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Abstract 

Obtaining up-to-date information concernmg the environment at reasonable costs is a 

challenge faced by many institutions today. Satellite images meet both demands and thus 

present a very attractive source of information. 

The following thesis deals with the comparison of satellite images and a vector based land use 

data base of the City of Vienna. The satellite data is transformed using the spectral mixture 

analysis, which allows an investigation at a sub-pixel level. The results of the transformation 

are used to determine how suitable this spectral mixture analysis is to distinguish different 

land use classes in an urban area. In a next step the results of the spectral mixture analysis of 

two different images (recorded in 1986 and 1991) are used to undertake a change detection. 

The aim is to show those areas, where building activities have taken place. This information 

may aid the update of data bases, by limiting a detailed examination of an area to those areas, 

which show up as changes in the change detection. 

The proposed method is a fast and inexpensive way of analysing large areas and highlighting 

those areas where changes have taken place. lt is not limited to urban areas but may easily be 

adapted for different environments. 

Key Words: Remote Sensing, Spectral Mixture Analysis, Urban, Change Detection, Landsat 



Chapter 1: Introduction 

1. Introduction 

Since the launch of Landsat 1 in 1972 satellite remote sensing has become an integral part in 

the monitoring of the earth's environment. For the first time it is possible to receive satellite 

images on a regular basis from most parts of the world at relatively low costs. Despite the 

initial disappointment due to the low spatial resolution (79 x 79 m2
) of the recording devices 

(Multispectral Scanner) satellite images have been used successfully for many different 

applications, e.g. forest inventory, crop type discrimination, and so forth (Avery and Berlin, 

1992). Landsats 4 and 5 feature an improved scanning device (Thematic Mapper) with higher 

spatial (30 x 30 m2
) and spectral resolution. This makes a much more detailed analysis of the 

environment possible. As satellite sensors are being developed with even better spatial and 

spectral resolutions new applications will be possible and existing ones made easier. While 

these sensors are still under development or in the experimental stage, different methods, 

which might be used on the data collected by the new sensors, must be examined now. 

The aforementioned improved resolutions also mean an exponential increase of data volume. 

This poses new challenges for the analysis of satellite images and even though computers are 

becoming more and more powerful, efficient and fast routines must be found to extract the 

desired information. 

A successful integration of remote sensing and ancillary data is important to use the 

advantages of both data concepts. Data from satellites offer the advantages of being up to date 

and relatively inexpensive whereas the ancillary data ( e.g. database concerning a certain area) 

offer a higher information level. The aim of this thesis is to show how satellite data may be 

used to facilitate the update of urban land use databases. Satellite images of urban areas, as 

compared to a natural environment, add the challenge of being very heterogeneous. To cope 

with this fact the spectral mixture analysis is used for the analysis of the images as it allows 

the analysis at a sub-pixel level. This method also functions as a data reduction method and 

offers the advantages of being very fast and easy to use. lt might also be implemented in a 

semi-automated system. 
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Chapter 1: Introduction 

The satellite images, available for this study, cover the whole of the City of Vienna and the 

surrounding area. Different land cover types are present here, ranging from woodlands to 

agricultural areas, densely built-up areas to mixed residential areas, water areas to parks. Two 

different parts of Vienna are selected to demonstrate the proposed methods. 

A number of studies, covering the area analysed in 4 and 5, have been undertaken in the 

recent past. Among these are classifications using neural pattern classifiers (Fischer et al. 

1994), and an analysis using classical classification techniques and texture analysis 

(Steinnocher 1994 ). 

The thesis consists of three main parts. The first part covers the analysis of Landsat TM 

satellite images of Vienna using spectral mixture analysis. The second part examines how 

suitable the results of the spectral mixture analysis are to deduct different land use classes 

from them. The last part shows how the results of the spectral mixture analysis, calculated for 

two satellite images, can be used to determine where construction activities actually have 

taken place. This information may then be used to aid the update of the land use data base. 
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Chapter 2: Principals ofRemote Sensing 

2. Some Fundamental Features of Remote Sensing 

Remote sensing is a data collection method, where the sensor is remote from the phenomena; 

that is, it is not in direct physical contact with them (Colwell (1984, cited acc. Jensen 1986)). 

Remote sensing thus differs from in situ sensing, where the instruments are immersed in, or 

physically touch the objects of measurement (Avery and Berlin 1992). Although sensors may 

be used from different platforms like aircrafts, spacecrafts, or satellites, the term remote 

sensing will refer in this work only to remote sensing by satellites. 

2.1. Electromagnetic Radiation 

Remote sensors measure the electromagnetic radiation (EMR) returned by the earth's natural 

and cultural features that have first received energy from the sun or an artificial source such as 

a radar transmitter. Because different objects return different types and amounts of EMR, it is 

the objective of remote sensing to detect these differences and thus make it possible to 

identify and assess a broad range of surface features and their conditions, e.g. healthy and 

stressed plants. The entire range of EMR comprises the electromagnetic spectrum. lt is 

divided into nine different spectral regions, which are defined by their wavelengths (A very 

and Berlin 1992). Table 1 shows the different spectral regions and their corresponding 

wavelengths. 

Table 1: Spectral Regions with Corresponding Wavelengths 

Spectral Region Wavelength (µm) 

Gamma and X rays < 0.01 

Far Ultra Violet 0.01 - 0.2 

Middle Ultra Violet 0.2 - 0.3 

Near Ultra Violet 0.3 - 0.4 

Visible (Blue, Green, Red) 0.4 - 0.7 

Near Infrared 0.7 - 1.5 

Middle Infrared 1.5 - 5.6 

F ar Infrared 5.6 - 1,000 

Microwave and Radio Waves > 1,000 

Source: Avery and Berlin (1992, p. 6) 
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Chapter 2: Principals ofRemote Sensing 

The major wavelengths utilised for the sensing of earth resources in the visible and infrared 

(IR) range are between about 0.4 and 12 µm. The significance of the different spectral ranges 

lies in the interaction mechanism between the electromagnetic radiation and the materials 

being interrogated. Each wavelength has its own capacities in terms of the information it can 

contribute to the remote sensing process (Richards 1986). Figure 1 shows the average 

spectral-response curves for six materials in the range of 0.4 µm to 0.9 µm. 

Figure 1: Average Spectral Response Curves for Six Materials 
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Source: Ave~ and Berlin (1992, p. 42) 

Fresh snow and asphalt have a relatively stable reflectance across the whole range. 

Vegetation, water, and soil have considerably different reflectance characteristics in the 

visible (0.4 - 0.7 µm) and IR(> 0.7 µm) regions. 
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2.2. Spaceborn Scanner Systems 

Scanners on satellite systems can be divided in across-track, or whiskbroom scanners and 

along-track, or pushbroom scanners. Across-track scanners view the ground in a contiguous 

series of narrow ground strips at right angles to the flight path. The forward motion of the 

platform causes new ground strips tobe covered by successive scan lines (see Figure 2a). The 

incoming light is directed to spectrum-separation devices (e.g. prisms and dichroic gratings), 

where it is divided into a number of discrete bands or channels. Along-track scanners 

represent a new generation and form images without a scanning mirror. This technique uses 

the forward motion of the platform to sweep a linear array of detectors accross ground scene, 

with one detector for each ground resolution cell and spectral band (see Figure 2b). The length 

of the array projected through the optical system defines the swath width, and the size of the 

individual detectors determines the ground resolution cell (A very and Berlin 1992). 

Figure 2: Track Scanners 

(a) Across-Track Scanner (b) Along-Track Scanner 
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Source: Mather (1988, p. 43) 

Detectors convert the radiation reflected from the ground to proportional electrical signals. 

Analog-digital converters translate them to discrete digital numbers (DNs), from which a 

digital image can be constructed. To create visible images the numerical data can be 

transformed into video signals, which enable the images to be seen on a screen, or they can be 

transferred to a hardcopy. As the information content of a digital image is expressed in 
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numerical form, analyses and manipulations can be accomplished by mathematical means 

(Avery and Berlin 1992). 

A digital remotely sensed image is typically composed of picture elements (pixels) located at 

the intersection of each row i and column j in each of the k bands of imagery (see Figure 3). 

These data should be in perfect geometric registration. The brightness value (BV) at each 

pixel location is usually represented by a number ranging from 0 to 255 (8-bit scale). This 

value may be modulated to produce a grey shade ranging from black (BV = 0) to white (BV= 

255) (Jensen 1986). 

Figure 3: A Digital Remotely Sensed Image with Brightness Value Range 
and Associated Grey Scale 
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Source: Jensen (1986, p. 12) 
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Earth observation satellites orbit the earth in either a sun-synchronous or a geostationary orbit. 

Satellites in a sun-synchronous orbit pass over all places on earth having the same latitude at 

approximately the same local time. These orbits, at an altitude of approximately 700 to 1,500 

km (Richards 1986), are usually used for earth resource satellites as the sun illumination 

conditions are consistent. Sun elevation, relative position, and intensity still vary with the 

seasons, but every scene has the illumination of the same time of day. Geostationary satellites 

maintain a stationary position relative to the earth. They orbit the earth at an altitude of 36,000 
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km in the same direction as the earth's rotation and are used for weather predictions (Aronoff 

1989). 

Resolution 

When examining the information from remotely sensed imagery four types of resolution must 

be considered: the spectral, spatial, temporal, and radiometric resolution. The spectral 

resolution refers to the dimension and number of specific wavelength intervals in the 

electromagnetic spectrum, to which a sensor is sensitive. The spatial resolution is the 

dimension of the ground-projected instantaneous-field-of-view. In order to detect a feature, 

the spatial resolution of the sensor system should be less than half the size of the feature 

measured in its smallest dimension. The temporal resolution refers to how often a given 

sensor obtains imagery of a particular area. The radiometric resolution defines the sensitivity 

of a detector to differences in a signal strength as it records the radiant flux reflected or 

emitted from the terrain (Jensen 1986, p. 4). 

Landsat Thematic Mapper 

In the period of 1972 to 1984 five Landsats (for "land satellite") were launched. A thematic 

mapper (TM) was placed on Landsats 4 and 5 of which the latter is still operating in 1995. 

The TM is a scanning optical-mechanical sensor system (across-track scanner) that records 

reflected and emitted energy in the visible, reflective-IR, middle-IR, and thermal-IR regions 

of the electromagnetic spectrum. lt collects data in seven different bands which were chosen 

according to their value in the discrimination of vegetation type and vigour, plant and soil 

moisture measurement, distinction of clouds and snow, and identification of hydrothermal 

alteration in certain rock types. The spatial resolution is 30 x 30 m2 for bands 1 - 5 and 7, and 

120 x 120 m2 for band 6 (see Table 2) (Jensen 1986, p. 30). 

The Landsat 5 orbits the earth in a sun-synchronous near-polar orbit (inclination 98.2 °) at an 

altitude of 705 km, crossing the equator at 9:45 AM, and covers the whole earth in 16 days 

with 14.5 orbits per day (see Figure 4). The radiometric resolution has a range of 256 digital 

numbers (8 bits) (Lillesand and Kiefer 1994, p. 463). 
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Table 2: TM-Bands with Corresponding Wavelength and Resolution 

TM-Band Wavelength (µm) Resolution (m) 

1 0.45 - 0.52 (blue) 30 X 30 

2 0.52 - 0.60 (green) 30 X 30 

3 0.63 - 0.69 (red) 30x30 

4 0.76 - 0.90 (reflective-IR) 30 X 30 

5 1.55 - 1.75 (mid-IR) 30x 30 

6 10.4 - 12.5 (thermal-IR) 120 X 120 

7 2.08 - 2.35 (mid-IR) 30 X 30 

Source: Jensen (1986, p. 30) 

Figure 4: Sun-Synchronous Orbit of Landsat-5 
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Source: Lillesand and Kiefer (1994, p. 463, adapted from NASA diagram) 
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Figure 5: Image Formed as Slanted Parallelogram due to Earth Rotation 
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One TM-scene covers a nominal ground area of 185 km across-track by 170 km along-track. 

Due to the earth rotation the image incorporates rotational skew and is represented as a slanted 

paralleogram (see Figure 5) (Avery and Berlin 1992). 

2.3. Digital Image Processing 

Remote sensmg 1mages recorded in a digital format express the information content in 

numerical form. The processing of this information is called digital image processing and 

encompasses four major areas of computer: preprocessing, enhancement, classification, and 

dataset merging operation (see Aronoff 1989, p. 405). 

Image restoration or preprocessing uses computer routines to correct a degraded digital image 

to its intended form. lt is usually a precursor to the steps that follow. Algorithms have been 

developed to recognise and remove several types of errors and distracting effects from digital 

images. They include geometric distortions, noise patterns, variations in solar illumination 

angle, and atmospheric haze. 

Image enhancement improves the detectability of objects or patterns in a digital image for 

visual interpretation. Enhancement can be divided into the following categories: contrast 

stretching, spatial filtering, edge enhancement, directional first differencing, multispectral 

band rationing, simulated natural colour, and linear data transformations. 

Image classification uses quantitative decision mies to classify or identify objects or patterns 

on the basis of their multispectral radiance values (as such, the normal output is analogous to 
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an image map requiring little or no visual interpretation). This is an information extraction 

process that involves the application of pattem recognition theory to multispectral images. 

Image classification analyses the spectral properties of various surface features ( e.g. crops) in 

a multiband image and sorts the spectral data into spectrally similar categories by the use of 

predefined, numerical decision rules. 

Data-set merging involves computer routines to integrate multiple sets of data from the same 

location so that congruent measurements can be made (representative types of information 

include geographical, geological, geophysical, geochemical, and multispectral radiance data). 

lt allows for the simultaneous analysis of many types of information for the same ground area 

taken at different wavelengths, at different times, or by different sensors. 

The Integration of Remote Sensing Data and Ancillary Data 10 
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3. Data and Software 

3.1. Data 

Satellite Data 

For the following study two Landsat TM quarter scenes (quadrant I of scene 189/27), 

observed on June 5, 1986 and July 1, 1991 are used. Of the seven bands the thermal band 

(band 6) is not utilised as it has a much lower resolution than the other bands (120 x 120 m2 

compared to 30 x 30 m2
). The scenes were geocoded to the Gauß-Krüger co-ordinate system 

(Buchroithner 1989) and interpolated with the nearest-neighbour method (Jensen 1986). The 

spectral mixture analysis is carried out for both quarter scenes independently. For the display 

of the results two areas were selected. The first, examined in chapter 4 and 5, covers the area, 

for which land use data are available (see below). For the change detection in chapter 6 an 

area in the Northeast ofVienna was selected. 

Land Use Data 

The digital land use data database was set up by the City of Vienna in 1986 on the basis of 

orthophotos. The data are in vector format and each polygon delimits an area of homogeneous 

land use. For this study land use data, which cover the area of the first selected subscene, was 

provided by the City of Vienna. Thematically the land use data are divided into 42 classes, 39 

of which appear in the selected subscene. In order to compare the vector formatted land use 

data with the raster formatted satellite data, the land use data were transformed into a raster 

format with a resolution of 5 x 5 m2
• This led to a reduction of the number of polygons from 

3,822 to 3,540. All the polygons which do not fill out the majority of at least one 5 x 5 m2 

pixel are lost. As the resolution of the satellite images is 30 x 30 m2
, these regions would not 

have been suitable for an analysis so that this loss does not present a problem. The rasterised 

polygons will from now on be called regions. Table 3 shows the different land use classes and 

the number of regions for each class that appear in the chosen area. 
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Table 3: Land Use Classes with Number of Polygons in each Class within the Study 
Area 

Land U se Class Number of Land Use Class Numberof 

Regions Regions 

Administration 143 Museums 7 

Allotments 65 Outdoor Baths 9 

Barracks 2 Parks 162 

Broadcasting 0 Port Installations 2 

Building Sites 57 Railway 37 

Camping Sites 1 Religious Institutions 89 

Car Parks 82 Residential Areas 1,606 

Cemeteries 7 Residential Areas with 317 

Garden 

Commerce and Trade 291 Sand and Gravel Production 0 

Common Utilities 39 Schools 139 

Day Care Centres 36 Sport Fields 50 

Drainage 27 Theatres 13 

Energy Supply 10 Traffic Facilities 28 

Exhibition Grounds 2 Trams 23 

Fields 19 Unproductive Land 25 

Forest 20 Vineyards 43 

Gardening 12 Water Areas 31 

Gymnasiums 4 Water Treatment 1 

Hospitals 21 Water Supply 4 

Industrial Plants 31 Yards 13 

Lawn 72 Zoos 0 

Figure 6 shows the landaus map of the area analysed in chapter 4 and 5. Each polygon defines 

an area of homogeneous use. At the bottom of figure 6 is the centre of the City of Vienna, the 

Danube goes from the North to the East, and in the middle a mixed residential area with 

vineyards in the North. This part ofVienna covers everything from built-up areas to farming 
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Figure 6: Land Use Map of Area under Investigation 

0 400 IOOOm 
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areas, from water-bodies to mixed residential areas and is therefore very suitable to test the 

method used for the analysis of the satellite image. 

3.2. Software 

For the geocoding of the satellite images the computer package ERD AS 6.02 of Erdas. Inc., 

was used. The spectral mixture analysis which will be described in 4. has been carried out 

using the public domain program "Image Processing Workbench" (IPW) (Frew 1990). lt was 

also used to carry out the principal component analysis as a first step of analysing the satellite 

image. F or converting of the land use data into a raster format, the classification as described 

in 5„ the change detection as outlined in chapter 6, and for the production of the maps, 

ARC/INFO 7.0 ofESRl, Inc. has been used. 
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Chapter 4: Analysis of Satellite Images 

4. Spectral Mixture Analysis 

A number of methods exist for classifying satellite images. They can be divided in supervised 

and unsupervised classification procedures. In a supervised mode some of the land cover 

types are known beforehand, and the analyst attempts to locate specific sites in the image that 

represent homogeneous examples of these known land cover types. These are the training 

sites, because the spectral characteristics are used to "train" the classification algorithm by 

calculating multivariate statistical parameters for each training site. According to these 

parameters the rest of the image is classified. In an unsupervised classification the data are 

clustered into different spectral classes according to statistically determined criteria. The 

clusters are then labelled by the analyst (Jensen 1986). These methods have the disadvantage 

of assigning a certain class to each pixel. This problem is most apparent if the area in question 

is very heterogeneous. This is especially the case in an urban environment, and to overcome 

this problem the strategy proposed in this study is to modify the classical approach by a 

transformation. The information gained by the transformation is then used to apply the 

classical procedure (see chapter 5) and the change detection procedure (see chapter 6). 

The multispectral or vector character of most remote sensing data allows the generation of 

new sets of image components or bands by applying transformations. The components 

represent an alternative description of the data. A vector space with as many dimensions as 

there are bands may be constructed. In the case of the Landsat TM with six bands ( excluding 

the thermal band) this leads to six dimensions. Examples for different types of transforrnations 

are principal components transformation and band arithmetics (Richards 1986). These 

techniques are used for the enhancement of images as well as prior to classifications. 

The principal component analysis uses the covariance matrix to calculate a set of new, 

transformed variables called principal components. These are largely independent of one 

another. Geometrically, the components represent a set of mutual orthogonal and independent 

axes that are fitted to the original data. The first new axis contains the highest percentage of 

total variance in the data, decreasing with each succeeding axis (A very and Berlin 1992). 
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Band arithmetics are simple transformations, and use addition, subtraction, multiplication, and 

division of the pixel brightness values from two bands of image data to form a new image. 

Ratios of different spectral bands from the same image are useful for reducing extemal effects 

such as seasonal changes in sunlight illumination angle and intensity (Richards 1986). 

The above mentioned techniques have a very limited ability of extracting information. Except 

for the vegetation index, which gives very reliable information due to the reflectance 

characteristics of plants (see Figure 1 ), the results of the techniques mentioned above have to 

be interpreted after the transformation. They may also vary considerably from image to image. 

To overcome this restriction the transformation technique used here is the spectral mixture 

analysis. lt allows the user to determine the thematic information contained in each 

transformation component. 

The spectral mixture analysis has been used in a number of studies in the natural environment, 

as for instance for the estimation of sediment concentration in the Amazon River (Mertes et 

al. 1993 ), the analysis of rock and soil types at the Viking Lander 1 Site (Adams et al. 1986), 

the abundance of vegetation in deserts (Smith et al. 1990), the analysis of inland tropical water 

(Novo and Shimabukuro 1994). The only study using spectral mixture analysis in an urban 

environment deals with the analysis of data collected by an airbome thematic mapper (ATM) 

ofthe University College of Swansea, UK (Foody and Cox 1994). 

4.1. Method 

The spectral mixture analysis tries to estimate how each ground pixel's area is divided up 

among different cover types. This is known as mixture modelling, and the aim is not a single 

map of symbols (the classification image) but a series of images, each the size of the original 

image, and each giving the proportion of a different land cover type. The data resulting from 

this analysis is of a quantitative and qualitative nature (Settle and Drake 1993). The lower the 

spatial resolution and the higher the heterogeneity of the area in question, the more different 

land cover components are encompassed in one pixel. The objective is to determine the 

proportion of each of the land cover components present in each pixel. 
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To calculate these proportions a set of spectra is defined called "image endmembers'', 

representing the land cover types in question. When mixed using the appropriate rule, these 

endmembers reproduce all of the pixel spectra. The endmembers are selected from areas 

which show only or nearly only the land cover in question, and which receive maximum 

illumination. In addition, an endmember called "shade" is introduced, which accounts for 

variations in lighting at all scales (e.g. changes in incidence angles, shadows cast by 

topographic features, subpixel shadows cast by trees, and so forth). The endmembers are 

defined from pixels which must be as pure as possible. The shade endmember can be derived 

from a pixel in a shadow cast by a topographic feature (Adams et al. 1989). 

The maximum number of endmembers corresponds to the number of spectral bands of the 

satellite image. Due to the fact that some bands are highly correlated the number of 

endmembers is in general smaller than the number of bands. To identify the intrinsic 

dimensionality of the data, the principal component analysis may be used. The number of 

components showing meaningful information is the relevant number of endmembers (Settle 

and Drake 1993). 

Once the endmembers are defined the fractions of each endmember in each pixel may be 

calculated by applying the appropriate mixing rule. The general equation for mixing is 

(Adams, et al. 1989): 

N 

DNC = LFn. DNn,c + Ec (1) 
n=l 

where 

N 

LFn 1 (2) 
n = 1 

with 

DN c radiance in channel c, 

N number of endmembers , 

F" fraction of endmember n, 

DN n,c radiance of endmember n in channel c, 
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Ec error for channel c ofthe fit ofN spectral endmembers. 

Equation (1) converts the DN value of each pixel in each channel to the equivalent fraction 

(Fe) of each endmember as defined by the endmembers (DNn,c)· The error (Ec) accounts for 

that part of the DN-value which is not described by the mixing rule. The equation (2) 

introduces the constraint that all fractions of one pixel must sum to one. 

As long as the number of endmembers is smaller than the number of bands an overdetermined 

set of equations exists which may be solved using the linear-least-square method by 

minimizing the residual vector v (Kraus 1990): 

b+v=Ax 

with 

A design matrix ofthe endmember matrix A(m,n) and rank r, where m is the number of 

bands and n the number of endmembers, 

b vector of observations (m, 1 ), 

x vector ofunknowns (n,1), 

v residual vector (m,1), tobe minimized. 

(3) 

From this follows v = A x - b. The residual vector v is minimized to calculate the unknowns x 

(Kraus 1990): 

T . T T T T bTb v v=Mm=(Ax-b) (Ax-b)=x A Ax-2b Ax+ 

dvTv =d(vTv)=2xT AT A-2bT A=O 
dx 

From this follows that vector x satisfies: 

AT(b-A x) = 0 
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i.e. the residual vector v = b - A x is orthogonal to the columns of A (Björck 1967). If m ~ n 

and r = n then x satisfies (Golub (1965 cited acc. Linnik 1961)): 

(7) 

From this follows that the fraction vector x may be calculated by: 

x = CAT Ar1 ATb. (8) 

The fractions of each endmember in each pixel (x) are calculated by multiplying the 

coefficients matrix (calculated by multiplying (AT Ar1 AT) with the DN-vector ofthe pixel in 

question (b ). 

A modified Gram-Schmidt regression is used to invert the endmember matrix and determine 

the coefficients with which the fractions are calculated (Frew 1990). Two different variants of 

the Gram-Schmidt regression exist to solve this orthonormal basis (OB) problem, which is 

defined as the problem to find an orthonormal basis for span {ai·· ,„, an}, when independent 

vectors ai·· ,., an E in are given (Golub and Loan 1989). Two vectors (x, y -:;e 0) are orthogonal 

ifthe scalar product is zero (xT y = 0). Orthonormal vectors are defined as orthogonal vectors, 

which are normalised vectors with a length of one. A vector x is normalised by the 

multiplication with the scalar llxU-1 (Hackl and Katzenbeisser 1992). 

The classical Gram-Schmidt (CGS) method calculates the orthogonal vectors one at a time, 

and the modified Gram-Schmidt (MGS) procedure progressively adjusts all the linearly 

independent vectors (Farebrother 1974). The MGS is very suitable for solving the OB 

problem if orthonormality is critical and the vectors to be orthogonalised are fairly 

independent (Golub and Loan 1989). 

Once the coefficients have been determined, the fractions for each endmember are calculated 

by: 
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c 
Fn = IDNc ·coeff(n,c) (9) 

C=l 

with 

F n fraction of endmember n, 

C number of channels, 

DNc radiance in channel c, 

coeff( c,n) coefficient of endmember n in channel c. 

(9) is carried out for every pixel and every endmember. The shadow fraction is calculated by 

subtracting the sum of all fractions of the pixel in question from one. The results are stored in 

fraction images, one for each endmember, including one for the shadow endmember and one 

for the rms error (see below). 

Testing the Results of the Spectral Mixture Analysis 

Three ways exist to evaluate the results of the spectral mixture analysis. These. are the visual 

analysis, the calculation of the root-mean-squared (rms) error and the calculation of the 

fraction overflow (Adams et al. 1989). 

With the visual analysis of the fraction images, the analyst determines whether they are 

consistent with other information existing about the area in question, e.g. do the high fractions 

in vegetation appear where they ought to appear. If the pattems do not correspond with the 

additional information obtained by ground truthing or other sources then the model 

constructed may not be correct. 

The second test is the calculation of the rms error. The rms error is based on the E c term of 

equation 1, squared and summed over all M image channels (see (10)) (Adams et al. 1989) 

(10) 
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with 

E root-mean-squared (rms) error 

k number of Channels 

The rms error is calculated for every pixel individually and can also be visualized as an image. 

lt may also be calculated for the whole image, showing the overall rms error. A small rms 

error is an indication of a mathematically good model. A large rms error indicates that the 

model has not been constructed correctly. 

The third test is the computation of the fraction overflow. Reason dictates that the fractions of 

the land cover components must lie between zero and one, but if the model in not constructed 

correctly fractions may fall outside this range. As the endmembers are supposed to represent 

100 % of the land cover in question, any pixel having a higher portion of the land cover as 

compared to the endmember pixel, will have a fraction higher than one. To satisfy the 

constraint that all the fractions of a pixel must sum to one, another fraction of this pixel will 

be below zero. 

If the model is not satisfactory according to the tests described above, the endmembers must 

either be changed, deleted, or additional endmembers defined. The following rules aid in the 

selection of new endmembers. An overflow in a fraction image is an indication for a pixel, 

which represents the land cover better then the pixel used for the definition of this endmember 

up to now. An overflow and a high rms error in a pixel may be due to an unmodelled 

endmember represented by that pixel. 

4.2. Application of Spectral Mixture Analysis 

Endmember Selection 

As pointed out in 4.1. the number of principal components analysis gives an indication of the 

intrinsic dimensionality of the satellite image and thus of the number of endmembers 

necessary to analyse the image. The result of the principal component analysis, i.e. the 
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variance explained by each component, conducted for the 1986 image using the correlation 

matrix, is shown in Table 4. 

Table 4: Variance Explained by Principal Component Analysis 

Principal Component Variance Explained in % Cumulated Variance in% 

1 59.62 59.62 

2 34.74 94.36 

3 4.22 98.59 

4 0.94 99.527 

5 0.38 99.90 

6 0.10 100.00 

The first three principal components explain over 98 % of the total variance of the image data. 

Because of this the intrinsic dimensionality of the data may be assumed to be three, and thus 

the number of endmembers limited to three. The endmembers selected for the analysis 

represent vegetation, water and built-up areas. An additional endmember for shade is defined 

to account for the variations in lighting due to changes in incidence angle and variations that 

are caused by shadows (Adams et al. 1989) in the image. To define the endmembers, pixel 

vectors are examined which only or nearly only represent the land cover in question. The 

pixel vector for vegetation has a very high value in the near infrared band 4, as this band is 

best for picking up vegetation. The pixel is located in an area covered by forest in the N orth of 

Vienna.The endmember for water is defined by a pixel vector located in a faster flowing part 

of the Danube in the North of Vienna, and the endmember for built-up areas is defined by a 

pixel vector located in an administration building. Figure 8 shows band 4 of the subscene of 

the satellite image with the locations of the three endmembers. 

As shadow represents areas not or badly illuminated, the endmember was defined as zero in 

all six bands although it is possible that the shade endmember is greater than zero, owing to 

instrumentation offsets and/or gain, skylight scattering, and so forth (Adams and Smith 1986). 

Figure 7 shows the spectral plot of the endmembers for vegetation, built-up areas and water. 
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Figure 7: Spectral Plot of the Endmembers for Vegetation, Building, and Water 
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The fraction images are calculated according to the procedure described in 4.2. for each 

endmember, including the shadow endmember. In addition the rms image is calculated, giving 

the rms error for each pixel. 

For the visualization of the fraction images, they are rescaled according to the rules in Table 

5, and the rms error-image is rescaled according to Table 6. Lighter colours in the fraction 

images indicate a higher fraction of the respective endmember. Lighter shades in the rms 

error-image indicate a higher error. 

Table 5: Rescaling ofFraction Images 

Fraction Fraction Image Value 

< -1 0 

-1 to 0 0 to 100 

0 to 1 100 to 200 

1 to 1.55 200 to 255 

> 1.55 255 
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Table 6: Rescaling of Rms Error-Image 

Rms error Rms error-image value 

0 to 15 0 to 255 

> 15 255 

The highest values in the fraction image for vegetation (Figure 9) are in the north-westem 

part of the image, an area covered mostly by forest. The values decrease until they reach their 

minimum in densely built-up areas and water regions. In the centre of the city the parks are 

very distinct from the surrounding buildings. The fraction image for built-up areas (Figure 10) 

shows as light areas the very heavily built-up areas like the city centre, train stations, and 

hospitals. In the water regions and forest areas the values have their minimum. Vineyards 

appear in very light colours and may be confused with heavily built-up areas when looking at 

this fraction image alone. This fact is put in perspective when examining the water fraction 

image (Figure 11). The Danube can be made out very clearly, values are low in built-up areas 

and even lower in areas with vegetation. The lowest values are found in areas with vineyards, 

and thus make it possible to differentiate between vineyards and built-up areas by looking at 

the fraction images for buildings and water simultaneously. 

The rms image (Figure 12) shows a very even distribution of the error across the whole image 

with the exception of a few small spots. These spots are either due to instrumental errors, or to 

areas which reflect in a very untypical fashion for this image. In quantitative terms the average 

error for every pixel is 3.4 DN-values. 

Another way of displaying the data is to create a colour composite of the fraction images. This 

makes it possible to view all fraction images simultaneously, and to examine how the 

different areas are influenced by the fraction images. Figure 13 shows the. colour composite 

with red being used for the fraction image for built-up areas, green for vegetation, and blue for 

water. The land use data has been laid over the colour composite. Residential and built-up 

areas can be easily distinguished from areas covered by plants or water. The parks (green) in 

the city centre are clearly visible, and the vineyards (yellow) in the North are very distinct 

from built-up areas, which show as bright red. 
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Figure 8: Band 4 with Locations of Endmembers 
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Figure 9: Fraction Image for Vegetation 
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Figure 10: Fraction Image for Built-Up Areas 
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Figure 11: Fraction Image for Water 
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Figure 12: Rms Error-Image 
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Figure 13: Colour Composite ofFraction Images 
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The next step of the analysis is to integrate the results of the SMA with the land use data, to 

determine how suitable the fraction images are to actually deduct different land use classes 

from them. So far only a transformation of the satellite image according to the information 

provided by the endmembers has been done. 
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5. Integration of Land Use Data with Fraction Images 

The purpose of this section is to examine how suitable fraction images are to derive different 

land use classes from them. The fraction images themselves are not classifications, but give 

the proportions of vegetation, buildings, and water in the area covered by the satellite image. 

The procedure for the comparison and the subsequent classification can be seen in Figure 14. 

To make a comparison between the vector based land use data and the raster based fraction 

images possible, the land use data were transformed into a raster format with a resolution of 

5 x 5 m2
• Because of this transformation, the number of polygons was reduced from 3822 to 

3540. The reduction of the number of polygons is due to those polygons which do not have 

the highest portion in at least one 5 x 5 m2 pixel. Considering the resolution of the satellite 

image of 900 m2
, these regions are not suitable for the analysis because of their small size. 

The rasterized polygons will from now on be called regions. The next steps are to assign a 

land use dass to each region (as defined in 3.1) on the basis of the fraction images and the 

evaluation of the results of this classification. 

5.1. Classification of Regions 

The land use data has 42 different classes, and 39 of these are represented in the study area. 

When examining these classes (Table 3), it is apparent that many classes differ only in their 

functional but not in their spectral properties, e.g. a building block may hause a school, a 

hospital, apartments, and so forth. To make a comparison between the land use data and the 

fraction images possible, nine main classes were selected from the 39 land use classes (forest, 

residential area with garden, residential area, field, park, water area, vineyard, lawn, and rail). 

All remaining classes may be attributed to one or more of these main classes, which will be 

taken into account when the results of the classification are evaluated. 

The aim of the classification is to assign every region to one of the nine main classes. Figure 

14 shows the steps of the classification of the regions. After the transformation of the land use 

data into a raster format, the resulting raster image is laid over each of the fraction images 

(Figure 14 top). The means for every region in each fraction image are calculated using (11 ). 
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p, 
-1 "d m r,f = p L.. n,r,f 

n = 1 

with 

mr,f mean of region r in fraction image f, 

Pr number of pixels in region r, 

dn,r,f fraction value of the nth pixel d in region r and fraction image f. 

(11) 

The mean for a region within one fraction image is calculated by summing the fraction values 

of all pixels lying within that region, and dividing the sum by the number of pixels. This 

procedure is carried out for each fraction image, and results in one vector vr for every region 

containing one mean value for every fraction image (Figure 14). 

To obtain the reference data according to which the regions are classified, the mean values for 

each main class are aggregated for each fraction image. Of these aggregated values the mean 

is calculated producing again a vector, only this time for the nine main classes for each 

fraction image: 

for all h 

with 

aggregated vector for each main class h, 

eh number of regions per main class, 

v vector of mean values of a region belonging to main class h, 

h number of main classes. 
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Figure 14: Transformation ofVector into Raster Format and 
Calculation of the Mean for each Region 
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L7 Pixel at location x,y within one region as defined by the land use data 

J!i'Z7 Pixel at location x, y in region r containing proportion d of landcover 

within fraction image f 

The results are the mean proportions of each main dass in every fraction image. In the last 

step all regions are assigned to the one of the h main classes to which the mean values (m,) of 

the region runder examination have the smallest distance ((m, - ah)2 is a minimum). 
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5.2. Results of Integration 

The result is a classification of the whole study area with each region related to one of the 

main classes (Figure 15). Colours are assigned to all nine main classes are assigned according 

to the results of the classification. Dark green stands for forest, very light green for light 

vegetation, magenta for residential area, orange for residential area with garden, grey for field, 

light green for park, red for heavily built-up area ( defined by railway in the main classes ), blue 

for water, and yellow for vineyards. As is to be expected, the residential areas lie mainly in 

the central area of the city. Going further north there are less heavily built-up residential areas, 

but mainly residential areas with garden although here often classified as parks. This is not so 

surprising considering the features of a park and a residential area with garden. Both have 

some vegetation and some buildings thus making a differentiation very difficult. The north

westem and northem areas are covered by forests and vineyards. 

The next step is to compare the results of the classification with the land use data in order to 

determine how well the classification, and thus how suitable the method is to derive land use 

data. As the land use data has 39 classes which appear in the study area, rules have to be 

established to determine the accuracy of the classification. These rules are shown in Table 7. 

These rules take into account that the different functional properties may not always be 

distinguished satisfactorily by spectral data and also that one class may be a member of more 

than one main class. The results of the evaluation of the classification can be seen in Figure 

16. 

The land use data has been superimposed to the evaluation image so that each polygon depicts 

one region. The regions which are classified correctly are coloured green, and those which are 

not classified correctly are coloured red. Some of the red coloured regions can be explained 

very easily, as for example the ones in the area of the Donaukanal. This canal is fairly narrow 

and low, compared to the surrounding area, lined on all sides by concrete, and therefore water 

is very difficult to distinguish. The greatest difficulty lies in the upper part of the image, 

where many regions are classified as residential areas with garden although, according to the 
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Figure 15: Results of Classification of Regions 
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Table 7: Rules for Determining the Accuracy of the Classification 

Main Class Forest Residential Residential Field Park Water Vineyard Lawn Rail 
Area with Area Area 

Land Use Class Garden 
Administration X X 
Allotments X X X X 
Barracks X X 
Building Sites X X X X X X X 
Camping Sites X X X X X X X 
Car Parks X X X X X X X 
Cemeteries X X X X X X 
Commerce and Trade X X 
Common Utilities X X X X 
Day Care Centres X X X X 
Drainage X X X X X X X 
Energy Supply X X 
Exhibition Grounds X X 
Fields X X X X X 
Forest X X 
Gardening X X X X X X 
Gymnasiums X X 
Hospitals X X X X 
Industrial Plants X X 
Lawn X X X X 
Museums X X 
Outdoor Baths X X X X X X X 
Parks X X X X 
Port Installations X X 
Railway X X 
Religious Institutions X X X X 
Residential Areas X X 
Residential Areas with X X X X 
Garden 
Schools X X X X 
Sport Fields X X X X X X X 
Theatres X X 
Traffic Facilities X X 
Trams X X 
Unproductive Land X X X X X X 
Vineyards X X 
Water Areas X 
Water Treatment X X 
Water Supply X X 
Yards X X X X X X X 

X: Land use class and main class are considered similar, and thus the classification correct. 
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Figure 16: Evaluation of Classification 
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land use data, these regions should be densely built-up residential areas. This is easily 

explained, as the land use data classifies those regions, which have residential buildings and 

some green areas, which do not belong to a single household but to the whole building, as 

normal residential areas. The problem here lies not within the classification but within the 

definition of residential areas in the land use database. 

When examining the quantitative analysis of the classification accuracy (Table 8), one can see 

that 84% of the regions are considered tobe accurate and 16% of the regions are evaluated as 

not accurate. When looking at the area, the results are even better. 88% of the area are 

classified correctly and 12% are considered to be different. 

Table 8: Quantitative Analysis of the Classification Accuracy 

Classification Number of Regions Regions in% Area in ha Areain % 

Correct 2,959 84 3,757 88 

Not Correct 581 16 518 12 

Total 3,540 100 4,275 100 

The results presented here show a high classification accuracy and allow the assumption that 

the fractions represent the area under investigation very well. Therefore in the next chapter an 

attempt is made to use fraction images for a change detection. 
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6. Change Detection 

6.1. Conventional Methods 

Monitoring changes in the environment is a problem faced by different institutions today. 

Especially government agencies have the task to detect and record changes. The challenge is 

to gather the necessary information at acceptable costs in the intervals required, and to 

develop suitable techniques for detecting changes. For urban studies this task is typically done 

by photo interpretation. Small-scale photographs (e.g. 1: 10,000 and larger) and vertical 

stereopairs from mapping cameras are used for urban studies on a general scale. Air 

photography has the disadvantage of being very expensive in obtaining the pictures, making 

regular repeat coverages prohibitively expensive. Analogue photographs also take a long time 

and a lot of manpower to be analysed (Richards 1992). Compared to these methods satellites 

offer, despite their still rather coarse resolution (Landsat TM, 30 x 30 m2
) an number of 

advantages. These are necessary for a system, if it is to be used for change detection and are 

(Jensen 1986): 

• Regular repeat coverage, 

• Record data from the same geographic area at the same time of day, 

• Maintain the same scale and look-angle, 

• Record reflected radiant flux in consistent and useful spectral region, 

• Inexpensive compared to other methods as for instance aerial photography. 

As the spatial resolution of satellite systems improves, the easier it will be to take advantage 

of these features, but even today satellite images may be used for change detection purposes. 

The applications are limited of course. In urban areas it is usually not possible to distinguish 

individual buildings, but it may be determined whether and where changes have taken place. 

The aim of this study is to show how fraction images of satellite images, recorded at different 

dates, can be used to determine where building activities have take place. 
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To get a successful change detection it is necessary to chose a time of year when one may 

expect, that the land cover types in question show large differences in their spectral response. 

lt is also advisable to have images which are take at approximately the same time of year and 

ideally with comparable weather conditions. Before it is possible to perform change detection 

it is necessary to geocode the images. 

A number of procedures exist for change detection: (see Jensen 1986, pp 37): 

• Image Differencing 

• Image Overlay 

• Image Ratioing 

• Classification Comparison 

• Principal Component Analysis 

• Change Vector Analysis 

For image differencing, two bands from images recorded at different times are subtracted 

from one another. For images recorded with values ranging from 0 to 255 (8-bit) the potential 

range for the result is from -255 to 255. Pixels where changes have occurred should have 

either very low or very high values. Pixels with no changes should be around zero. The 

problem is where to put the cut-off value for change/no change. This might either be done by 

calculating the standard deviation from the mean or it might be done interactively, where the 

user tries different values and decides, based on his knowledge about the area, where the cut

off value should be. The changes, which are detected must be interpreted as to the type of 

change, as the bands contain no qualitative and limited quantitative information. 

A method comparable to image differencing i~ image overlay, where two or three bands are 

laid over one another using different colours. Colour changes in different areas show where 

changes might have taken place and if the changes were positive or negative ones. Again the 

problem is interpreting the changes, as there is no qualitative information. 

Ratioing is a technique where a band from one date is divided by a band from another date. 

Ratio transformations tend to remain invariant to changes in viewing conditions ( e.g. sun 
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angle, and so forth) and thus improve the accuracy ofthe change detection compared to image 

differencing. Pixels, where no changes have take place will have a value around one, areas, 

where changes have take place will have values either higher or lower one. 

Classification comparison identifies change by comparmg two independently produced 

classification maps. The accuracy of this method depends on the initial classifications. 

Especially the heterogeneity of urban areas produces many mixed pixels, which lower the 

accuracy of the individual classification maps. As a result of this, too much change may be 

identified (Toll et al. (1980, cited acc. Jensen 1986)) 

For principal component analysis a set of mutually orthogonal variables is calculated. Each 

consecutive variable accounts for the maximum amount of variability within the original data. 

The principal components calculated for images taken at different dates may aid the 

identification of areas, where changes have taken place. Either the principal components are 

calculated separately for each image and then compared, or the images are combined and the 

components calculated. The thematic contents of each principal component may not be 

influenced and may change from image to image. 

With change vector analysis, the spectral characteristics of an area before and after a change 

are examined. If both spectral characteristics are plotted on the same graphic a change vector 

may be determined. This vector describes the direction and the magnitude of the change. A 

threshold is set up to decide whether a change has taken place or not. 

The methods described above have the disadvantage of either supplying no information as to 

the nature of the change or being very cumbersome to implement. The following section will 

show how fractions images may be used to determine changes over time. 

6.2. Change Detection using Fraction Images 

Two Landsat TM images were available for this study. The images were recorded on June 5, 

1986 and July 1, 1991. The time of year, when the images were recorded, is therefore 

approximately the same, and although it is a time of year, when a lot of changes take place in 
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the vegetation, they are still close enough to allow a successful comparison. For the change 

detection a different area was chosen, as the area examined in chapter 4 and 5 is already 

heavily built up with very few changes taking place. The new area is a development area and 

thus very well suited for the demonstration of this method. 

The method used to detect urban growth is closely related to image differencing. The main 

use of image differencing so far was in subtracting bands or principal components from one 

another. Both have the disadvantage that neither individual bands nor principal components 

contain information which may be regularly related to a special land cover type. There is 

neither a qualitative or a quantitative element present. Fraction images on the other hand offer 

the advantage of containing a priori defined qualitative information ( certain land-cover type) 

and quantitative information (values within the fraction images are between 0 and 100%) The 

method to detect changes suggested here is to subtract fraction images, which represent the 

same land cover type, calculated from satellite images recorded at different dates. If the 

fraction images represent the same type of information changes should be clearly seen, as the 

fraction images values must be higher or lower for pixels, where the land cover type has 

changed compared to a pixel from an earlier date. Two premises must be satisfied before a 

change detection may be attempted. First it is necessary to make sure that the fraction images 

represent the same information. To check this the histograms of the fraction images are 

compared. If the information is the same, then the general shape of the curve must be 

approximately the same, except for minor differences, which are due to the land use changes 

and seasonal changes. Also one must make sure that the information shown by the fraction 

images is as pure as possible i.e. only the land cover type in question is represented. If that is 

not the case, the change detection will be negatively influenced, and methods must be found, 

to remove these influences. To do that the inclusion of one or more other fraction images in 

the change detection might be advisable. 

The spectral mixture analysis was carried out for both images. The rules for determining the 

endmembers laid down for the first fraction image were used to define the endmembers in the 

second image, which allows the analysis tobe done very quickly. The results are two fractions 

for every endmember, one for each date of recording. As the aim is to detect where building 
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activities have taken place, in a first run only the fraction images for built up areas are 

examined. 

T o determine, whether the two fraction images actually represent the same land eo ver 

component, the histograms are compared (Figure 17). 

Figure 17: Histogram of the Fraction Images for Built-Up Areas for 1986 and 1991 
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As the histograms of 1986 has a shift of 5 DN-values to right, compared to the histogram of 

1991, the 1986 histogram was corrected by these 5 DN-values for the comparison. The 

histograms have a very similar shape, with the exceptions for a peak at DN-value 95 in the 

1986 histogram and a peak at DN-value 100 in the 1991 histogram. These peaks are due to 

different cloud covers in different parts of the image and changes in vegetation. As these 

differences are in areas, where there are no buildings (a DN-value of 100 is equivalent to a 

fraction of 0), these slight differences will not affect the change detection. 

The next step is the subtraction of the fraction image for 1986 from the fraction image for 

1991. The result is a new image, and to show the areas of interest all pixel, which have a 

positive difference of more than 20, are highlighted. The threshold value of 20 was found to 
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Figure 18: Result of Change Detection 
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be most suitable after examining different values. A problem encountered here is the 

differentiation between bare fields and built up areas, as there is a considerable signature 

overlap (Jensen 1986). To overcome this problem, the fraction image for water from 1991 is 

also included to make the differentiation more reliable. As pointed out in 4.4.2. the fraction 

image for water may be used to differentiate between visible soil and built-up areas. The 

result is a map (Figure 18) which shows where, according to the analysis, changes have taken 

place (red) or might have taken place, but are more likely to be fields (green). A ground 

truthing was conducted and the confirrned changes are marked with numbers in figure 18. 

Table 9 shows to which changes the numbers correspond. 

Table 9: Detected Construction Activities from 1986 to 1991 

Number in Figure 18 Construction Activity 

1 Residential Area 

2 Office Blocks 

3 Industrial Zones 

4 Allotments 

5 Veterinarian Faculty (under construction) 

6 Hospital (SMZ-Ost) 

7 Administration 

8 Irrigation Canal (under construction) 

23 changes were identified. As may be expected, most changes take place in residential areas 

(13) and industrial zones (4). 
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7. Conclusions and Outlook 

Satellite images offer a wealth of information which may help us understand and investigate 

developments in our environment. The challenge is to find suitable techniques to analyse the 

satellite data and extract the relevant information. The study presented here attempts in a first 

step to deduct different land use classes and changes over time from satellite images of an 

urban environment. As such images are very heterogeneous a spectral mixture analysis was 

applied. This makes it possible to determine the portions of different land cover types within 

each pixel. The resulting fraction images are then used to determine different land use classes 

from them. A comparison with an existing land use data base shows a very high accuracy, 

confirming the suitability of the spectral mixture analysis for this kind of environment. 

In the next step the spectral mixture analysis was applied to a second satellite image of the 

same area, recorded at a different date. The results of the transformations of both images were 

used for a change detection and to determine those areas, where construction activities have 

taken place. The result were verified by a ground truthing, confirming most calculated 

changes. 

The procedure presented here for change detection offers a powerftil tool for city planers, as it 

not only gives accurate information as to where changes have taken place but can also be 

carried out in a very short time. Costs can not only be saved in the collection of the data but 

also in the analysis of satellite images. If all the land use data of Vienna is available it is 

possible to determine in which polygons changes have taken place and either simply change 

the attribute of the polygon or change the polygon itself, if that should be necessary. By 

combining the benefits of the high spectral resolution of the Landsat TM and the high spatial 

resolution of newer systems ( e.g. panchromatic MOMS) the interpretation of the results could 

be greatly improved. Here it would be possible to examine those areas, where changes are 

supposed to have taken place, by a visual analysis of the high resolution data. 
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The procedure may also be used for other change detection purpose either in an urban or a 

natural environment. If the data is calibrated then it might also be possible to determine 

exactly the magnitude of the change. 
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