
ePubWU Institutional Repository

Thomas Baier and Jan Mendling and Mathias Weske

Bridging abstraction layers in process mining

Article (Draft)

Original Citation:
Baier, Thomas and Mendling, Jan and Weske, Mathias (2014) Bridging abstraction layers in process
mining. Information Systems, 46. pp. 123-139. ISSN 0306-4379

This version is available at: http://epub.wu.ac.at/4394/
Available in ePubWU: December 2014

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is an early version circulated as work in progress.

http://epub.wu.ac.at/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/35454002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/4394/
http://epub.wu.ac.at/
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bWirtschaftsuniversität Wien, Augasse 2-6, 1090 Vienna, Austria

Abstract

While the maturity of process mining algorithms increases and more pro-
cess mining tools enter the market, process mining projects still face the
problem of different levels of abstraction when comparing events with mod-
eled business activities. Current approaches for event log abstraction try to
abstract from the events in an automated way that does not capture the
required domain knowledge to fit business activities. This can lead to mis-
interpretation of discovered process models. We developed an approach that
aims to abstract an event log to the same abstraction level that is needed
by the business. We use domain knowledge extracted from existing process
documentation to semi-automatically match events and activities. Our ab-
straction approach is able to deal with n:m relations between events and
activities and also supports concurrency. We evaluated our approach in two
case studies with a German IT outsourcing company.

Keywords: Process Mining, Abstraction, Event Mapping

1. Introduction

Process mining finds increasing uptake in practice. Using the event data
logged by IT systems, process mining algorithms discover and enhance pro-
cess models or check whether the execution of a process conforms to speci-
fication [1]. Looking at conformance checking and enhancement of process
models, it is obvious that the events stemming from IT systems have to be
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mapped to activities defined in process models. However, the events are typ-
ically more fine-granular than the activities defined by business users. This
implies that different levels of abstraction need to be bridged in order to
use these process mining techniques. Furthermore, such a mapping is not
only necessary for conformance checking and process model enhancement,
but also for discovery. The benefit of a discovered process model can only
be fully exploited if the presented results are on an abstraction level that is
easily understandable for the business user. Nevertheless, most current pro-
cess mining techniques assume that there is a 1:1 mapping between events
and activities. Only a few abstraction approaches address the mapping chal-
lenge by clustering events that can be bundled into singular activities (see
e.g. [5, 6, 7]). However, these techniques have limited capabilities in dealing
with complex mappings between events and activities and most often neglect
n:m relationships and concurrency in the execution. Also, they provide no or
only limited support for correctly refining these mappings based on domain
knowledge.

In this paper, we build on ideas presented in prior work [2, 3] for tack-
ling this mapping problem. Our contribution is a mapping approach that
suggests relations between events and activities in an automated manner us-
ing existing process documentation as e.g. work instructions. For the set
of suggested event-activity relations, we define means to dissolve n:m re-
lations. In contrast to existing approaches, the method introduced in this
paper is designed to deal with concurrency and to handle n:m relations be-
tween events and activities. We extend our previous work to deal with the
complete life cycle of activities and to allow for zooming functionality in pro-
cess discovery. Moreover, we introduce more sophisticated means to address
the challenges of shared functionalities and loops. The capabilities of our
approach are evaluated based on two case studies with a service outsourcing
provider. The results demonstrate its benefits and emphasize the sensitivity
of conformance and performance analysis to the defined mapping problem.
Our approach can be used as a preprocessing step for every process mining
technique, and therefore adds to the overarching field of business process
analysis.

The paper is structured as follows. Section 2 describes the problem of
different abstraction levels of event logs and process models. Furthermore,
the preliminaries for our approach are introduced. Section 3 introduces the
strategies to overcome the gap between abstraction levels of event log and
process model. In section 4, we show the results from case studies where we
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benchmarked our approach against manually created mappings, and outline
the implications on conformance testing and performance analysis. Related
work and prior research is reviewed in section 5. Section 6 discusses the
implications of our work on research and practice, and elaborates on current
limitations. In section 7 we conclude with a short summary of this work and
give an outlook to future research.

2. Problem statement and preliminaries

This section provides an example to illustrate the research problem and
introduces the preliminaries on which our approach builds.

2.1. Problem description

In order to make the problem more comprehensive, we will use the Inci-
dent Management process as defined in the IT Infrastructure Library (ITIL)
[4]. Figure 1 shows the process model at a very abstract level. At the bottom
of Fig. 1, an excerpt of six cases from a corresponding event log is displayed.
The different abstraction levels of process model and execution log spawn
multiple challenges that need to be addressed in order to map the events to
their corresponding activities.

The first challenge (1) is the effective usage of external knowledge for
the abstraction of events to defined activities. While there are different ap-
proaches for abstracting event logs to a higher level, like [5, 6, 7], none of
these approaches makes systematic use of external knowledge to map events
to defined activities. Typically, organizations maintain detailed textual doc-
umentation of a process that extends the information provided in the model
on a lower abstraction level. This knowledge should be leveraged to bridge
the gap between the high-level process model and the low-level event log.

The second challenge (2) is the unknown relation of events and activi-
ties. In practical settings it is often not known a priori which events refer to
which activity. An automated derivation of the relation between events and
activities is non-trivial, as simple string matching techniques often do not
work between different levels of abstraction. In the given Incident Manage-
ment example for instance the two events “Group” and “Details” have to be
related to the activity “Incident logging”. Existing abstraction approaches
try to solve this challenge by clustering events that occur in temporal prox-
imity [7]. Often this does not reflect the partitioning of activities as domain
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Figure 1: Example of event to activity relations: Incident Management process model and
low-level event log with shared functionalities and concurrency

experts would expect it. Furthermore, different events also may have differ-
ent meanings with respect to the life cycle of an activity. For instance, the
event “Group” might always signal the start of activity “Incident logging”,
while the event “Details” signals the end of the activity. This information
is important when it comes to performance analysis and the calculation of
activity durations. Last but not least, certain events might not be interesting
for the aimed abstraction and should be filtered out in a convenient way.

The third challenge (3) is the use of shared functionalities, where differ-
ent activities access the same functionality of the IT system. In this case,
an event of the same type refers to multiple different activities. For exam-
ple, Fig. 1 depicts the event “CI” that belongs to either one of the activities
“Initial diagnosis”, “Investigation and diagnosis” or “Incident closure”. The
abbreviation CI stands for the configuration item, i.e. the affected IT compo-
nent. Depending on when the CI is changed during the process, the change of
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the CI refers to different activities. When happening at the beginning of the
process execution, the event reflects the activity “Initial diagnosis”. Later
it occurs when the configuration item is changed during the “Investigation
and diagnosis” or during the quality checks of the incident closure. More-
over, there can be events, such as status updates, that potentially belong to
every activity. In practice, we even encountered single instances of events
which signal the execution of multiple activities. When looking at shared
functionalities, existing approaches either neglect their existence, as in [8, 6],
or provide only limited means for disambiguating the relation of a shared
functionality to its corresponding activities, as in [7].

The fourth challenge (4) are loops and concurrency in the process exe-
cution. Regarding loops in the execution, we have to distinguish between
loops on the activity level and loops on the sub-activity level. Whenever
an event related to one specific activity occurs more than once, it has to be
decided whether this is a repetition of the activity itself or a repetition of a
sub-activity within the same instance of the activity. For example, as to the
event “CI”, often two occurrences are related to the same activity in Fig. 1.
Domain knowledge is needed to decide whether this is a repetition of the
complete activity or only a repetition of the sub-activity to which the event
relates to. This knowledge is crucial for conformance analysis as well as for
process discovery.

Similarly to loops, concurrency poses a challenge to the abstraction of
event logs. Current event log abstraction approaches, like [7], assume that
only events that occur closely to each other in the log belong to the same
occurrence of an activity. Concerning the cases 2 – 5, the events “Group”
and “Details” would not be related to the same occurrence of the activity
“Incident logging”, but to two different occurrences of that activity. This
leads to a loop in the discovered process model that signals rework, whereas
in reality no rework has been done as both sub-activities have only been
executed once. But in contrast to the assumed process model, the activities
were not executed in sequence but in parallel. Hence, different means have
to be found to deal with concurrent execution of sub-activities.

Concurrency and the distinction between loops on activity level vs. loops
on sub-activity level is only implicitly tackled in prior research and existing
approaches do not allow to infer domain knowledge to clarify this distinction.

Summing up, there are four main challenges for the abstraction of event
logs to predefined activities. All four challenges are currently not sufficiently
tackled by prior research. Therefore, new means to abstract event logs have
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to be defined.

2.2. Processes and process execution

Having defined the problem that we want to solve, we start with the
preliminaries on which we ground our work. A process model P contains
a non-empty set of activities, which we denote as A. The process model
defines a control flow relation CF ⊆ A × A and the function subAct : A →
P (A) defines the hierarchy relation between activities and their subordinated
activities, called sub-activities.

At the top of Fig. 2, a process model is depicted with five activities,
A = {a, b, ba, bb, c}. The activities ba and bb are sub-activities of activity
b, subAct(b) = {ba, bb}. A process model might be further described with
textual descriptions entailing execution details for each activity. The function

desc(a) =

{
d if subAct(a) = ∅
d ∪

⋃
b∈subAct(a) desc(b) otherwise

assigns each activity the set of corresponding activity descriptions, including
those linked to sub-activities. The function desc(P ) =

⋃
a∈A desc(a) returns

all activity description of a process P. Looking at the example in Fig. 2, we
have desc(P ) = {d1, d2, d3, d4, d5} and, e.g, desc(b) = {d2, d3, d4}.

When an activity a ∈ A is executed, we call this an instance of a. An
instance of a is denoted as â and the set of all activity instances is called
Â. The function γ : Â→ A captures the relationship of an activity instance
to its activity class, so we can write γ (â) = a. A process instance p̂ is
a sequence of activity instances, i.e. p̂ ∈ Â∗, where all activity instances
belong to a particular case. As one activity can be executed several times in
one process instance, we number the activity instances with an index i ∈ N .
An example process instance is depicted in Fig. 2. This process instance can
be written as p̂1 = 〈â1, b̂1, ĉ1, ĉ2〉. Note that we omit the instances of the sub-
activities of b to avoid redundant information. Depending on the abstraction
level we are interested in, we could also write p̂1 = 〈â1, b̂a1, b̂b1, ĉ1, ĉ2〉. To
further reason about activity instances in a process instance, each activity
instance has a life cycle, which consists of a set of states LS and a set
of transitions LT between these states. In this work we assume the set of
transitions to be LT = {start , execute, suspend , resume, complete}, but we do
not depend on the actual specification of transitions. A generic activity life
cycle is defined by van der Aalst in [1]. The life cycle of an activity instance
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Figure 2: Process model, instances, and relations to events

allows to make detailed analysis of activity durations and idle times. While
activity instances in a process instance have a clear ordering, their life cycle
transitions can overlap, signaling concurrent execution.

2.3. Event logs

An IT system that supports process executions typically records events
for each process instance. An event in our example process refers to the
change of a data field in the supporting IT system as for example the setting
of the classification. We refer to the type of an event as event class e. The
set of all event types is called E. We denote a single instance of an event
class e as ê and we call the set of all event instances Ê. Each event instance
has different attributes assigned to it. For each attribute #attr(ê) refers to
the value of the attribute attr ∈ ATE for the event instance ê. ATE is the
set of all possible event attributes. We assume that an event instance has at
least the attribute #time(ê), which refers to the time when it occurred, and
the attribute #class(ê), which links to the event class. Other attributes may
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contain role information or values of changed database fields. A trace t is a
list of the form Ê∗, where the contained event instances are ordered by their
time attribute. Every event instance is assigned to a trace and each trace in
an event log is related to a process instance. Note that the relation of event
instances to traces might not be trivial in every practical setting. Yet, there
is plenty of work on event correlation that tries to relate event instances to
traces (see e.g. [9, 10]). In this work we therefore assume that this relation
is already given. Although each trace can contain multiple instances of the
same event class, each event instance in a trace can be uniquely identified by
its attribute values. Traces might be split for analysis of particular parts of a
trace. A continuous part of a trace is called a sub-trace. We use the ‖ opera-
tor for the concatenation of traces or event instances. Looking at the example
in Fig. 2, we could split the trace after the event instances belonging to the
execution of activity a by writing t = 〈x̂1, x̂2, x̂3〉‖〈ŷ1, ŷ2, ŷ3, ŷ4, ẑ1, ẑ2, ẑ3, ẑ4〉.

Like events, traces have attributes. The set of all possible trace attributes
is called ATT and #attr(t) refers to the value of a trace attribute attr ∈ ATT .
Regarding trace attributes, we only assume the attribute #case(t), which
uniquely relates a trace to a process instance, as mandatory. Nevertheless,
more attributes can be defined and used in the event log abstraction.

The events created by an IT system during the execution of a process
instance are typically stored in an event log, which contains a trace of event
instances for each process instance. Thus, an event log L is a set of traces
t ∈ L. We denote the set of all possible traces as T .

2.4. Relations of processes and event logs

Having a process model P and an event log L, the challenge (2) refers to
the derivation of the relation of the activities a ∈ A and the event classes
e ∈ E. As events are supposed to be on a lower abstraction level, multiple
event classes may belong to one activity. Due to shared functionalities –
as defined in challenge (3) – also one particular event class can refer to
several different activities. Thus, we are looking for the relation between
event classes and activity types, EA ⊆ A × E, which is essentially a n:m
relation. Finally, as we are interested in abstracting event logs, and thus, in
relating event instances to activity instances, the ultimate goal is to derive
the relation of event instances ê ∈ E and activity instances â ∈ A. More
specifically, we look for the relation of event instances to the particular life
cycle transitions of an activity instance. Hence, the objective is to derive the
relation ÂLÊ ⊆ Â× LT × Ê.
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3. Abstracting event logs using semi-automatic matching

In this section the approach for abstracting events to process model ac-
tivities is introduced. The approach consists of four distinct phases, each
addressing one of the four challenges introduced in section 2.1:

1. Annotation of process model activities,

2. Matching of activities and events on type level,

3. Definition of context-sensitive mappings, and

4. Clustering of event instances to activity instances.

Figure 3 shows the four phases with their inputs and outputs. In the first
phase the process model activities need to be annotated with more details
from the textual descriptions. In the second phase, the potential relations
are computed using the annotations. These automatically derived relations
have to be refined by a domain expert as input for the next phase. The third
phase requires the user to clarify how to dissolve n:m relations that arise from
shared functionalities. This phase also provides the option to remove events
or complete traces that are not interesting for the aimed abstraction level and
results in a preprocessed event log where each event instance is related to its
corresponding activity type. In the last phase, the event instances, which are
already mapped to activity types, are clustered to activity instances resulting
in an abstracted event log.

3.1. Annotation of process model activities

As a major challenge in event-activity matching is the diverging level of
abstraction, we utilize annotations. These annotations serve the purpose of
enriching the coarse-granular activities of the process model with detailed in-
formation that helps to link to events. In modern business process modeling
tools, activities can be connected with more detailed textual descriptions,
such that the annotation of the activities is readily available. Often, instruc-
tions can also be found in tabular form consisting of columns for the activity
name and the detailed description. In the following, we assume that such a
description is available or can be directly linked to an activity.

In order to effectively use the activity descriptions for the matching of
event classes and activity types, we have to pre-process the descriptions. As
events represent some kind of change to an object, we are especially interested
in the objects contained in the activity descriptions. Therefore, the Stanford
Part-of-Speech (POS) tagger [11, 12] is used to filter out these objects. The
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Figure 3: Overview of the 4-phase abstraction approach with inputs and outputs of each
phase

POS tagger parses natural text and assigns each word to its part of speech,
e.g. verb, noun, article, adjective, etc. From these categories we only take
into account words that are nouns or words for which no real category can
be found by the POS tagger. The latter are most often abbreviations as
e.g. “CI” or foreign words. Furthermore, all numbers are filtered out. The
goal is to extract potential business objects. The set of all potential business
objects is denoted as PBO. PBOa ⊂ PBO is the set of potential business
objects pboi ∈ PBOa that unites all potential business objects for an activity
a ∈ A. These objects are extracted from all activity description di ∈ desc(a).
Additionally, the labels of the activities are processed in the same way to
extract further potential business objects. The activities are annotated with
the derived objects for further processing in the next phase of the approach.
The result of this phase is an activity annotation relation APBO ⊆ A ×
PBO. This relation is a n:m relation, i.e. one activity can be linked to
multiple potential business objects, and one potential business object can
be associated with multiple different activities. Note that the annotation is
not mandatory for each activity. Yet, it presumably improves the automated
matching result because the textual descriptions are likely to be closer to the
abstraction level of the event log than the activities in the process model as
we will show in our evaluation in Section 4.

10



3.2. Semi-automatic matching of events and activities

Having annotated the activities with their potential business objects, the
second phase deals with challenge (2), the derivation of the event-activity
relation EA. To this end, we inspect each combination of event class and ac-
tivity name as well as each combination of event class and activity description
for potential correspondences.

Algorithm 1: Derive potential event-activity relation

1: checkRelation(EventLog L, ProcessModel P, ProcessDescription desc(P))
2: Set EA := ∅
3: Set APBO := ∅
4: Set EPBO := ∅
{Annotate activities with potential business objects}

5: for all a ∈ A do
6: Set PBOa := PBOa ∪ extractNouns(a)
7: for all di ∈ desc(a) do
8: Set PBOa := extractNouns(di)
9: end for

10: APBO := APBO ∪ {(a, pbo) | pbo ∈ PBOa}
11: end for
{Annotate event classes with potential business objects}

12: for all e ∈ E do
13: Set PBOe := extractNouns(e)
14: EPBO := EPBO ∪ {(e, pbo) | pbo ∈ PBOe}
15: end for
{Check matches on business object level}

16: for all epbo ∈ EPBO do
17: for all apbo ∈ APBO do
18: if checkBusinessObjectMatch(pboa, pboe) then
19: EA := EA ∪ {(e, a)}
20: end if
21: end for
22: end for
23: return EA

Algorithm 1 details the general procedure. The algorithm takes an event
log, a process model and a process description. First, we derive the sets of po-
tential business objects for activities and events. The function extractNouns
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uses the Stanford POS tagger to return all potential business objects as ex-
plained above. In order to check for potential correspondences, we also derive
the objects from the event classes in the same manner, yielding the relation
EPBO ⊆ E×PBO (line 12–15). Each tuple in APBO is compared to each
tuple in EPBO by comparing the business objects (line 16-22). As we aim
for a high recall, we do not only make simple string comparisons in order to
check the relatedness of two business objects. We employ natural language
processing techniques in order to maximize recall as we will explain in the
following.

As we evaluate our approach in a context using the German language, we
need to pay special attention to this language. Nonetheless, the basic tech-
niques are also available for many other languages. Looking at the German
language we face two potential challenges: word form variance and compound
words. German is a morphological complex language having a high variance
in word forms expressed by many cases and inflections (cf. [13]). Looking at
nouns, for example the word “Buch” (book) transforms to “Bücher” in the
plural form or to “des Buches” for the genitive case. Regarding compound
words, in German these are single words created by concatenating several
words to a new word, e.g. “Fach|gruppe” (professional group).

In order to address these two challenges, two techniques from the natural
language processing (NLP) area have been proven beneficial: stemming and
word decomposition [14]. Stemming refers to the reduction of derived word
forms to a common stem, e.g. “Grupp” for “Gruppe” and “Gruppen”. In
the implementation of our approach we use the stemming functionality of
the Apache Lucene project1. For the decomposition of compound words, we
use a language independent, lexicon-based approach developed by Abels and
Hahn [15]. It generates possible splittings of words and checks whether the
generated parts are covered in a lexicon. In our approach we use JWord-
Splitter, an open source implementation of this approach with an integrated
German lexicon2.

Algorithm 2 illustrates the procedure to check for a relation between two
business objects. First, we conduct a simple string match (line 2) and second,
we decompose the business objects into their smallest semantic components
and compare these with one another (line 5-14). The comparison of decom-

1See http://lucene.apache.org.
2See http://www.danielnaber.de/jwordsplitter/.
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Algorithm 2: Check for business object matches

1: checkBusinessObjectMatch(pbo1, pbo2)
2: if eventObject = textObject then
3: return true
4: else
5: Set wordParts1 := decompose(pbo1)
6: Set wordParts2 := decompose(pbo2)
7: for all wp1 ∈ wordParts1 do
8: for all wp2 ∈ wordParts2 do
9: if stem(wp1) = stem(wp2) then

10: return true
11: end if
12: end for
13: end for
14: end if
15: return false

posed word parts is done by comparing the word stems. In this way we are
able to relate words like “Fachgruppe” (professional group) and “Skillgrup-
pen” (skill groups).

The result of the described steps is an automatically provided list of po-
tential event-activity relations EA ⊆ E×A on type level that can be refined
by a domain expert. Refining in this case means that the expert has to iden-
tify and remove incorrect relations and add relations that are missing. As
we do not only aim at mapping events to activities, but also to the specific
life cycle transitions of the activities, the domain expert furthermore needs
to add the corresponding life cycle transition to the tuples in EA. The start,
complete and execute transitions can often be automatically detected during
the actual mapping of event instances to activity instances as we will explain
later. Hence, we do not require that these transitions are manually related
to the event-activity relations. We therefore introduce a placeholder transi-
tion τ ∈ LT that will be automatically replaced by either start, complete or
execute. This results in the relation ALE as defined in Definition 1.

Definition 1. (Event class to activity life cycle relation) The relation ALE ⊆
EA × LT relates event classes to the life cycle transitions of activities for
which they signal their execution. The set LT is extended by the life cycle
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transition τ , which acts as a place holder for the set of automatically deriv-
able life cycle transitions {start, complete, execute}. Thus, the set of life
cycle transitions is LT = LT ∪ {τ} \ {start, complete, execute}.

3.3. Building context-sensitive event-to-activity mappings

Based on the approach reported above, we find the event-activity rela-
tions. Yet, as formulated in challenge (3), there are often events representing
shared functionality used by multiple activities. Hence, the event-activity
relations can not be directly used for the abstraction as we have to dis-
ambiguate the event instances for which there are multiple relations of their
corresponding event class in ALE. This section describes the necessary steps
to get from the relations to a concrete event-to-activity mapping that can be
used to abstract the event log.

The challenge in this context is to identify the conditions that help to
decide when one event class matches one of alternative activities. To this
end, we consider the context of an event instance, either as defined over the
event or trace attributes or over the surrounding event instances. First, we
take attributes into account. For instance, the role that is related to an event
might be important to distinguish different activities in the process model.
In Figure 1, the selection of a configuration item (CI) belongs to the activity
“Initial diagnosis” when executed by a first level agent while the same event
class refers to the activity “Investigation and diagnosis” when executed by
a second level supporter. Second, the relation of an event instance to an
activity might also depend on the context in terms of preceding or succeeding
event instances. While the selection of a CI normally happens during the
activities “Initial diagnosis” or “Investigation and diagnosis”, depending on
the executing role, it can also be performed as a quality improvement step
during the closure of the incident ticket. As shown in Figure 1, this is always
the case if the solution has been documented before. Also, an event might be
interpreted differently if it occurs for the first time or if it has been preceded
by earlier executions. In the example in Figure 1, the working group is always
set in the beginning where it refers to the logging of the incident while every
other change of the working group refers to the functional escalation.

In order to use such domain knowledge, we have to encode it in a formal
way. Definitions 2 and 3 introduce the formalization of attribute conditions
and event context conditions.
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Definition 2. (Attribute condition) Let AT = ATE ∪ ATE be the set that
unites all event and trace attributes. Let O be the set of comparison operators
and let V be the set of values that an attribute attr ∈ AT should be tested
against. Then, an attribute condition is a tuple ac ∈ AT × O × V . AC is
the set of all attribute conditions. An attribute condition ac is evaluated for
an event instance by the function EVac(ac, ê) = o(#attr(ê), v), where o ∈ O
is a boolean function that compares two given input values, and v ∈ V is the
value given by the attribute condition.

Definition 3. (Event context condition) The event context EC for an event
instance ê is defined as EC(ê) = (tbefore, tafter) such that ∃t ∈ T : t =
tbefore‖ê‖tafter where tbefore and tafter are sub-traces of trace t. The sub-traces
can be accessed by the function EC(ê, r)→ T , where r ∈ {before, after} refers
to the part of an event context EC. EC(ê, before) returns the sub-trace tbefore
and EC(ê, after) returns the sub-trace tafter.

A condition over a trace is defined by a function f(t) → {true, false},
which evaluates a linear temporal logic (LTL) formula [16]. The set of all
LTL formula functions is referred to as F .

An event context condition is a tuple ecc ∈ F × {before, after}. ECC
is the set of all event context conditions. An event context condition ecc is
evaluated for an event instance by the function EVecc(ecc, ê) = f(EC(ê, r)).

When shared functionalities are discovered in the first matching phase,
the user needs to define the necessary attribute and event context conditions
in order to dissolve the assignment problem. Assume that all event instances
have the attribute role and that the set of available comparison operatorsO =
{equals , contains , startswith}. A context conditions to identify when an event
instance of the event class “CI” belongs to the activity “Initial diagnosis”
could be written as (’role’, ’equals’, ’first level’). To identify the cases when
an instance of the event class “CI” belongs to the activity “Incident closure”
we can create the event context condition (♦(’Document solution’), ’before’).
The ♦(’Document solution’) is an LTL formula that stands for “eventually
activity ’Document solution’ occurs”. LTL has been chosen as it gives good
flexibility for defining even more advanced conditions. In order to check the
LTL statements we use the functionality of the ProM LTL Checker plug-in
as introduced by Aalst et al. [17].

It is also possible that multiple conditions need to match in order to map
an event instance to an activity class. Thus, we define a context condition
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c as the conjunction of attribute conditions and event context conditions as
presented in definition 4.

Definition 4. (Context condition) A context condition c is a tuple c =
(AC ′, ECC ′) with AC ′ ⊆ AC and ECC ′ ⊆ ECC. The set of all context
conditions is denoted as C. The evaluation function checks whether all de-
fined conditions hold for an event instance. It is defined as

EV (c, ê) =

true
∀ac ∈ AC’ : EVac(ac, ê) = true ∧
∀ecc ∈ ECC’ : EVecc(ecc, ê) = true

false otherwise

While the conditions introduced in Def. 4 allow to mix attribute and
context conditions, practical settings often require to check whether a cer-
tain event has happened before and fulfills a certain attribute condition. For
example if the mapping of an event depends on the current priority of the
case and the priority can dynamically change. We therefore introduce global
event attributes that are added to each event instance. The values of these
attributes are updated by the attribute values of occurrences of event in-
stances of specific classes that are defined in the global attribute relation
GATR ⊆ E × ATE . Assuming that the event instances of the class “Prior-
ity” have an attribute called “value” that stores the priority that has been
set, the tuple for this example would be specified as (“Priority”, “value”).

Having defined the context conditions, we introduce an event class to
activity mapping EAM based on event classes and conditions that have to
be fulfilled for a corresponding event instance in order to be mapped to a
specific life cycle transition of an activity.

Definition 5. (Event class to activity mapping) An event to activity map-
ping is a relation EAM ⊆ ALE × C, which relates an event class to a life
cycle transition of an activity type based on a set of attribute conditions and
a set of event context conditions.

Definition 5 gives the mapping between activities from a process model
and event classes found in an event log. For our examples the event class to
activity mapping could be defined by a domain expert as
{(’CI’, ’Incident closure’, τ , ({}, {(♦(’Document solution’), ’before’)})),
(’CI’, ’Initial diagnosis’, τ , ({(’role’, ’equals’, ’second level’)},
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{(!♦(’Document solution’), ’before’)})),
(’CI’, ’Investigation & diagnosis’, τ , ({(’role’, ’equals’, ’second level’)},
{(!♦(’Document solution’), ’before’)}))}.

A special case of an EAM is when an event class potentially belongs to
every activity in the process model. One example for this are protocol events,
which signal that somebody documented what they did. Another example
we encountered in practice are status events, which show if somebody is
currently working on a case or if it is on hold. These events show the life
cycle of the individual activities and can for instance be used to calculate idle
times within the execution of an activity. Such events typically belong to the
activity that is currently executed or about to start. In order to achieve
such a dynamic mapping, we introduce a special activity place holder that
can be used in the EAM mapping definition. This place holder is called
CLOSEST ACTIVITY and will be processed after all other mappings. It
signals the mapping algorithm to assign an event instance to the activity to
which its closest neighbor is assigned to. The distance for the determination
of the closest event is measured over the time stamps of the event instances.

Another special case for abstracting events to activities, is the omitting of
insignificant events. While some of the existing abstraction approaches, like
[5], implement this type of abstraction by automatically hiding events from
infrequent event classes, we observed that it is often better to let a domain
expert control what to omit and what to keep. Sometimes, events that occur
very often are not interesting from a business point of view and infrequent
events can be highly important once they occur. In some cases one might
also not want to omit all events belonging to a specific event class, but only
those event instances fulfilling certain conditions. An example for this are
message events where only messages with a certain priority or type should be
kept. We therefore introduce another activity place holder for EAM called
REMOVE EVENT. In the same fashion, it can be helpful to abstract from
complete traces that contain certain behavior identified by event instances in
a certain context. The activity place holder for removing complete traces is
called REMOVE TRACE. For example one might be interested in abstract-
ing away from cases that have been reported by monitoring systems and
can be identified by the fact that the “Details” event occurs before the first
“Group” event as in case 6 in Fig. 1.

Having established the relations between event classes and activities on the
type level, we can turn to the instance level. Therefore, we specify a func-
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tion ÊAM that maps event instances to the corresponding activity classes
for which all defined conditions hold. Note that normally, this set consists
of only one activity. Only in the case where one event instance signals the
execution of multiple activities, the size of the set will be larger than one.

Definition 6. (Event instance to activity mapping) The relation ÊAM ⊆
Ê × A × LT is the mapping of event instances to life cycle transitions of
activity types, for which (ê, a, lt) ∈ ÊAM =⇒ ∃(e, a, lt, c) ∈ EAM : e =
#class(ê), Ev(c, ê) = true.

Definition 6 covers 1:1, 1:n and n:m relations on the instance level. A 1:1
mapping on instance level only occurs for events and activities that are on
the same abstraction level. Looking at different abstraction levels, it is most
likely that an activity instance on a higher level subsumes multiple event
instances representing different sub-activities. Thus, in most cases we face a
1:n mapping on instance level and event instances will be clustered to activity
instances. Nevertheless, it can be the case that one event instance reflects
multiple activities. For example, when an incident needs to be resolved
with a change in the IT infrastructure, one has to document the necessary
steps as well as a back-out plan for the case something goes wrong during
implementation. When the supporting IT system only reserves one field for
these two texts, it will also only save one event for the change of this field.
If the process model distinguishes the writing of the plan and the writing
of the back-out plan in two activities, we have one event representing two
activities. By defining conditions over the content of the protocol attached
to the event instance as attribute, one can find out whether both activities
have been executed, e.g. by searching for keywords like “back-out”.

Using the defined mappings in EAM , we iterate over the traces in a log
and assign each event instance the name of its corresponding activity and
the defined life cycle transition. In case multiple mappings match for an
event instance ê – as in the protocol example above – we duplicate ê as many
times as needed. In order to keep the relation to the original event class,
we introduce a new event attribute #source(ê) that contains the original
event class. We refer to the attribute #source(ê) as source event class. The
result of this phase is a preprocessed event log where all event instances are
assigned to their corresponding activity.
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3.4. Clustering events to activity instances

Having mapped all event instances to the life cycle transitions of their
corresponding activity type, the next step is to define how to assign event
instances belonging to the same activity type to activity instances. As there
might be multiple activity instances for one activity in a process instance,
i.e. in a loop, challenge (4) raises the question which criteria are used to map
an event instance ê to an activity instance âi. In this case, we need to define
the border between events belonging to two or more instances of the same
activity. We therefore introduce the notion of instance border conditions.

Definition 7. (Instance border condition) An instance border condition de-
fines whether an event instances belongs to the set of event instances mapped
to an activity instance âi or if it belongs to another activity instance âi+1. It

is defined as a boolean function bc : P
(
Ê
)
× Ê → {true, false}. The set

of all border conditions is BC. Each tuple in EAM is extended by a border
condition function such that EAM ′ ⊆ EAM ∪BC.

Instance border definitions relate to two levels: intra and inter activity
structure. Concerning the intra activity structure, we have to decide whether
there are loops in activities on the sub-activity level or not. While the as-
sumed process model might not contain loops, this does not imply that there
are no loops on the inter activity level in the execution. These have to be
lifted to activity level if we assume there should not be any loops on sub-
activity level. In line with this assumption, an activity instance border is
marked by the repetition of source events from the same event class, i.e. the
repetition of a source event class signals that a new activity instance has
started. Thus, for example two protocol events could indicate rework and
therefore two instances of the corresponding activity.

Using recurring source event classes as instance border definition works
only if there are no loops in the assumed sub-activity model. If there are loops
on the intra and inter activity level, multiple event instances from the same
event class might belong to one activity instance. A typical example for this
is a loop over the order items in an order list where different activities like
“Choose supplier” have to be performed for each order item and are modeled
on activity level. The activity “Choose supplier” might contain different sub-
activities that have to be executed for each supplier, like e.g. “Check prices”.
Thus, we have a loop on activity level and a loop on sub-activity level. In
order to find the correct instance borders, we need to extend the instance
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border definition to also use different business objects, e.g. the order line, as
instance border markings. Thus, instance borders can be defined over any
attributes attached to an event.

If necessary attributes are not available or if it is not possible to make
statements about the assumed sub-activity model, we need to use heuristics
in order to be able to identify different activity instances. Similar to the
approaches of Li et al. [7] and Günther et al. [8, 6], a first heuristic for
an instance border can be defined based on a threshold for the maximum
distance between two events that belong to one activity instance. While
previous works only focus on a very narrow and short distance based on the
number of events in between two events, we extend this definition using also
the time perspective, i.e. defining how long the time frame between two
event instances of the same activity instance can be. For example one might
limit the time distance between two events of the same activity instance,
e.g. two edit events for a protocol belong to different activity instances if
there are more than 24 hours between them. Using a maximal number of
events that are allowed to occur between two events of the same activity
instance still makes sense as a heuristic from our practical experience. Yet,
it needs to be specified by the user and should also allow larger distances
when there are many events assigned to single activities and concurrency
cannot be precluded. In a similar manner, another heuristic can be build
on the assumption of a maximum number of event instances that belong to
one activity instance. Here, a domain expert has to estimate how many sub-
activities are approximately executed per activity instance. This is simple, if
we can exclude loops on sub-activity level, but might be difficult otherwise. In
the former case, one would limit the the maximum number of event instances
to the number of assigned event classes for an activity.

The defined instance border conditions are used to establish the rela-
tion ÊÂM , which maps event instances to life cycle transitions of activity
instances as specified in Definition 8.

Definition 8. (Event instance to activity instance mapping) ÊÂM ⊆ Ê ×
Â×LT is the relation that assigns an event instance to the life cycle transi-
tion of its corresponding activity instance â. The function λ : Â→ P(Ê) re-
turns all event instance related to an activity instance in ÊÂM . It holds that
(ê, â, lt) ∈ ÊÂM ⇒ ∃ (ê, a, lt) ∈ ÊAM : (a = γ (â)) ∧ bc (ê, λ (â) \ {ê}) = false
∧ ∃ (e, a, lt, bc) ∈ EAM : (e = #class(ê) , a = γ (â)). An event instance ê that
is mapped to an activity instance â is referred to as source event of â.
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Based on these pieces of information, we can approach the clustering task.
In order to transform a given event log to a higher abstraction level, we iterate
over the traces of the preprocessed event log where all event instances are
mapped to their corresponding activity using the relation EAM as explained
in Section 3.3. The events assigned to the same activity class need to be
clustered to activity instances adhering the instance border definitions as
defined by EAM ′. We use a tree-based incremental clustering algorithm
known from classical data mining [18]. For every activity class the clustering
forms a tree with the event instances as leaves and the activity instances on
the next higher level. The clustering starts with an empty tree and event
instances are incrementally inserted. Updating the tree is done by finding
the right place to put the new leaf, potentially triggering a restructuring if an
instance border is found. The best host for a new event is the event with the
minimal distance that can be expressed by a distance function using e.g. the
time stamps of the events or other attributes. Having found the optimal host,
we have to check the border conditions for all events belonging to the activity
instance. If no instance border is found, the event is added to the activity
instance cluster of the determined host event. Once an instance border is
found, we need to determine where the new activity instance starts. This is
done using a goodness function based on the summation of distances within
a cluster. The goal is to find the optimal clustering with the minimal sum
of distances between events belonging to the same activity instance cluster.
For further explanations of the instance clustering algorithm, we refer the
reader to our previous work [2].

Having all event instances assigned to their corresponding activity in-
stances, the next step is to identify the life cycle transitions of the activity
instances that are mapped to the τ transition. Therefore, the first and last
event instance of a cluster are assigned the start and complete transition, re-
spectively. All other event instances mapped to the τ transition are assigned
to the execute transition. As the execute transition does not give any addi-
tional information for analysis on activity level, we remove all event instances
assigned to this transition from the abstracted log. While we abstract from
event instances assigned to the transition execute, these event instances are
still of interest when it comes to the analysis of individual activities, i.e. the
sub-activity level. The clustering algorithm therefore returns two results.
The first result is the abstracted event log, which only contains event in-
stances assigned to transitions other than execute. The second result is a
new event log for each individual activity, which contains the corresponding
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Complete
month

Extract
Raw

Extract
Mapped

Extract
Abstracted

Event classes 39 33 25 25
Cases 16,922 401 401 401
Variants 16,655 309 125 103
Event instances 545,996 11,875 11,375 9,364

Table 1: Event log statistics for the incident process

activity instance clusters as traces. These logs can be used to analyze the
individual activities, e.g. by mining the sub-activity model for a specific ac-
tivity. Using special mining plugins as e.g. introduced in [19] one can utilize
these activity logs to interactively zoom into the different abstraction levels.

4. Evaluation

In order to validate how well our approach works with real life data, we
conducted two case studies using data from the incident and change man-
agement process of a large German IT outsourcing project. Within the case
studies we evaluated all four phases of our approach with respect to the four
challenges described in Section 2.1. Based on these challenges we formulate
evaluation hypotheses. In line with the first challenge (1), we posit that (a)
the usage of external knowledge improves the retrieval of event-activity rela-
tions on type level. Referring to the second challenge (2), we assert that (b)
our matching approach is able to identify most of the event-activity relations
automatically. Moreover, we claim (c) that events of shared functionalities
can be successfully disambiguated as asked by challenge (3). Tackling chal-
lenge (4), we propose that (d) loops and concurrency can be handled well by
the clustering mechanism of our approach. Apart from these four hypotheses
that arise from the main challenges of event log abstraction, another very im-
portant claim that has to be evaluated is that (e) accuracy of the abstraction
result significantly impacts process analysis tasks such as conformance and
performance analysis. This point is especially important, as it asks for the
actual practical impact of a correct abstraction of an event log.

Before we start with the evaluation of the five hypotheses, we provide
some background information for the two processes that have been used.
Both processes are well documented with process models and work instruc-
tions and both processes are supported by the ticketing software IBM Tivoli
Service Desk. The process model for the incident management process has
41 activities and the corresponding event log contains about 17,000 cases,
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Complete
month

Extract
Raw

Extract
Mapped

Extract
Abstracted

Event classes 55 42 37 37
Cases 2,005 17 17 17
Variants 1,947 15 16 13
Event instances 125,337 1,151 859 748

Table 2: Event log statistics for the change process

39 event classes and a total of about 550,000 event instances for a selected
month. For the change process, the model contains 63 activities and the
event log about 2,000 cases, 55 event classes and about 125,000 event in-
stances. For cases our approach has been applied and manually checked by
the responsible process managers. This resulted in an abstraction gold stan-
dard for a part of the logs. Table 1 and 2 show the size of the extracted
part on which the gold standard abstractions have been built. Furthermore,
it also shows the numbers for the two main phases in the transformation of
the event log. Looking at these numbers, it can be seen how complexity is
reduced during the abstraction phases. Event classes are eliminated, event
instances clustered and thereby the overall variance is significantly reduced.

For the purpose of evaluation, our approach has been implemented as
a set of two plugins in the process mining workbench ProM3. In order to
process the events stemming from the ticketing system, we extracted them
from the underlying database into a CSV file4 using standard SQL. Each line
in the CSV file represents one event instance with all its attributes. From
the CSV file we converted the event data to the XES event log format in
order to import it into the ProM framework (See [20]). This conversion can
be easily done with existing tools as e.g. Disco5.

The extracted event log is the starting point for our abstraction and the
following sections will guide through the phases of our approach and evaluate
the formulated hypotheses in the light of the conducted case studies.

4.1. Evaluation of automated event-to-activity matching

In the first phase, we had to link the process model activities with the
corresponding work instructions for both processes. The work instructions
have been provided in word format in tabular form as it is illustrated in

3See http://processmining.org for more information on ProM.
4Comma separated values
5See http://www.fluxicon.com/disco/
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Available
activity
descriptions

Model
activities

Annotated
activities

Used
descriptions

Incident 238 41 31 64
Change 89 63 60 60

Table 3: Process model annotations with activity descriptions

Fig. 4. Therefore, the tables have been converted to CSV files and imported
into the ProM framework using a dedicated import plug-in. Our main ProM
plug-in automatically matches the activities in the process model with the
work instructions over the given IDs that are also exemplified in Fig. 4. The
plug-in uses the part-of-speech tagging facilities provided by the Stanford
POS tagger to automatically extract the potential business objects from the
activity descriptions. An overview of the number of annotated activities and
used activity descriptions is given in Table 3. Although the process model for
the incident process is smaller, a larger amount of textual description with a
total of 238 activity descriptions is available. This is due to the documenta-
tion of sub-activities that are not part of the process model. The matching
algorithm annotated 31 process model activities with 64 descriptions for the
incident process. Yet, not all process model activities could be annotated
due to missing descriptions. This already provides valuable information for
the process manager. For the change process a smaller set of documenting
descriptions is available containing at most one description per activity.

Ini$al'diagnosis'
(INC.3)'

…'

Incident'closure'
(INC.6)'

Model 
reference 

Task Description 

… … … 

7.  

INC.3.1 

Select 
configuration 
item 

Choose the affected 
configuration item (CI) 
from the CMDB 

8. 

INC.3.2 

Determine 
affected person 

Determine the affected 
person . If multiple 
persons are affected by 
the incident… 

… … … 

12. 

INC.6.3 

Assess and 
improve 
documentation 

Check whether the 
correct configuration 
item (CI) has been 
chosen and select the 
correct CI if necessary… 

…'

Case Event Time 
INC12345 … … 
INC12345 Select CI  ... 
INC12345 Affected person  ... 
INC12345 … … 
INC12345 Select CI ... 
INC12345 ... ... 

Figure 4: Link between process model activities, work instructions and events

Having annotated the process model activities with the potential business
object stemming from the work instructions, we turn to phase two of our ap-
proach. In this phase, the ProM plug-in also extracts the potential business
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objects from the event classes and automatically matches events and activ-
ities on type level as described in section 3.2. In order to assess hypothesis
(a), Fig. 5 shows the number of correctly identified event-activity relations
distinguishing whether the match has been found over the activity name or
using the description. For both processes, it can be seen that the exter-
nal knowledge accounts for a significantly higher share of correctly identified
event-activity relations. Looking at hypothesis (b), we measure the precision
(number of correctly matched event-activity pairs divided by all matched
pairs) and the recall (number of correctly matched event-activity pairs di-
vided by all manually matched event-activity pairs) [21]. Figure 6 presents
the overall results for these two measures. It can be seen that a high recall of
70% and 86% is achieved, while precision is in a lower range. For the incident
process, the precision of 28.62 % is mainly caused by matches that are based
on the additional activity descriptions. Here, we achieve a precision of 26.48
% while the precision of matches on the activity names is high with 64.29
%. The precision for the change process is with 42.58 % substantially higher
than the precision for the incident process. Here, the difference between the
precision for matches on activity names and matches on the annotated de-
scription texts is small. However, description matches account for most of
the overall recall, which yields with 70 % and 86.09 % a good result from a
practical perspective. Hence, our claim (b) to be able to derive most of the
event-activity relations is supported.
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Figure 6: Recall and precision for automated matching

We also investigated why certain event-activity relations were not found.
It turned out that the main reason is that the sub-activities represented by
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the events where not documented in the work instructions. Some of these
are simply missed out and need to be updated in the description. Here, the
approach helped in identifying gaps in the documentation. The other fraction
of the undocumented relations are steps that are automatically executed by
the system and are therefore missing in the documentation. Future research
might investigate in how far such relations can be retrieved from existing
software documentations. Beside the undocumented relations, there are two
other minor reasons why relations could not be found. First, some relations
can only be found by interpreting event attributes. For example there is
an event class “Kommunikationsprotokoll” (communication protocol), which
contains all events for sent e-mail messages. Looking at the subjects of
these messages, which are most often standardized, one could derive further
relations. We also encountered one case where the relation could have been
established using a verb instead of a business object. However, we did not
include verbs in our approach as their inclusion leads to a drastic increase in
false positives. Finally, we encountered some mappings that could have been
found using synonym relations. However, these synonyms are of a domain-
specific nature and not covered in general-purpose tools like WordNet.

4.2. Evaluation of disambiguation of shared functionalities

In order to evaluate (c) the disambiguation of shared functionalities, the
event-activity relations have been manually finalized (end of second phase)
and the mapping has been provided with context-sensitive mapping con-
ditions by the domain experts (third phase). During the second phase, 22
shared functionalities, i.e. event classes that belong to several different activ-
ities, have been identified for the incident management process. The change
process contained 40 event classes that reflect shared functionalities. Some
event classes belong to more than ten different activities. One example for
such a shared functionality used by many activities is the communication
protocol. The correspondence for these e-mails can be distinguished using
attribute conditions over their headers. For the incident management pro-
cess 62 attribute conditions and 11 context conditions have been defined. As
the change process contains more shared functionalities, the number of con-
straints is also higher. The domain expert defined 101 attribute conditions
and 43 context conditions.

Figure 10 shows a screenshot of an excerpt of a mapping in our ProM plug-
in. The plug-in allows for adding, editing and removing mapping definitions
containing attribute and context conditions. The mappings can be stored
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into and loaded from XML files. An example of the XML representation is
shown in Fig. 11. Once all conditions have been specified, the plug-in takes
the event log and the mapping definitions and produces a new event log where
all event instances are mapped to their corresponding activity types. This
intermediate event log has been manually checked by the domain experts
and did not reveal any errors at this stage. Thus, our hypotheses (c), which
states that shared functionalities can be successfully handled, holds true.

Figure 7: Screenshot of mapping in ProM

INC_EventMapping-V12.xml

<?xml version="1.0" encoding="UTF-8"?>
<EventMappings>

<GlobalAttribute>
<eventName>Change of group</eventName>
<attributeName>VALUE</attributeName>
<globalAttributeName>Group</globalAttributeName>

</GlobalAttribute>
<InstanceBorder>

<className>SourceEventLoopDifferentResource</className>
</InstanceBorder>

<EventMapping id="remove_different">
<activity>

<name>###REMOVE_TASK###</name>
</activity>
<eventName>Start of monitoring</eventName>
<eventName>End of monitoring</eventName>

</EventMapping>
<EventMapping id="createIN_1">

<activity>
<name>Classify incident (INC.1.4)</name>

</activity>
<eventName>Open INC</eventName>

</EventMapping>

<EventMapping id="classstruct_2">
<activity>

<name>Classify incident (INC.1.4)</name>
</activity>
<eventName>Classification</eventName>
<metaDataCondition>

<name>Group</name>
<value>UHD</value>
<type>contains</type>

</metaDataCondition>
<description>Current group is 1st level</description>

</EventMapping>

<EventMapping id="classstruct_4">
<activity>

<name>Check classification (INC.6.13)</name>
</activity>
<eventName>Classification</eventName>
<eventCondition location="AfterEvent"><![CDATA[

!((<>(activity == "Change of Group") \/ <>(source == "Open Ticket")));
]]></eventCondition>
<description>Ticket is not routed afterwards</description>

</EventMapping>

<EventMapping>
<activity><name>Check content (INC.1.3.2)</name></activity>
<eventName>Details</eventName>
<InstanceBorder>

<className>SourceEventLoopDifferentResource</className>
</InstanceBorder>
<metaDataCondition>

<name>Group</name>
<value>UHD</value>
<type>contains</type>

</metaDataCondition>
<eventCondition location="BeforeEvent"><![CDATA[

<>(activity == "Change of Group");
]]></eventCondition>

</EventMapping>

<EventMapping id="classstruct_4">
<activity>

<name>###CLOSEST_ACTIVITY###</name>
<transaction>suspend</transaction>
<InstanceBorder>

<className>NoInstanceBorder</className>
</InstanceBorder>

</activity>
<eventName>Status</eventName>
<metaDataCondition>

<name>VALUE</name>
<value>WAITINTERNALLY</value>

Page 1

Figure 8: Excerpt of the mapping defini-
tions in XML

4.3. Evaluation of activity instance clustering

Having the successfully evaluated result of phase three, we turn to the
final phase that automatically clusters the assigned event instances to ac-
tivity instances. For the evaluation of hypothesis (d), the handling of loops
and concurrency, we compare the abstraction results for different activity in-
stance border definitions. Therefore, the domain experts first had to specify
the correct instance borders and afterwards, assess the resulting event log
and check whether all instances have been mapped correctly. The result of
this manual checking has two purposes. First, it shows how well the cluster-
ing approach works, and second, it is used to benchmark different instance
borders used to mimic the handling of activity instances by other approaches.

Looking at the definition of the instance borders, we have to identify
potential loops on inter and intra activity level. Both processes are supported
by a form based web interface that allows for saving most of the fields edited
by the user at any time. That means the user can enter text in a field, click
the save button, enter more text, press save again, and so forth. For each
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saving, events are created. This means that for most event classes a sequence
of events of the same event class is not truly a repetition on activity level.
However, in case two different users edit a field, this must be considered as
repetition establishing a new activity instance border. As this is the case for
most of the event classes in the two processes, this instance border is defined
on a global level. Nevertheless, there are event classes where event repetition
by different resources does not signal an activity repetition. Examples for this
are status or progress events. Within one activity instance the status of the
process instance might be set several times to waiting and back to working.
Here, loops on the sub-activity level should not be lifted to activity level
and thus, we declare that for these event classes no activity instance border
exists. This means that the global activity instance border is overwritten on
event class level in each tuple in EAM ′ that defines a mapping for such an
event class.

Figure 9 shows the correct assignment of events to activity instances
according to different definitions of activity instance borders. The very left
bars show the results for the instance borders defined by the domain experts
that were manually checked and found to be overall correct. The next best
alternative to these manually defined instance borders is to define no activity
instance borders at all, which means that event instances assigned to the
same activity type are always clustered into one activity instance. This
configuration yields around 90 % correctly assigned event instances for both
cases. The explanation for this is on the one hand that the activities that are
seen to be non-repeatable account for a large share of the event instances. On
the other hand, it can be seen that there is not much repetition on activity
level. Figure 9 also shows the results for the heuristic instance border that
defines a maximal distance between two event instances belonging to the
same activity instance. We have chosen the two configurations of a maximal
distance of 1 and 2 as these are used by other abstraction approaches like
in [6] and [7]. A distance of 1 means that there must not be any event
of another activity in between two event instances belonging to the same
activity instance, i.e. no concurrency. This configuration yields a fraction of
around 3/4 of correct event instance for the incident process, but only half
of the event instances could be correctly assigned for the event log of the
change process. The distance of 2 allows for one event instance in between
and yields slightly better results. These results show that the handling of
concurrency and loops needs attention and it shows that our approach is able
to handle both, as claimed in hypothesis (d).
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Figure 9: Fraction of correctly clustered event instances for different instance borders

4.4. Evaluation of impact on process analysis

To assess (e) the impact of different instance border definitions, we inves-
tigated their influence on conformance and performance analysis. First, the
conformance to the designed process model is measured using the constraint-
relative behavioral profile conformance metric as defined in [22]. We analyzed
the conformance of the abstracted event log to the corresponding process
model for the same definitions of activity instance borders as in the previous
section and present the results in Figure 10. While the results for the incident
process show only little variance, the conformance metric gives a maximal
difference of around 8 % points between the lowest and highest result for
the change process. Thus, a considerable influence of the correct activity
instance clustering on conformance checking can be observed.

Looking at performance analysis, the duration for each activity instance
has been measured as the difference between its start and end event. Figure
11 shows the difference of the average activity instance duration of the ab-
stractions with the selected instance border definitions with respect to the
gold standard. Here, the impact is even more striking with a maximum of
almost 2 days of difference to the gold standard in the average duration.
Moreover, a clear difference between the two processes can be seen. Again,
differences are less high in the incident process. More interesting is that it
can be clearly seen that for performance analysis there is a different ranking
in the goodness of the different instance border definitions when compar-
ing the results of the two processes. For the incident process the maximum
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Figure 10: Conformance results for different
instance border definitions
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Figure 11: Differences in activity perfor-
mance results for different instance borders
in comparison to the gold standard

distance between events yields the best result. In the performance analysis
of the change activities, no instance border turns out to be closer to the
gold standard results in average. This shows how sensible these analyses are
towards the right clustering.

5. Related Work

Research related to this paper can be generally subdivided into approaches
working on event logs and approaches working on process models. The work
that focuses on event logs can be mainly subdivided into event log abstraction
and event correlation. The related techniques that work on process models
fall into one of three categories: process model abstraction, process model
matching and process model similarity. In both main categories – work on
event logs and on process models – there are a few hybrid approaches that
take both an event log and a process model as input. Yet, they always focus
on either log or model when it comes to the objectives and the output of
those techniques. Table A.4 in the appendix provides an in-depth classifica-
tion of the most relevant related work. Besides the input of event logs and
process models, we assessed two criteria: The usage of external knowledge
and the possible types of relations on class level.

Relating to challenge (1), we examined whether external knowledge is
used and if this is the case, we specify what kind of knowledge is used. Look-
ing at the event log focussed techniques, almost no approach makes use of
external knowledge. Only [23, 9] use sources code as external knowledge
that is also manipulated by the technique in order to generate events that
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can be correlated to process instances and used for process mining. Yet,
these techniques do not address the other challenges. Process model tech-
niques are more advanced when it comes to the usage of external knowledge.
Especially in recent years, more sophisticated techniques that use linguistic
information have evolved [24, 25]. Other model-based techniques – as e.g.
in [26] – leverage different semantic information as e.g. roles, resources or
data objects, which can be seen as external knowledge in this area. The
approach presented in this paper tries to leverage different types of external
knowledge. While we use linguistic information in the matching of events
and activities, we furthermore make use of process descriptions to extend
the available information about activities in the process model.

Turning to challenge (2), the possible relations between matched objects
on type level, we found that most works in the area of event log abstraction
support 1:n relations. Günther et al. introduce in [8] an approach that clus-
ters events to activities using a distance function based on time or sequence
position. Due to performance issues with this approach, a new means of ab-
straction on the level of event classes is introduced in [6]. These event classes
are clustered globally based on co-occurrence of related terms, yielding bet-
ter performance but lower accuracy. Still, both approaches are only able the
relate a particular event class to one specific activity. Thus, they partially
help to address challenge (2), but are not able to identify shared function-
alities and therefore do not address challenge (3). The approach introduced
by Li et al. [7] can handle n:m relations by defining context-dependent pat-
terns. Yet, context in that work is limited to event classes of surrounding
event instances, which only partly addresses challenge (3) as not all shared
functionalities can be distinguished. Moreover, two events belonging to one
activity instance cannot be separated by more than one event of another
activity instance in between. This leads to problems when dealing with con-
currency as formulated in challenge (4). Another approach that uses pattern
recognition and machine learning techniques for abstraction is introduced in
[27]. The authors aim at recognizing activities in streams of sensor data and
are able to address challenge (2) and potentially challenge (3) with 60-80 %
accuracy. Unfortunately, this approach does not allow to refine mappings to
obtain full accuracy and also does not tackle challenge (4).

A different means of abstracting event logs is to simply remove insignif-
icant behavior. This requires that a relation between events and activities
has already been established. Together with the fuzzy miner, an approach is
defined to abstract a mined process model by removing and clustering less
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frequent behavior [5]. While the clusters are not directly related to activities,
they can be interpreted as such. Nevertheless, the approach only allows for
1:n relations between event classes and clusters. The techniques used in event
correlation by definition only aim at 1:1 relations, as the main objective of
event correlation is to assign each event instance to one process instance.

In the works on process model abstraction we also find only 1:n relations
between the matched objects. Here, these objects are activities only. Model
similarity tries to make 1:1 relations between the sets of activities of two
different process models. In the area of process model matching there are
several works that establish n:m relations [28, 29, 30]. The work on ICoP
defines a generic framework for process model matching [29]. This framework
is extended with semantic concepts and probabilistic optimization in [24],
adapting general concepts from ontology matching [31]. The implications of
different abstraction levels for finding correspondences is covered in [25, 30,
32]. However, all these works focus on finding matches between two process
models, not between events and activities.

The approach reported in [33] clusters process instances with similar be-
havior in order to abstract behavior that is different between these clusters.
While this is an interesting approach for exploratory analysis, it is not able
to abstract events that always occur together.

Furthermore, there are different approaches that apply behaviour abstrac-
tion in process discovery and trace alignment [34, 35, 36]. The technique
proposed in this paper provides preprocessing for these approaches.

6. Discussion

In this section we emphasize implications for research and for practice
and shed light on limitations of our work.

The research presented in this paper has several implications for research
and practice. The aggregation of events in process mining has attracted some
research [8, 6, 5]; however, this problem has been hardly approached from
a perspective of descriptive semantics. It is the contribution of this paper
to leverage insights from matching for specific problems to the processing of
event logs. Our work also adds an important perspective to the discussion of
how quantitative results from conformance checking have to be interpreted.
It has been emphasized in prior research that different definitions of confor-
mance measurement yields significantly different values for the same process
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and log [37]. The fact that conformance measurement is also strongly influ-
enced by the way how events are mapped and clustered to activity instances
has received less attention so far. Our evaluation shows that different strate-
gies of clustering events can yield strikingly different results (85% versus 77%
for the change process). This finding emphasizes the importance of providing
accurate techniques for matching events and activities.

Moreover, a correct abstraction will also benefit performance analysis on
activity level, as the correct clustering of event instances is important to
identify start and end of an activity to calculate the duration. Last but not
least, process discovery also profits from a correctly abstracted event log.
First, mined process models can be better understand by domain experts if
they are on the abstraction level that is typically used in a company or de-
partment. Second, the introduced abstraction approach also allows for more
advanced process discovery with the possibility to zoom into the different
abstraction levels.

There are also limitations of our work. The accurate mapping of events to
activity instances requires manual work. Our approach provides systematic
support for automating a considerable share of this task. However, there is
still a significant share of manual work required in order to encode missing
domain knowledge into the required mapping definitions. This involves the
definition of context conditions, event-activity relations, and instance border
definitions. Still, these provide more accurate conformance and performance
results as compared to techniques that cluster events without taking external
knowledge into account as we have shown in our evaluation. Concerning the
amount of manual work there is still room for improvement in future works.
While the evaluation shows that our approach works good in detecting the
relations and gives a high recall for the found event-activity relations, the low
precision still leaves the user with a certain amount of wrong relations that
need to be sorted out. Here further research is needed to increase precision
and to develop methods to make the sorting out more efficient, e.g. by
guiding the user in some way.

Looking at the generalizability of our approach, we are confident that it
can be used in any application scenario. Although our evaluation only looks
at two specific cases, the approach itself is generic. Yet, the mappings are
always domain specific, which means that you cannot simply transfer the
mappings from one process to the next, but always need to create mappings
that fit to the process and supporting application at hand.
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7. Conclusion

In this paper we presented a novel approach to tackle the abstraction
of event logs. Our approach distinguishes from current works by explic-
itly targeting a specific abstraction level and by allowing for n:m relations
and concurrency. We therefore explicitly encode domain knowledge into the
mapping function in order to get the same level of abstraction as used in
the defined business activities. We do this in a semi-automated manner by
automatically matching events and activities using existing process descrip-
tions and by allowing for the specification of activity instance borders. Our
approach can be used as preprocessing of event logs to lift the results of pro-
cess mining techniques to a business level. We have successfully evaluated
our approach and could thereby show the influence of incorrect abstractions
on conformance and performance analysis results.

Future work should seek for possibilities to automatically propose con-
text conditions and should investigate possibilities to guide the user in the
steps that have to be performed manually, as e.g. the selection of correct
event-activity relations.

Appendix A. Overview of related work
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