

WSG-RR 9/96

IFNN Manual:

lntegrated Framework for Neural Network

and Conventional Modelling

Dimitri Volkov, Adrian Trap/etti and Manfred M. Fischer

Abteilung für Theoretische und Angewandte Wirtschafts- und Sozialgeographie

Institut für Wirtschafts- und Sozialgeographie

Wirtschaftsuniversität Wien

Vorstand: o.Univ.Prof. Dr. Manfred M. Fischer

A - 1090 Wien, Augasse 2-6, Tel. (0222) 313 36 - 4836

Redaktion: Mag. Petra Staufer

WSG-RR 9/96

IFNN Manual:

lntegrated Framework for Neural Network

and Conventional Modelling

Dimitri Vo/kov, Adrian Trapletti and Manfred M. Fischer

WSG-Research Report 9

June 1996

IFNN Manual
Integrated Framework for Neural Network and Conventional

Modelling

Dimitri Volkov
Adrian Trapletti

Manfred M. Fischer

Department of Economic and Social Geography
Vienna University of Economics and Business Administration

April 1996

This Manual is for IFNN Version 1.5
Email address for comments, suggestions and bug reports:

adrian@wigeol.wu-wien.ac.at

Contents

1 lntroduction

2 User's Guide
2.1 Main Menu
2.2 Input Module

2.2.1 Input Data File .

3

5

5
6
6

2.2.2 Transformations 9
2.2.3 Selection of Training, Validation and Testing Data Sets 13
2.2.4 Save Results 18

2.3 Statistical Measures Module .
2.3.1 Standard Statistics .
2.3.2 Graphical Statistics .
2.3.3 Frequency Chart ...

2.4 Neural Network Interface Module
2.4.1 U tilities
2.4.2 Interactive Mode
2.4.3 Batch Mode .

2.5 Analysis Module
2.6 U tilities . . .
2.7 Setup Module
2.8 Quit

3 System Programming Guide
3.1 Environment Variables ...
3.2 Content of the IFNN Distribution
3.3 IFNN Module Description .

3.4
3.5
3.6
3.7

3.3.1 Main programs
3.3.2 Service subroutines
3.3.3 Lower end service subroutines .
3.3.4 Headers
3.3.5 Temporary files
3.3.6 Other :files .
3.3.7 Directories ..
Precision Setting . . .
Interaction with External Programs
Building IFNN and System Requirements
Implementing Future Extensions

Appendix

1

18
19
21
21
23
24
27
28
29
32
33
35

36
36
36
36
36
37
38
38
38
38
39
39
39
39
40

42

A IFNN Messages 42
A.1 Error messages 42
A.2 Information messages 43
A.3 Messages from the X Windows shell 44
A.4 Fatal error messages ... 44

B Example of an Input Data File 45

c References 46

2

1 Introd uction

The program package IFNN (Integrated Framework for Neural Net­
work Modelling) is a special operational environment supporting the pro­
cess of neural network modelling, mainly in the application domain areas
of

• spatial interaction modelling (SI),

• time series analysis (TS) ,

• pattern recognition (PR) and

• traveling salesman problems (TV).

The program runs under UNIX and X-Windows with the OPEN LOOK
graphical user interface. lt combines a graphical input/output user interface
with an interface to NeuralWorks Professional II/PLUS (NeuralWare, 1993)
and provides robust and efficient algorithms supporting the process of neural
network modelling. The package was implemented in C and has been testecl
in research situations on a local area network of Sun SPARC workstations at
the Department of Economic and Social Geography of the Vienna University
of Economics and Business Administration.

The computing environment consists of the following major process mod­
ules:

Input Module: Reads, checks, preprocesses and formats the input clata.
obtained from the above domain areas and :finally separates the data
into training, validation and testing sets.

Statistical Measures Module: Calculates standard statistics and pro­
vides an interface to external graphical representation programs used
for graphical statistics.

Neural Network Interface Module: Provides an interface and some use­
ful tools to work with NeuralWorks Professional II/PLUS, which al­
lows the user to create, learn and test suitable neural network archi­
tectures in each domain of application.

Analysis Module: Provides tools for analyzing the simulation results from
the previous module with suitable statistical performance measures.

The IFNN modules reflect the basic process of developing a neural net­
work application which consists of the following major steps:

1. Data collection and preprocessing.

2. Separation of the data into traininig and testing sets or into train­
ing, validation and testing sets (for cross-validation purposes).

3

3. Choice of the model architecture.

4. Training and testing the chosen model.

5. Repeating steps 1 to 4 as required.

The structure of the manual is as follows. Section 2 is written as a
user's guide, containing some background information and information on
how to use IFNN in the context of an application. Section 3 serves to
provide information for the system programer, who likes to understand the
IFNN implementation from scratch. The appendix contains a list of all error
messages from IFNN, an example of an input data file and the reference list.

In this documentation typewriter style is used for user and IFNN input
and output, syntax specification, commands and file contents. Italic shape
is used for options to commands and for names (e.g. file, directory, widget
names). The Boldface series is used to emphasize text. Syntax specification
is given in EBNF (Extended Backus-Naur-Form).

4

2 User's Guide

2 .1 Main Menu

To start IFNN, type ifnn at the UNIX shell prompt, and press the Return
key. Then the mainmenu (see figure 1) is opened on the screen.

1 -- - ~ - - 1

1 1' lF'tllN: Mai n Menu - l ~ 1 _J

Fi les ") , Statlstks) . • NeuralNets ~) • Analysis) '

lntegrated Framework for
1
1 Neural Network and
1

1
Con\lentional Modelllng

1

l Department of Economic 1

1 a.n d S0dal Oeograp,h~. 1

1 •
Vienna Unlversity of 1

1
Economlcs and Business Administration

, Utll itles .-) . Setup) . Qult)
-

.dJ Make a Choice
1 - - - - ·- ·- - ·-

Figure 1: Main menu

You start the major process modules by clicking on the Files, Statistics,
NeuralNets or Analysis button. To open the window for initializing the seed
values for the build-in random number generator, use the Utilities button.
The configuration window for the environment variables of IFNN is opened
by clicking on the Setup button. To exit from IFNN use the Quit button
and confirm.

The IFNN windows usually have two buttons to go back to the previous
level of the dialogue: OK with executing the desired actions and Cancel
without taking any actions.

The help utility is available at any time of the dialogue and provides a
description about the next working steps or some user errors. You start help
either by using the Help or FJ key of the keyboard. An example of the Help
window is shown in figure 2.

The general use of the mouse buttons is as follows: The right mouse

button is used for buttons concerned with popup menus like
Flies <;")

5

vn_hE)lp: Help
IFNN (Integrated Frarnework for Neural Network
and Conventional Modelling) is a special
operational environment to facilitate the use
of neural network modelling in the application
domain areas of spatial interaction
modelling (SI), time series analysis (TS),
pattern recognition (PR) and traveling salesman
problems (TV). IFNN was implemented at the
Department of Economic and Social Geography
at the Vienna University of Economics and

---~ _J

Figure 2: Example of the Help window

the left mouse button for conventional buttons like „ Statlstlcs) and the
middle mouse button doesn't have any function.

2.2 Input Module

The popup menu associated with the button Files contains the following
items:

• INPUT DATA FILE

• TRANSFORMATIONS

• TRAIN/VAL/TEST

• SA VE RESULTS

2.2.1 Input Data File

You specify the type, the name and the format of the input data in the Input
Data File window (see figure 3).

The popup menu Application Domain denotes the type of the input data
and contains the following items:

SI: Spatial Interaction,

PR: Pattern Recognition,

TS: Time Series,

TV: Traveling Salesman.

6

1 ~ 1

_, I - --
IFNN! F'i les --- ~ - - - '"

1 • I -'
INPUT DATto. FILE

......J

) Appltcation Domain ~ SI ! OK
! .
i

Name of the Input File • List ,..)
„„.,

. Cancel) •i „ .

Read Columns from 1 I l..::.J to 1 I i 'J --
Read Rows fro m 1 i •; J

_i„. to 1 ci::..I

1
-

Specify the Input Data File
___J - ~ -- ·-- - ·-

Figure 3: Input Data File window (screen 1)

The selected type of the input data is used to construct the future dialogue
scenarios of IFNN.

The input data file must be a rectangular matrix of elements in ASCII
format. Its syntax is de:fined by

file = { row }.
row = [11 # 11

] { column } endofline.
column = (integer 1 float 1 character).

After reading the input data file, IFNN checks for errors in the data
(e.g. the data may contain a character in the middle of a numeric :field like
0. 05467). All rows of the input file beginning with a # symbol (comment)
are skipped.

You have also the fiexibility to choose only a rectangula.r subma.trix.
This is especia.lly useful when you work with a huge dataset and you need
only some part of the data. An example of an input data file is presented
in appendix B.

Choose the file name either by typing the name with the keyboard or by
using the popup menu List and selecting the :file name from the list of all
:files located in the current directory or in a subdirectory.

7

.

1
I '

1

'

1

1

-

' _.,

To select only a part of the data file, change the default values of the
fields Read Columns from to and Read Rows from to, equal to the number of
columns and rows in the raw input data file, to the desired values. If you click

„ - ~ -~

- „
IFNN: Files - - ---

IN PUT DATA FILE
--1

Application Domain ~ SI 1 OK
l '
1

1 ~ LJJ .
)

Name of the Input File ./exam p le.ascl 1 . Lis t r-) .~.1 ~ Cancel)

Read COlumns from 1 _:1::::1 to 4 :,.J_~J

Read Rows from 1 !„t ".".l to 28!!:1 .: .. .!~
Column 1 I j ·· j Name Type Data type ~ Integer --r"

Column ~~~ Name C.hannel1 Data type .Y..l Float

Colum·n ~~~ Name Channel.2 Data type ~ Float

Column 4 __ ~ Name 1 nf'*- Data type 3 C har

1

Speclfy Columns
• -

Figure 4: Input Data File window(screen 2)

on OK, a series of new fields appears in the window, each field describing
one column by number, name (jdentification) and data type (float, integer
or character). The window at this level of the dialogue is shown in figure 4.
The columns of the input data correspond to the variables, and the rows
correspond to the observations of the variables (note that the number of
observations should be equal over all variables). After setting all these fields
you click again on OI<, and the program checks all the data on inconsistencies
according to the specifications, and if the file is correct, an OK window is
opened (see figure 5). In this window the overall number of columns and
rows, which have been read from the input file, are displayed. To return to
the main menu click OK.

If IFNN detects inconsistencies, an ERROR window is opened (see fig­
ure 6). You find a full list of the error codes in appendix A. To respecify the
input data in the previous window, use the No button. If you click on the
Yes button, the Correct Errors window is opened, where you can correct
the errors. The location of the first error is usually indicated by a special

8

1

..
i

11

1

1

1

II

I I

,d..J

f ---

:....1 1FNN: INPUT CHECI< -- OK
FILE: /e><arnple.ascii

Nurnber of Columns read: 4

Number of Rows read: 289

1 _ OK)

' .

1

NO Errors 1 1
,__T1 ~,---::-- ----------. --=-::==----------------,,_----.-,==-i

Figure 5: OI< window

1 f _., - rFfll'ff lffi'lJi 'CHECR -- EAAOR 1 l.J
FILE: /example.ascii

1

Error in Column Number: 1, Name: "Type" '
1

and In Row Number: 1 '

Do you want to check the Inputfile? 1
1

1 ~ ~
Error Code '4' dJ - ~ ~ - -

Figure 6: ERROR window

mark. After correcting the errors in the input data file you can either save
all changes with the Save button, or cancel all changes and stay in the Cor­
rect Errors window with the Cancel button, or return to the Input Data
File window with the Return button.

2.2.2 Transformations

An important step in the process of neural network modelling is to transform
the raw data into a neural network appropriate format. IFNN provides
different transformation techniques relevant for the main application domain
areas. You can also apply a sequence of different transformations. An
example of the Transformations window for time series data is shown in
figure 7. To transform a variable, you select this variable on the left side
panel with the left mause button. On the right side you choose the desired
transformation from the shown list of transformations. The bottom panel
shows the already executed transformations. To start a transformation use

9

1

' - - • -...1 --- ···-- - - IF~ff: Fi fäs -- 1 , 1 _J

TRANS FORMA no NS

Se lect variables Choose desired Transformation , OK)

::::J _J Linear S"Cali ng to [a. bJ , Cancel)
1

~ 2
_J Standardlzation (mean=O, var=l)

3 :.J Linear: Transformation
4

:J Square Root Transformation

_J Lo.garlth m lc Transformation

_J D lffere nees

_J
_J Growth Rates

_J M ov i ng Averages

_J Squeezlng

Already done transformations: ---1
;

'
i ·r

·r
1

Choose transfortnation proced ure
1 ~ ·- ·-

Figure 7: Transformations window

the OK button, and to go back to the previous window use the Cancel
button.

In the sequel a definition of all provided transformations is given. The
following notation is used to define the transformations: k = 1, ... , J(de­
notes the index for rows (observations), and l = 1, ... , L the index for
columns (variables). xkl denotes the k-th observation of the original l-th
variable, and Ykt the k-th observation of the transformed l-th variable.

1. Linear Scaling to [a, b]:

v (b- a)Xkt -bm1 + aM1
.lk/ = ' M1-m1

where m1 = min(Xk1), M1 = max(Xk1), and the values of a and b can
k k

be:

10

.::dJ

2.

• a= 0.0, b= 1.0,

• a= 0.1, b= 0.9,

• a= -1.0, b= 1.0,

• a= -0.9, b= 0.9,

• user defined a and b .

Standardization:

where µ1 = Je .l:k Xkz is the mean and uz = / K1.:_1 2:k(Xk1 - µ1) 2 is
the standard deviation of the l-th variable. As a side e:ffect of this
transformation, IFNN saves the global scaling parameters gz = ;

1
and

iz = _f!:.L for each variable. You can use this parameters in the Linear uz
Transformation.

3. Linear Transformation (see figure 8):

where gz and i1 denote the global scaling parameters. These are set by
IFNN in a previous transformation, and can be used to linearly scale
the data set with the scaling parameters from a previous transforma­
tion. To select some of the saved values, dick on the Saved Values box,
mark the desired values with the mause (right button), and dick on
the Get g or Get i button. The selected values appear at the bottom
pannel of the window. If you select more than one value, each value
is used by IFNN to scale the same variable as in the previous trans­
formation. You can also specify your own values by using the Other
Values box and the g= and i= fields.

4. Square Root Transformation:

5. Logarithmic Transformation:

where ln denotes the natural logarithm.

6. Differences (time series specific transformation):

k=!:J.k+l, . . .](,

where you specify 6.k in a separate window.

11

1

1

..... 1
- - - IFNN: Parameter Setting ·- - - - 1 •

Linear Transformation

_J Sa.ved Values
Se.lect 'g' and 'i ' for different variables • Get 9) ~
Standardizat ion (mean=O,
var=1):g=0.02533424,0.02505944,0.02486449,0.02465441;
i=-1.23157739,-1.23145030.-1.23319245.-1.23380374;

~ Other Values
g= 1.0 i= 0.0

" OK) „ Cancel)

Set Additional Parameters
1 - ·- - - -- -

Figure 8: Linear Transformation window

7. Growth Rates (time series specific transformation):

k=2,.„,K.

8. Moving Averages (time series specific transformation):

ykl = 2 2
{

HX(k- a-l)l + .. . + Xkt + ... + x(k+ a-1)!]

Hx(k-%)1 + ... + xk1 + ... + x(k+%-1)1l

{

a-1 + 1 T." a-1 "f . dd k = -2- , „ . , .ri - - 2- i a is o ,

i + 1, ... ,K- i + 1 otherwise,

where you specify a in a separate window.

9. Squeezing:

Ykl = bln(Xkl + c) + a,

if a is odd,

otherwise,

where you specify a, b and c in a separate window, and the condition
Xkt + c > 0 must be satisfied.

The concrete content of the list of transformations depends on the set­
ting, which you can change in the setup module (see section 2.7) for each
type of the data. The default list is:

12

'
_J

1 .

_J

..i.!
1
1
1

' 1

-r
1

dJ

-

1

_.J

• For SI: 1), 2), 3), 4), 5), 9).

• For PR: 1), 2), 3), 4), 5), 9).

• For TS: 1), 2), 3), 4), 5), 6), 7), 8), 9).

• For TV: 1), 2), 3), 4), 5), 9).

After each transformation without errors an OK window is displayed.
In the case of an error an ERROR window is displayed, where the trans­
formation causing the error is marked. A list of the error codes is given in
appendix A.

2.2.3 Selection of Training, Validation and Testing Data Sets

In principle there are two major strategies to tackle the overfitting problem:
the cross-validation and the pruning strategies. In the first case we need to
separate the data set into three subsets: the training, validation and testing
data set. In the second case we need to separate the data set into training
and testing data sets only.

~~- ,-

-- IFNN: Files -~ -
CREATE Tralning/Validati.or:i/Test(ng DATA SETS

Choose Type of Unit ~ Percent values

Select one of the following Data Partition Methods

_J Training/Testing 0 0

Trainlng/Validatlon/Testing so - 20 30.0Q

Choose Procedut·e for Selection of Data Partition

Seque ntial data records

1 _J Randotn data records

~ Stratified random choice

_J Others

~ • Cancel)

Make a choice
• - ·---~~- - ·:.·

Figure 9: Create training, validation and testing data sets

The user interface for training and testing (or training, validation and
testing) data set selection is shown in figure 9. To create the training,

13

1

1 , 1 _j

'

1

r:-

validation and testing data sets, you specify the type of unit for the size
of the data (i.e. absolute or percent values), the size of the data itself, and
the procedure for the data partition. The current data is used as input and
the resulting data sets are saved as files. By convention, IFNN uses fn
"_train.nna", fn "_valid.nna" and fn "_test.nna" asthefilenames
for the training, validation and testing data sets, where fn denotes the
filename from the original input data file. To specify the size of the data sets
you can use percentage or absolute values (i.e. the number of data records).
If you hit the Return key instead of typing a number in the last of the size
fields, IFNN will complete the specification, i.e. sum up to 1003 or to the
total number of data records.

As procedures for the data partitioning, you can choose between the
following methods:

• Sequential data records reads and writes sequentially record by
record from the current data to the set files. For example in figure 9,
the first 50% of records are written to the training, the next 20% of
records to the validation, and the remaining 303 of records to the
testing data files in sequential order from the current data.

• Random data records means that the algorithm randomly (without
replacement) picks a certain percentage of the entire data set for the
training, validation and testing data files (e.g. 503 for the training,
20% for the validation and 30% for the testing files).

• Stratified random choice is suggested for supervised dassification
tasks (e.g. remote sensing applications). You have to specify a priori
the number of dasses and the number of records in each dass in an
additional window. If the total number of records for all dasses in the
specificaton is not equal to the total number of data records, IFNN
displays an error message. For example, if you select 60% and 403
for the training and testing files, and 4 dasses with 40, 30, 25 and 5
records (total of 100 records), then the random (without replacement)
selection of the data records by IFNN for the set files is

Classes Count Train Test
dass 1 40 24 16
dass 2 30 18 12
dass 3 25 15 10
dass 4 5 3 2
Total 100 60 40

For time series data sets (TS), another window template (see fig­
ure 10) is used by IFNN for the trainig, validation and testing data set
specification.

14

1

1 ---- ---- - - -

'_.., - - - - -- lFNN: .F'l les -

CREATE Trainin~/Valldatlen/Testing DATA SETS

Choose Type of Unit _!:J Absolute values

Embedding Dimension 3 __ Time lntersection _!_J Yes

Select one of the following Data Partition Methods

yj Tralnlng/Testlng , 5. 1 s.
_J Training/Valldatlon/Testing 0 0 0

Ch.oose Procedure for Selection of Data Partition

Sequential data rec0rds

~ Others

~ , Cancel)

Training/Testlng/Validatlon DATA SETS
-

Figure 10: Create training, validation and testing data sets for time series

A time series typically consists of a set of observations on a variable, y,
taken at equally spaced intervals over time. A series of T observations will
be denoted by y1 , . .. , YT· Modelling a time series can be described formally
as follows: Find a function F : 'R,P --+ Rq such as to obtain an estimate of the
output-vector (Yt, Yt+i. ... , Yt+q-1) in the q-dimensional output space, given
the input-vector (Yt-1' Yt-2, ... , Yt-p) in the p-dimensional input space:

The procedure of building the input- and output vectors is called embedding,
and the number p + q denotes the embedding dimension. Time intersection
means using overlapping intervals at the borders between training, validation
and testing data sets.

U sing the specifications of figure 10 would result in the following input
and output files:

l. input file exampleTS.ascii:

5

11

15

1 ~ i _J J

l
il

1

II
1

,dJ

16
23
36
58
29
20
10
8

3
0

0

2
11
27
47
63
60
39
28
26
22
11
21
40
78
122
103
73
47
35
11
5

16
34

2. output file exampleTS_tmin.nna:

5.000000 11.000000 16.000000
11.000000 16.000000 23.000000
16.000000 23.000000 36.000000
23.000000 36.000000 58.000000
36.000000 58.000000 29.000000
58.000000 29.000000 20.000000
29.000000 20.000000 10.000000

16

20.000000 10.000000 8.000000
10.000000 8.000000 3.000000
8.000000 3.000000 0.000000
3.000000 0.000000 0.000000
0.000000 0.000000 2.000000
0.000000 2.000000 11.000000
2.000000 11.000000 27.000000
11.000000 27.000000 47.000000

3. output file exampleTS_test.nna:

27.000000 47.000000 63.000000
47.000000 63.000000 60.000000
63 . 000000 60.000000 39.000000
60.000000 39.000000 28.000000
39.000000 28.000000 26.000000
28 . 000000 26.000000 22.000000
26.000000 22.000000 11.000000
22.000000 11.000000 21.000000
11 . 000000 21.000000 40.000000
21.000000 40.000000 78.000000
40.000000 78.000000 122.000000
78.000000 122 . 000000 103 . 000000
122.000000 103.000000 73.000000
103.000000 73.000000 47.000000
73.000000 47.000000 35.000000
47.000000 35.000000 11.000000
35.000000 11.000000 5.000000
11.000000 5.000000 16.000000
5.000000 16.000000 34.000000

As procedures for the data partitioning of time series, you can choose
between the following methods:

• Sequential data records reads and writes sequentially record by
record from the current data to the set files as described in the example
above.

• Others is used to call an external program, which transforms a.nd
partitions the data. The window for this option is shown in figure 11.
You specify a file name, a command and some options in the fields
Write Data to File, Call Command and Options. IFNN saves the cur­
rent state of the internal data (e.g. if you transformed the data, IFNN
takes the transformed data) to the specified file in the current working
directory. Before calling the external program IFNN creates the *. nna

17

r

1

1 --~ - - - f _.,
IFNN: Para~eter 'Set't ins

~

1 J 1 _J

Others
Wrfte Data to File: test.txi~ , OK)

Call Comimand: nonsense cancel)

Opt ions: uniform 1

1

1

1

Make Specifjcations ,dJ 1 - - - ~ -

Figure 11: Others option

files as above explained for the Sequential data records. Then IFNN
executes the UNIX command line

command fn [11 PV" l "AV"] n1 n2 n3 "ED"n "DRI" ["Y" l "N"] option,

where command is the content of the field Call Command, fn the con­
tent of the field Write Data to File, and option the content of the
field Options. If you specified percentage values, "PV" is taken, else
11 AV". n1, n2 and n3 are the specified sizes of the training, validation
and testing data sets. n is the embedding dimension, and "Y" is for
time intersection, else IFNN takes "N".

2.2.4 Save Results

You can save the whole internal data set, e.g. obtained after transformations,
to a single file by using the item SA VE RESULTS of the input module. You
ha.ve to specify a file name a.nd dick on OK. If the file already exists , a wa.rn­
ing message is displayed, and you have to confirm or cancel the operation.

2.3 Statistical Measures Module

The sta.tistical measures module provides standard statistics and an interface
to external graphical representation programs used for graphical statistics.
You can choose the desired type of statistics in the window shown in fig­
ure 12. You start the procedures for the different type of statistics with the
buttons Standard Statistics, Graphical Statistics and Frequency.

Standard statistics provides some useful statistics like the mean and
the variance of a variable, or the covariance between two variables a.nd so
on. The definitions of these measures are given below.

18

1 - -- - ------ - 1 _,, - ·- - I~NN : Statistics- - - 1 J l .J

Choose Type of Statistks

. Standard Statlstlcs) , Graphical Statistics) , Freq ue ncy) • Cancel)

M ake S pecifkations dJ 1 - - ~

Figure 12: Choosing type of statistics

Graphical statistics is an interface to an external graphical represen­
tation program. IFNN supports GNUPLOT and ACE/gr. You can define
a default for the graphical representation program in the setup module (see
sect ion 2. 7). lt allows you to create graphical representations of the data.

The frequency procedure provides the calculation and the graphical
representation of the empirical distribution of the data, also called a his­
togram.

2.3.1 Standard Statistics

1 - - - --
1 ~ 1 _J 1

_., -- - IF'filtf: -Standard StatistiCs -

Standard Statlstical Measure5

First1 S.econd ;,_J

~ variable lx 1 !~ variab le X

~ V lv 1

Save) 1
z z 1

_J _J
, Cancel) ,

fl'laximum: 190.20000~, Minimum: O.OO'OOE. +00 ,'

Ra nge: 190.200000 Mean: 48.6131488

Variauce: 1 ~58 .05969 Standat•d Dev iation: 39.4722648

Variat ion: 81.1966840 Covariance: 1287.97630

Correlation: 0.860641 $17
'

Standard Statistical Measures .dJ - ~--- ·-

Figure 13: Standard Statistics window

19

IFNN uses the variable of the field First variable (see figure 13), in the sequel
denoted by X, to calculate the following statistics, where k = 1, ... , J(

denotes the index for rows, i.e. observations, and xk the k-th observation of
X:

• Mazimum:

• Minimum :

• Range:

• Mean:

• Variance:

M(X) = max(Xk)·
k

m(X) = min(Xk)·
k

r(X) = M(X) - m(X).

1
µ(X)= K L xk.

k

2 1 ~ 2 cr (X)= J(_ l ~(Xk - µ(X)) .
k

• Standard Deviation :

• Variation:

cr(X) = y' cr2(X).

cr(X)
v(X) = µ(X) 100.

The variable of the field Second variable, denoted by Y, is used to calculate
the following statistics:

• Covariance:

1
L:(X, Y) =](- 1 L(Xk - µ(X))(Yk - µ(Y)).

• Correlation:

k

I:(X, Y)
p(X, Y) = cr(X)cr(Y).

20

For time series (TS) data two additional statistics are available:

• Autocovariance:

l min(K,K -T)

1(r) = J(L (Xk+T -1-t(X))(Xk -1-t(X)).
k=max(l,1-T)

• A utocorrelation:

r(r) = 1(r)_
1(0)

If you dick on OK, IFNN computes the statistics. If IFNN detects a division
by zero, the appropriate field is set to NaN for Not a Nurnber.

In order to save your results, you can use the Save button. IFNN opens
a window for the filename specification and writes the statistics to a :file.

2.3.2 Graphical Statistics

You can use the graphical statistics procedure for a more representative
analysis of the data by graphical tools. This procedure provides an interface
to an external graphical program, first preparing the data for the external
program and second starting the external program with the prepared data.
IFNN supports GNUPLOT and ACE/gr. You can define a default for the
graphical representation program in the setup module (see section 2.7).

In the fields X and Y (see figure 14) the variables for the x- and y-axis
of the plot are selected. You specify the range for the x- and y-axis in the
Upper and Lower fields. The default values are the current minimum and
maximum values. You can choose between linear and logarithmic scaling
for both axis in the field Scale.

If the data has only one column, like a univariate time series, IFNN
provides an additional column, called <COUNTER>. This <COUNTER>
column runs from 1 to the number of rows of the data.

The list Choose a suitable syrnbol to represent the plot contains different
symbols used by the external program to plot the graphic. If you select Yes
in the field Open a new window a new window is opened for the graphic,
whereas in the case of No all old windows are first closed and then a new
window is opened.

The fields Title, X Axis and Y Axis specify the labels for the title and
the axis. An example of a graphical statistic produced by ACE/gr is shown
in figure 15.

2.3.3 Frequency Chart

To estimate the empirical probability density function in terms of a his­
togram, you can use the frequency chart facility of IFNN. A histogram

21

l ~--- -- - ' -41 - lFNN: Grapnfoal Statistics -- -·- -- , . ,__J
Stat istlc~ I Plottlng by he lp of External Program

X _J Upper 292
1

~ j <QQUNTER> J; Lower 1 Scale ~ Linear

1
1

__J 1

V !:_J t:J p pe r 190.20~0 ,... !
11 l ~ <COU NTER> Lower 0.00000000 Scale ~ Linear

1 1

_J

Choose a suitable symbol to ~ Open a new ~ .

~
Ves

represent the plot <) W'indow 1
1

1 +
EI II

_J

Tit le; Sunspots

X A}<iS time [year] V Axis number of sunspo~

~ . Cance·1)
-

Make Spedflcatlons
__J ~ - -- - - .,--- ~

"' ::!J
Figure 14: Graphical Statistics window

shows the number of observations of a variable that fall in each of a number
of intervals. The specification window for the frequency charts is shown in
figure 16.

The field Specify variables is used to select the variables for the his­
togram. You can select one or more variables. Use Specify class interva.l
and Number of classes to specify the x-axis. The range of the x-axis is
from zero to the length of the dass interval times the number of dasses.
To continue dick OK and you can choose between two different types of
histogram:

• Curve diagram (see figure 17): Select NO in the field Bar Chart
Choose pattern and a line in the field Choose a line type.

• Box diagram (see figure 18): Select the box in the field Bar Chart
Choose pattem and NO in the field Choose a line type. IFNN shows
in this case only the first variable.

22

f.ile Q_ata §.raph !:age ~ew

Go: X. V „ [339.56. 227.324]

Draw 1

~~
~~
~~
ij _!J
AutoT 1

AutoO 1

z~~
~~
~ Pu
~ Cy
SD:O
CW:O

Ex!!_j

V) _....,
0
0...
V)

c
::::s
V)

'+-
0

L

Q)

...0

E
::::s
c

150.0 ,__

100.0 ~

50.0

'

,,
~

1

0.0 1 l '
0.0

'

1

'

• .J

,!ielp

Sunspot Data

-

I•
1

p '
'

'
p

1
p

1

1 -
~

'
" 1

100.0 200.0 300.0

time

wigeo,_3._w-:i=g=eo=3=:=o.=o=. T=h=u=-M= ay= 23= 1S=:1=6=:1=6=1=9=96=::========="'::==========::::::::·:J···:!J

Figure 15: Example of a graphical statistic

2.4 Neural Network Interface Module

The neural network interface module is the main module of IFNN and pro­
vides an interface and some useful tools to work with NeuralWorks Pro­
fessional II/PLUS, which allows the user to create, learn and test suitable
neural network architectures in each domain of application. The popup
menu associated with the button NeuralNets contains the following items:

• NeuralWorks [>

23

TFNN: FREQOEf.lt· CHART • _J

Specify
variables

=.J

~=---=-==--=---=~9 ~
~

1
~~~------------------'.....J 

Specify class interval 10.000000 

Number of classes 

Variable _C.;...h_an'-n'"""e_l„k.__ ____ _ 

Variable Channel2 

Statistkal freq ue ncy chart 

Barchart 
Choose pattern 

Choose a line 
type 

Choose a line 
type 

.._j 

·~· ~ 
1 . _ __ _.__J 

Figure 16: FREQUENCY CHART window 

- Utilities I> 

* Weight Initialization 

* Show Weights 

- Interactive Mode 

- Batch Mode 

2.4.1 Utilities 

, Cancel ) 

The Utilities of the neural network interface module are the Weight Initial­
ization and the Show Weights procedure. 

The Weight Initialization procedure requires the specification of a 
NeuralWorks weight file with the extension .nnw and a weight initialization 

24 



Frequenc':J 

200 

150 

100 

0 

Variable(s): Channel1,Channel2 

2 4 6 8 10 12 
Cl ass I nterva 1 

Figure 17: Example of a curve diagram 

policy. This version provides the Fan-In Dependent Uniform Distributed 
weight initialization policy, which works as follows: 

1. You choose a weight range w. 

2. The individual weights are initialized by IFNN randomly by means 
of a random number generator from a uniform distribution over the 
interval [-T, +T], where i is the number of connections coming into a 
unit (fan-in connections). Exceptions are the bias weights, which are 
set to 0.0. 

3. IFNN saves the . nnw file with the new weights. 

The Show Weights procedure takes as input two NeuralWorks .nnw 

25 

'dat_O' 
'dat_1' 

14 16 



f.ile Q_ata Qraph f_age ~lew 

GO: X.. V= (16.2127. 15.6449] 

Draw 

AutoT 1 

AutoO 40.0 

~ E!:J 
AXj~ 
Pzj ~ 0' 30.0 

c 
Poj ~ Q) 

:::i 

SD:O C/ 
Q) 

CW:O '-
LL 20.0 

Exit 

10.0 

Variable(s): Channel1 

0.0 a.:-...... ~_._...._ ..... _..~ ...... ---............................ ~--~ ..... _..--..... ~ ..... -:1 

0.0 5.0 10.0 15.0 

C/ass 1 nterval 

wigeo3. wigeo3:0.0. Tue May2B 14:59:211996 

Figure 18: Example of a box diagram 

weight files and produces as output a file, containing a representation of the 
two weight files in a tabular form. An example of such a file is the following: 

! Startfile <./init.nnw> Final file <./end.nnw> 

Weights from Bias Unit 
Start Final 

to Hidden1 Unit1 0.0000 0.0000 

26 

, _J 

!:!_elp 



to Hidden1 Unit2 
to Hidden1 Unit3 

Weights from Input 

to Hidden1 Unit1 
to Hidden1 Unit2 
to Hidden1 Unit3 

0.0000 0.0000 
0.0000 0.0000 

Unit 11=1 
Start Final 

0.1302 0.1302 
0 .1926 0.1926 
0.0617 0.0617 

Weights from Bias Unit 
Start Final 

to Hidden2 Unit1 0.0000 0.0000 
to Hidden2 Unit2 
to Hidden2 Unit3 

0.0000 0.0000 
0.0000 0.0000 

Weights from Hidden1 Unit H1=1 
Start Final 

to Hidden2 Unit1 0.0317 0.0317 
to Hidden2 Unit2 -0.1999 -0.1999 
to Hidden2 Unit3 0.2389 0.2389 

Weights from Bias Unit 
Start Final 

to Hidden3 Unit1 0.0000 0.0000 
to Hidden3 Unit2 0.0000 0.0000 

Weights from Hidden2 Unit H1=1 
Start Final 

to Hidden3 Unit1 0.2051 0.2051 

Unit 11=2 
Start Final 
-0.0075 -0.0075 
-0.0946 -0.0946 
-0.1989 -0.1989 

Unit H1=2 
Start Final 

0.1118 0.1118 
0.1645 0.1645 

Unit 11=3 
Start Final 
-0.1891 -0.1891 
-0.1878 -0.1878 

0.0725 0.0725 

Unit H1=3 
Start Final 
-0.2111 -0.2111 
0.2176 0.2176 

0.1935 0.1935 0.2176 0.2176 

Unit H1=2 
Start Final 
-0.0858 -0.0858 

Unit H1=3 
Start Final 

0.2129 0.2129 
to Hidden3 Unit2 -0.0520 -0.0520 0.2899 0.2899 -0.2001 -0.2001 

Weights from Bias Unit 
Start Final 

to Output Unit1 0.0000 0.0000 

Weights from Hidden3 Unit H1=1 
Start Final 

to Output Unit1 0.3998 0.3998 

2.4.2 Interactive Mode 

Unit H1=2 
Start Final 
-0.4062 -0.4062 

You can use this mode to automatically call NeuralWorks from IFNN. You 
have to specify the hast and the directory of NeuralWorks, dick OK and 
IFNN starts NeuralWorks as a new process. 

27 



' 

2.4.3 Batch Mode 

The Batch Mode provides useful tools to automate the work with Neural­
Works. You can prepare some scripts, i.e. jobs, through a user interface, and 
NeuralWorks will automatically run these jobs for you. The user interface is 
shown in figure 19, and is used to specify each of the jobs. The specification 

f 

..... , - - - IFNN:Batch Mode - 1 „ _J 

Setting Network List 

Specify the Neural Network File ./s u nnetbest,nn~ , List ,.. ) 

Network List 

:.......J 

1 s tJ n n~ttrai l'l . nn d _Jj 

~ sunnetbest.nnd 

_J 

Learn ~ No Trial 0 ~1:.J Training File sun_traln 

Recall ~ No Trial 0 I (~~.J Testing/Recall File sun_test, 

Tes.t ~ N.o Trial 0 I i j 1 
,......,.; „_ 

Save Best ~ Yes Le·arn Count 10QPO !J_j 

Test lnterval 100 ~~ 
Number of Retries 100 ~~ 
File Name for Save Best Network sunnetbest 

Save Net .!_j Ne File Name to Save sunnettrain 

, 1 nsert t-te·w) . Set New ) , Start NeuralWorks ) , Cancel ) 

M ake S peclf lcatlons ,::dJ - „ _,_,,. ... m ' ·- ·- -- -

Figure 19: Batch Mode user interface 

28 



of a job requires the following steps: 

1. Fill out Specify the Neural Network File. NeuralWorks network files 
have the extension . nnd. 

2. Click on Insert New. IFNN inserts the network file into the Network 
List. The default values of the fields Training File and Testing/Recall 
File come from the . nnd network file. The Trial fields are set by IFNN 
according to the number of records of the training and testing/recall 
file. Of course, you have the flexibility to use your own specifications. 

3. Specify the job itself by using the fields Learn, Recall, Test and so 
on in the middle pannel of the window. The actions taken by IFNN 
respectively by NeuralWorks are the same as using the similar com­
mands in an interactive session with NeuralWorks (For a de:finition of 
the interactive and batch commands of NeuralWorks see NeuralWare, 
1993). 

4. Click on Set New. 

You can then specify the next job in the same manner, and after the speci­
fication of all jobs, you dick on Start Ne1tralWorks, and NeuralWorks auto­
matically computes these jobs. 

2.5 Analysis Module 

You can evaluate the simulation results from the previous module with suit­
able statistical performance measures in the analysis module. Therefore 
you have to create instruments with Neura!Works, which log the observed 
and the estimated values of a neural network during training (see Neural­
Ware, 1993). The extension for the NeuralWorks log files is .nnp and the 
name of the log file should include the string dout and nout for the ob­
served ( desired) values log file and the estimated (neural) values log :file, 
respectively. Figure 20 shows the user interface of the analysis module. 

In the field File mask you set the common part in the name of the . nnp 
log files. For example, ALog is a mask for the files ALogdout.nnp (desired), 
ALognout1 .nnp (estimated trial 1) and ALognout2.nnp (estimated trial 2). 
If the field File mask is empty, all files with dout and nout substrings in 
the name are selected. IFNN searches for the files in the directory Direc­
tory. The exact UNIX search string is mask ( 11 dout 11 1 11 nout 11 

) number 
11 

• nnp 11
• To calculate some of the performance measures you have to specify 

an additional file in the File field. 
After clicking on OK, the list of all possible plots is shown in a new 

window. You select then one or more plots, specify the epoch size when 
producing the log files, and choose between linear and logarithmic scaling of 

29 



1 - - 1 

_,I 1 !=NN': PERtORHANCt MEASURES 1 „1 _J 

File Specifications 

File mask=+~ 
1 

II 
Directory: ./ . List r--) 

File: 
I I 

i 
OK ) , Cancel) 1 . 

M ake S pedfücatlons dJ 1 ,----,,. --- . ..--· --
Figure 20: User interface of the analysis module 

the axis. After clicking again on OK, IFNN opens the windows, each con­
taining a specified plot (by the help of an external graphical representation 
program, which might be chosen in the setup module). 

IFNN provides different types of plots: There are two types of perfor­
mance measures which might be chosen. The first is ARV (Average Relative 
Variance), which may be calculated in two different ways, leading to the 
measures ARV(l) and ARV(2): 

• A RV ( 1) is calculated as 

where S denotes the chosen epoch set of observed values {Yk}, Yk the 
estimated value of the neural network for Yk, and Y s = 111 l:::vkES Yk. 

• ARV(2) is calculated as 

where fT 2 is an estimator of the variance of the data and is calculated as 
the empirical variance of the first column of the file specified in the File 
field. This is usually a NeuralWorks .nna file. If no file specification 
has been made, then fT 2 is set to l. 

The second type of performance measure is R2 , which may be calculated 
again in two different ways, leading to R 2 (1) and R 2 (2): 

30 



• R 2 
( 1) is calculated as 

where Y s = 
1
1

1 
L:vkES Yk· 

• R 2 (2) is calculated as 

R2(2) = 1 - ARV(l). 

Figure 21: Example of a training set curve 

31 



Note that training set curves ( using the . nnp files) are being visualized in 
form of plots, where the x-axis represents the number of epochs and the 
y-axis the performance index. An example is shown in figure 21. 

One means of further investigating the predictive power ( e.g. in the appli­
cation domain of spatial interaction modeling) is the use of residual analysis. 
IFNN provides the possibility to compute absolute and relative residuals be­
tween observed values Yk and estimated values Yk, and assumes that the file 
specified in the File field ( usually a NeuralWorks . nnr file) contains in the 
first column the observed values Yk andin the second column the estimated 
values J\: 

• Absolute Residuals are calculated as 

• Relative Residuals are calculated as 

Note that the absolute (relative) residuals are graphically displayed in form 
of a plot (see figure 22), where the x-axis represents the observed values and 
the y-axis the absolute (relative) residuals. 

To evaluate the performance of a neural network during training on a 
data set, which is independent of the training set, IFNN provides the sequel 
plot (Fora description of the NeuralWorks save best mode see NeuralWare, 
1993): 

• Save Best: This plot is calculated from the file specified in the File 
field (usually a NeuralWorks .sbl file). The first column of the file 
should contain the number of training iterations and the second col­
umn a measure of the neural network performance on the independent 
data set during training. The x-axis of the Save Best plot represents 
the number of training iterations and the y-axis the performance mea­
sure, provided by a NeuralWorks instrument (not the above mentioned 
ARV(l), ARV(2), R 2 (1) and R 2 (2)). For an example of a Save Best 
plot see figure 23. 

2.6 Utilities 

The popup menu associated with the button Utilities contains the following 
items: 

• Random Number Seed 

32 



1 

gnuplöt 

Absolute Residuals Residualanal~s is 

' ' ' ' 1 1 1 

8 "Set_O' * 

6 . 

4 

2 . 

. ~ (q·t fl ~ " . ~ ~·~~ 0 • . . ....... ..... · t ... „ ' '4 ~ ... ' . ..... . .. ' .. . ...••.••..... . ... . ' •. . ............... 
=~·;"~(q #.· ~· · 

1.>- ~~ ~ .„„ <:!<!> • 
.t# "1#,t=" <\> 

-2 
1 ' i . . 1 ' ' 

-1 -0.5 0 o.5 1 1.5 2 2.5 3 
Observations 

-.,___,_~~~~~~~~~~~~~~~~~~~~~~~~~~------.., ri ___J~·~~~~~~~~~~~--~~-·~~--~~~~~~~~~~~~--·~~~~~~~~~~~~~_.::=J 

Figure 22: Example of an absolute residuals plot 

The random number seed procedure is for initializing the seed values for 
the build-in random number generator. The random number generator uses 
two integer values to calculate random numbers. You have to specify these 
two values in the field Random seeds. The random number generator is used 
by IFNN in different procedures, e.g. in the Weight Initialization procedure. 

2. 7 Setup Module 

This module is used to set the IFNN system parameters. You can save the 
whole current setting to the file $HOME/.ifnn-set by clicking on the button 
Save. If the file already exists, the old file is renamed to .ifnn-set. To load 
a setting from . ifnn-set use the Load button and to activate your changes 

33 



Performance 

1 

0.9 

o.s 

0.7 

0 

9nuplot 

Save best plot 

5000 10000 15000 20000 25000 30000 35000 40000 
Number of Iterations [EpochJ 

Figure 23: Example of a Save Best plot 

use OK. The Setup window is shown in figure 24. 
The first popup menu is used to set the actual external graphical repre­

sentation program, where you can choose between GNUPLOT and ACE/gr. 
To specify the default transformations for a specific application domain 

area use the Specify default transformations list and the popup menu For 
domain. This information is used by IFNN in the Transformations window 
(see section 2.2.2). 

During the startup, IFNN automatically loads the current setting from 
the . ifnn-set file. 

34 

• _J J 

'Set_O' -

45000 5000 



I FNN: SETTING J _J 

Set the system parameters 

Choose ext:ernal graphical program ~ Gnuplot 

Specify default transformatlons For domain ~ SI 

Ün!lar Sc;_~llng_ to E~bl 
Stan efäl'!d lzati~h meaJil&:O, \tar=1 
Li'near Transformati -
Square Root Tra.nsfocmatlon 
Logaritb m lc Transformation 
Dlfferences 

~ Load ) _ Save ) "' Cance l) 

tv1ake a choice 

Figure 24: Setup window 

2.8 Quit 

To exit from IFNN, use the Quit button, and con:firm the next question. 
During a working session, IFNN creates some temporary files. These files 
will be removed by IFNN when you exit. 

35 



3 System Programming Guide 

3.1 Environment Variables 

To use the integrated help facility of IFNN you have to set the shell envi­
ronment variable HELPPATH to the directory containing the vn_help. info 
file. For example, add the following line to your .cshrc file: 

setenv HELPPATH /home1/volkov/DISTR 

The default value of HELPPATH is /homel/volkov/DISTR. 
In order to interact with NeuralWorks you should prevent the .cshrc file 

to print something to the standard output. If the statement 

rsh neuralworkshost ls 

returns more than just a filelist you should add something like 

if ( { tty -s } && $?prompt ) then 
statements 
stty cs8 

endif 

to your .cshrc file . 
Before working with IFNN you also have to set the variable HOME to 

your home directory. 

3.2 Content of the IFNN Distribution 

The IFNN distribution contains the following files: 

C source code files: add_prm.c, add_pro.c, analys_p.c, calLexg.c, cLstat.c, 
edi_chn.c, file_lst.c, inp_chk.c, inpuLfi.c, main_vn.c, monitor.c, nn_call.c, 
nwb_ifnn. c, nwib. c, random_n. c, seLinfo. c, sLstat. c, tbLcrt. c, tbLJ_dr. c, 
tr _ts_va. c, transfor. c, vn_glob. c. 

Header files: images_h.h, random_n.h, vn_head.h, vn_struc.h, vn_tmp.h. 

Other files: vn_help. info, Makefile, nwbmake. 

Directories: NW2_SOFTWARE, doc 

3.3 IFNN Module Description 

3.3.1 Main programs 

main_vn.c: Supervisor program of IFNN, which manages the main menu 
and controls the main modules . 

nwb_ifnn.c: User I/O program for batch mode handling. 

36 



inpuLfi. c: Input data file handling, description of the input data structure, 
checking for inconsistencies and calling the external OpenLook editor. 

transfor.c: Main program for the transformations module. Manages the 
internal data set. 

tr _ts_va. c: Main program for the training, testing, validation module. Man­
ages the splitting and saves the results. 

sLstat. c: Main program for the statistical module. Prepares the data for 
the external graphical program. 

analys_p.c: Main program for the analysis module. Reads the parameters 
used for the visualization of the results. 

seLinfo.c: Main program for the setup module. Reads and writes the 
configuration :file. 

nn_call.c: Mainmodule for calling NeuralWorks. Weight table generation. 
Calling NeuralWorks in the interactive mode. Weight initialization. 

nwib.c: Mainmodule for working with NeuralWorks in batch mode. 

3.3.2 Service subroutines 

inp_chk. c: Preprocessor for the input, transformations and training, test­
ing, validation main programs. Creates data files in the case of an 
embedding dimension. Divides the internal data structure into two 
or three sets in accordance with the chosen data partition proceclure. 
Transforms the data with the different methods. Reads the raw data 
and creates the internal dynamic data structure. Is called from: in­
pvL.fi. c, transfor.c, tr_ts_va.c. 

tbLf_dr.c: Creates figures for the analysis module. Searches all :files. Cre­
ates the working structure for the analysis results. Calls the external 
graphical program. Is called from: analys_p.c. 

add_prm. c: Reads the additional parameters for the transformations mod­
ule. Manages the screen for the additional transformations parameters. 
Calls the transformations functions. Is called from: transfor.c. 

add_pro.c: Reads the additional parameters for the training, testing, val­
idation module. Manages the screen for the additional parameters . 
Calls the splitting functions. Is called from: tr_ts_va.c. 

37 



3.3.3 Lower end service subroutines 

cLstat.c: Calculates various statistical and transformation measures. 

file_lst. c: Handles the file system. 

tbLcrt.c: Calculates all measures for the analysis. 

monitor. c: Calls external processes. 

calLexg.c: Calls external graphical programs. 

edi_chn.c: Calls the OpenLook text editor. 

random_n, c: A lagged Fibonacci sequence random number generator (pub­
lic domain software). 

vn_glob.c: Data warehouse for the internal structure and global parame­
ters. 

3.3.4 Headers 

vn_head.h: Definition of the system widely used functions. 

vn_struc.h: Definition of the common structures and constants. 

images_h,h: Definition of the images for sLstat.c. 

random_n.h: Header for the random number generator. 

vn_tmp.h: Empty header for debugging. 

3.3.5 Temporary files 

dat_*: Data for the frequency statistics. 

vn_plot. p1*: Command file for the graphical statistics. 

Set_*: Data for the graphical module. 

3.3.6 Other files 

vn_help.info: Help messages. 

Makefile: Make file to build IFNN. 

nwbmake: Makefile to build nw_ifnn. 

38 



3.3. 7 Directories 

NW:LSOFTWARE: Contains the software for the interaction with Neu­
ralWorks. 

doc: Contains the documentation. 

3.4 Precision Setting 

The fioating point numbers are saved by IFNN with a precision of ndigi ts 
after the decimal point. You can change ndigits by editing the following 
part of the makefile and recompiling all: 

\# Makefile for IFNN 

CC = gcc -DPRECISION= integer value for new precision 

SSPKGHOME = .. / . . 

ndigi ts should not be greater than 32. 

3.5 Interaction with Externat Programs 

The graphical user interface ofIFNN needs X Windows/OpenLook and the 
XView library. To build graphical representations IFNN uses some external 
programs. IFNN supports the freeware graphical programs GNUPLOT and 
ACE/gr. 

3.6 Building IFNN and System Requirements 

IFNN works under UNIX and X Windows with the OpenLook tool (XView 
library). IFNN can be used on any computer under a UNIX clone OS 
(SunSPARC with SunOS, IBM PC with Linux, etc.), 5 MB disk memory 
and more than 8 MB RAM. During work IFNN creates some temporary 
files, which requires no less than 2 MB free disk memory. 

U sing an other window manager then OpenLook can cause some serious 
problems. During intensive work it may also occur, that too many files are 
opened, in which case we recommend to exit from IFNN and start again. 

To build IFNN, you have to do the following steps: 

1. Edit the two makefiles Makefile and nwbmake to set the appropriate 
macros and variables according to your system setting. 

2. Build nwb_ifnn by starting nwbmake. 

3. Build ifnn with the make command. 

39 



4. Copy nwb_ifnn to the NeuralWorks main directory. 

5. Copy ifnn to an executable directory. 

3. 7 lmplementing Future Extensions 

To add a new weight initialization policy to the Weight Initialization pro­
cedure (see section 2.4.1) do the following steps: 

In the nn_call.c file exists the add_callO subroutine, which contains the 
sequel program fragment: 

switch (choice) { 
/*------- Choose Fan-in Dependent Uniform Distributed -------*/ 

case 0: 
inactivDK = repeat; 
xv_set(repeat, PANEL_INACTIVE, TRUE, NULL); 
frame=(Frame)xv_create(own_frame, FRAME, 

XV_X, xv_get(own_frame, XV_X)+20, 
XV_Y, xv_get(own_frame, XV_Y)+20, 
XV_WIDTH, 300, 
XV_HEIGHT, 
FRAME_LABEL, 

FRAME_LEFT_FOOTER, 
FRAME_SHOW_FODTER, 
XV_SHDW, 

80, 
(char*)own_label("Weight 
Initialization Policy"), 
11 Make Specifications", 
TRUE, 
TRUE, 

NULL); 

xv_create(panel1, PANEL_BUTTDN, 
PANEL_LABEL_STRING, 
PANEL_LAYDUT, 
PANEL_NOTIFY_PROC, 
XV_KEY_DATA, 
XV_KEY_DATA, 
XV_HELP_DATA, 
NULL); 

window_fit(frame); 
break; 

11 Cancel 11
, 

PANEL_HORIZDNTAL, 
back_stepO, 
FRAME_KEY, frame, 
TRANS_VALUE, repeat, 
11 vn_help:dia_can 11

, 

/*----------------------------------------------------------------*/ 
case 1: /* Future contents for other user defined subroutines */ 

In this place you can include your own part. 

break; /* More details see the documentation 

40 



/*----------------------------------------------------------------*/ 
default: 
} /* End of Switch */ 

The new part should implement the following features: 

1. Create a new window by the OpenLook xv_create command like: 

frame=(Frame)xv_create(own_frarne, 
xv_x, 
XV_Y, 
XV_WIDTH, 

FRAME, 
120, 
20, 
300, 
80, XV_HEIGHT, 

FRAME_LABEL, 
FRAME_LEFT_FODTER, 
FRAME_SHOW_FOOTER, 
NULL); 

"New Weight Initialization Policy", 
"Set parameters", 
TRUE, 

2. Arange the window contents needed by the new method. 

3. Create an OK button like: 

xv_create(panel1, PANEL_BUTTON, 
PANEL_LABEL_STRING, 
PANEL_LAYOUT, 
PANEL_NOTIFY_PROC, 
XV_KEY_DATA, 
XV_KEY_DATA, 
XV_KEY_DATA, 
NULL); 

"DK11' 
PANEL_HORIZDNTAL, 
new_future_subroutine, 
FRAME_KEY, frame, 
PANEL_MAIN, panel2_1, 
TRANS_VALUE, repeat, 

4. Implement the new_future_subroutine, which works with the neural 
network weights. 

41 



Appendix 

A IFNN Messages 

This chapter covers the messages, which IFNN and X Windows may issue 
during operation. When you see a message at the bottom side of a window 
(in the footer part), press the Help button or look at the list in this chapter. 

There exist four categories of IFNN messages: error, information, X 
Windows shell/XView and fatal error. 

In the case of error messages, you should analyse the problem at hand and 
then continue working, whereas information messages just serve to provide 
information. X Windows shell/XView messages should be treated like the 
error messages. Fatal error messages only appear when IFNN crashes or if 
not, it is recommended to stop to continue working with IFNN, analyse the 
problem and then continue working. 

A.1 Error messages 

Error messages may be displayed in the footer part of the IFNN windows, 
or may appear -marked by red color- in the ERROR window. 

'2': Read Columns from or Read Rows from is greater than the number of 
columns or rows in the data :file. 

'3': Read Columns to or Read Rows to is greater than the number of columns 
or rows in the data file. 

'4': File has other data types than specified. 

'5': Two columns with the same number. 

'6': Error in file system: open/ close file, disk full, etc. 

'-2': Division by zero. 

'-3': Logarithm argument is less than or equal zero. 

'-4': The dimension of g and i is not equal to the number of selectecl 
columns. 

'File 'file name' doesn 't exist' 

'Sum not equal to 100%': The sum of the percentage values for the train­
ing (validation) and testing file is not equal to 100%. 

'Sum not equal to the number of records': The sum of the absolute 
values for the training (validation) and testing file is not equal to the 
number of data records. 

42 



'No time intersection and others is not allowed' 

'Lower values of X greater than upper values' 

'Lower values of Y greater than upper values' 

'X m ust be greater than 0 for log scale' 

'Y must be greater than 0 for log scale' 

'Error when calling the graphical program' 

'Too many graphs': There exists a system resources dependent limit for 
the number of sirnultaneously opened graphs. 

'Incorrect value' 

'Empty table': lt's not possible to save an empty table. 

'Epoch size exceeds the number of training records' 

'Uncorrect format of the file': The file specified in the File field has not 
the correct format. 

'Denominator is equal to zero': A denominator of a relative residual 
value is equal to zero. 

A.2 Information messages 

All information messages are displayed in the footer of the IFNN windows. 

'Make a choice' 

'Specify the input data file' 

'Specify columns' 

'No errors' 

'Choose transformation procedure' 

'Empty data set' 

'Statistical frequency chart' 

'Choose type of representation' 

'Table saved to Weights.tbl' 

'Not enough data points to create plot' 

43 



A.3 Messages from the X Windows shell 

These messages are displayed in the standard XView stream. U sually it is 
the window from which IFNN was called. 

'XView warning: Menu too large for screen (Command menu package)': 
Occurs when clicking on the List button, and the list is too large to fit 
into a window. Type the name by keyboard or remove old files from 
the directory. 

A.4 Fatal error messages 

'Segmentation fault': System error due to memory protection or IFNN 
internal errors. Inform the system administrator. 

'IFNN system error x': Error coming from UNIX, where x represents 
the UNIX error number. 

44 



B Example of an Input Data File 

The following file is an example for an input data set, containing spatial 
interaction (SI) data: 

1 

1 
1 
1 
1 

1 0.000000 
2 180048.0 
3 79223.0 
4 26887.0 
5 198144.0 

0.0 11848000.0 11848000.0 
219.0 11848000.0 37056.0 

1009.0 11848000.0 40266000.0 
1514.0 11848000.0 16327000.0 
974.0 11848000.0 29920000.0 

45 



C References 

NeuralWare, Inc. (1993): Handbooks of NeuralWorks Professional 
II/PLUS and NeuralWorks Explorer. Pittsburgh, PA: NeuralWare, 
Inc. 

46 


