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1 Copyright

SIM version 1.0

COPYRIGHT (C) 1996 Manfred M. Fischer, Adrian Trapletti and Jinfeng Wang,
Department of Economic and Social Geography,
Vienna University of Economics and
Business Administration, Augasse 2-6,
A-1090 Vienna, Austria,
ALL RIGHTS RESERVED.

SIM is provided "as is" and without any warranty express or implied.
The user assumes all risks of using SIM. There is no claim of the
merchantability or fitness for a particular purpose.

You may make copies of SIM for your own use, and modify those copies.
You may not distribute any modified or ummodified binary, object or source
code or documentation to users at any sites other than your own.

The procedures RANDOM(), REPLACE_P() and SIMU_ANNEAL() in mle.c,
0O_LU_DECOMP() and O_UNC_PAR() in ols.c and W_LU_DECOMP() and W_UNC_PAR()
in wls.c are based on routines in Numerical Recipes: The Art of
Scientific Computing, published by Cambridge University Press, and

are used by permission.



2 Introduction

SIM is a flexible tool box for spatial interaction modelling running on UNIX
workstations under X Windows with the Motif graphical user interface. The
program combines a graphical input/output user interface with robust and
efficient algorithms. The package was implemented in C and has been tested
in research situations on a Sun SPARC 10 workstation at the Department
of Economic and Social Geography of the Vienna University of Economics
and Business Administration.

The tool box provides three major choice dimensions on spatial interac-
tion modelling;:

Model types: doubly constrained, production constrained, attraction con-
strained, unconstrained.

Separation functions: power function, exponential function, Tanner func-
tion, generalized Tanner function.

Estimation procedures: least squares estimation (ordinary and weighted)
with odds ratio procedure, maximum likelihood estimation by simu-
lated annealing combined with a downhill simplex method.

The structure of the user’s manual is as follows. Section 3 is dealing
with the installation of SIM, whereas in section 4 the required input and the
input user interface are outlined. The outcoming results, statistics and the
possibilities of visualizing these results are described in section 5. Section 6
gives an overview over the implementation of SIM. Section 7 contains a list of
known limits, problems and bugs of SIM. In the appendix some basics of the
theory of spatial interaction models, estimation techniques and performance
statistics used are briefly described.

In this documentation typewriter style is used for user input, syntax
specification and commands, Italic shape for options to commands, for file
and directory names, for field and button names and Boldface series to
emphasize text. Syntax specification is given in EBNF (Extended Backus-
Naur-Form).

3 Installation

3.1 Main Installation

SIM is written for UNIX workstations under X Windows/Motif GUL To use
SIM comfortably the workstation should have at least 32 MB RAM.

The first step in the installation procedure is to decompress the file
sim.tar.gz with the gzip command

% gzip -d sim.tar.gz



and to extract the source and documentation files with the tar command

% tar xvf sim.tar

Then change to the builded directory sim

% cd sim

The directory should contain the following files:

AUS.dat Austrian telecommunication data

AbsErr.gnu GNUPLOT macro

AbsRelErr.par ACE/gr parameter file

Acknowledgement

Copyright

Flow3d.gnu GNUPLOT macro

README

RelErr.gnu GNUPLOT macro

US.dat US interregional migration data
(example data from Fotheringham and O’Kelly, 1989)

XMsim X11 application defaults file

estimation.tet
forecasting.tat
info_textfilel. tat

Specification file for estimation-actions
Specification file for forecasting-actions
Read only information panel file

makefile Makefile to build and install STM
mle.c Maximum likelihood module
ols.c Ordinary least squares module
sim.c Main module

simdef.h Header file for *.c files

user.ps This guide in postscript

wls.c Weighted least squares module

To compile SIM a C compiler and the C standard libraries as well as the
additional libraries for the Motif toolkit and for X Windows have to be
available. Our configuration uses the Gnu C compiler gcc as default.

Edit the makefile to ensure that all path settings, the libraries and the
compiler settings are correct. SIM is build by

% make sim

and the executable sim as well as the X11 application defaults file XMsim

are installed with
% make install

in the proper place.



3.2 User Specific Installation

The final actions undertaken by SIM in the model estimation and the fore-
casting mode are defined in the two files estimation.tat and forecasting.tat,
respectively. Each line in these files is assumed to be a UNIX command ex-
cept when a line is starting with //, which means that this line is a comment.
The files provided allow a graphical representation of estimation and fore-
casting results by using the freely available software packages GNUPLOT
and ACE/gr.

4 Input

SIM may be started by typing the command sim on the Unix command line.
Then the main menu (see Figure 4.1) appears on the screen. The main
menu contains the specification fields for the input data file, the model type,
the separation function and the estimation procedure, as well as the buttons
for starting estimation, starting forecasting and quitting SIM. On the right
side of the window is a read only information panel.

The user needs to specify the number of origins, destinations and the
data input file name in the appropriate text fields and to select the model
type, the separation function and the estimation procedure by setting the
appropriate toggle buttons.

The data input file consists of several lines, each of them describing a
flow from one origin to one destination. The syntax of such a line is defined
as follows:

Line = OriginCode "," DestinationCode "," QObservedFlow ","
Distance "," OriginPropulsiveness ","
DestinationAttractiveness.

An example is provided in the file US.dat. During estimation the data
input file is used by SIM to calibrate the model and to produce a range of
calibration results and diagnostic statistics (see appendix C), whereas in the
forecasting mode the forecasts and out-of-sample performance statistics are
computed.

Model estimation is started by clicking on the Estimation button. If
the estimation procedure options ordinary (OLS) or weighted least squares
(WLS) are chosen, SIM immediately calibrates the model, and computes
the calibration results and diagnostic statistics (see section 5). Then SIM
executes the user defined batch job (see section 5) and returns finally to the
main menu.

In the case of maximum likelihood estimation (MLE) it is necessary to
make some more specifications. For this purpose, SIM prompts a param-
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Figure 4.1: The main menu

eter setting window on the screen, where the annealing schedule for the
optimization algorithm of simulated annealing has to be specified (see ap-
pendix B.2.2). An example of such a window is shown in figure 4.2. The
annealing schedule specifies the starting temperature, the number of itera-
tions computed at a certain temperature, the amount by which the temper-
ature is decreased each time and the initial system state or in other words
the initial values of the simplex matrix. The Start Temperature, Tempera-
ture Decrease and Number of Iterations fields are numerical fields, whereas
the Initial Values of Simplex Matriz field specifies a matrix, defined by the




Figure 4.2: The parameter setting window

following syntax rules:

Matrix
Line

Line { Line }.
u(u Float { u;u Float } u)n_

In the case of a
1. constrained model combined with

(a) the power or exponential separation function a (2,1) matrix,
(b) the Tanner separation function a (3,2) matrix and

(c) the generalized Tanner separation function a (4,3) matrix
has to be specified by the user.
2. For the unconstrained model combined with

(a) the power or exponential separation function a (5,4) matrix,



(b) the Tanner separation function a (6,5) matrix and

(c) the generalized Tanner separation function a (7,6) matrix
has to be specified.

SIM provides default matrices, but of course these default matrices are not
optimal in every situation, in which case the user can specify his own choice.
As in all applications with simulated annealing, success or failure is quite
often determined by the choice of the above mentioned parameters. Often
only a slight change in the initial matrix is enough to receive better cali-
bration results. Finally, to start the calibration, click on the OK button.
Then SIM starts calibrating the model, computing the calibration results
and diagnostic statistics, executes the user defined batch job (see section 5)
and returns finally to the main menu.

In order to choose the forecasting mode the user has to click the Fore-
casting button. This causes SIM to compute the forecasting results and the
out-of-sample performance statistics, and to execute the user defined batch
job (see section 5). Then SIM returns to the main menu. Of course forecast-
ing can be started only after estimation, in which case the last estimated
model is used to forecast. To avoid inconsistencies between estimation and
forecasting mode, the user selected options, specified by the three toggle
buttons, must be the same for estimation and forecasting.

To quit SIM simply click the quit button and SIM immediately stopps.

5 Output

In terms of output, SIM basically provides the file output.dat, which con-
tains all the calibration results and diagnostic statistics. The most recent
informations about the actions currently taken by SIM are written to the
standard output. An example of output.dat is given below:

#R#HRRS###E ESTIMATION #######HBRS
#Model Type: Production Constrained Model
#Separation Function: Power function
#Estimation Procedure: OLS

#

#I= 3

#J= 3

#Code_1 A2[i] _BALANCE_FACTOR
# 1 0.001478953
# 2 0.001643365
# 3 0.001450058
#

#ORIGIN DESTINATION OBSERVED_FLOW PREDICTED_FLOW ABSOLUTE_ERROR RELATIVE_ERROR



1 2 100.0 120.65

3 90.0 69.35
2 1 100.0 141.12
2 3 300.0 258.88
3 1 90.0 93.04
3 2 300.0 296.96

#

#The number of origin-destination pairs: 6

#

#The total interactions observed: 980.0000

#The total interactions estimated: 980.0000

#

#Percentage deviation of observed interactions
#from the mean (163.3333): 0.5578

#

#Percentage deviation of estimated interactions
#from the observed interactions: 0.1323

#

#Regressing the observed interactions on the predicted
#interactions yields RSquared(2) value of:0.9322
it

#T_reall[il[j] = -16.6977 + 1.1022 * T_esti[i][j]

# t-value of intercept: -0.6108
# t-value of slope: 0.6881

#

#Distance parameter(power): -0.2904

#

#0ptional Choice for the Performance Statistics
#RMSE_Statistic: 26.6248

#

#Standardized RMSE-Statistic: 2.7168
#

#ARV-Statistic: 0.0758

#

#R Square (1)-Statistic: 0.9242

#

#R Square (1)-adjusted Statistic: 0.9242
#

#R Square (2)-Statistic: 0.7673

#

#R Square (2)-adjusted Statistic: 0.7673

-20.
20.

-41.
41.

65
65

12
12

.04
.04

+21
+23

44
.14

.03
.01



#

#FW-Statistic: 0.2327

#

#FW-adjusted Statistic: 0.2327

#

#Information Gain Statistic: 14.5337
#

#MDI: 0.0148

#

In addition SIM makes it possible for the user to define his own batch
jobs. Execution of these jobs is started after writing the calibration results
and diagnostic statistics to the file output.dat. The batch jobs have to be
specified by the user in the files estimation.tet and forecasting.tzt. Using
the default files a graphical representation of the calibration results is pro-
vided by reading the file output.dat and using GNUPLOT or ACE/gr. See
figure 5.1 for an example of such a graphical representation.

The definitions of the performance measures written to output.dat are
given in appendix C.

6 Implementation

The implementation is structured in four modules:
1. The main module sim.c handling the input and output user interface,

2. the ordinary least squares module ols.c responsible for the ordi-
nary least squares calibration of the models and the computation of
diagnostic statistics,

3. the weighted least squares module wis.c responsible for the weighted
least squares calibration of the models and the computation of diag-
nostic statistics, and

4. the maximum likelihood module mle.c responsible for the max-
imum likelihood calibration of the models and the computation of
diagnostic statistics.

Sim.c handles the main menu and all subwindows, i.e. installs the win-
dows and starts up the event handlers, reads in the input data file, calls
one of the three calibration modules, and finally starts, after receipt of the
control from ols.c, wls.c or mle.c, the processes defined in estimation.tat and
forecasting.txt.

Ols.c, wls.c and mle.c receive the control from sim.c, calibrate the model
in the estimation mode, produce the calibration results and diagnostic statis-
tics, and write the results to oulput.dat.

10



T

§)[nsar uorjrIqIed Jo uoljejussatdar reorqderd oy, :1°G 2In3i

1

Rt

| I SIN (Spatial Intersction Hodelling) Packsgs 1543
Input Specifications -
SIM |
Nurber of Crigirc: ]9 1
& flexible tool box for spatial interaction modelling. f
tiurter of Destinations: |3 Version 1.0
. Copyright (C) 1995
Neme of Data Input Files §L|S.dat WMH‘MuAWWMWWm
: Department of Economic and Social Geography,
. T gt Vienna University of Economics and
“hoice of the Hodel Type
X : WAWMMAuﬂsuZ—&T__ 1] - % i
@ ung [=] arplot fu ] el guplot HE
+ Prd |Relative Error ‘
| 1 - |
At “outputdat" — | | H ‘output.dat” —
4.5 I ! .
W Doy i [ II‘ I i
m‘i 0 T “. 1[\ ll 'l “ ] | e o l ‘ Absolute Error i ,,_“—,wﬁ, ~
thozce1 sl ! I ‘
P i '
1 1 “
Exg
¥ F‘ 1.5
& Ter g
| 241
v Gorl :
=25 ‘
Chotcal 3
0 100000 200000 300000 400000 500000 €00000 700000
4 05 Observed flow B
di=T = —
v SpssSSS S = Yo o o
onid=l giplot IS R vedit -
fbsolute Error [ ﬂuitISavelLoad Iputput.dat
400000 [ Use Control-S and Control-R to Search. -
“output.dat” — | 11 |File output.dat opened read - write.
300000 ‘ [l
e .
[ 200000 ‘ | ™ output.dat Read - Hrite e
| | ! ] SERREERREEY ESTINATION #usehunssss
100000 ’ I ‘ 1 Type: Unconstrained Hodel
‘ ’ [ #Separation Function: Power function
o . | #Estination Procedure: OLS
#
#I= 9
-100000 #J= 9
¥
200000 #0RIGIH DESTINATION UBSER‘I’EU FLOH PREDICTED_FLOH ABSOLUY
il 2 180048.0 323255.75 =14
| 1 3 79223,0 172326.41 -9 —
-300000 & 1 4 26887.0 73415.01
0 100000 200000 300000 400000 500000  60000C 700000  BOGOG 1 5 198144.0 140470,11 5
Observed Flou J 1 6 17995.0 67537.16



Figure 6.1 gives a schematic overview of the interactions between the
different modules and main routines in SIM. For more details about the
implementation of SIM, we refer the reader to the provided source files.

7 Limits, Problems and Bugs

Limits might occur due to the user’s specific hardware and software con-
figurations. On a Sun SPARC 10 with 64 MB RAM, a standard SunOS
installation and using the Gnu C compiler up to 1000 origins and destina-
tions can be considered without difficulties.

We should mention that some problems might arise when using GNU-
PLOT and ACE/gr at the same time to produce graphical calibration results
of SIM.

In order to work correctly in cooperation with programs like GNUPLOT
and ACE/gr and to give SIM enough memory at the same time, one needs
to limit the stacksize to a certain amount. In our configuration we used

% limit stacksize 40m

Please report any comments, suggestions and bugs to
adrian@wigeol.wu-wien.ac.at.
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Appendix

In the sequel + = 1,...,I denotes the origin zone and j = 1,...,J the
destination zone, where the number of origin zones I may be unequal to the
number of destination zones J.

A Spatial Interaction Models

A.1 General Model

The general formula for spatial interaction models is
Ty = W Wy B, (1)

where Tij is the estimated size (volume) of a flow (e.g. people, goods, money
or information) from zone ¢ to zone j, V; denotes the origin factor, W; the
destination factor and F;; the spatial separation factor.

12
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Model Type
Unconstrained Production  Attraction Doubly
Variables Constrained Constrained Constrained

dyy X X X X

0y X X

Vi X X

D; X X

W; X X

Figure A.1: Input variables

The separation factor F;; is assumed to be a function F'(d;;) of some
measure d;; of separation from ¢ to j. The separation measure d;; has
usually been taken to be univariate (e.g. distance, travel time, transportation
costs or generalized costs). We distinguish the following separation functions
based on a univariate separation measure:

Fij = F(dy;) = d; power function, (2a)
= exp(fd;;) exponential function, (2b)
= d7; exp(fBd;j) Tanner function, (2¢)

= d7; exp(ﬁd;-yj) generalized Tanner function. (2d)
Four model types are available in SIM:
¢ the doubly constrained model (see appendix A.2),
¢ the production constrained model (see appendix A.3),
e the attraction constrained model (see appendix A.4) and

¢ the unconstrained model (see appendix A.5).

Figure A.1 outlines the variables included in the various model types,
where O; and D; denote the total outflows and inflows in the spatial inter-
action system, respectively.

A.2 Doubly Constrained Model

If information is available on outflow and inflow totals, then the doubly
constrained model is defined by

Ti; = A; O; B; D; F(dij) (3)
with

Ai = () BiD;F(dij)) ™", (4)

14



Byes (Z AiOiF((lU))_l, (5)

where T;; denotes the estimated size (volume) of a flow from zone i to zone
J, F'(.) the separation function, and d;; the separation measure from 7 to j.
A; is an origin-specific balancing factor which ensures that

Zﬁ'j = 0, (6)
J

where O; represents the total outflow of origin zone . B; is a destination-
specific balancing factor which guarantees that

ZTU = Dj, (7)

where D; represents the total inflow into destination zone j.
Application domain: Trip distribution problems (e.g. forecasting traf-
fic problems, trade patterns).

A.3 Production Constrained Model

In this case it is assumed that information is available on the outflow totals
for each origin 7. The model is defined by

Tz‘j = Ai Oi I/V]' F((l.ij) (8)

with

Ay = (Z W; F(di;)) 4, (9)

where Tij denotes the estimated size (volume) of a flow from zone i to zone
J» F(.) the separation function, d;; the separation measure from ¢ to j, and
A; the origin-specific balancing factor which ensures (6). O; denotes the
size of outflows from ¢ to any j (outflow total of i), and W; the attraction
of destination zone j (destination factor).

Application domain: Forecasting destination inflow totals (e.g. mod-
elling shopping expenditures to forecast the revenues generated by particular
shopping locations to determine the optimal size of a shopping development,
facility location).

A.4 Attraction Constrained Model

In this case it is assumed that information is available on the inflow totals
for each destination j. The model is defined by

Tij =V Bj Dj F((lij) (10)



with
B; = ()_ViF(dij))™, (11)

where Tij denotes the estimated size (volume) of a flow from zone i to zone
J, F(.) the separation function, d;; the separation measure from i to j, and
B; the destination-specific balancing factor which enures (7). D; denotes
the size of inflows to j from any ¢ (inflow total of j), and V; is a measure of
the propulsiveness of origin zone 7 (origin factor).

Application domain: Forecasting total outflows from origins (e.g. fore-
casting the effects of locating a new industrial park within a city, forecasting
university enrollment patterns).

A.5 Unconstrained Model

The model is unconstrained in terms of the production of flows from origins
and the attraction of flows to destinations. It is assumed that information
is available only on the total number of interactions in the system (i.e.
Do = Z,i,j Ti;). Then the model is defined by

Tz‘j = K Vi“ I’VJV F((lij), (12)

where T}; denotes the estimated size (volume) of a flow from zone i to
zone j, I'(.) the separation function, d;; the separation measure from ¢ to
7, Vi the propulsiveness of origin zone ¢ (origin factor), W; the attraction
of destination zone j (destination factor), p the parameter reflecting the
relationship between T;; and V;, v the parameter reflecting the relationship
between T;; and W;, and I the scale parameter.

B Estimation Techniques

SIM provides three different approaches to estimate the parameters of the
models described above:

¢ ordinary least squares (OLS) and

¢ weighted least squares (WLS) regression with the odds ratio pro-
cedure and

¢ maximum likelihood estimation (MLE) by simulated annealing
combined with the downhill simplex method.
B.1 Least Squares Estimation

In order to be calibrated by regression, a model must be in a linear format,
that is, linear in terms of its parameters. The transformation is described
in the sequal for each of the spatial interaction models.

16



B.1.1 Unconstrained Model

The transformation of (12) with any separation function into a linear format
is easily achieved by simply taking logarithms of both sides of the equation.
For illustration purposes we assume the choice of the power function (2a),
then (12) becomes

In T.ij =InK+plnV;+vinW; 4+ alnd;, (13)

where In denotes the natural logarithm. Note that the choice of another
separation function would not alter the basic transformations which are the
focus of this discussion (Fotheringham and O’Kelly, 1989).

The method by which the parameters In ', p, v and «a are estimated in
(13) is the least-squares technique. This technique provides estimates of the
parameters such that the sum of all squared residuals, 5, is minimized:

S = ) (nT; - InTy;)?

]

Z(lm Ty —ag—arlnV; —aglnW; — azln clij)2, (14)

i 1.7.

I

where ag :=In K, oy := p, ag := v and ag := a.
Minimizing a function is a common problem in calculus and can be
achieved by finding the partial derivatives of S with respect to the unknowns

05

B 2 %:(111 Tij — ag — a In Vi — agln W, — azlndy;)(—1), (15a)
887'51 =32 ;(ln Tij— g —oqgln Vi —agIn W — aglnd;)(—InV;),  (15b)
88_5; =2 %;(111 Tij—op—ayInV; —agln W; — azlnd;; ) (- In W;), (15¢)
% =3 E(ln Tij —ag—orlnVy—a;In W; — azlnd;;)(—Ind;;), (15d)

i)

and setting these equal to zero.
Dividing by 2 and bringing the negative terms to the right hand side of

17



the equation yields the normal equations in matrix form:

1J JY ;InV; I, InW; > Indi; oo
JY,;InV; JY,(InV;)? Y mViln W, 57 InVilnd;; a
I, W, 3, WmW;InV; Iy (InW,;)? > I Wilnd;; oy
Yijindi;  YiIndnV Y cIndi Wy 3 (Indgg)? ag
;T
B Zi,j InT;;In V;
- Zi,j In Tij In I’Vj
Zi,j 1 Ty I ol
(16)

The way to solve the linear set of equations
AX =B (17)

is to use a decomposition of A = LU where L is lower triangular (has
elements only on the diagonal and below) and U is upper triangular (has
elements only on the diagonal and above):

AX =(LU)X =L(UX)=B (18)
and first solve for the vector Y such that
LY =B (19)
and then
UX =Y, (20)

The advantage of breaking up one linear set into two successive sets is
that the solution of a triangular set of equations is quite trivial. (19) can be
solved by forward substitution and (20) by backward substitution (Press et
al., 1992).

Note that the WLS procedure implemented takes the underestimation
of the constant term, I, in the following manner into consideration:

=
ﬁ.ucw = I;-nl(lZl!J I»:J . (21)

Z;.,,‘ Ti
B.1.2 Constrained Models

At a first glance the constrained models look to be intrinsically nonlinear
in their parameters (i.e. nonlinear equations which can not be linearized
by transformation). The equations of the constrained models are compli-
cated by the balancing factors which involve summations of the models
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parameters. Sen and 566t (1981) have described a technique to achieve the
linearization of the constrained models. The technique is termed the odds
ratio technique and involves taking ratios of interactions so that the A;O;
and/or the B;D; terms in the models cancel out.

In the sequal k = 1,..., K denotes the index for the k£’th component of
a vector. Let us consider a rather general separation function

Fyj = F(dij) = exp()_ 0rd?) (22)
k

with a vector-valued separation measure

1) 2"

o d0), (23)

where components could be variables like distances, travel time, costs and
other measures of separation. 0= (04,...,0fK) is the separation function
parameter vector. Equation (22) evidently includes the power function (2a)
as a special case for @, = « and dg-;-) =Tndy,

E; = F(J;]) = exp(alnd;;) = df (24)

39

and the exponential function (2b) as a special case for ©; = 8 and d,(i;v) = g
Fyj = F(di;) = exp(fdy;), (25)

and the Tanner function (2c) as a special case for ©; = «, @ = £, d,(i;) =
In (lij and (lg) = 5,

By = F((i;-j) = exp(alnd;; + Bd;;) = dg; exp(fd;;). (26)

Consider the production and attraction constrained model (8)-(11) with
the general separation function (22). The transformation of this general
structure into a form linear in parameters may be obtained as follows. Mul-
tiply together the set of flows emanating from each origin to the J destina-
tions, take the Jth root of both sides of the equation, divide both sides of
the equation into Tij and substitute for Tij in the right-hand side and then
take logarithms of both sides and rearrage, then

fij + i“ - {Z" - i‘.i - fij + foo = fio — foj
Y Ou(dP +dl) - &) -4y, (27)
k

where t;; = lnTij, e = TN Ei,jhlfij, I = &7 EjlnTij, tej =
YTy, fiy = 0Fy, fou = YT 0P, fio = 3V InFy,
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Joj = MY InFy, & = TTHL Y, d, d) = T Y, dY and d) =
5% clgsf). Defining

Yij = fij + ioo = i\io . io] = fij + foo i fio - fQJ (28)
and

X8 o= d + d$) — df) — (29)

then (27) might be written as
Yis = Z @;PXE;). (30)
k

In the case of the production constrained model we get

Yij = bij — bie — (M W; = J71) " In W) (31)
g

and
k k k
ij) = (lg-j) —d (32)
and in the case of the attraction constrained model

Yij = tij — toj — (InV; = I} Zln Vi) (33)

and
X3 = d — dS). (34)

Note that (28)-(30) represents the doubly constrained model.

Now let us examine how we may obtain estimates for O in the produc-
tion constrained, attraction constrained and doubly constrained cases.

Let denote

= ) [t — (e +Hoj —fee + D Ou(dll +dS) — &) — dS)))1%,(35)
k

1,J

where t;; = InT;;. Minimizing (35) with respect to ©, we obtain the
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following normal equations in matrix form:

S XXy TuXpXxp oo Ty XX 0,
Z X(Q)Xl EuYz)Yz) Z”Y2)Ym 0,
El, y Y(l\) ‘((1) Z” X(I\)X(2) I zl ; X(I\)YU\ Ox

K

Z.,:,J‘ Yij ij ;
(36)
This linear set of equations is solved in the same way as (16), i.e. by
decomposing the coefficient matrix, breaking up the linear set into two suc-

cessive sets, and using forward and backward substitution.
In the univariate case (i.e. K = 1), for example, we obtain

Z  Yig X(l)

Q==Y _ 37
4 o XDxP (37)
and in the bivariate case (i.e. K = 2)
(0] Z y”‘\(l)zu \(Z)Ym ZmszX( Z -X(?),YQ)
1 E” Y(n‘\m y Rff’X}:‘” Z”X(l)X(z) 21 X 2)X(J)’
©9 Ei:j yini' i d XW “-g) . Eij Yig Aq '“) ZL J ‘“)‘\m
Zi,j Xlg;)Xlgl) 21] X(2) Y(z) E “-m‘\u) 21 JX(Q) Y(l)
(38)

Once O = (0©1,...,0k) is estimated, the balancing factors A; and B,
can be obtained by iterating (4) and (5) in the case of the doubly constrained
model, from (9) in the case of the production constrained model and from
(11) in the case of the attraction constrained model.

Weighted least squares may be preferable to ordinary least squares to
counteract the heteroscedastic error te1ms caused by the logarithmic trans-
formation with the weight being (T + T + T_ + Ty 1) —05 and the
assumption that the T;;’s have a Porsson dlStllbuthH (see Sen and Pruthi,
1983).

B.2 Maximum Likelihood Estimation

In essence, the MLE technique is to find parameter estimates that maximise
the likelihood of observing a sample set of interactions from a theoretical
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distribution. The steps involved in the calibration include identifying a the-
oretical distribution for the interactions, maximising the likelihood function
of this distribution with respect to the parameters of the interaction model
and then deriving equations which ensure the maximisation of the likeli-
hood function. For convenience, the logarithm of the likelihood function
is usually used since this is at a maximum whenever the likelihood func-
tion is at a maximum. Parameter estimates that maximise the likelihood
function are termed maximum likelihood estimates. Maximum likelihood
estimates have several desirable properties: they are consistent, asymptoti-
cally efficient and asymptotically normally distributed. This latter property
is particulary useful in significance testing. The method of obtaining ML-
estimates is described for each of the four model types (see Fotheringham
and O'Kelly, 1989).

B.2.1 The Principle of Maximum Likelihood

To introduce the principle of maximum likelihood as a tool for finding pa-
rameter estimates, it is necessary to convert the models to a probabilistic
form.

The Unconstrained Model

Let T;; denote a flow from i to j. Tj; might be considered to be the out-
come of a Poisson process if it is assumed that there is a constant probability
of any individual in 7« moving to j, that the population of 7 is large, and that
the number of individuals interacting is an independent process (see Ilow-
erdew and Aitkin, 1982). Then the probability that T;; is the number of
people recorded as moving from ¢ to j is given by

~Tis i ~
T;;" exp(=T3j)

p(Tij) = T 1 (39)
e

where T” is the expected outcome of the Poisson process and T;; the ob-
served value which is subject to sampling and measuring errors and thus fluc-
tuates around the expected value. Since Tij is unknown and unobservable, it
has to be estimated from some theoretical model such as the unconstrained
model (12).

Consider the log-likelihood of a set of observed flows Tj;, where each flow

is the outcome of a particular Poisson process. This log-likelihood, log L,
can be represented as

'e() 1
logl = Zln Tl‘ ]))
17
= E( 2+ Ti;In Ty — In(Ti;1). (40)
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Since Tj; is given, In(T;;!) can be ignored in the maximisation, and log L
will be at a maximum when

Z =) (T;lnT;; - Ty) (41)
t,]
is at a maximum. Thus, the parameter estimates associated with Tij, which
maximize 7, are received.

The Constrained Models
There exists several possibilities of defining a likelihood function for the
constrained models. In SIM equation (41) is used for all model types.
Batty and Mackie (1972) assumed interactions having a multinomial dis-
tribution, in which case the log-likelihood of observing a set of flows is

log L = ZT,-J- In p;;, (42)
)
where p;; represents the predicted probability of moving between i and 7,
and is defined as

~

T
pij = ——. (43)

2 Tij
Alternatively, p;; can be defined as the product of two other probabilities
Pij = Pjji Pis (44)

where p;|; is the conditional probability of interacting with j given one orig-
inates at ¢, and p; is the probability of an interaction originating in ¢. In a
production constrained model,

Z]’jh‘ =1, (45)
J
and, clearly,

> om=1 (46)
The probability p;|; is given by the production constrained model
pjji = AiO;W; F(di;), (47)

so that the objective is to determine the parameters of the separation func-
tion F'(d;;) which maximize (42) subject to the constraints in (45) and (46).

The method is identical for the production constrained (described here)
and attraction constrained model. The only difference in the calibration
of the doubly constrained model from that of the production constrained
model is that an extra set of parameters, the B;’s, is estimated from the
destination constraint set (see equation 7).
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B.2.2 The Algorithm for Maximum Likelihood Calibration

In SIM the simulated annealing algorithm (originally developed by Kirk-
patrick et al., 1983) is used in combination with a modification of the stan-
dard downhill simplex method (due to Nelder and Mead, 1965) to max-
imize Z, respectively minimize —Z (see equation 41), i.e. to find the ML-
estimates of the model (for the combination see Press et al., 1992).

The simulated annealing algorithm has attracted significant atten-
tion as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local ex-
trema. In contrast to conventional iterative optimization algorithms, sim-
ulated annealing shows the attractive feature not to get stuck in a local
minima, since transition out of a local minima is always possible when the
system operates at a non-zero temperature.

The simulated annealing algorithm is based on the analogy between the
behavior of a physical system with many degrees of freedom in thermal equi-
librium at a series of finite temperature as encountered in statistical physics
and the problem of finding the minimum of a given function depending on
many parameters as in combinatorial optimization (Kirkpatrick et al., 1983).
In condensed-matter physics, annealing refers to a physical process that pro-
ceeds as follows (Laarhoven and Aarts, 1988). First, a solid in a heath bath
is heated by raising the temperature to a maximum value at which all par-
ticles of the solid arrange randomly in the liquid phase. Second, then the
temperature of the heath bath is lowered, allowing all particles to arrange
themselves in the low-energy ground state of a corresponding lattice. This
assumes that the maximum temperature in phase one is sufficiently high,
and the cooling in phase two is carried out sufficiently slowly. If the cooling
is too rapid, the crystal will have many defects (Kirkpatrick et al., 1983).
The simulated annealing algorithm developed by Kirkpatrick et al. (1983)
is a variant (with time dependent temperature) of the Metropolis algorithm
proposed by Metropolis et al. (1953) for efficient simulation of the evolution
to thermal equilibrium of a solid for a given temperature, based on Monte
Carlo techniques.

In practice, one has to resort to a finite-time approximation of the asymp-
totic convergence of the simulated annealing algorithm. To implement such
an approximation one needs to specify a set of parameters governing the
convergence of the algorithm. These parameters are combined in a so-called
annealing schedule. The search for adequate annealing schedules has been
the subject of an active research area for several years (see Laarhoven and
Aarts, 1988).

The annealing schedule that we adopt is based on a number of con-
ceptually simple empirical rules. The annealing schedule specifies the
parameters of interest as follows:

1. Initial value of temperature Tj:
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The initial value Ty of the temperature is chosen high enough to ensure
that virtually all proposed transitions are accepted by the simulated
annealing algorithm. There exists no exact rule for determining Tp,
but for SIM one can use the following rule of thumb,

To =20 Alog L, (48)

where Alog L denotes the largest difference between any of the log-
likelihood function values evaluated at the initial parameter values
(default: Ty = 1000).

2. Decrement of the temperature AT
Ordinarily, the cooling is performed experimentally, with the changes
made in the value of the temperature being small. Especially, the
decrement function is defined by

g Y, I=1,...,|To/AT] (49)

where |To/AT| denotes the largest cardinal number less than or equal
To/AT. Typical values of AT lie between 5 and 40 (default: AT = 10).

3. Number of iterations at each temperature 7:
At each temperature, 7 transitions are computed. 7 depends as all
annealing schedule parameters on the thermodynamical properties of
the likelihood function and must be large enough to allow the system to
reach the thermal equilibrium at a given temperature. Typical values
of 7 lie between 5 and 30 (default: T = 20).

It is worthwile to note that, as in all applications of simulated annealing,
success or failure is quite often determined by the choice of the annealing
schedule. There exists also a tradeoff between computing time (large values
of Tp and 7 and small values of AT) and the accuracy of the final results
(small values of Ty and 7 and large values of AT').

In SIM the simulated annealing algorithm is used in combination with a
modification of the downhill simplex method to improve the performance
of the algorithm in situations where local downhill moves exists (as suggested
by Press et al., 1992).

The standard downhill simplex method due to Nelder and Mead (1965)
is a multidimensional optimization algorithm that requires only {unction
evaluations, not derivatives, and amounts to replace the single point 0 =
(©1,...,0k), representing the parameter vector, by a simplex of K + 1
points 0, = (O1,...,0x) (I = 1,...,K + 1). Starting with an initial
simplex, the algorithm takes a series of steps, most steps just moving the
point of the simplex where the function is largest (highest point) through
the opposite face of the simplex to a lower point. These steps are called
reflections, and they are constructed to conserve the volume of the simplex.
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When it can do so, the method expands the simplex in one or another
direction to take larger steps. When it reaches a “valley floor”, the method
contracts itself in the transverse direction and tries to ooze down the valley.
If there is a situation where the simplex is trying to “pass through the eye
of a needle”, it contracts itself in all directions, pulling itself in around its
lowest (best) point. The algorithm terminates when e.g. the decrease in the
function value becomes smaller than some tolerance.

In SIM the algorithm developed by Press et al. (1992) is used. In con-
trast to the standard downhill simplex method a positive, logarithmically
distributed random variable proportional to the temperature is added to
the stored function value associated with every vertex of the simplex, and
a similar random variable is subtracted from the function value of every
new point that is tried as a replacement point. This method always ac-
cepts a true downhill step, but sometimes also accepts an uphill one. In the
limit as the temperature goes to zero, this algorithm reduces exactly to the
standard downhill simplex method and converges to a local minimum. At
a finite temperature, the simplex expands to a scale that approximates the
size of the region that can be reached at this temperature, and then executes
a stochastic, tumbling Brownian motion within that region, sampling new,
approximately random, points as it does so. If the temperature is reduced
sufficiently slowly, it becomes highly likely that the simplex will shrink into
that region containing the lowest relative minimum encountered.

C Performance Statistics

An important element of SIM is the assessment of the model’s ability to
replicate a known set of flows. Accurate replication supports the theoretical
propositions on which the model is based, i.e. it supports one particular
model form over others. However the results and their interpretation depend
to a certain degree on the way in which the separation between the zones is
defined (see e.g. Fischer et al., 1992).

Many performance statistics have been employed in spatial interaction
modelling (see e.g. Fotheringham and O’Kelly, 1989). All such statistics in-
volve a quantitative description of some aspect of the difference between the
matrices of predicted and observed flows. It is important to emphasize that
the use of different performance statistics might lead to different conclusions
concerning the goodness of fit of a model under consideration.

SIM provides an output file consisting of the following components:
Only for the constrained model types:

¢ Balancing factors 4; and B; (see equations 4, 5, 9 and 11).
For all model types:

¢ Observed flow T;;,
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Estimated flow Tij,
Total observed interactions }°; . Ty,
Total estimated interactions >, . Tii,

Absolute error:

E.. =Ty — Ty, (50)
Relative error:
T — Ty ;
-Erel = Tja (51)

Percentage deviation of observed interactions from the mean:

T =T
-Dobs~mean = &‘dt]—‘& (52)
i T
where T = (IJ)~' 33, . Ty,
Percentage deviation of estimated from observed interactions:
e h | Pl Tz
Dest-obs = E'L’J l - ! | (53)

il

Regressing the observed on the predicted interactions (see e.g. Neter
et al., 1985):

Ti = a+bTi+ e,
Tii = a+b Tij,
a
t-value, = ——,
v avar(a)
b-1
t-value, =

Vavar(b)’
¥i,(Ti = T)?
2 (T = T)%
where avar(a) and avar(b) denote estimators of the asymptotic variance
of @ and b, respectively,

R(2) = (54)

Estimated model parameters (see appendix A):

All model types: Distance parameter: power function: «; exponen-
tial function: g3; power-exponential function: -,
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Unconstrained model: Constant In K, origin parameter yu, destina-

tion parameter v,

RMSE (Root Mean Square Error) statistic:

RMSE = [ (IJ)~Y(T;; - Ti;)?,
o

SRMSE (Standardized Root Mean Square Error) statistic:

SRMSE = RI\/ITSE100,

T

where T = (IJ)t Xii Tiis
ARV (Average Relative Variance) statistic:

¥ (T — T )?

ARV = 2
YT —T)?

where T = (IJ)™' ¥, ; Tij,
R%(1) statistic:

Rz(l) =1- ARV,
R%(1),4jusiea Statistic:

K-1
IF-K

Rz(l)adjusted = Rz(l) (1 . R2(1)),

where K denotes the number of parameters,

R*(2) statistic:

Rz = 2l =T
Ei,j(Tij m o
R*(2)4djustea Statistic:
K-1
RZ(?')a.djusted = R2(2) . IJ _ I((l - R2(2))7

FW statistic:

FW = |1 - R*(2)],
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(59)
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(61)

(62)



o F'W. 4jusea statistic:

K -1

FWadjusLed == FW . m

(1 - FW)a (63)

¢ Information gain statistic:

T;;
I, = ZTU In (Tj> . (64)
0] k

¢ MDI (Minimum Discrimination Information) statistic:

Igain
- (65
2 Tij )

Only for OLS and WLS and the unconstrained model:

MDI =

o Log versions of the above performance measures: T;; and Tij replaced
by InT;; and In T;;, respectively.

Only for MLE:

e Log-likelihood function values log L(é) and log L(éi) with all esti-
mated parameters O = (@1,... ,éK) and with one parameter set

equal to zero 0, = ((:)1, .., 04,0, (:),4_1, - (:)K), respectively,
o Relative likelihood statistics:
7i = 2() 1) (log L(©) — log 1(6)), (66)
iy

where 7; is asymptotically y? with one degree of freedom under the
null hypothesis Hy: ©; = 0.
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