vji − vij.

Replacing vjj with vij, the inequality derived above is rewritten by vii− vji > vjj − vij.

By definition of potential function, this gives gii − gji > gjj − gij, in other words,

1

2
(gii + gij) >

1

2
(gji + gjj)

holds for any j ∈ A\{i}. Thus, the unique potential maximizer (i, i) is a GPRD–

equilibrium. By Lemma 1, (i, i) is a 1/2–dominant equilibrium.

Proof of Proposition 3

To show Proposition 3, we first introduce the solution concept of monotone potential

maximizer (Morris and Ui, 2005), which is a generalization of potential maximizer as

LP-maximizer.26 Then, we show that an LP-maximizer with constant weights (intro-

duced in the proof of Proposition 3) is an MP-max. Following Morris and Ui (2005),

a (strict) MP-max is unique in any generic supermodular game because it is robust to

incomplete information in the sense of Kajii and Morris (1997) and the robust equilib-

rium is unique.27 While on the other hand, Proposition 1 tells us that any symmetric

two-player supermodular game with TBP where g1n − gn1 6= gnn − g1n always has a

unique 1/2–dominant equilibrium, which is also robust to incomplete information (Ka-

jii and Morris, 1997). Taken together, if an LP-maximizer with constant weights exists

in a symmetric two-player supermodular game with TBP, both of the LP-maximizer

and the 1/2–dominant equilibrium must be equivalent.

26We pay attention to a specific LP-maximizer (with constant weights) that is a unique solution if
any (Okada and Tercieux, 2012, Proposition 1), but there may exist multiple LP-maximizers in general.
See Oyama and Takahashi (2009, Example 1). In fact, they correct the statement of Frankel et al.
(2003) in such a way that a (strict) LP-maximizer of a supermodular game with own-action concavity
instead of own-action quasiconcavity is chosen as the noise-independent selection in the global game
method (Carlsson and van Damme, 1993).

27Similarly, Oyama et al. (2008) show that any “generic” supermodular game has at most one MP-
max through the argument of perfect foresight dynamics. They also show that if a supermodular game
satisfies own-action concavity, a supermodular game has at most one LP-maximizer.
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Thus, to prove Proposition 3, it is enough to show that an LP-maximizer with

constant weights implies an MP-max. In doing so, below we introduce (i) the definition

of MP-max and (ii) the equivalent definition of LP-maximizer, which is useful for the

proof.

Fix any symmetric game g = (A, g) with A = {1, , . . . , n}. For a function f : A2 →
R, a mixed strategy x ∈ ∆, each player i = 1, 2, and a non-empty subset of strategies

S ⊆ A, let

brif (x | S) = arg max
si∈S

∑
j∈A

xjfsij.

MP-max is defined for a general class of games, but our interest lies in a simple class

of games, and therefore we use its simplified version and refinement, strict MP-max,

following Oyama et al. (2008) below.

Definition 8. A pure strategy profile s∗ = (s∗i , s
∗
j) ∈ A2 is a monotone potential

maximizer (MP-max) of g if there exists a function v : A2 → R with v(s∗) > v(s) for

all s ∈ A2\{s∗} such that for each i = 1, 2 and any x ∈ ∆,

min briv(x | {1, . . . , i∗}) ≤ max brig(x | {1, . . . , s∗i }),
max briv(x | {s∗i , . . . , n}) ≥ min brig(x | {s∗i , . . . , n}).

Such a function v is called a monotone potential function (MP-function) for s∗.

A pure strategy profile s∗ = (s∗1, s
∗
2) ∈ A2 is a strict MP-max of g if there exists a

function v : A2 → R with v(s∗) > v(s) for all s 6= s∗ such that for each i = 1, 2 and any

x ∈ ∆,

min briv(x | {1, . . . , s∗i }) ≤ min brig(x | {1, . . . , s∗i }),
max briv(x | {s∗i , . . . , n}) ≥ max brig(x | {s∗i , . . . , n}).

Such a function v is called a strict MP-function for s∗.

A (strict) MP-max is a (strict) NE, and a potential maximizer is a strict MP-max.

Under a generic choice of payoffs, an MP-max is a strict MP-max. A supermodular

game can have at most one strict MP-max (Oyama et al., 2008).

Next, we introduce the following equivalent definition for an LP-maximizer (Morris

and Ui, 2005, see Definition 11 and Lemma 9).
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Definition 9. A pure strategy profile s∗ = (s∗1, s
∗
2) is an LP-maximizer with a local

potential function v if

(i) for any player i = 1, 2, any strategy si < s∗i , and any x ∈ ∆ such that
∑

j∈A xjvsij <∑
j∈A xjvsi+1j, ∑

j∈A

xjgsij ≤
∑
j∈A

xjgsi+1j. (A.9)

(ii) for any player i = 1, 2, any strategy si > s∗i , and any x ∈ ∆ such that
∑

j∈A xjvsij <∑
j∈A xjvsi−1j, ∑

j∈A

xjgsij ≤
∑
j∈A

xjgsi−1j. (A.10)

We show that an LP-maximizer with constant weights is an MP-max.

Proof. We define si ≡ min briv(x | {1, . . . , s∗i }) such that
∑

j∈A xjvsij <
∑

j∈A xjvsi−1j

for every 1 ≤ si < si (if any). By (A.9), for any 1 ≤ si < si,∑
j∈A

xjgsij ≤
∑
j∈A

xjgsij. (A.11)

Thus, (A.11) implies that si ≤ min brig(x | {1, . . . , s∗i }), that is,

min briv(x | {1, . . . , s∗i }) ≤ min brig(x | {1, . . . , s∗i }). (A.12)

Similarly, by (A.10), we can show that

max briv(x | {s∗i , . . . , n}) ≥ max brig(x | {s∗i , . . . , n}). (A.13)

Since (A.12) and (A.13) satisfy the definition of MP-max, we have shown that an LP-

maximizer with constant weights, s∗, is an MP-max.
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Proof of Lemma 2

Proof. Fix any l,m, h ∈ A with l < m < h and let S = {l, h}. For any x ∈ ∆̊(S),

n∑
i=1

xigli −
n∑

i=1

xigmi = a(m− l)
(
xl −

a− b

a

)
,

implying that for any x ∈ ∆̊(S) with S = {l, h},

arg maxm∈{l,l+1,...,h}

n∑
i=1

xigmi =


{l} if xl > x∗l ,

{l, l + 1, . . . , h} if xl = x∗l ,

{h} if xl < x∗l

where x∗l = (a − b)/a. Thus, m /∈ br(x) holds for any l,m, h ∈ A with l < m < h and

all x ∈ ∆({l, h})\{x∗}.

Proof of Supermodularity of the Minimum-Effort Game

For any i, i′, j, j′ ∈ A with i > i′ and j > j′,

(gii − gi′j)− (gij′ − gi′j′) = a((min{i, j} −min{i′, j})− (min{i, j′} −min{i′, j′})) ≥ 0

where the last inequality follows from the property that min{i, j}−min{i′, j} is weakly

increasing in j ∈ A = {1, . . . , n}. When j = j′, (gii − gi′j) − (gij′ − gi′j′) = 0 holds.

Thus, that the minimum-effort game is supermodular. Below we show the above used

weakly increasing property by considering all six possible cases.

Case 1: i > i′ ≥ j > j′. min{i, j} −min{i′, j} = 0 = min{i, j′} −min{i′, j′}.
Case 2: i ≥ j > i′ ≥ j′. min{i, j} −min{i′, j} = j − i′ > 0 = min{i, j′} −min{i′, j′}..
Case 3: i ≥ j > j′ > i′. min{i, j}−min{i′, j} = j−i′ > j′−i′ = min{i, j′}−min{i′, j′}.
Case 4: j > i ≥ j′ > i′. min{i, j}−min{i′, j} = i− i′ ≥ j′− i′ = min{i, j′}−min{i′, j′}.
Case 5: j > i > i′ ≥ j′. min{i, j} −min{i′, j} = i− i′ > 0 = min{i, j′} −min{i′, j′}.
Case 6: j > j′ > i > i′. min{i, j} −min{i′, j} = i− i′ = min{i, j′} −min{i′, j′}.

Remark 4. We can straightforwardly extend the proof shown above to the case of

multiple players.
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