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Abstract

Posterior analysis in Bayesian model averaging (BMA) applications often includes the assessment
of measures of jointness (joint inclusion) across covariates. We link the discussion of jointness
measures in the econometric literature to the literature on association rules in data mining
exercises. We analyze a group of alternative jointness measures that include those proposed
in the BMA literature and several others put forward in the field of data mining. The way
these measures address the joint exclusion of covariates appears particularly important in
terms of the conclusions that can be drawn from them. Using a dataset of economic growth
determinants, we assess how the measurement of jointness in BMA can affect inference about
the structure of bivariate inclusion patterns across covariates.
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1. Introduction

Addressing model uncertainty concerns in econometric applications through the use of Bayesian
model averaging (BMA) is becoming a standard practice in empirical studies where no unique
theoretical guidelines exist. One of such areas in economics where BMA has established itself as a
useful tool of analysis is economic growth. A growing number of studies aims at identifying robust
determinants of income per capita growth differences across countries without having to rely on
specific theoretical frameworks (see for example Fernández et al., 2001a; Brock and Durlauf, 2001;
Sala-i Martin et al., 2004; Moral-Benito, 2012; Eicher et al., 2012; Moral-Benito, 2014). In these
studies, the robustness of individual covariates as determinants of income growth differences is
routinely measured through posterior inclusion probabilities (PIP), i.e., the posterior probability
covered by all models that contain that particular variable. This represents an average over a
(possibly) large number of very different models.

Moving beyond the development of robustness measures based on individual covariates, some
contributions in the literature aim at identifying particular structures in the posterior distribution
of joint covariate inclusion. The literature tends to concentrate on the assessment of measures
based on bivariate inclusion structures and uses the term jointness to refer to the dependence
in the inclusion of groups (most often, pairs) of variables. Doppelhofer and Weeks (2005), Ley
and Steel (2007, henceforth LS), Doppelhofer and Weeks (2009a, henceforth DW) and Strachan
(2009) are the most relevant references dealing with measuring posterior inclusion dependence of
regressors in economic growth applications. Using a different approach from these studies, Crespo
Cuaresma et al. (2015) employ clustering methods to identify covariate inclusion patterns over
the structure revealed by the posterior model probabilities of BMA exercises.

To quantify the association of covariate inclusion, the BMA literature has proposed several
measures of jointness. These measures and the properties that define them have been studied in a
strand of independent literature in the field of data mining, which aims at evaluating the quality
of so-called association rules. A common example for such a problem in data mining is finding
sets of products that tend to be purchased together in a shopping basket. The development of
rules that define the inclusion patterns existing between two or more items is conceptually very
similar to finding jointness structures for a given set of covariates in the model space after the
posterior model probabilities have been computed. However, the choice of measures to quantify
these associations has generated a vivid discussion in the machine learning literature. Several
studies provide comparisons of a large number of concepts and try to identify suitable measures
through the kind of properties they fulfill (Geng and Hamilton, 2006; Glass, 2013). Besides these
attempts to select measures based on objective criteria, some authors also adopt a subjective
approach, in which the researcher tries to quantify a priori expectations (Tan et al., 2004). Some
studies also show that many of the proposed measures produce similar rankings and therefore can
be used exchangeably in many applications (Vaillant et al., 2004; Tew et al., 2014).

The controversy around measuring jointness in BMA applications was born from the contributions
by Ley and Steel (2009a), Strachan (2009) and Doppelhofer and Weeks (2009b). In their exchange
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of ideas the different authors raised concerns about how the different measures in the BMA
context were defined. These discussions especially revolved around cases were several measures
are undefined, or give contradictory results. Especially the question of whether the probability
that two variables are not included in a model should influence the value of a jointness measure
or not was debated vividly. We bring insights from the literature on association measures used in
data mining and provide a thorough analysis of the differential characteristics of a larger set of
jointness measures which nests those proposed hitherto in BMA applications. More specifically,
we review properties of jointness measures, which have been proposed in the machine learning
literature and focus on the property of null-invariance. We show that, while most measures in
the BMA literature have this property, it is not favorable in BMA applications. Based on this
discussion, we select a subset of measures that fulfill the afore discussed properties and use them
to investigate jointness in the data set of Fernández et al. (2001a).

The paper is structured as follows. In section 2 we briefly review the standard implementation
of jointness measures in the context of BMA. We present a short summary of relevant concepts
from the literature on association rule analysis and how these are related to jointness in section
3. The empirical application based on the cross-country growth regression dataset in Fernández
et al. (2001b), is carried out in section 4. Section 5 concludes and puts forward avenues of further
research.

2. BMA and Jointness Measures: A Review

BMA methods aim at obtaining posterior distributions of the quantities of interest in a regression
model which incorporate the uncertainty concerning model specification. Let our quantity of
interest be related to the parameters of a linear regression model of the form

y|α, βj , σ ∼ N(αι+Xjβj , σ
2I), (1)

where y is an n × 1 vector whose elements are the observations of the dependent variable of
interest, ι a vector of ones of the same length and the n × k matrix Xj is composed by the
observations of k variables out of a total set of K covariates. Model uncertainty can be explicitly
addressed by basing our inference on the parameters of interest on the posterior distribution

p(α, β, σ|y) =
2K∑
j=1

p(α, β, σ|y,Mj)p(Mj |y), (2)

where each specification-specific posterior distribution p(α, β, σ|y,Mj) is weighted by the corresponding
posterior model probability p(Mj |y). The posterior model probability is in turn proportional to
the marginal likelihood of the model multiplied with the prior model probability,

p(Mj |y) ∝ p(y|Mj)p(Mj). (3)
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It is standard in BMA applications to elicit improper non-informative priors on α and σ, so that
p(α) ∝ 1 and p(σ) ∝ σ−1. A common choice for the prior of the slope coefficients β is Zellner’s
g–prior (Zellner, 1986),

p(β|Mj , σ) ∼ N(0, σ2(
1

g0
X ′

jXj)
−1) , (4)

so that the prior variance matrix is scaled by the parameter g0 and has the structure of the
covariance matrix of the OLS estimator. Several fixed values for the g parameter have been
proposed (see e.g. Foster and George, 1994; Fernández et al., 2001b). To allow for more flexibility,
hyperpriors on g have also been put forward in the literature by Liang et al. (2008); Feldkircher
and Zeugner (2009); Ley and Steel (2012).

For the prior model probabilities, a straightforward approach is to elicit a flat prior over all
specifications entertained, so that p(Mj) = 2−K for all j. Given that this prior embodies a
preference for models of size around K/2, Ley and Steel (2009b) argue for a binomial-beta prior
on covariate inclusion, a setting which is able to achieve a very flexible prior structure over model
size and includes a purely uninformative distribution over the number of included covariates.

Since analyzing the whole model space of 2K models is often computationally infeasible, the
relevant parts of the model space can be explored via Markov Chain Monte Carlo Model Composition
(MC3) methods (Madigan and York, 1995) in order to compute the relevant posterior distributions.

Among the many interesting features of the posterior over model specifications, the joint
distribution of covariate inclusion constitutes the basis to create measures of jointness. Following
Doppelhofer and Weeks (2009a), let model specifications be represented by a 0-1 vector of covariate
inclusion profiles (as defined by the inclusion variables γk, k = 1, . . . ,K), so that

p(Mj |y) = p(γ1 = c1, γ2 = c2, ..., γK = cK |y) , (5)

where ck is the binary variable representing the inclusion of covariate k in the model. Given
these inclusion profiles, jointness quantifies to which degree two variables A and B tend to appear
jointly across models

(
p(A ∩ B|y) ≡ p(AB|y)

)
as opposed to the posterior probability to appear

without the respective other variable
(
p(A ∩ B̄|y) ≡ p(AB̄|y) and p(Ā ∩B|y) ≡ p(ĀB|y)

)
.

The comparison of these probabilities allows to consider two covariates as complements, substitutes
or independent a posteriori, given their relative (common) appearance. The group of jointness
measures that have been proposed in the BMA context uses these probabilities to generate a
single statistic which allows a categorization of such pairs (or eventually, triplets) of variables.
Positive values for these indicators typically refer to joint appearance (and therefore a certain
degree of complementarity between them), while negative values are related to the fact that the
two covariates act as substitutes in specifications. So far, five different measures of jointness
have been proposed in the econometric literature dealing with BMA, which differ in the way they
incorporate the different marginal and joint inclusion probabilities.

The earliest jointness measure in the BMA context is attributed to Doppelhofer and Weeks
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(2005), who propose to use

J = ln
(

p(AB)

p(A)× p(B)

)
, (6)

which resembles the logarithm of the posterior odds ratio. The use of posterior odds ratios as
jointness indicator was criticized by Ley and Steel (2007), who note that the measure may be
misleading for variables with high PIP and that the measure hardly allows for comparisons across
different pairs of variables.

In a later study Doppelhofer and Weeks (2009a) propose a cross-product ratio of inclusion
probabilities as another measure,

J = ln
(
p(AB)× p(ĀB̄)

p(AB̄)× p(ĀB)

)
. (7)

In a reply Ley and Steel (2009a) are again not in favor of this approach, since the DW measure
is not defined in cases where a variable has a PIP of 1 or 0. Instead LS highlight two alternative
measures (Ley and Steel, 2007):

J ∗ =
p(AB)

p(A) + p(B)− p(AB)
(8)

J ′ =
p(AB)

p(AB̄) + p(ĀB)
. (9)

While J ′ relates the joint inclusion to the probability of including either one of the two variables,
J ∗ uses the probability of including either one but not both variables in the denominator.

Another measure was introduced by Strachan (2009), who proposes to only look at relevant
variables in terms of PIP. This is accomplished by adapting DW’s cross-product ratio in such a
way, that it includes the marginal probabilities of both variables,

J̃ = p(A)p(B) ln
(

p(AB)

p(AB̄)× p(ĀB)

)
. (10)

A major discussion in the jointness literature also involves the treatment of p(Ā ∩ B̄|y) ≡
p(ĀB̄|y). This exclusion margin indicates to which extent both variables do not tend to appear
together in specifications and therefore may be considered as representing a measure of (un)importance
of bivariate jointness. While DW stress the importance of this aspect in the discussion (Doppelhofer
and Weeks, 2009b), this property is not included in the jointness measures proposed by Ley
and Steel (2009a). The treatment of the information concerning joint exclusion of covariates
constitutes a differential characteristic across association measures known as null-invariance in
the data mining literature (Glass, 2013).
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3. From Association Rules to Jointness Measures

The measures used in the literature on jointness of covariates in BMA analysis are often applied
in data mining when describing association rules, although the linkages between the two strands
of literature has not been explicitly acknowledged hitherto. Data mining is often concerned with
the exploration of huge datasets of so-called transactions, which may for example each represent
shopping baskets with different sets of items (products). Association analysis aims at finding
patterns in these data structures to learn about consumer behavior and the interrelation across
purchased items. The major tool used are association rules of the form A −→ B (if A is included
in the basket, B tends to be included), where A and B can include either individual items or
disjoint itemsets.

For a large number of items, the count of rules can potentially grow very large. The number of
itemsets is 2K − 1 for K items (variables) which implies 3K − 2K+1 + 1 possible association rules
(excluding empty sets) between itemsets of all sizes. Therefore association rules are routinely
mined to only include such rules which are “interesting” for the application. This refers on the
one hand to associations which are frequent, as measured by the support. On the other hand,
rules should be strong as measured by the confidence, which relates the occurrence of a pattern
to the number of counterexamples in the data.

The most common strategy to extract such rules is the apriori algorithm (Aggarwal and Yu,
1998; Hahsler et al., 2005), which reduces the complexity of the problem by reasoning that all
item subsets of a frequent itemset must also be frequent and vice versa. This approach is also
related to support-based pruning and has been applied by a large number of studies in the data
mining literature (Tan et al., 2004).

In addition to support and confidence — which are relevant to achieve computational feasibility
— the interestingness of these rules can be quantified using several measures. Similar to the
jointness literature, a number of such indicators has been proposed in the data mining context.
Recent surveys in this field collect as many as 40 different measures and try to provide a structural
overview of the alternative measures available (Glass, 2013; Geng and Hamilton, 2006; Tan et al.,
2004).1 Some of these measures resemble the ones proposed in the BMA jointness literature.
The first jointness measure of Doppelhofer and Weeks (2005) is equivalent to the Log-Ratio or
equivalently, the log of the Interest (Lift) measure (Geng and Hamilton, 2006). Ley and Steel
(2007)’s J ∗ is identical to the long-used Jaccard index and their J ′ measure is a derivation thereof.
As another alternative, Strachan (2009) introduces a measure (J̃ ) that has been known as the
Two-Way support (Geng and Hamilton, 2006). Finally, the statistic proposed by Doppelhofer and
Weeks (2009a) has also been known as the Odds-Ratio in the field of data mining (Tew et al.,
2014).

Another similarity between the two strands of literature is the debate on which measure is
the most appropriate for a given application. Tan et al. (2004) propose the use of subjective
measures, which depend on the user to rank a small predefined set of associations for a specific

1A detailed overview of interestingness measures can be found in Appendix A.1.
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application. Using this approach, an appropriate measure can be selected, which reproduces the
user’s ranking. More generally, objective measures have been analyzed based on certain properties
they are expected to fulfill. Ley and Steel (2007) propose four properties, that BMA jointness
measures should fulfill: An indicator should be interpretable in such a sense, that it has a “clear
intuitive meaning” and is well calibrated against a clearly defined scale. Furthermore, the property
of extreme jointness states that a measure should reach its maximum when both variables always
appear together. Also, a measure should always be defined (definition) when either variable is
included with positive probability. In contrast, the association analysis literature tends to impose
a larger number of characteristics that are expected to be fulfilled. In the following section we
shortly review the most important properties proposed in the literature, discuss their implications
for jointness and relate them to the measures in the BMA literature where applicable.

3.1. Desirable Properties of Interestingness Measures for BMA

The properties that have been independently discussed in the BMA context, partly reflect those
which are used in the machine learning (ML) literature. Finding a suitable measure clearly
depends on the properties that are required for a certain application. For example, while machine
learning problems are often concerned with positive association, BMA results additionally need to
reflect negative association in the form of variable substitutes. Furthermore the type of assertion
that is being made, needs to be considered and especially the question whether two variables are
considered exchangeable, so that A → B ≡ B → A. In the following we select four properties,
which can be considered crucially relevant for jointness based on the insights from the BMA and
ML discussions: Confirmation, symmetry, monotonicity and null-invariance. A symmetric, non
null-invariant confirmation measure fulfills Ley and Steel (2007)’s property of interpretability, while
the monotonicity requirement ensures that the extreme jointness condition is met. Additionally
calibration is implicitly given for all measures. Additionally Ley and Steel (2007) argue that a
measure should always be defined, regardless of the observed cases, this is not always the case for
the measures considered here.

Interestingness vs. Confirmation A confirmation measure is an interestingness measure m that,
for a given threshold τ , satisfies that

m(A,B) > τ ⇐⇒ Pr(A|B) > Pr(A),

m(A,B) = τ ⇐⇒ Pr(A|B) = Pr(A),

m(A,B) < τ ⇐⇒ Pr(A|B) < Pr(A).

The indicator is thus anchored at some threshold value τ that defines statistical independence
(e.g. 0 for DW’s Odds-Ratio). For the case of jointness indicators discussed in the BMA literature,
this property is implicitly given for all proposed measures and seems to be a reasonable characteristic
to be fulfilled. We therefore limit our empirical analysis to the set of confirmation measures that
have been proposed in the data mining context (Glass, 2013).

7



Symmetry Implication rules that imply that the proposition A → B differs from B → A are
asymmetric. Since jointness measures are interested in measuring the common appearance (or
lack thereof) of two explanatory variables, a suitable measure should therefore be symmetric
with regard to the ordering of variables. The assertion that certain covariates are “substitutes”
or “complements” implies thus commutativity.2 All jointness measures proposed in the BMA
literature fulfill this requirement. A number of measures from the data mining literature are
however asymmetric and thus excluded from the empirical analysis carried out in the following
sections.3

Monotonicity and Maximality The range of interestingness measures should be bounded and
monotonically increasing between the two extreme cases. This property is partly reflected in the
more restrictive Piatesky-Shapiro conditions: m = 0 if p(AB) = 0, m monotonically increases with
p(AB) and m monotonically decreases with p(A) or p(B) (Piatetsky-Shapiro, 1991; Tan et al.,
2004). Maximality corresponds to extreme jointness, the property introduced by Ley and Steel
(2007) in the jointness literature. This property defines that a measure should reach its maximum
when both variables always appear together.

Table 1: Interestingness Measures for Jointness

Value Range k

Non null-invariant

Collective Strength ln
[

p(AB)+p(ĀB̄)

p(A)p(B)+p(Ā)p(B̄)
× 1−p(A)p(B)−p(Ā)p(B̄)

1−p(AB)−p(ĀB̄)

]
]−∞,∞[

Relative Risk ln
[
p(B|A)

p(B|Ā)

]
]−∞,∞[

Yule’s Q p(AB)p(ĀB̄)−p(AB̄)p(ĀB)

p(AB)p(ĀB̄)+p(AB̄)p(ĀB)
[−1, 1]

Normalized Difference p(B|A)− p(B|Ā) [−1, 1]

ϕ-Coefficient p(AB)−p(A)p(B)√
p(A)p(B)p(Ā)p(B̄)

[−1, 1]

Null-invariant

AllConf min(p(B|A), p(A|B)) [0, 1] −∞

Coherence (p(A|B)−1 + p(B|A)−1 − 1)−1 [0, 1] −1

Cosine p(AB)√
p(A)p(B)

[0, 1] 0

Kulczynski (p(A|B) + p(B|A))/2 [0, 1] 1

MaxConf max(p(B|A), p(A|B)) [0, 1] +∞

2This property is often called commutative symmetry (Glass, 2013).
3Tan et al. (2004) suggest to symmetrize measures by using max(p(A|B), p(B|A)).
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Null-invariance Measures that are null-invariant ignore so-called null transactions, in which
neither A nor B occur. Whether null-invariance is a desirable property for an association measure
depends on the nature of the empirical application under scrutiny. For the case of jointness
measures in BMA analysis, different views concerning the desirability of null-invariance have
been voiced in the literature. Doppelhofer and Weeks (2009b) criticize null-invariance, since
“[...] jointness can manifest itself in both the inclusion and exclusion margin of the joint
posterior distribution”. In contrast, Strachan (2009) and Ley and Steel (2009a) stress the effect of
low-probability models, which are represented only sparsely in the model matrix and which would
be “uninteresting” for most non null-invariant measures where the common exclusion probability
is respected.

3.2. Confirmation Measures for Jointness Analysis

Based on the extensive surveys of interestingness measures in the data mining literature (Tan et al.,
2004; Geng and Hamilton, 2006; Glass, 2013; Tew et al., 2014), we select a subset of indicators
which fulfill the properties put forward above and that are therefore potentially suitable to analyze
jointness in BMA applications. More specifically, all interestingness measures analyzed here are
(a) confirmation measures, (b) symmetric around a threshold that implies inclusion independence
and (c) reach their maxima when both variables are highly complementary. We group these
measures by whether they fulfill null-invariance or not. Table 1 provides an overview of these
indicators.4

Table 2: Comparison of Interestingness Measures: Independency

(1) (2) (3) (4) (5) (6) (7) (8)

Probabilities
p(A) 0.10 0.50 0.90 0.70 0.50 0.60 0.50 0.90
p(B) 0.10 0.10 0.10 0.20 0.50 0.40 0.90 0.90
p(A|B) 0.10 0.50 0.90 0.70 0.50 0.60 0.50 0.90
p(B|A) 0.10 0.10 0.10 0.20 0.50 0.40 0.90 0.90
p(AB) 0.01 0.05 0.09 0.14 0.25 0.24 0.45 0.81
p(AB̄) 0.09 0.05 0.01 0.06 0.25 0.16 0.45 0.09
p(ĀB) 0.09 0.45 0.81 0.56 0.25 0.36 0.05 0.09
p(ĀB̄) 0.81 0.45 0.09 0.24 0.25 0.24 0.05 0.01

Non null-invariant
Collective Strength 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Relative Risk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Yule’s Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normalized Difference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ϕ-Coefficient 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Null-invariant
AllConf 0.10 0.10 0.10 0.20 0.50 0.40 0.50 0.90
Coherence 0.05 0.09 0.10 0.18 0.33 0.32 0.47 0.82
Cosine 0.10 0.22 0.30 0.37 0.50 0.49 0.67 0.90
Kulczynski 0.10 0.30 0.50 0.45 0.50 0.50 0.70 0.90
MaxConf 0.10 0.50 0.90 0.70 0.50 0.60 0.90 0.90

Note: Independency defined as p(AB) = p(A)p(B)

4A full list of the interestingness measures used in the literature and that have been considered to select the
particular indicators considered here is presented in Appendix A.1.
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This choice of measures subsumes all the indicators used in the BMA jointness literature, while
we adhere to the naming conventions used in data mining. We replace the Odds Ratio with its
projection on the [−1, 1] interval, which is known as Yule’s Q.5 The Collective Strength measure
was introduced by Aggarwal and Yu (1998) and compares the violation rate of an itemset to its
expected value under statistical independence. It is defined between zero and ∞, where a value
of unity signals statistical independence, a lower value indicates substitutability and a larger
value complementarity. We use the log transformed measure which is defined around 0 as the
independence threshold. Relative Risk is a measure widely used in case studies, where an exposed
group (numerator) is compared to a non-exposed group (denominator). Log-transforming this
measure, we define independence at a value of zero and substitutes (complements) below (above)
this value. Normalized Difference is simply the difference between two probabilities and hence
defined in [−1, 1]. The ϕ-Coefficient is basically a correlation measure and closely related to the
χ2 statistic, bounded in the interval [−1, 1]. We do not include the non null-invariant measure of
Strachan (2009), known as Two-Way-Support, since it does not fulfil the monotonicity requirement
(Glass, 2013).

Table 3: Comparison of Interestingness Measures: Complementarity

Substitutes Complements
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Probabilities
p(A) 0.10 0.90 0.70 0.50 0.70 0.10 0.50 0.90 0.30 0.40
p(B) 0.10 0.10 0.20 0.50 0.30 0.10 0.40 0.10 0.30 0.20
p(A|B) 0.01 0.09 0.07 0.05 0.07 0.90 1.00 1.00 1.00 1.00
p(B|A) 0.01 0.01 0.02 0.05 0.03 0.90 0.80 0.11 1.00 0.50
p(AB) 0.00 0.01 0.01 0.02 0.02 0.09 0.40 0.10 0.30 0.20
p(AB̄) 0.10 0.09 0.19 0.48 0.28 0.01 0.00 0.00 0.00 0.00
p(ĀB) 0.10 0.89 0.69 0.48 0.68 0.01 0.10 0.80 0.00 0.20
p(ĀB̄) 0.80 0.01 0.11 0.03 0.02 0.89 0.50 0.10 0.70 0.60

Non null-invariant
Collective Strength -0.12 -2.48 -1.43 -2.94 -2.80 2.38 2.20 0.13 Inf 1.15
Relative Risk -2.40 -4.51 -3.43 -2.94 -3.43 4.39 Inf Inf Inf Inf
Yule’s Q -0.85 -1.00 -0.98 -0.99 -1.00 1.00 1.00 1.00 1.00 1.00
Normalized Difference -0.10 -0.90 -0.60 -0.90 -0.90 0.89 0.80 0.11 1.00 0.50
ϕ-Coefficient -0.10 -0.90 -0.69 -0.90 -0.90 0.89 0.82 0.11 1.00 0.61

Null-invariant
AllConf 0.01 0.01 0.02 0.05 0.03 0.90 0.80 0.11 1.00 0.50
Coherence 0.01 0.01 0.02 0.03 0.02 0.82 0.80 0.11 1.00 0.50
Cosine 0.01 0.03 0.04 0.05 0.05 0.90 0.89 0.33 1.00 0.71
Kulczynski 0.01 0.05 0.04 0.05 0.05 0.90 0.90 0.56 1.00 0.75
MaxConf 0.01 0.09 0.07 0.05 0.07 0.90 1.00 1.00 1.00 1.00

Notes: Substitutes defined as p(AB) = 0.1× p(A)p(B)
Complements defined as p(AB) = min(1, 9× p(A)p(B))

As described by Wu et al. (2010), five common null-invariant measures can be represented by
the generalized mean of the two conditional probabilities p(A|B) an p(B|A) with parameter k.
This representation nests the AllConf measure (Confidence), Coherence (Jaccard, Ley and Steel
2007), Cosine (similar to Doppelhofer and Weeks, 2005), Kulczynski and MaxConf, which we
5The Odds Ratio, Yule’s Q, and the log transformation of Yule’s Q, Yule’s Y, produce the same rankings of

association rules and are therefore considered equivalent (Tew et al., 2014).
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employ as examples of alternative null-invariant measures. These measures present themselves as
differently weighted means, so that Coherence describes the harmonic mean, Cosine the geometric
and Kulczynski the arithmetic mean of the two probabilities (Wu et al., 2010).

Based on the reasoning by Doppelhofer and Weeks (2009b) concerning the fact that a sensible
jointness measure should equal zero for independence, we provide a synthetic example for different
measures in Table 2. The eight columns provide scenarios where A and B are statistically
independent, so that p(AB) = p(A)p(B), but differ in the values for P (A) and P (B). Based
on this assumption, we calculate the different jointness measures for each scenario. Column 5

depicts the scenario described in Doppelhofer and Weeks (2009b), which is the special case of
p(A) = p(B) = 0.5. While Doppelhofer and Weeks (2009b) only argued based on an example with
equal posterior inclusion probability across covariates (p(A) = p(B)), we also consider differing
individual posterior probabilities of inclusion in Table 2.

As expected, the non null-invariant measures regard all eight scenarios presented in Table 2
as independent, since they explicitly take care of the exclusion margin p(ĀB̄). In contrast, the
null-invariant measures only agree in terms of the absolute size of the indicator for cases where
the posterior inclusion of both variables is equally likely (see columns 1, 5 and 8). Even in
these scenarios, the measures do not provide a clear independence threshold. The value defining
independence varies with p(A) and p(B), the posterior inclusion probabilities of both variables.
AllConf and MaxConf, which only consider the minimum or maximum of the two conditional
probabilities, P (A|B) and P (B|A), are exceptions. It has been argued that null-invariant measures
are hardly able to correctly quantify positive and negative association, since they do not account
for varying sizes of the exclusion margin (Glass, 2013). This can be considered less of a problem
for certain applications in data mining, where only a small set of positive relationships out of
a large set of transactions containing many zeros is of interest. However for the application to
jointness the researcher mostly faces “balanced” datasets, where variable inclusion and exclusion
are both similarly frequent.

Table 3 provides insights to the reaction of these different measures to substitutes and complements.
We choose substitution relations in joint inclusion (columns 1 to 5) in such a way that the
probability of common occurrence is one tenth of the independence threshold, or P (AB) =

0.1×p(A)p(B). We find that non null-invariant measures regard all these scenarios as substitutes,
leading to jointness values below zero. Yule’s Q is in this regard very consistent, as it finds values
close to its absolute minimum of −1 for all five cases. As a counterexample, Normalized Difference
and the ϕ-Coefficient agree in the scenarios entertained where the exclusion margin is low (columns
2, 4 and 5) by regarding the pair as highly substitutes, but gain in value (towards independence)
when this margin increases (columns 1 and 3). For the extreme case of p(A) = p(B) = 0.1 this
results in a large exclusion margin of 0.8, while at the same time both indicators approach zero
(−0.1).

While the independence threshold is not uniquely defined for null-invariant measures, most of
these present very low values, close to their common lower bound of zero.

Columns 6–10 in Table 3 present five examples of bivariate complements, where p(AB) is
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Figure 1: Jointness (JM) for Cosine (transparent) and Yule’s Q (grey), p(AB) = 0.2

set to be a multiple of the independence threshold, p(AB) = 9 × p(A)p(B). Our findings for
non null-invariant measures suggest that we correctly identify complements in all of these five
scenarios. For p(A|B) = 1 the Relative Risk measure is infinite by construction. As before,
the Normalized Difference and the ϕ-Coefficient are more ambiguous in their assertion of the
complementarity relationships between pairs. Especially for cases which have a high level of
mutual exclusion (column 8) — p(ĀB) = 0.8 in this case — both measures shift in value towards
independence. A similar case can be made for Collective Strength and for the scenario depicted in
column 10.

Identifying complements via null-invariant measures seems to be a harder task, since we need to
interpret these values relative to the (non unique) independence point. MaxConf always represents
p(A|B), which was chosen to be large, and therefore also ranges at its upper border of unity.
AllConf, Coherence and Kulczynski all represent similar patterns to Normalized Difference and
the ϕ-Coefficient, that is, high values when mutual exclusion is low and a drop in the indicator
level as soon as either of these probabilities rise.

The effect of extreme values for the exclusion margin can also be grasped by assessing the
jointness measures graphically. Figure 1 depicts the sensitivity of two measures, Cosine (null-invariant)
and Yule’s Q (Odds Ratio, non null-invariant) for a given level of joint occurrence p(AB) = 0.2 and
varying values of p(A) and p(B) (X-, Y-axes). The Cosine measure is represented by a slightly
convex plane, varying between 0.33 and 1, whereas mean and median lie close to 0.45. The
maximum of the measure is found at the minimum values of p(A) and p(B), which correspond to
the joint probability of 0.2. The measure then decreases towards the extreme values {1, 0.2} and
{0.2, 1}. In both cases the exclusion margin p(ĀB̄) is zero, however the probabilities of p(AB̄)

and p(ĀB) vary and cause the measure to react. The non null-invariant measure, Yule’s Q,
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varies in a stronger fashion in an interval between 0.2 and its absolute minimum of −1. We find
that this indicator is rather stable for individual inclusion values up to 0.4, which is twice the
value of p(AB), and for cases where p(A) ≫ p(B) or vice versa. For cases where the inclusion
probabilities of both variables become large, the measure drops sharply indicating substitutability
instead of complementarity. In our opinion this is a desirable indication. If the joint probability of
occurrence if far below the marginal inclusion probabilities of the two variable, a measure should
not classify them as complements.

4. Jointness of Economic Growth Determinants Revisited

Table 4: Results of the BMA routine for the FLS data set

PIP Post Mean Post SD

GDP60 1.000 -0.016 0.003
Confucian 0.993 0.060 0.016
LifeExp 0.971 0.001 0.000
EquipInv 0.907 0.124 0.062
SubSahara 0.885 -0.016 0.008
Mining 0.815 0.031 0.020
Hindu 0.717 -0.050 0.042
NequipInv 0.696 0.034 0.029
RuleofLaw 0.666 0.008 0.007
LabForce 0.655 0.000 0.000
EcoOrg 0.614 0.001 0.001
Muslim 0.598 0.007 0.008
BlMktPm 0.566 -0.004 0.004
LatAmerica 0.563 -0.006 0.007
EthnoL 0.561 0.006 0.007
Protestants 0.559 -0.005 0.006
HighEnroll 0.554 -0.049 0.055
PrScEnroll 0.495 0.008 0.011
CivlLib 0.430 -0.001 0.002
Spanish 0.427 0.004 0.006

In our empirical application we apply alternative jointness measures to the dataset used in
Fernández et al. (2001a, henceforth FLS), which includes information on income per capita growth
and 41 potential determinants of economic growth differences for 72 countries.6 In a first step, we
apply BMA methods to obtain the posterior inclusion probabilities for all variables, as well as the
mean and standard deviation of the posterior distribution of the parameters associated with each
covariate. For this application we employ a hyper-g prior over the parameters (Liang et al., 2008)
and a Binomial-Beta model prior following Ley and Steel (2009b). The BMA results are obtained
using five million Markov Chain Monte Carlo iterations over the model space, where the first two
million are disregarded as burn-in. Out of the three million visited models, approximately two
thirds are unique, with a mean number of 19.8 included explanatory variables. Table 4 presents
the posterior inclusion probabilities for the top 20 variables, together with the mean and standard
deviation of the posterior distribution of their respective parameters. The BMA results confirm
6See Appendix B.1 for a description of the variables, as well as some descriptive statistics.
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the robustness of several economic growth determinants such as GDP60, Confucian, LifeExp or
EquipInv, which have a PIP above 0.9.

Using the top 10, 000 unique models weighted by posterior model probabilities, we construct the
binary matrix of model profiles, defined by the inclusion binary variables, γj . Since the top 10, 000

models have been included approximately 130, 000 times in the three million MCMC draws, this
matrix has dimensions 130, 000× 41, where each cell describes whether covariate 1–41 is included
(1) or not (0) in a given model. From this model profile matrix we can construct rules based on
joint inclusion of variables.7 A common further step in association analysis involves support-based
pruning, where the rules are reduced given a minimum and/or maximum value for support, i.e.,
the frequency of a rule, and confidence, which measures the occurrences of a rule relative to the
number of counterexamples. Pruning with respect to support eliminates infrequent rules, which
only appear very rarely in the data. Table 5 shows the number of bivariate rules found for the FLS
data set given different thresholds for support and confidence. We find a total of 1, 640 bivariate
rules if we impose no restrictions, which is no lower bounds for support or confidence. Twelve
rules satisfy the most rigorous pruning, implied by only keeping highly frequent pairs which have a
support value larger than 0.9. Following the association rules analysis literature, we use a low level
of support pruning (0.1), so that we end up with a set of 582 distinct rules to analyze. In addition,
we prune rules with extremely high support, namely the twelve resulting from a support level of
0.9. These may be of interest in the data mining context, but do not provide enough variation to
analyze whether the covariates involved are substitutes or complements in the jointness context.
The rules selected involve 29 of the 41 covariates.

Table 5: Number of rules by minimum confidence and support

Support/Confidence 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1640 1002 750 611 530 467 403 347 291 217
0.1 304 304 264 227 215 201 168 145 128 101
0.2 154 154 154 140 133 124 99 83 75 62
0.3 110 110 110 110 106 102 81 66 59 48
0.4 88 88 88 88 88 86 70 60 55 44
0.5 74 74 74 74 74 74 61 53 48 41
0.6 38 38 38 38 38 38 38 34 30 25
0.7 28 28 28 28 28 28 28 28 25 20
0.8 20 20 20 20 20 20 20 20 20 16
0.9 12 12 12 12 12 12 12 12 12 12

For the overall set of identified joint variable inclusions and the pruned subset we obtain
the interestingness measures described in Table 1 and calculate Spearman rank correlations, to
quantify the concordance of the orderings implied by the different measures. Table 6 presents
the results from this exercise. In the lower triangle, the results for the total of 1, 640 rules are
presented, while in the upper-right triangle we show the correlations for the pruned subset. The
rank correlations within the group of non null-invariant measures imply highly congruent rankings
7We concentrate on bivariate jointness. A straightforward extension would be to analyze jointness based on triplets,

for which tools such as the apriori algorithm can be used.
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by these indicators. These measures provide rankings that are only loosely correlated with those
delivered by their null-invariant counterparts. Comparing rank correlations for the full and pruned
sets of associations, we find that the agreement increases above the diagonal in Table 6, which
indicates that the exclusion of extreme cases causes the rankings implied by the measures to
converge.

Within the set of null-invariant measures we find significantly less within-group correlation.
While the measures Coherence, Cosine and Kulczynski tend to agree in terms of ranking bivariate
inclusion relationships, this is not the case for AllConf and MaxConf. Since these two measures
actually represent minima and maxima functions over the conditional inclusion probabilities
p(A|B) and p(B|A), they frequently take extreme values at 0 or 1 and therefore produce rankings
with a large number of ties around these values. Similarly, the rank correlations for the pruned
set of bivariate inclusions are higher than for the full set.

Given these results, we restrict our subsequent analysis to four distinct measures. On the one
hand, we select the Yule’s Q (an Odds-Ratio transformation) and the ϕ-Coefficient, which have
been shown to react differently to the exclusion margin in the simulations. On the other hand,
we concentrate on the null-invariant measures Cosine (Jaccard) and Kulczynski.
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Table 6: Spearman Correlation of Ranked Measures

Non null-invariant Null-invariant
1 2 3 4 5 6 7 8 9 10

Non null-invariant
1 Collective Strength 0.89 0.91 0.93 0.99 0.38 0.39 0.36 0.28 0.14
2 Relative Risk 0.83 0.91 0.86 0.90 0.24 0.24 0.22 0.19 0.10
3 Yule’s Q 0.81 0.94 0.87 0.93 0.34 0.36 0.38 0.38 0.34
4 Normalized Difference 0.95 0.86 0.87 0.94 0.33 0.35 0.34 0.30 0.19
5 ϕ-Coefficient 0.99 0.82 0.86 0.94 0.43 0.44 0.43 0.37 0.26

Null-invariant
6 AllConf 0.04 -0.15 -0.08 0.13 0.13 0.99 0.86 0.64 0.38
7 Coherence 0.03 -0.12 -0.03 0.13 0.14 0.98 0.91 0.71 0.47
8 Cosine 0.05 -0.06 0.04 0.16 0.17 0.94 0.99 0.93 0.76
9 Kulczynski -0.02 -0.01 0.11 0.13 0.13 0.81 0.91 0.95 0.93
10 MaxConf -0.22 0.12 0.25 -0.03 -0.06 0.17 0.32 0.43 0.64

Notes: Lower-left triangle: Rank correlations for all 1640 rules
Upper-right triangle: Rank correlations for 568 pruned rules (support min 0.1/max 0.9)
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Figures 2 and 3 represent graphically the degree of jointness implied by these four measures.
The pairs of variables in these figures are ordered in such a way that high jointness patterns can
be found along the diagonal of the matrix depicted in them (Hahsler et al., 2008; Tan et al.,
2004). For Yule’s Q in Figure 2a, we find a number of strong complementary relationships,
represented by the blue shaded tiles. These clusters are primarily composed of the colonial
dummies (Brit, English, Spanish and French) as well as geographical factors (Latin America,
SubSahara, EthnoL). We also find a number of complements in the set of economic system-related
variables, OutwardOrientation, RuleOfLaw, LabForce and BlackMarketPremium. In contrast,
Yule’s Q unveil very few substitutability relationships between pairs of variables. These are
mainly related to religious variables (Muslim, Confucian) and their relation to the Sub-Saharan
African dummy.
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Figure 2: non null-invariant Jointness Measures, FLS Dataset
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The ϕ-Coefficient (see Figure 2b) presents a similar picture with respect to colonial variables and
RuleOfLaw or OutwardOrientation. However, it highlights even less substitutability relationships
than Yule’s Q besides the connection between SubSahara and YrsOpen.

The two null-invariant measures in Figure 3 show very similar patterns for complementarity of
colonial and geographical variables. However, they tend to emphasize bivariate relationships of
variables that have very high PIPs in the BMA exercise. For these covariates there are hardly
any models where they do not appear together, so that these types of measures consider them to
be strongly related in a complementarity sense. This applies to all the variables that present very
high PIPs: GDP60, Confucian, EquipInv or LifeExp. The Cosine and the Kulczynski measures
also find a number of substitutes, with YearsOpenEconomy and NequipInv being an example of
these.

To sum up, both types of measure provide similar insights into the bivariate covariate inclusion
structure in the model space. On the one hand, the additional weighting for the probability of
joint exclusion in the non null-invariant measures causes relationships with high individual PIPs
to lose importance as compared to the bivariate jointness of variables with average PIP. On the
other hand, null-invariant measures ignore this exclusion margin and stress the importance of
variable relationships where both variables have a high individual PIP.

In contrast to the results of LS for this data set, the jointness results found here are not
exclusively related to variables with high PIP. For the measures introduced by LS, high jointness is
concentrated among the top 5 regressors (GDP60, Confucian, LifeExp, EquipInvest and Sub-Sahara).
This can be reproduced by restricting the analysis to the two null-invariant measures considered
here. If however, the exclusion margin is included into the analysis, other jointness relationships
are discovered. One example for these are colonial variables, which are less frequent, but still
exhibit complementary behavior.

In their analysis, DW employ the dataset of Sala-i Martin et al. (2004, SDM data set), for which
PIPs tend to be more concentrated on a few variables. Accordingly LS also find less jointness in
this data set, using their null-invariant measures.
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Figure 3: Null-invariant Jointness Measures, FLS Dataset
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5. Conclusion

In this paper we investigate the issue of measuring jointness of robust growth determinants as
raised by Ley and Steel (2007), Doppelhofer and Weeks (2009a) and others in the BMA literature.
We link the measurement of joint inclusion of covariates to the field of assessing association
in data mining, where similar problems are studied. We argue that the search for substitutes
and complements in model profiles is similar to the data mining issue of finding “interesting”
combinations of e.g. products in a shopping basket.

We link the properties that have been introduced for jointness to the concepts that are used for
categorizing interestingness measures for association rules analysis. In particular, the jointness
literature in BMA is concerned with a subset of these interestingness measures, referred to as
confirmation measures. Furthermore, we highlight the role of null-invariance, that is, the effect
of cases were both variables in a bivariate inclusion relationship are excluded. Based on these
properties we select a set of interestingness measures and show how they relate to the jointness
indicators proposed in the literature.

We show that null-invariant measures fail to give a comprehensive view on jointness since
they cannot gauge the effect of statistical independence consistently across different dependence
structures. We examine further how sensitive different measures are with regard to varying
dependence structures across included covariates. Finally, we provide an empirical application of
these measures to the well known dataset of economic growth determinants used by Fernández
et al. (2001a) and discuss the complementarity and substitutability inclusion structures found.

Using non null-invariant measures, such as Yule’s Q, we find a large number of complementary
relationships but only few substitutes among bivariate pairs of variables. The latter are primarily
related to the combination of socioeconomic specifics (Confucian, Muslim) and geographical
variables (SubSahara). Complementary relationships are manifold and can be found for example
between different colonial variables, such as Brit, English, Spanish or French. Furthermore the
quality of institutions (RuleOfLaw) and economic variables (OutwardOrientation, BlackMarketPremium)
seem to exhibit such relationships.

As highlighted by Doppelhofer and Weeks (2009b), the treatment of the exclusion margin is
highly relevant for an analysis of jointness. Null-invariance may lead to ambiguous results since
these measures cannot quantify substitutes and complements in an appropriate fashion (Glass,
2013). Given this theoretical justification, we do find differences in the rank correlations between
the two types of measures, but these only partly influence the general picture of complementary
and substitute covariates found in the FLS dataset.
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A. Review of measures of interestingness and confirmation

Table A.1: Definition of Jointness measures
# Measure Value

1 ϕ ϕ-Coefficient p(AB)−p(A)p(B)√
p(A)p(B)p(Ā)p(B̄)

2 AV Added Value p(B|A)− p(B)

3 AC AllConf min(p(B|A), p(A|B))

4 b Carnap p(AB)− p(A)p(B)

5 cf Certainty Factor p(B|A)−p(B)
1−p(B)

if p(B|A) > p(B)

6 χ2 Chi-square (χ2) (p(AB)−p(A)p(B))2N

p(A)p(Ā)p(B)p(B̄)

7 κ Coehen’s Kappa (κ) p(B|A)p(A)+p(B̄|Ā)p(Ā)−p(A)p(B)−p(Ā)p(B̄)

1−p(A)p(B)−p(Ā)p(B̄)

8 coh Coherence (p(A|B)−1 + p(B|A)−1 − 1)−1

9 cs Collective Strength ln
[

p(AB)+p(ĀB̄)

p(A)p(B)+p(Ā)p(B̄)
× 1−p(A)p(B)−p(Ā)p(B̄)

1−p(AB)−p(ĀB̄)

]
10 conf Confidence p(B|A)

11 conv Conviction ln
[
p(A)p(B)

p(A,B̄)

]
12 IS Cosine p(AB)√

p(A)p(B)

13 G Gini index p(A)(p(B|A)2 + p(B̄|A)2) + p(Ā)(p(B|Ā)2 + p(B̄|Ā))− p(B)2 − p(B̄)2

14 IR Imbalance Ratio |p(A|B−p(B|A|
Pr(A|B)+p(B|A)−p(A|B)p(B|A)

15 I Interest p(AB)
p(A)p(B)

16 J J-Measure p(AB) log p(B|A)
p(B)

+ p(AB̄) log p(B̄|A)

p(B̄)

17 ζ Jaccard (ζ) p(AB)
p(A)+p(B)−p(AB)

18 k Kemeny-Oppenheim p(A|B)−p(A|B̄)

p(A|B)+p(A|B̄)

19 kl Klosgen
√

p(AB)× max(p(B|A)− p(B), p(A|B)− p(A))

20 kulc Kulczynski (p(A|B) + p(B|A))/2

21 L Laplace N×p(AB)+1
N×p(A)+2

22 l Lift p(B|A)
p(B)

23 ll Log-Likelihood ln
[
p(A|B)

p(A|B̄)

]
24 r Log-Ratio ln

[
p(B|A)
p(B)

]
25 MC MaxConf max(p(B|A), p(A|B))

26 M Mutual Information
p(AB) log p(AB)

p(A)p(B)
+ p(AB̄) log AB̄

p(A)p(B̄)

+ p(ĀB) log p(ĀB)

p(Ā)p(B)
+ p(ĀB̄) log p(ĀB̄)

p(Ā)p(B̄)

27 s Normalized Difference p(B|A)− p(B|Ā)

28 α Odds Ratio ln
[

p(AB)p(ĀB̄)

p(A,B̄)p(ĀB)

]
29 ows One-Way Support p(B|A) ln

[
p(AB

p(A)p(B

]
30 PS Piatetsky-Shapiro’s N × (p(AB)− p(A)p(B))

31 rr Relative Risk ln
[
p(B|A)

p(B|Ā)

]
32 sup Support p(AB)

33 tws Two-Way Support p(AB) ln
[

p(AB)
p(A)p(B)

]
34 yq Yule’s Q p(AB)p(ĀB̄)−p(AB̄)p(ĀB)

p(AB)p(ĀB̄)+p(AB̄)p(ĀB)

35 yy Yule’s Y
√

p(AB)p(ĀB̄)−
√

p(AB̄)p(ĀB)√
p(AB)p(ĀB̄)+

√
p(AB̄)p(ĀB)
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B. Data description

Table B.1: Variable Names and Descriptive Statistics — FLS

Abbreviation Variable µ σ

1 Age Age 23.71 37.307
2 Area Area (Scale Effect) 972.92 2051.976
3 BlMktPm Black Market Premium 0.16 0.291
4 Brit British Colony dummy 0.32 0.470
5 Buddha Fraction Buddhist 0.06 0.184
6 Catholic Fraction Catholic 0.42 0.397
7 CivlLib Civil Liberties 3.47 1.712
8 Confucian Fraction Confucian 0.02 0.087
9 EcoOrg Degree of Capitalism 3.54 1.266
10 English Fraction of Pop. Speaking English 0.08 0.239
11 EquipInv Equipment investment 0.04 0.035
12 EthnoL Ethnolinguistic fractionalization 0.37 0.296
13 Foreign Fraction speaking foreign language 0.37 0.422
14 French French Colony dummy 0.12 0.333
15 GDP60 GDP level in 1960 7.49 0.885
16 HighEnroll Higher education enrollment 0.04 0.052
17 Hindu Fraction Hindu 0.02 0.101
18 Jewish Fraction Jewish 0.01 0.097
19 LabForce Size labor force 9305.38 24906.056
20 LatAmerica Latin American dummy 0.28 0.451
21 LifeExp Life expectancy 56.58 11.448
22 Mining Fraction GDP in mining 0.04 0.077
23 Muslim Fraction Muslim 0.15 0.295
24 NequipInv Non-Equipment Investment 0.15 0.055
25 OutwarOr Outward Orientation 0.39 0.491
26 PolRights Political Rights 3.45 1.896
27 Popg Population Growth 0.02 0.010
28 PrExports Primary exports, 1970 0.67 0.299
29 Protestants Fraction Protestant 0.17 0.252
30 PrScEnroll Primary School Enrollment, 1960 0.80 0.246
31 PublEdupct Public Education Share 0.02 0.009
32 RevnCoup Revolutions and coups 0.18 0.238
33 RFEXDist Exchange rate distortions 121.71 41.001
34 RuleofLaw Rule of law 0.55 0.335
35 stdBMP SD of black-market premium 45.60 95.802
36 SubSahara Sub-Saharan dummy 0.21 0.409
37 WarDummy War dummy 0.40 0.494
38 WorkPop Ratio workers to population −0.95 0.189
39 YrsOpen Number of Years open economy 0.44 0.355

26


